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Abstract— Today's systems are overwhelmingly designed to move 

data to computation. This design choice goes directly against at 

least three key trends in systems that cause performance, 

scalability and energy bottlenecks: 1) data access from memory is 

already a key bottleneck as applications become more data-

intensive and memory bandwidth and energy do not scale well, 2) 

energy consumption is a key constraint in especially mobile and 

server systems, 3) data movement is very expensive in terms of 

bandwidth, energy and latency, much more so than computation. 

These trends are especially severely-felt in the data-intensive 

server and energy-constrained mobile systems of today. At the 

same time, conventional memory technology is facing many 

scaling challenges in terms of reliability, energy, and 

performance [1-23]. As a result, memory system architects are 

open to organizing memory in different ways and making it more 

intelligent, at the expense of slightly higher cost. The emergence 

of 3D-stacked memory plus logic as well as the adoption of error 

correcting codes inside the latest DRAM chips are an evidence of 

this trend.

In this talk, I will discuss some recent research that aims to 

practically enable computation close to data. After motivating 

trends in applications as well as technology, we will discuss at 

least two promising directions: 1) performing massively-parallel 

bulk operations in memory by exploiting the analog operational 

properties of DRAM, with low-cost changes [24-28], 2) exploiting 

the logic layer in 3D-stacked memory technology in various ways 

to accelerate important data-intensive applications [28-36]. In 

both approaches, we will discuss relevant cross-layer research, 

design, and adoption challenges in devices, architecture, systems, 

and programming models. Our focus will be the development of 

in-memory processing designs that can be adopted in real 

computing platforms at low cost.
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