
 Open access Journal Article DOI:10.1145/30401.30404

Processing encrypted data — Source link

Niv Ahituv, Yeheskel Lapid, Seev Neumann

Institutions: Claremont Graduate University, Tel Aviv University

Published on: 01 Sep 1987 - Communications of The ACM (ACM)

Topics: Bus encryption and Encryption

Related papers:

 On data banks and privacy homomorphisms

 A new privacy homomorphism and applications

 Executing SQL over encrypted data in the database-service-provider model

 A method for obtaining digital signatures and public-key cryptosystems

 Public-key cryptosystems based on composite degree residuosity classes

Share this paper:

View more about this paper here: https://typeset.io/papers/processing-encrypted-data-
2oo03rvns0

https://typeset.io/
https://www.doi.org/10.1145/30401.30404
https://typeset.io/papers/processing-encrypted-data-2oo03rvns0
https://typeset.io/authors/niv-ahituv-l8thbn5j1a
https://typeset.io/authors/yeheskel-lapid-1069br1eco
https://typeset.io/authors/seev-neumann-53iuaixg0f
https://typeset.io/institutions/claremont-graduate-university-u6161efk
https://typeset.io/institutions/tel-aviv-university-3moiq3qe
https://typeset.io/journals/communications-of-the-acm-2yc9qsd3
https://typeset.io/topics/bus-encryption-1sdjnr4b
https://typeset.io/topics/encryption-3by21bfi
https://typeset.io/papers/on-data-banks-and-privacy-homomorphisms-17drds7t93
https://typeset.io/papers/a-new-privacy-homomorphism-and-applications-4g263bn1n5
https://typeset.io/papers/executing-sql-over-encrypted-data-in-the-database-service-541p052hta
https://typeset.io/papers/a-method-for-obtaining-digital-signatures-and-public-key-4idf1wm60r
https://typeset.io/papers/public-key-cryptosystems-based-on-composite-degree-1zopwb21ba
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/processing-encrypted-data-2oo03rvns0
https://twitter.com/intent/tweet?text=Processing%20encrypted%20data&url=https://typeset.io/papers/processing-encrypted-data-2oo03rvns0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/processing-encrypted-data-2oo03rvns0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/processing-encrypted-data-2oo03rvns0
https://typeset.io/papers/processing-encrypted-data-2oo03rvns0

RESEARCH CONTRIBUTIONS

Management of

Computing Processing Encrypted
Gordon Davis
Editor Data

NIV AHITUV, YEHESKEL LAPID, and SEEV NEUMANN

ABSTRACT: A severe problem in the processing of
encrypted data is that very often, in order to perform
arithmetic operations on the data, one has to convert the
data back to its nonencypted origin before performing the
required operations. This paper addresses the issue of

processing data that have been encrypted while the data are
in an encrypted mode. It develops a new approach for
encryption models that can facilitate the processing of such
data. The advantages of this approach are reviewed, and a
basic algorithm is developed to prove the feasibility of the
approach.

1. INTRODUCTION
A severe problem associated with commercial en-

crypted data-processing systems is the difficulty of
securing data while the data are being processed by the
computing system [2-51. This paper addresses this prob-
lem by developing a method that facilitates the process-
ing of encrypted data without having to first decipher
the data.

One of the weaknesses of an encrypted information
system is that while being processed the classified data
are in a plain (red’) state; that is, the data are deci-
phered before processing. At this state the data are
highly exposed to unauthorized intrusion. Although
there are some processes that do not require decipher-
ment, particularly operations based on precise compari-
son and search, there is currently no secure system for

processing encrypted data [2, 3, 51. Other scholars [6]
suggest the use of an algorithm based on homomorphic
functions for processing encrypted data. Such functions
enable the processing of the operation in an encrypted
way (and even the decryption of the result), but
are lacking in terms of the encryption strength (see

Section 4).
The Department of Defense has invested considerable

’ Data are defined as “red” if access to the data by an unauthorized party can

cause damage. Red data can be classified data that have not been encrypted.

or classified data that have been ciphered and then deciphered.

-

0 1987 ACM OOOI-0782/87/0900-0777 $1.50

efforts in recent years in solving this problem by devel-
oping an operating system that could protect classified
data that are being processed, and that could simulta-
neously process classified and unclassified jobs [4], but
the results of these efforts have not yet been made
public.

There is a high value to encrypted processing in clas-
sified and encrypted information systems. This capabil-
ity provides such systems with the following significant
advantages:

(1) strengthening of data security,
(2) considerable savings in computer time, and
(3) savings in the costs of handling part of the security

problems of the operating system.

The following sections present a group of algorithms
that facilitate processing of encrypted data. The pro-

posed system will be presented in four steps; in each
step a specific requirement is defined, and then an
algorithm is developed to meet the requirement. As

examples we will use banking transactions where the
processing operation is an additive one, for example,
updating the balance of a certain account by subtrac-
tion or addition.

