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PROCESSING DATA FOR OUTLIERS' 

W. J. DixON 

University of Oregon 

1. Introduction 

Every experimenter has at some time or other faced the problem of 
whether certain of his observations properly belong in his presentation 
of measurements obtained. He must decide whether these observations 
are valid. If they are not valid the experimenter will wish to discard 
them or at least treat his data in a manner which will minimize their 
effect on his conclusions. Frequently interest in this topic arises only in 
the final stages of data processing. It is the author's view that a consid- 
eration of this sort is more properly made at the recording stage or per- 
haps at the stage of preliminary processing. 

I This problem will be discussed in terms of the following general 
models. We assume that observations are independently drawn from a 
particular distribution or alternatively, we assume that an observation 
is occasionally obtained from some other population and that there is 
nothing in the experimental situation to indicate that this has happened 
except what may be inferred from the observational reading itself.2 

We assume that if no extraneous observations occur, the observations 
(or some transformation of them, such as logs) follow a normal distribu- 
tion. We shall also assume that the occasional extraneous observations 
are either from a population with a shifted mean or from a population 
with the same mean and a larger variance. These assumptions may not 
be completely realistic but procedures developed for these alternatives 
should be helpful. 

If one is taking observations where either of these models apply there 
remain two distinct problems. 

First, one may attempt to pick out the particular observation or 
observations which are from the different populations. One may be 
interested in this selection either to decide that something has gone wrong 
with the experimental procedure resulting in this observation (in which 
case he will not wish to include the result) or that this observation gives 
an indication of some unusual occurrence which the investigator may 
wish to explore further. 

'This research sponsored by the Office of Naval Research. 
2There is no attempt here to discuss the problem of rejecting observations statistically when there 

are known experimental conditions which make the observation suspect. For example, the dirty test 
tube or the rat that died of the wrong disease. 
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PROCESSING DATA FOR OUTLIERS 75 

The second problem is not concerned with tagging the particular 
observation which is from a different population, but to obtain a proce- 
dure of analysis not appreciably affected by the presence of such obser- 
vations. This second problem is of importance whenever one wishes to 
estimate the mean or variance of the basic distribution in a situation 
where unavoidable contamination occasionally occurs. 

The first problem-tagging the particular observation-is of im- 
portance in looking for "gross errors" or mavericks, or the best or largest 
of several different products. Frequently the analysis of variance test 
for difference in means is used in the latter case. This is not really a very 
good procedure since many types of inequality of means have the same 
chance of being discovered. It should be noted that the power of the 
analysis of variance test decreases as more products are considered when 
testing in a situation of one product different from others which are all 
alike. 

The problem of testing particular observations .as outliers was dis- 
cussed in reference (1). The power of numerous criteria was investigated 
and recommendations were made there for various circumstances. 

This paper will concern itself primarily with the problem of contami- 
nation occurring according to the following model: 

Outliers occur with a certain probability each time an observation is 
made. Let N(u, o-) represent a normal population with mean, g, and 
variance, u2. An observation from N(g + Xo, o2) introduced into a sam- 
ple from N(g, o2) is termed a location error. An observation from 
N(g, X2&o) introduced into a sample from N(g, o2) is a scalar error. It 
will be convenient to use the notation C+ (N, -y, X) or C. (N, -y, X) to 
represent samples of size N drawn from a population N(g, o2) contami- 
nated y proportion from N(y + Xo, o2) or from N(1, X2o-), respectively. 

Section 2 will discuss the estimation of ,u by use of the mean and 
median. Section 3 discusses the estimation of a and ou2 by the sample 
variance and the range. Section 4 gives recommended rules for processing 
data under various conditions of contamination. 

2. Effects of Contamination o7pi the Mean and Median. 

The median has often been proposed as an estimator for g under 
certain conditions of contamination. The ability of the mean and median 
to estimate A can be compared by computing the mean square error 
(MSE) of the estimates for various types of contamination. The biases 
will be listed in several cases. !;JThe bias of the arithmetic mean is defined 
as E(x - ,.u)/u and the MSE is defined as E(x- ,.)2/f2. The criteria of 
better estimate of mean to be used here is smaller MSE. 
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76 BIOMETRICS, MARCH 1953 

TABLE I. SAMPLES NOT TREATED FOR CONTAMINATION 

C+(5, .10, X) C+(5, .01, X) 

