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ABSTRACT: A severe problem in the processing of 
encrypted data is that very often, in order to perform 
arithmetic operations on the data, one has to convert the 
data back to its nonencypted origin before performing the 
required operations. This paper addresses the issue of 

processing data that have been encrypted while the data are 
in an encrypted mode. It develops a new approach for 
encryption models that can facilitate the processing of such 
data. The advantages of this approach are reviewed, and a 
basic algorithm is developed to prove the feasibility of the 
approach. 

1. INTRODUCTION 
A severe problem associated with commercial en- 

crypted data-processing systems is the difficulty of 
securing data while the data are being processed by the 
computing system [2-51. This paper addresses this prob- 
lem by developing a method that facilitates the process- 
ing of encrypted data without having to first decipher 
the data. 

One of the weaknesses of an encrypted information 
system is that while being processed the classified data 
are in a plain (red’) state; that is, the data are deci- 
phered before processing. At this state the data are 
highly exposed to unauthorized intrusion. Although 
there are some processes that do not require decipher- 
ment, particularly operations based on precise compari- 
son and search, there is currently no secure system for 

processing encrypted data [2, 3, 51. Other scholars [6] 
suggest the use of an algorithm based on homomorphic 
functions for processing encrypted data. Such functions 
enable the processing of the operation in an encrypted 
way (and even the decryption of the result), but 
are lacking in terms of the encryption strength (see 

Section 4). 
The Department of Defense has invested considerable 

’ Data are defined as “red” if access to the data by an unauthorized party can 

cause damage. Red data can be classified data that have not been encrypted. 

or classified data that have been ciphered and then deciphered. 

- 
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efforts in recent years in solving this problem by devel- 
oping an operating system that could protect classified 
data that are being processed, and that could simulta- 
neously process classified and unclassified jobs [4], but 
the results of these efforts have not yet been made 
public. 

There is a high value to encrypted processing in clas- 
sified and encrypted information systems. This capabil- 
ity provides such systems with the following significant 
advantages: 

(1) strengthening of data security, 
(2) considerable savings in computer time, and 
(3) savings in the costs of handling part of the security 

problems of the operating system. 

The following sections present a group of algorithms 
that facilitate processing of encrypted data. The pro- 

posed system will be presented in four steps; in each 
step a specific requirement is defined, and then an 
algorithm is developed to meet the requirement. As 

examples we will use banking transactions where the 
processing operation is an additive one, for example, 
updating the balance of a certain account by subtrac- 
tion or addition. 

The following notation will be used [l, p. 71: Plaintext 

is the set of data before encryption. Ciphertext is the 
result of encryption. 

The result of applying decryption to the ciphertext is 
to restore the plaintext. The terms plaintext and cipher- 
text are relative to a particular encipherment-it could 
easily happen that the plaintext is the result of a pre- 
vious encryption, but for our purpose, since it enters 
into the encryption function, it is called the plaintext. 

2. STEP A 

2.1 Requirement and Analysis 
The requirement is to design a system that can add an 
encrypted data element (last balance) to a plaintext (the 
updating transaction) without having to decipher the 
encrypted balance. In order to meet this requirement, 
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we need an encryption function that takes a ciphertext 
(C,), adds to it a plaintext (P2), and produces a result 
that is identical to applying an encryption on the two 
plaintext items (PI and P2). Alternatively, if we apply a 
decryption function on the sum (C, + P2), we will get a 
plaintext result identical to deciphering the ciphertext 
corresponding to the plaintext sum (PI + P2). 

or 

Zi(?l + 1) = [Zi(n) + Pi(tI + l)] 

Zi(tl + 1) = @(?I) + Pz]. 

To decipher and get the current balance. we can at 
any stage subtract the key; for example, after 1 updates 
we will perform 

2.2 Development Pi(l) = Z(l) - Xi. 

Assume an encryption function fk and two plaintext 
items PI and P2 (where P2 updates P,), so that C, = 
fk(P1) is the ciphertext of PI. To obey the requirement 
of Step A, the system must fulfill 

2.4 Limitations 
The proposed algorithm has the following limitations: 

fkl[fk(P1l + P21] = fkl[fk(Pl + &I] = Pl + Pz 

or 

fk 1 [C, + C,] = PI + P*. 

In order to satisfy this condition, the algorithm must 
satisfy 

fk(P1 I P21 = fk(P1) + Pz = CI + P2 

and symmetrically 

(11 

(4 

(3) 

(41 

fk(P1, Pzl = PI + fk(PZ) = Pl + c1. 

For example, if the encryption function jk employs a 
key and depends on Z(k) so that 

A one-time-only breaking of the key (e.g., by a 
plaintext-ciphertext pair) enables the decryption 
of all the data at any time. 
The periodic updates that are done in pIaintext 
may increasingly provide information to a poten- 
tial enemy. 
If ever the balance is discovered in an. intermedi- 
ary state (even without discovering the key), it is 
possible to trace all the updates. 
In order to perform a correct decrypticon, it is nec- 
essary to distinguish between data entering the 
system as plaintext and data entered ;as ciphertext: 
In other words, data have to be clear1.y marked. 

fk(P1 = Z(k) x P, 3. STEP B 

we will obtain the requirement to fulfill 

Z(k)[P, + Pz] = Z(k) x PI + Pz = P, + Z(k) x Ps. 