The following notation will be used [l, p. 71: Plaintext

is the set of data before encryption. Ciphertext is the
result of encryption.

The result of applying decryption to the ciphertext is
to restore the plaintext. The terms plaintext and cipher-
text are relative to a particular encipherment-it could
easily happen that the plaintext is the result of a pre-
vious encryption, but for our purpose, since it enters
into the encryption function, it is called the plaintext.

2. STEP A

2.1 Requirement and Analysis
The requirement is to design a system that can add an
encrypted data element (last balance) to a plaintext (the
updating transaction) without having to decipher the
encrypted balance. In order to meet this requirement,

September 1987 Volume 30 Number 9 Communications of the ACM 777

Research Confributions

we need an encryption function that takes a ciphertext
(C,), adds to it a plaintext (P2), and produces a result
that is identical to applying an encryption on the two
plaintext items (PI and P2). Alternatively, if we apply a
decryption function on the sum (C, + P2), we will get a
plaintext result identical to deciphering the ciphertext
corresponding to the plaintext sum (PI + P2).

or

Zi(?l + 1) = [Zi(n) + Pi(tI + l)]

Zi(tl + 1) = @(?I) + Pz].

To decipher and get the current balance. we can at
any stage subtract the key; for example, after 1 updates
we will perform

2.2 Development Pi(l) = Z(l) - Xi.

Assume an encryption function fk and two plaintext
items PI and P2 (where P2 updates P,), so that C, =
fk(P1) is the ciphertext of PI. To obey the requirement
of Step A, the system must fulfill

2.4 Limitations
The proposed algorithm has the following limitations:

fkl[fk(P1l + P21] = fkl[fk(Pl + &I] = Pl + Pz

or

fk 1 [C, + C,] = PI + P*.

In order to satisfy this condition, the algorithm must
satisfy

fk(P1 I P21 = fk(P1) + Pz = CI + P2

and symmetrically

(11

(4

(3)

(41

fk(P1, Pzl = PI + fk(PZ) = Pl + c1.

For example, if the encryption function jk employs a
key and depends on Z(k) so that

A one-time-only breaking of the key (e.g., by a
plaintext-ciphertext pair) enables the decryption
of all the data at any time.
The periodic updates that are done in pIaintext
may increasingly provide information to a poten-
tial enemy.
If ever the balance is discovered in an. intermedi-
ary state (even without discovering the key), it is
possible to trace all the updates.
In order to perform a correct decrypticon, it is nec-
essary to distinguish between data entering the
system as plaintext and data entered ;as ciphertext:
In other words, data have to be clear1.y marked.

fk(P1 = Z(k) x P, 3. STEP B

we will obtain the requirement to fulfill

Z(k)[P, + Pz] = Z(k) x PI + Pz = P, + Z(k) x Ps.

2.3 Description of the Algorithm
The proposed algorithm will perform the encryption by
an addition operation between the keyword and the
plaintext word. The operation of addition can be a
“modulu 2 addition” or any other method used by the
system, provided it uses a word size in a modulu L that
will prevent loss of data due to overflow. The first addi-
tion of the key to the plaintext amount (PI) gives the
first ciphertext balance (C,). Thereafter, plaintext
amounts (P2, PJ, . . , P”) can be added. Whenever the
updated balance is needed, the decryption involves
only the “subtraction” of the key from the ciphertext
balance.

3.1 Requirement and Analysis
The second requirement is to design a system that can
add encrypted data to other encrypted data without
having to decipher both groups before the addition. In
such a system, updates that have been encrypted at the
source can be transmitted via terminals as ciphertext,
so that the central computer will not unnecessarily
store classified red data.

We use the following denotations:

In order to satisfy this requirement, we seek an en-
cryption function such that, if we add an (encrypted
data element Cz to an encrypted element Cl, the result
will be identical to applying the encryption function on
the two data elements added in plaintext (PI + P2).
Alternatively, employing a decryption function on the
encrypted result (C, + C,) will generate the plaintext
result identical to the one received had we predeci-
phered data that were encrypted from the two individ-
ual data elements.

Xi key,
Z, ciphertext update/word,
Pi plaintext amount, and
Ci previous ciphertext balance.

3.2 Development

Where PI the nth update of the system [PI = P,(n)],
then the resulting word was

Zi(n) = [Xi + P,(N)] mod 2r.

For the sake of simplicity, we will hereafter omit the
modulu notation.

Similarly to Section 2.2, the system must :fulfill

fkl[fkP1l + fkP?l] = V[fk(Pl + Pzl] = Pl + Pz.