Mean Median Mean Median 

X Bias MSE Bias MSE X Bias MSE Bias MSE 

0 0 .200 0 .287 0 0 .200 0 .287 
2 .2 .313 .15 .41 2 .02 .208 .02 .30 
3 .3 .455 .18 .48 3 .03 .219 .02 .30 
5 .5 .908 .20 .61 5 .05 .252 .02 .30 
7 .7 1.588 .22 .80 7 .07 .302 .02 .30 

From Table I, it can be concluded that the median is superior to the 
mean of untreated data for 10% contamination in samples of size 5, only 

Contours indicating equality of MSE of median of 
untreated data and MSE of x of treated data. 
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FIGURE 1. 
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if contamination is centered about 3.3u or further from the mean. For 
1% contamination the untreated mean is superior to the median for X 

as large as 7. The reader is referred to Section 5 for the accuracy and 
method of obtaining the values in the above and succeeding tables. 

The curves labelled a = 0 in Figure 1 show the frequency and extent 
of contamination which can be tolerated before the MSE of the mean 
exceeds the MSE of the median. Curves are given for samples of size 
5 and 15 and for location and scalar contamination. For example, for 
samples of size 5 which are 5% contaminated, the MSE, for xe is smaller 
when the contaminating distribution is shifted 3o but not when it is 
shifted 4o. 

Let us now consider changes in the above results when some of the 
contamination has been removed by the use of one of the r criteria of 
reference 2. A selection of critical values for these criteria is given in th e 
Appendix. 

Investigation was made using the 1, 5, and 10% levels of significance. 
The sample was tested until no further observations could be removed 
i.e. if a rejection was obtained at a certain level of significance, the re- 
duced sample was again tested for outlier using the same level for a. 
This means, of course, that a should no longer be called a level of signifi- 
cance. 

The additional curves in Figure 1 indicate the larger regions in which 
the MSE of x for treated samples is smaller than the MSE of the median 
for untreated samples when larger values of a are used. For extreme 
contamination an a = .20 or .30 would further reduce the MSE for x. 

This was not investigated in detail but it is known that this would not 
materially increase the size of X and a which can be tolerated before the 
median should be used in preference to the mean. 

In samples of size 5 use of the mean for treated samples results in 
most cases in a MSE considerably smaller than the MSE for the median. 
In cases of extreme contamination where the MSE for the median is 
smaller it is only slightly smaller. However, the MSE for the mean or 
the median is very large for heavy contamination. The use of the best 
treatment procedure still does not give us all that might be hoped for 
since the MSE is still large. The ratio of MSE for mean of treated data 
to MSE of mean for data with no contamination is an index of the extent 
of the contamination. We can also see from this index how much better 
the better estimate is. These ratios are given in Table II for samples of 
size 5 and 15. For samples of size 15 the picture is changed since the 
MSE for the mean becomes very large in the region where the MSE for 
the median is less than the MSE for the mean. Treatment is at the level 
a =.00, .01, .05, or .10 which gives minimum MSE of x. 
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78 BIOMETRICS, MARCH 1953 

TABLE II 

MSE[x, treated data, C.(5, y, X)] 

MSE [xt, N(IA, o2)] 

'? 0 2 3 5 7 

.01 1.00 1.04 1.08 1.2 1.3 

.05 1.00 1.3 1.5 1.8 2.2 

.10 1.00 1.6 2.2 3.4 5.1 

.20 1.00 2.4 4.0 8.5 15. 

MSE [median, C+ (5, y, X)] 

MSE [x, N(x, a2)] 

0 2 3 5 7 

.01 1.43 1.5 1.5 1.5 1.5 

.05 1.43 1.8 1.7 1.9 2.0 

.10 1.43 2.1 2.4 3.1 4.0 

.20 1.43 3.0 4.4 8.2 14.1 

MSE [I, treated data, C+(15, y, X)] 

MSE [xt, N(IA, a,2)] 

0 2 3 5 7 

.01 1.0 1.1 1.1 1.1 1.1 

.05 1.0 1.3 1.7 1.9 2.3 

.10 1.0 1.9 2.9 5.1 8.2 

.20 1.0 4.0 7.6 20. 35. 

