
Processing Data Where It Makes Sense 

in Modern Computing Systems:  

Enabling In-Memory Computation 
Onur Mutlu

ETH Zürich and Carnegie Mellon University

omutlu@gmail.com

Abstract— Today's systems are overwhelmingly designed to move 

data to computation. This design choice goes directly against at 

least three key trends in systems that cause performance, 

scalability and energy bottlenecks: 1) data access from memory is 

already a key bottleneck as applications become more data-

intensive and memory bandwidth and energy do not scale well, 2) 

energy consumption is a key constraint in especially mobile and 

server systems, 3) data movement is very expensive in terms of 

bandwidth, energy and latency, much more so than computation. 

These trends are especially severely-felt in the data-intensive 

server and energy-constrained mobile systems of today. At the 

same time, conventional memory technology is facing many 

scaling challenges in terms of reliability, energy, and 

performance [1-23]. As a result, memory system architects are 

open to organizing memory in different ways and making it more 

intelligent, at the expense of slightly higher cost. The emergence 

of 3D-stacked memory plus logic as well as the adoption of error 

correcting codes inside the latest DRAM chips are an evidence of 

this trend.

In this talk, I will discuss some recent research that aims to 

practically enable computation close to data. After motivating 

trends in applications as well as technology, we will discuss at 

least two promising directions: 1) performing massively-parallel 

bulk operations in memory by exploiting the analog operational 

properties of DRAM, with low-cost changes [24-28], 2) exploiting 

the logic layer in 3D-stacked memory technology in various ways 

to accelerate important data-intensive applications [28-36]. In 

both approaches, we will discuss relevant cross-layer research, 

design, and adoption challenges in devices, architecture, systems, 

and programming models. Our focus will be the development of 

in-memory processing designs that can be adopted in real 

computing platforms at low cost.

Keywords-In-memory computation; DRAM; data movement; 

memory bottleneck

CURRICULUM VITAE

Onur Mutlu is a Professor 
of Computer Science at ETH 
Zurich. He is also a faculty 
member at Carnegie Mellon 
University, where he 
previously held the William 
D. and Nancy W. Strecker
Early Career Professorship.
His current broader research
interests are in computer
architecture, systems, and
bioinformatics. He is

especially interested in interactions across domains and
between applications, system software, compilers, and
microarchitecture, with a major current focus on memory and

storage systems. A variety of techniques he, along with his 
group and collaborators, has invented over the years have 
influenced industry and have been employed in commercial 
microprocessors and memory/storage systems. He obtained his 
PhD and MS in ECE from the University of Texas at Austin 
and BS degrees in Computer Engineering and Psychology from 
the University of Michigan, Ann Arbor. His industrial 
experience spans starting the Computer Architecture Group at 
Microsoft Research (2006-2009), and various product and 
research positions at Intel Corporation, Advanced Micro 
Devices, VMware, and Google. He received the inaugural 
IEEE Computer Society Young Computer Architect Award, 
the inaugural Intel Early Career Faculty Award, faculty 
partnership awards from various companies, a healthy number 
of best paper or "Top Pick" paper recognitions at various 
computer systems and architecture venues, and the ACM 
Fellow recognition "for contributions to computer architecture 
research, especially in memory systems." His computer 
architecture course lectures and materials are freely available 
on YouTube, and his research group makes software artifacts 
freely available online. For more information, please see his 
webpage at http://people.inf.ethz.ch/omutlu/.

REFERENCES

[1] U. Kang et al., Co-Architecting Controllers and DRAM to Enhance
DRAM Process Scaling, in: The Memory Forum, 2014.

[2] O. Mutlu, Memory Scaling: A Systems Architecture Perspective, IMW
(2013).

[3] O.Mutlu,L.Subramanian, Research Problems and Opportunities in
Memory Systems, SUPERFRI (2014).