In order to satisfy this condition, the algorithm must
perform the operation

After the next update [Pz = Pi(n + l)], the resulting
word is

fk(P1. P21 = jk(P1) + fk(P2) ‘= CI -t cz.

For the encryption function that employs a key, we will

get

Z(k)[Pt + Pz] + Z(k) x P, + Z(k) x Pz.

778 Communications of the ACM September 1987 Volume 30 Number 9

It can immediately be observed that the algorithm
selected in Step A does not exactly satisfy the require-

ment of Step B, since each successive encryption keeps
adding the value of the key; that is, the value accumu-
lates with each update. This problem can be solved by
recording the number of updates performed (n), and
then during decryption, subtracting from the encrypted
data not the key, but n times the key:

Pi(n) = Z;(n) - ?l X Xj,

where P,(n) is the last updated balance.

3.3 Limitations
The limitation of plaintext updates ((2) in Section 2.4)
has been (at least partially) solved, but a one-time dis-
covery of the key (or of a plaintext-ciphertext pair) can
still compromise the system. This means that it is still
essential to frequently replace the key, not only for
new data files, but also for the currently stored data.

4. STEP C: EXAMINATION OF AN APPROACH
BASED ON A HOMOMORPHIC

FUNCTION [6]

4.1 Requirement and Analysis
The third requirement is the same as in Step B, but the

system now has to overcome the problem of one-time
breaking of the key. In order to fulfill this requirement,

we will part with the algorithms presented above and
examine the use of homomorphic functions that satisfy
the required conditions, These are linear functions that
fulfill the additivity property and comply with the fol-

lowing rules:

fdA + Bl = Fr(A) + FG)

fk(a x A) = fk(A) x A = a x fk(A).

We will illustrate the idea of using such functions by
enciphering blocks of 64 bits. Let

P be a plaintext vector (data block) comprised of bits of
plaintext, and

P=(p1+ 1..., pd.

where pi denotes the ith bit of the vector P. Implement-
ing the linear function f” will generate a block that is
the vector c, where

fk(P) = c = (Cl, cz, . , C641,

where ci denotes the ith bit of the vector C. We will
express the properties of the function with the nota-
tions defined above and obtain

fk(P, + P,) = fk(&) + fk(P2) = G + G

fk(U x P) = a x fk(F).

An updating process will be implemented as follows:
Assume that vector C, is updated by the updating vec-
tor 6,:

(1) P, is enciphered and results in C,: fk(&) = fk(O,
0 . . 1 updating section 1 . . 0, 0) = &,.

(21

Research Contributions

The resulting c, is added to c,, and the update
process is completed. The normal decryption is
performed by an inverse process.

4.2 Limitations
The main limitation of using homomorphic functions (a
limitation not noted in [S]) is that such functions can,
in principle, be broken relatively easily. In the example
that we have used, the system can be broken by a
dictionary of 64 words and by solving a set of linear
equations of the same order. The dictionary will be
comprised of 64 encrypted blocks (64-bit words), where

in each block all bits but one are 0:

fk,(l, 0, 0 . . . 0, 0) = 111

fk*(O, 3, 0 . . . 0, 0) = a2

fkJ0, 0, 0 . . 0, 1) = u64.

Each encrypted block can be practically defined as a
sum of values, according to the “1” bits in it. Assume
that the enciphered block that we want to decipher is

fk(P,) = (0, 1, 1, 0, 0, 1, 0 . 0) = Mi.

It is easily verified that the blocks 2, 3, and 6 took part
in constructing the encrypted block; therefore we can
write the equation

uz + ~3 + a6 = Mi

and similarly for all blocks. In this form, by defining a
set of linear equations and their solution, the system
can be broken. This is the reason why the use of homo-
morphic functions for encryption is not recommended.

5. STEP D

5.1 Requirement and Analysis
The last requirement is the same as those in Steps B
and C, but we add an “acceptable” level of encryption
strength. The idea is based on the function presented in
Step B; however, the updating process will be imple-
mented so that each update will be performed by a
different key (a different section of the key). In this
way, if a certain key is broken, it will perhaps provide
the enemy with one-time, temporary information, but
not with the ability to trace all the updates and deci-
pher the final information.

5.2 Development
For illustrative purposes, we will develop a system of
two keys (for one update). The system meets the fol-

lowing conditions:

(I) fk,,k2(P, + Pz) = fk,(P,) + f~+(pJ = CI + CZ; and
(2) z(kj, kz)[Pl. Pz] = Z(k,) x PI + Z(k,) X Pz.

The decryption will be performed by

September 1987 Volume 30 Number 9 Communications of the ACM 779

Research Contributions

f(!kz[fkl(Pl) + fk#?d]

= fk,:k2[fk,.k2(P1 + PZ)]

= f$[fk,(Pl)] + fk,‘[fk~(~Z)]

= P, + P2.