MSE [median, C+(15, y, X)] 

MSE [x, N(A, q2)] 

0 2 3 5 7 

.01 1.6 1.6 1.6 1.6 1.6 

.05 1.6 1.8 1.8 1.8 1.8 

.10 1.6 2.3 2.3 2.3 2.3 

.20 1.6 4.3 5.0 6. 7. 
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.PROCESSING DATA FOR OUTLIERS 79 

From these ratios we can see that in samples of size 5 even with ex- 
treme contamination the median is not a satisfactory substitute for x if 
the samples are treated for contamination. However, in samples of size 
15 one should use the median if contamination beyond the a = .10 
curve (Figure 1) is expected. 

The increase in MSE for x caused by removing occasional values 
which are not contaminators is very small in comparison to the reduction 
of MSE of x obtained by the removal of extreme contaminators. 

Use of a large value of a will discover more contaminators but, of 
course, will increase the MSE of x if samples do not contain outliers. 
This effect is, however, small. Use of a = .10 in samples of size 5 con- 
taining no contamination will increase MSE of x from .200 to approxi- 
mately .216. Therefore, unless the contamination is believed to be 
slight a fairly large a should be used. In order to obtain minimum MSE 
for the estimate of jA, we can consider using one of the following pro- 
cedures: 

a) use of x after treating for rejection with a = .01. 
b) use of x after treating for rejection with a = .05. 
c) use of x after treating for rejection with a = .10. 
d) use of the median. 

Table III gives the procedure resulting in the least MSE among the 
four procedures considered for the various types of contamination and 
sample sizes. The numbers in parentheses are the MSE resulting. 

The MSE figures in Table III would not be increased by more than 
5% by the use of a = .10 in place of a = .01 or .05 (or by 10% over no 
treatment). This is a small effect compared to the 50% to 200% increase 
in MSE resulting if certain extreme contamination is not removed. 
This fact will be taken into account in laying down general rules. 

3. Bias of s2 and the range. 

The effect of contamination on the estimate of variance can be as- 
sessed by computing the amount of bias resulting. Let us define 
B = E(s2)/o-2. Since removal of outliers will reduce the variance, it is 
possible to make B = 1 for any y and X by choosing a sufficiently large. 
Since investigation was carried out only for a = .01, .05, .10 (and a few 
results for a = .20) it will not be possible to state the appropriate a for 
heavy or extreme contamination. Table IV lists the values obtained. 
It is believed that the consideration of bias alone is sufficient for the 
estimate of variance since in general the mean and MSE of the variance 
are closely related. 
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TABLE III. MINIMUM MSE FOR FOUR TREATMENTS 

N = 5, location contamination 

0 2 3 5 7 

.01 a(.21) a(.22) c(.23) c (.23) 

.02 use x a(.22) b .24) c(.26) c(.27) 

.05 (.200) b(.25) b( .30) c(.37) c(.44) 

.10 b(.32) c( .43) d (.62) d(.80) 

.20 b (.49) c(.81) d(l.63) d(2.82) 

N = 15, location contamination 

0 0 2 3 5 7 

.01 a(.07) a(.07) b(.07) a(.07) 

.02 a(.07) a(.07) c(.08) b(.07) 

.05 use I b(.08) b(.11) c(.13) d(.12) 

.10 (.067) b(.13) d(.16) d(.16) d(.16) 

.20 b(.27) d(.33) d(.4) d(.4) 

N = 5, scalar contamination 

1 1 2 4 8 

no 
.01 treat. (.21) a(.22) b(.24) 
.02 use x a(.21) b(.23) b(.26) 
.05 (.200) b (.23) c(.26) c(.36) 
.10 b(.26) c(.34) d(.50) 
.20 b(.31) d(.49) d(1.0) 

N = 15, scalar contamination 

x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1 _ 1 2 4 8 

.01 a(.07) a(.07) a(.07) 

.02 a(.07) a(.07) a(.07) 

.05 use x b( .07) b(.08) b(.10) 

.10 (.067) b( .08) c( .11) c(.24) 

.20 c( .08) c(.23) d(.70) 
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TABLE IV. APPROPRIATE a TO REMOVE BIAS IN 82 

N = 5, Location errors 

2 3 5 7 

.01 .03 .05 .07 .05 

.02 .06 .08 .10 .12 

.05 .12 

.10 

.20 

N = 15, Location errors 

2 3 5 7 

.01 .12 .10 .08 .01 
t.02 .14 .12 .10 .02 

.05 .20 .25 

.10 

.20 

N = 5, Scalar errors 

2 4 8 

.01 .02 .04 .05 

.02 .03 .07 .10 

.05 .07 .12 

.10 .12 

.20 

N = 15, Scalar errors 

2 4 8 

.01 .10 .10 .05 

.02 .20 .20 .10 

.05 

.10 

.20 
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TABLE V 

Bias in S2 for C+(5, -y, 5). 