[4] S.A.McKee, Reflections on the Memory Wall, in: CF, 2004.
[5] M. V. Wilkes, The Memory Gap and the Future of High Performance

Memories, CAN (2001).
[6] Y.Kim et al., Flipping Bits in Memory Without Accessing Them: An

Experimental Study of DRAM Disturbance Errors, in: ISCA, 2014.
[7] Y. Kim et al., A Case for Exploiting Subarray-Level Parallelism (SALP)

in DRAM, in: ISCA, 2012. 
[8] J. Liu et al., RAIDR: Retention-Aware Intelligent DRAM Refresh, in:

ISCA, 2012.
[9] O. Mutlu, The RowHammer Problem and Other Issues We May Face as

Memory Becomes Denser, in: DATE, 2017.
[10] D. Lee et al., Decoupled Direct Memory Access: Isolating CPU and IO

Traffic by Leveraging a Dual-Data-Port DRAM, in: PACT, 2015.
[11] B. C. Lee et al., Architecting Phase Change Memory as a Scalable

DRAM Alternative, in: ISCA, 2009.
[12] H.Yoon et al., Row Buffer Locality Aware Caching Policies for Hybrid

Memories, in: ICCD, 2012.
[13] H. Yoon et al. Efficient Data Mapping and Buffering Techniques for

Multi-level Cell Phase-Change Memories, ACM TACO (2014).
[14] K. Lim et al., Disaggregated Memory for Expansion and Sharing in

Blade Servers, in: ISCA, 2009.
[15] W.A.Wulf et al., Hitting the Memory Wall: Implications of the Obvious,

CAN (1995).
[16] K. K. Chang et al., Understanding Latency Variation in Modern DRAM

Chips: Experimental Characterization, Analysis, and Optimization, in:
SIGMETRICS, 2016.

[17] D.Lee et al., Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture, in: HPCA, 2013.

2018 7th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO−KEYNOTE), 10-14 JUNE 2018, BUDVA, MONTENEGRO

978-1-5386-5683-9/18/$31.00 ©2018 IEEE

– 8 –



[18] D. Lee et al., Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case, in: HPCA, 2015.

[19] K. K. Chang et al., Understanding Reduced-Voltage Operation in Mod-
ern DRAM Devices: Experimental Characterization, Analysis, and
Mechanisms, in: SIGMETRICS, 2017.

[20] D. Lee et al., Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,
in: SIGMETRICS, 2017.

[21] Y. Luo et al., Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory, in:
DSN, 2014.

[22] H. Hassan et al., SoftMC: A Flexible and Practical Open-Source
Infrastructure for Enabling Experimental DRAM Studies, in: HPCA,
2017.

[23] H. Hassan et al., Reducing DRAM Latency by Exploiting Row Access
Locality, in: HPCA, 2016.

[24] V. Seshadri et al., RowClone: Fast and Energy-Efficient In-DRAM Bulk
Data Copy and Initialization, in: MICRO, 2013.

[25] V. Seshadri et al., Fast Bulk Bitwise AND and OR in DRAM, CAL
(2015).

[26] K. K. Chang et al., Low-Cost Inter-Linked Subarrays (LISA): Enabling
Fast Inter-Subarray Data Movement in DRAM, in: HPCA, 2016.

[27] V. Seshadri et al., Buddy-RAM: Improving the Performance and
Efficiency of Bulk Bitwise Operations Using DRAM, arXiv:1611.09988
[cs:AR] (2016).

[28] V. Seshadri et al., Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology, in: MICRO, 2017.

[29] J. Ahn et al., A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing, in: ISCA, 2015.

[30] A. Boroumand et al., Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks, in: ASPLOS, 2018.

[31] K. Hsieh et al., Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems, in:
ISCA, 2016.

[32] A. Pattnaik et al., Scheduling Techniques for GPU Architectures with
Processing-in-Memory Capabilities, in: PACT, 2016.

[33] J. Ahn et al., PIM-Enabled Instructions: A Low-Overhead, Locality-
Aware Processing-in-Memory Architecture, in: ISCA, 2015.

[34] A. Boroumand et al., LazyPIM: An Efficient Cache Coherence
Mechanism for Processing-in-Memory, CAL (2016).

[35] K. Hsieh et al., Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation, in: ICCD, 2016.

[36] Z. Liu et al., Concurrent Data Structures for Near-Memory Computing,
in: SPAA, 2017.

2018 7th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO−KEYNOTE), 10-14 JUNE 2018, BUDVA, MONTENEGRO

– 9 –