2.3 Description of the Algorithm 
The proposed algorithm will perform the encryption by 
an addition operation between the keyword and the 
plaintext word. The operation of addition can be a 
“modulu 2 addition” or any other method used by the 
system, provided it uses a word size in a modulu L that 
will prevent loss of data due to overflow. The first addi- 
tion of the key to the plaintext amount (PI) gives the 
first ciphertext balance (C,). Thereafter, plaintext 
amounts (P2, PJ, . . , P”) can be added. Whenever the 
updated balance is needed, the decryption involves 
only the “subtraction” of the key from the ciphertext 
balance. 

3.1 Requirement and Analysis 
The second requirement is to design a system that can 
add encrypted data to other encrypted data without 
having to decipher both groups before the addition. In 
such a system, updates that have been encrypted at the 
source can be transmitted via terminals as ciphertext, 
so that the central computer will not unnecessarily 
store classified red data. 

We use the following denotations: 

In order to satisfy this requirement, we seek an en- 
cryption function such that, if we add an (encrypted 
data element Cz to an encrypted element Cl, the result 
will be identical to applying the encryption function on 
the two data elements added in plaintext (PI + P2). 
Alternatively, employing a decryption function on the 
encrypted result (C, + C,) will generate the plaintext 
result identical to the one received had we predeci- 
phered data that were encrypted from the two individ- 
ual data elements. 

Xi key, 
Z, ciphertext update/word, 
Pi plaintext amount, and 
Ci previous ciphertext balance. 

3.2 Development 

Where PI the nth update of the system [PI = P,(n)], 
then the resulting word was 

Zi(n) = [Xi + P,(N)] mod 2r. 

For the sake of simplicity, we will hereafter omit the 
modulu notation. 

Similarly to Section 2.2, the system must :fulfill 

fkl[fkP1l + fkP?l] = V[fk(Pl + Pzl] = Pl + Pz. 

In order to satisfy this condition, the algorithm must 
perform the operation 

After the next update [Pz = Pi(n + l)], the resulting 
word is 

fk(P1. P21 = jk(P1) + fk(P2) ‘= CI -t cz. 

For the encryption function that employs a key, we will 

get 

Z(k)[Pt + Pz] + Z(k) x P, + Z(k) x Pz. 
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It can immediately be observed that the algorithm 
selected in Step A does not exactly satisfy the require- 

ment of Step B, since each successive encryption keeps 
adding the value of the key; that is, the value accumu- 
lates with each update. This problem can be solved by 
recording the number of updates performed (n), and 
then during decryption, subtracting from the encrypted 
data not the key, but n times the key: 

Pi(n) = Z;(n) - ?l X Xj, 

where P,(n) is the last updated balance. 

3.3 Limitations 
The limitation of plaintext updates ((2) in Section 2.4) 
has been (at least partially) solved, but a one-time dis- 
covery of the key (or of a plaintext-ciphertext pair) can 
still compromise the system. This means that it is still 
essential to frequently replace the key, not only for 
new data files, but also for the currently stored data. 

4. STEP C: EXAMINATION OF AN APPROACH 
BASED ON A HOMOMORPHIC 

FUNCTION [6] 

4.1 Requirement and Analysis 
The third requirement is the same as in Step B, but the 

system now has to overcome the problem of one-time 
breaking of the key. In order to fulfill this requirement, 

we will part with the algorithms presented above and 
examine the use of homomorphic functions that satisfy 
the required conditions, These are linear functions that 
fulfill the additivity property and comply with the fol- 

lowing rules: 

fdA + Bl = Fr(A) + FG) 

fk(a x A) = fk(A) x A = a x fk(A). 

We will illustrate the idea of using such functions by 
enciphering blocks of 64 bits. Let 

P be a plaintext vector (data block) comprised of bits of 
plaintext, and 

P=(p1+ 1..., pd. 

where pi denotes the ith bit of the vector P. Implement- 
ing the linear function f” will generate a block that is 
the vector c, where 

fk(P) = c = (Cl, cz, . , C641, 

where ci denotes the ith bit of the vector C. We will 
express the properties of the function with the nota- 
tions defined above and obtain 

fk(P, + P,) = fk(&) + fk(P2) = G + G 

fk(U x P) = a x fk(F). 

An updating process will be implemented as follows: 
Assume that vector C, is updated by the updating vec- 
tor 6,: 

(1) P, is enciphered and results in C,: fk(&) = fk(O, 
0 . . 1 updating section 1 . . 0, 0) = &,. 

(21 
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The resulting c, is added to c,, and the update 
process is completed. The normal decryption is 
performed by an inverse process. 