'y 
0 .10 .20 

.00 1.00 3.52 6.0 

.01 .99 1.90 5.3 

.05 .95 1.52 4.4 

.10 .91 1.26 4.0 

The notation a = .00 indicates results for untreated data. 

Here again it is much more serious to allow contamination to remain 
than to remove non-contaminators incorrectly so that in general one 
should lean toward a large a. Table V illustrates this effect. For exam- 
ple, if contaminatoin is not present and we use a = .10, we underestimate 

TABLE VI 

Appropriate a to remove bias of range estimate of a. 

Location errors 

X 
2 3 5 7 

.01 .01 .03 .04 .04 

.02 .02 .05 .06 .05 

.05 .06 .09 .10 .12 

.10 .10 

.20 

Scalar errors 

2 4 8 

.01 <.01 .01 .05 

.02 .01 .04 .09 

.05 .03 .05 

.10 .09 

.20 
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PROCESSING DATA FOR OUTLIERS 83 

.2 by 9%; but if 10% contamination at 5o- is present the use of the same 
rejection criterion will give us an overestimate of only 26% in place of 
250% in samples of size 5. 

In very small samples the range is often used to estimate the popula- 
tion standard deviation. Contamination will, of course, seriously affect 
the sample range, but the rejection criteria can effectively remove the 
bias in the range estimate of -the population standard deviation for 
samples of size 5. Table VI shows the a which will result in an unbiased 
range estimate of a- in samples of size 5. 

Table VII shows the bias of the range estimate of o- for one type of 
contamination. As before, it is much more serious to leave contamina- 
tion in than to remove a few observations from samples which contain no 
contamination. 

TABLE VII 

Bias of the range estimate of a for C+ (5, My, 5). 

* 7 

0 .10 .20 

.00 1.00 1.66 2.11 

.01 .99 1.50 1.91 

.05 .97 1.27 1.63 

.10 .93 1.13 1.48 

The above results indicate that the range estimate of a- is less affected 
by contamination than S2 even if no treatment is applied. Table VIII 
has been constructed to compare: 

(1) s2, the estimate of 2. 

(2) ks, the estimate of o- where E(ks) = a-. 

(3) the range estimate of a. 

TABLE VIII 

Appropriate a to remove bias in C+ (5, y, 2). 

7 82 range estimate k8 

.01 .02 .01 .02 

.02 .03 .02 .04 

.05 .07 .06 .10 

.10 .12 .10 >.10 
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84 BIOMETRICS, MARCH 1953 

The comparison is given in terms of the level a necessary to remove the 
bias in each of the estimates. The bias may be removed from the range 
estimate with a smaller value of a. 

4. Recommended Rules for Processing Data for Outliers. 

The problem of test of significance for tagging an individual as 
extraneous, extreme or as a "gross error" is pretty straightforward. We 
choose a level of significance, using the standard considerations and make 
a test on the set of observations we are processing. If a significant ratio 
is obtained we declare the extreme value to be from a population differing 
from that of the remaining observations. Depending on the practical 
situation we then declare the extreme individual a "gross erorr" or an 
exceptional individual. The best* statistic for this test if a is known is 
the range over a for outliers in either direction or the ratio (x, - X)/a for 
a one-sided test. x,, represents the largest observation. For a one-sided 
test in the other direction we substitute x - xl for x, - X. Here xl 
represents the smallest observation. The power of these tests is discussed 
in reference [1]. Critical values for range over a are given in reference 
[4] and for (X, - X)/a in reference [3]. 

If an independent estimate of a is available, the best tests for outliers 
are the same as above with s replacing a. Critical values for these tests 
are in references [3] and [4]. If no external estimate of a is available the 
best statistics are the r-ratios of reference [2]. Critical values for these 
ratios are given in the Appendix. 

Now, suppose that in place of tagging an individual observation from 
some different distribution, we wish to estimate the parameters of the 
basic distribution free from these contaminating effects. How might we 
process the data to come closer to the mean and variance of this basic 
distribution? 