Assume a system where (n - 1) updates have already

been processed and are contained in Z1 (which is the
last updated plaintext PI in its encrypted form). The
nth update, recorded as plaintext P2, arrives now and
appears in the form of Zz (after being enciphered at the
location where the transaction took place or else-
where). In order to perform the update (of P2 into PI).

the following operations have to be carried out:

(I) Z3 = Z1 + Z2: construction of a new block, which

is the sum of the previous blocks.
(2) X3 = X,(kI) + X,(k,): construction of a new block.

(3) In order to decipher the ciphertext, we have to

supply X3 only and perform P3 = Z3 - X3, where Z3
is the last encrypted, updated text.

Note that to decipher it is not necessary to have all the
keys. In the case where the keys are known, we can
perform

P3 = 23 - X,(k,) - X,(k,).

If a special need arises to increase the system strength
above what is suggested here, we can perform a permu-
tation on the blocks by interchanging their relative lo-
cations, but this is not essential.

5.3

(11

(2)

(3)

Limitations

There is a need to generate and use a sufficiently
long random key. With contemporary technologies,
this problem can be easily overcome.
The protocol between the central computer and
the terminals becomes more complicated and
awkward.
It becomes necessary to organize and handle the
relatively complex subject of key management.

6. CONCLUSIONS AND IDEAS FOR FURTHER
RESEARCH
This paper develops the idea of processing data that are
in an enciphered state. The paper then suggests and
analyzes the possibilities for using special algorithms
that facilitate such front-end processing.

The approach presented in this paper is based on a
one-time key as an ideal, or on a pseudorandom key
that operates in a stream method and not in a block
method. This may indicate the following interface be-

tween the proposed approach and the widespread data
encryption standard (DES) algorithm: The DES algo-
rithm operates in two possible alternatives certified by
the National Bureau of Standards. The first, and more
prevalent alternative, is based on the processing of
blocks. The proposed approach is not suitable for this
alternative. The second alternative can be implemented

by a different electronic design of the DES chip or by a
software change (the latter has been adequately dis-
cussed in the relevant literature). Under this alterna-

tive, the DES algorithm starts to operate on streams;
thus it is then immediately applicable to the approach
proposed in this paper.

The algorithms that are developed in this paper are
basic and exploratory. Their exposition is intended to
provoke ideas for further research. Some suggestions for
future research are as follows:

greater specification of the practical difficulties in

processing encrypted data,
the actual implementation of algorithm operations in

code or in typical I/O sequences,
identification of increases in complications for the
protocol between the central computer and the ter-
minals, and

identification of increases in complications for the

protocol between the central computer and the ter-
minals, and
the interface between the approach proposed in this
paper and public-key cryptography.

A successful and more complete treatment of the

ideas presented in this paper and the suggested further
research may remedy one of the main trouble spots of
every encrypted information system.

REFERENCES
1. Davis, D.W.. and Price. W.L. Security for Computer Networks. Wiley,

New York. 1984.
2. Denning. DE, and Denning. P.J. Data security. AC,!4 Comput. Sure.

Il. 3 (Sept. 1979). 227-249.
3. Diffie. W. Cryptographic technology: Fifteen years forecast. In Secure

Comntumcations and Asymetric Crypfosysf~ms. AAAS Selected Sympo-
sia, vol. 69, G.J. Simmons, Ed. Westview Press. Boulder. Cola.. 1982.
pp. 38-57.

4. Jacobson, R.B. Secure operating systems. Cornput. I‘raud Secur. Bull.

(Sept. 1982). 6-10.
5. Popek. G.J.. and Kline. C.S. Encryption and secure computer net-

works. ACM Comput. Surv. II. 4 (Dec. 1979). 331-336.
6. Rivet. R.L.. Adleman. L.. and Dertouzos. M.L. On data banks and

privacy homomorphisms. In Foundafion of Secure Computation, R.A
DeMillo. D.P. Dobkin, A.K. Jones, and R.J. Lipton, Eds. Academic
Press. New York. 1982. pp. 169-179.

CR Categories and Subject Descriptors: E.3 [Data]: Data Encryp-
tion-data encrypfion sfandard (DES): public key crypfosysfems

General Terms: Algorithms. Security
Additional Key Words and Phrases: Data encryption. data security

security

Received 9/85; revised Z/66: accepted 11/66

Authors’ Present Addresses: Niv Ahituv, Yeheskel Laplid, and Sew Neu-
mann, Faculty of Management. Graduate School of Business. Tel Aviv
University, Ram&Aviv. Tel Aviv 69976, Israel; Niv Ahituv and Sew
Neumann are also at Programs in Information Science The Claremont
Graduate School. 130 East Ninth Street, Claremont. CA 91711-6190.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

780 Communications of the ACM September 1987 Volume 30 Number 9