4.2 Limitations 
The main limitation of using homomorphic functions (a 
limitation not noted in [S]) is that such functions can, 
in principle, be broken relatively easily. In the example 
that we have used, the system can be broken by a 
dictionary of 64 words and by solving a set of linear 
equations of the same order. The dictionary will be 
comprised of 64 encrypted blocks (64-bit words), where 

in each block all bits but one are 0: 

fk,(l, 0, 0 . . . 0, 0) = 111 

fk*(O, 3, 0 . . . 0, 0) = a2 

fkJ0, 0, 0 . . 0, 1) = u64. 

Each encrypted block can be practically defined as a 
sum of values, according to the “1” bits in it. Assume 
that the enciphered block that we want to decipher is 

fk(P,) = (0, 1, 1, 0, 0, 1, 0 . 0) = Mi. 

It is easily verified that the blocks 2, 3, and 6 took part 
in constructing the encrypted block; therefore we can 
write the equation 

uz + ~3 + a6 = Mi 

and similarly for all blocks. In this form, by defining a 
set of linear equations and their solution, the system 
can be broken. This is the reason why the use of homo- 
morphic functions for encryption is not recommended. 

5. STEP D 

5.1 Requirement and Analysis 
The last requirement is the same as those in Steps B 
and C, but we add an “acceptable” level of encryption 
strength. The idea is based on the function presented in 
Step B; however, the updating process will be imple- 
mented so that each update will be performed by a 
different key (a different section of the key). In this 
way, if a certain key is broken, it will perhaps provide 
the enemy with one-time, temporary information, but 
not with the ability to trace all the updates and deci- 
pher the final information. 

5.2 Development 
For illustrative purposes, we will develop a system of 
two keys (for one update). The system meets the fol- 

lowing conditions: 

(I) fk,,k2(P, + Pz) = fk,(P,) + f~+(pJ = CI + CZ; and 
(2) z(kj, kz)[Pl. Pz] = Z(k,) x PI + Z(k,) X Pz. 

The decryption will be performed by 
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f(!kz[fkl(Pl) + fk#?d] 

= fk,:k2[ fk,.k2(P1 + PZ)] 

= f$[fk,(Pl)] + fk,‘[fk~(~Z)] 

= P, + P2. 

Assume a system where (n - 1) updates have already 

been processed and are contained in Z1 (which is the 
last updated plaintext PI in its encrypted form). The 
nth update, recorded as plaintext P2, arrives now and 
appears in the form of Zz (after being enciphered at the 
location where the transaction took place or else- 
where). In order to perform the update (of P2 into PI). 

the following operations have to be carried out: 

(I) Z3 = Z1 + Z2: construction of a new block, which 

is the sum of the previous blocks. 
(2) X3 = X,(kI) + X,(k,): construction of a new block. 

(3) In order to decipher the ciphertext, we have to 

supply X3 only and perform P3 = Z3 - X3, where Z3 
is the last encrypted, updated text. 

Note that to decipher it is not necessary to have all the 
keys. In the case where the keys are known, we can 
perform 

P3 = 23 - X,(k,) - X,(k,). 

If a special need arises to increase the system strength 
above what is suggested here, we can perform a permu- 
tation on the blocks by interchanging their relative lo- 
cations, but this is not essential. 

5.3 

(11 

(2) 

(3) 

Limitations 

There is a need to generate and use a sufficiently 
long random key. With contemporary technologies, 
this problem can be easily overcome. 
The protocol between the central computer and 
the terminals becomes more complicated and 
awkward. 
It becomes necessary to organize and handle the 
relatively complex subject of key management. 

6. CONCLUSIONS AND IDEAS FOR FURTHER 
RESEARCH 
This paper develops the idea of processing data that are 
in an enciphered state. The paper then suggests and 
analyzes the possibilities for using special algorithms 
that facilitate such front-end processing. 

The approach presented in this paper is based on a 
one-time key as an ideal, or on a pseudorandom key 
that operates in a stream method and not in a block 
method. This may indicate the following interface be- 

tween the proposed approach and the widespread data 
encryption standard (DES) algorithm: The DES algo- 
rithm operates in two possible alternatives certified by 
the National Bureau of Standards. The first, and more 
prevalent alternative, is based on the processing of 
blocks. The proposed approach is not suitable for this 
alternative. The second alternative can be implemented 

by a different electronic design of the DES chip or by a 
software change (the latter has been adequately dis- 
cussed in the relevant literature). Under this alterna- 

tive, the DES algorithm starts to operate on streams; 
thus it is then immediately applicable to the approach 
proposed in this paper. 

The algorithms that are developed in this paper are 
basic and exploratory. Their exposition is intended to 
provoke ideas for further research. Some suggestions for 
future research are as follows: 

greater specification of the practical difficulties in 

processing encrypted data, 
the actual implementation of algorithm operations in 

code or in typical I/O sequences, 
identification of increases in complications for the 
protocol between the central computer and the ter- 
minals, and 

identification of increases in complications for the 

protocol between the central computer and the ter- 
minals, and 
the interface between the approach proposed in this 
paper and public-key cryptography. 

A successful and more complete treatment of the 

ideas presented in this paper and the suggested further 
research may remedy one of the main trouble spots of 
every encrypted information system. 
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