If very little is known about the contamination to be expected, about 
the best one can do is to "tag" observations as above and remove them 
from estimates of g and a. 

If even a moderate amount of information about the type of con- 
tamination to be expected is available, a process can be prescribed which 
will minimize the effects of contamination on the estimates of mean and 
dispersion in small samples. The following rules result from the investi- 
gation of sections 2 and 3 for samples of size 5 and 15. Rules will be 
presented for these two sample sizes with the expectation that rules for 

samples of approximately these sizes will be approximately the same. 
An attempt has been made to present simple rules for the estimation 

*Best is used here in the sense of power greater than or equal to all other tests investigated in 
reference [1]. 
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of both p and -a. As a consequence the minimum MSE will not always 
be obtained. In most cases, however, the suggested procedure will yield 
a MSE which is not more than 5% larger than the minimum MSE. The 
rules will yield bias B between .90 and 1.10 for the indicated estimate of 
dispersion except in cases noted specifically in the rules. 

Rules: 

Process data using rejection criteria from Appendix I unless use of 
median is indicated. The appropriate a will be indicated in the rules 
below. Repeat application of criteria until no further observations are 
rejected. Use level of a as indicated in following statements. 

N = 5, Location contamination 

1. if 'yX < .10, use a = yX, x for average, either s2 or range for 
dispersion. 

2. if .10 < yX < .45, use a = .10, x for average, range for dis- 
persion. 

3. if yX > .45 use median for average, use a = .10 and range to 
estimate dispersion. The estimate of dispersion will be biased, 
giving an overestimation of a of more than 10%. (B 1.1 for 

aX = .45, B _ 1.5 for yX = 1.00). 

N = 5, Scalar contamination 

4. if yX < .45, use a = 2YX) Xg for average, s2 for dispersion (for 
,yX > .30 use range for dispersion. Bias for both range and s2 

over 10%). 
5. if yX > .45, use median for average, range for dispersion. The 

estimate of dispersion will be' biased, giving an overestimate 
of a of more than 40%. 

N = 15, Location contamination 

6. if yX < .30, use a = .10, x for average, .2 for dispersion. For 
oy > .02 the estimate of dispersion will have considerable bias. 
(B 1.2 foryX = .2; B -1.4 foryX = .3). 

7. if yX > .30 use the median for average, use a = .10 and s2 for 
dispersion. & is considerably biased (B 2 for y = .50). 

N = 15, Scalar contamination 

8. if yX < 1.00, use a = .10, x for average, 82 for dispersion. For 
-y > .02 (unless yX < .15) the estimate of dispersion will have 
considerable bias. (B 1.1 foryX = .2; B 1.5 foryX = .4). 
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86 BIOMETRICS, MARCH 1953 

9. if yX > 1.00 use median for average and use a = .10 and s2 for 
dispersion. 82 is considerably biased (B - 10 for yX = 1.6). 

An application of the above rules is given as Example 1. 

Example 1. Suppose samples of size 5 are taken from each lot. It is 
expected that about 10% of the observations will be location errors of 
3 to 4 standard deviations. Here y = .10 and X = 3 to 4. Then yX = .30 
to .40 and we use rule 2. Observations are recorded in order of size of 
measurement for a sample of five and treatment process indicated. 

xl = 23.2 For N = 5 and a = .10, the critical value of r10 = .557 

x2 = 23.4 By inspection xl = 23.2 is acceptable 

X3 = 23.5 The test for x5 = 25.5 is 

X4 = 24.1 rio = 
25.5 - 24.1 

2 
1.4 

= .609 24.1 r10 25.5 - 23.2 2.3 

X5 = 25.5 xa is rejected 

For N = 4 and a = .10, the critical value of r10 = .679 

The test for X4 is 

24.1 - 23.5 _ .6 

24.1 - 23.2 - .9 667 

X4 is accepted. 

The average is (23.2 + 23.4 + 23.5 +'24.1)/4 = 23.55. 

The range is 24.4 - 23.2 = 0.9. 

The estimate of standard deviation is (.486) (0.9) = .44. 

It may not be possible to decide which type of contamination might 
be expected in a particular sampling situation. Also the type of con- 
tamination might not be of the comparatively simple sort discussed here. 
However, if a large number of observations (say 50 to 100) are collected 
we can estimate the amount and type of contamination present. If we 
are willing to assume that the observations can be considered to be drawn 
from a population composed of two normal populations in different pro- 
portions and with possibly different means and variances there is a 
method for estimating these components. The estimation may be done 
by trial and error or graphically as described in References [5] and [6] 
and then one of the simpler models discussed here may be selected as 
representing approximately the actual conditions of contamination. A 
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trial and error method will be preferable if the population is not very 
closely represented by two normal populations. 

Example 2. A series of chemical determinations are made on known 
chemical solutions giving a distribution as follows: 

Frequency 
Error 

Observed Fitted Fitted curve is: 

> 1.25 2 2 
.9 6 5 80 percent g -.175 
.3 59 60 a .333 

-.3 142 142 
-.9 38 39 

-1.5 11 9 20 percent g = -.55 
-2.1 0 4 1.0 
-2.7 2 2 

< -2.95 3 0 

263 

There is a shift in mean of slightly more than one standard deviation 
unit. The important factor of contamination here is the large standard 
deviation of the second distribution. Considering only the scalar con- 
tamination, we have y = .20 and X = 3 or yX = .6. In samples of size 5 
from the above population, the rules suggest use of the median and range. 

The Appendix gives critical values for criteria for processing con- 
taminated data and a table of multipliers for estimating the standard 
deviation from the range. 

5. Accuracy of Tabular Values. 

Although some known results are included and some were determined 
analytically, most results were obtained by sampling methods. Most of 
the sampling results for N = 5 -are based on 100 samples and those for 
N = 15 on 66 samples. However, since the results quoted are weighted 
sums of several determinations each based on 100 (for N = 5) the effec- 
tive sample size is greater than 100. Furthermore, sampling results were 
obtained for several values of a parameter (e.g. X) so that unfortunately 
large sampling deviations could in some cases be discovered and rectified 
by an increased amount of sampling. It is difficult to state the accuracy 
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to be associated with each figure, but the accuracy should be adequate 
for determining the comparatively large differences on which the recom- 
mended analysis is based. After the tables had been assembled several 
of the reported results were checked by additional sampling. No MSE 
or bias differed from the tabulated results by more than 15%.. Errors 
of 15 or 20% would not change the recommended procedures appreciably. 

The values known to be correct are all results reported for X = 0, the 
quantities for the mean in Table I, the results for no contamination in 
Table II and III and the first line of Table V. 
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APPENDIX 

CRITICAL VALUES AND CRITERIA FOR TESTING FOR EXTREME VALUES 

a .30 .20 .10 .05 .02 .01 .005 Criterion 

N _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

3 .684 .781 .886 .941 .976 .988 .994 
4 .471 .560 .679 .765 .846 .889 .926 

5 .373 .451 .557 .642 .729 .780 .821 r1o = 

6 .318 .386 .482 .560 .644 .698 .740 XN - Xi 

7 .281 .344 .434 .507 .586 .637 .680 

8 .318 .385 .479 .554 .631 .683 .725 XN - XN1 

9 .288 .352 .441 .512 .587 .635 .677 rll = 
XN X1 

10 .265 .325 .409 .477 .551 .597 .639 XN 

11 .391 .442 .517 .576 .638 .679 .713 
12 .370 .419 .490 .546 .605 .642 .675 r21 = 

13 .351 .399 .467 .521 .578 .615 .649 X x2 

14 .370 .421 .492 .546 .602 .641 .674 

15 .353 .402 .472 .525 .579 .616 .647 

16 .338 .386 .454 .507 .559 .595 .624 

17 .325 .373 .438 .490 .542 .577 .605 

18 .314 .361 .424 .475 .527 .561 .589 

19 .304 .350 .412 .462 .514 .547 .575 

20 .295 .340 .401 .450 .502 .535 .562 =XN XN-2 

21 .287 .331 .391 .440 .491 .524 .551 XN - X3 

22 .280 .323 .382 .430 .481 .514 .541 

23 .274 .316 .374 .421 .472 .505 .532 

24 .268 .310 .367 .413 .464 .497 .524 

25 .262 .304 .360 .406 .457 .489 .516 

RANGE ESTIMATE OF STANDARD DEVIATION WHERE SAMPLE RANGE = w. 

N Estimate 

2 .886w 

3 .591w 
4 .486w 

5 .430w 

6 .395w 

7 .370w 

8 .351w 
9 .337w 

10 .325w 
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