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Abstract

Color vision deficiency (CVD) is caused by anomalies in the cone cells of the human retina. It affects approximately 200

million individuals throughout the world. Although previous studies have proposed compensation methods, contrast and

naturalness preservation have not been adequately and simultaneously addressed in the state-of-the-art studies. This paper

focuses on red–green dichromats’ compensation and proposes a recoloring algorithm that combines contrast enhancement

and naturalness preservation in a unified optimization model. In this implementation, representative color extraction and

edit propagation methods are introduced to maintain global and local information in the recolored image. The quantitative

evaluation results showed that the proposed method is competitive with state-of-the-art methods. A subjective experiment

was also conducted and the evaluation results revealed that the proposed method obtained the best scores in preserving both

naturalness and information for individuals with severe red–green CVD.
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1 Introduction

The human retina contains two kinds of photoreceptors: rod

cells and cone cells. The rod cells are sensitive to low-

intensity light. In comparison, there are three kinds of cone

cells (L, M, and S), which are sensitive to long, medium, and

short spectral ranges of visible light, respectively. Cone cells

play a crucial role in the formation of color vision. Anomalies

occurring in these cells cause color vision deficiency (CVD)

and impair the ability of affected individuals to perceive col-

ors. Such disorders prevent people from engaging in some

color-related work.

CVD is hereditary, and it cannot currently be treated [1].

It is suggested that CVD can be classified as anomalous

trichromacy, dichromacy, and monochromacy, according to

alterations of photopigments. Anomalous trichromacy and

dichromacy involve one type of altered photopigment and can

be divided into protan (L cone), deutan (M cone), and tritan (S

cone) deficiencies. Research [1, 2] reports that approximately

200 million individuals suffer from CVD and approximately

99.38% of them are anomalous trichromacy and dichro-

macy. Both the individuals with protan deficiency and those

with deutan deficiency have difficulty distinguishing red and

green; therefore, such disorders are typically called red—

green CVD. The incidences of red–green CVD for male and
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female are approximately 5–8% and 0.8%, respectively. Tri-

tan deficiency is rare and only affects approximately 0.003%

of the population.

CVD decreases the color gamut of individuals and causes

contrast loss in their visual perception. The disorder addi-

tionally affects the formation of human cognition to acquired

environments. CVD has been reported to influence behaviors,

leading to the tendency to ignore low-contrast information.

In the digital image research field, contrast is the difference

between and inside objects and is considered as the source

from which information, such as edges and textures, is gener-

ated. Therefore, individuals with CVD are at risk of missing

such information. Moreover, the identification of colors con-

tributes to absolute color information recognition. Although

the color gamut of CVD is decreased, individuals with protan

or deutan deficiencies can identify some colors such as blue

and yellow as well as achromatic colors, the same as with the

normal. It is essential to maintain these colors if a compen-

sation method is applied.

Through the observation of the natural world, both individ-

uals with normal color vision (trichromats) and those with

CVD have cognition to the world and the ability to judge

the naturalness, which is also understood as comfortability.

Because the original image, especially photograph of natural

scene, is supposed to be a copy of the world (considered as

natural), deviation from the original image should generally

be minimized in recoloring image for CVD compensation.

However, the contrast of an image plays a role in constructing

global structural information and local information (such as

texture). The loss of contrast leads to the loss of such informa-

tion. To compensate for the contrast loss caused by CVD, a

recolored image should preserve contrast information; there-

fore, it requires a careful balance to enhance contrast and

maintain naturalness.

Image recoloring algorithms [9–27] have been proposed

to compensate for CVD and its resulting loss of contrast.

Some of these studies concentrated on contrast enhancing

[9–17], while others directed more attention to issues of

naturalness preservation [18–21]. Although several studies

took both issues into consideration, the existing approaches

have limitations, such as relying on user input and limited

applicability to some image types [19], loss of contrast and

naturalness [17, 20, 21], and being trapped by the local min-

imum during optimization [18].

In this paper, a new recoloring algorithm that recolors

images for red–green dichromats is proposed. Because the

two targets (naturalness preservation and contrast enhance-

ment) are contradictory, an optimization model driven by an

energy function consisting of error items for both targets is

put forward. Objective evaluation metrics were applied to

assess the performance of the proposed method. Subjects

with red–green CVD simultaneously evaluated the effective-

ness of the proposed technique. The objective evaluation

results demonstrated that the proposed method is compet-

itive with the state-of-the-art studies and the results of the

subjective experiment showed that the proposed method

outperforms the state-of-the-art methods in preserving both

naturalness and information preservation for individuals with

severe red–green CVD.

2 Related works

2.1 Color vision deficiency simulation

Both Meyer et al. [3] and Brettel et al. [4] refer to studies on

unilateral dichromats (one eye with trichromacy but the other

with dichromacy) [5, 6] and propose dichromacy simulation

algorithms by projecting colors perceived by trichromats to

the color gamut within the CIE 1960 color space and the

LMS color space, respectively. Specifically, the LMS color

space is composed of three axes: L, M, and S axes, which

represent the responses of the L, M, and S cones. The color

gamut of dichromats is modeled as two half-planes by [4]

and the simulation result is synthesized by projecting the

color in three-dimensional space to the half-plane, along the

anomalous axis. Inspired by spectral sensitivity function shift

theory [1], Machado et al. [7] adopt a two-stage model [8] and

refer to the dichromacy simulation results generated by [4]

to simulate trichromacy, anomalous trichromacy, and dichro-

macy in a unified model. Because it is difficult to accurately

calibrate deficiency levels of anomalous trichromacy, this

study focuses on compensation for dichromats and adopts

the method in [4] for dichromacy simulation.

Along with the widespread use of digital display devices,

image processing techniques [9–27] for CVD assistance are

attracting significant attention. Mainstream research has been

conducted to enhance color contrast for users with CVD

[9–17], and some researchers [22–27] have also taken the

communication between normal color vision users and CVD

users into consideration and proposed methods that enable

the sharing of the same contents between normal and CVD

users.

2.2 Image recoloring for CVD users

For contrast enhancement, customized parameters have been

required by previous work for recoloring webpages [9].

Parameter adjustment interfaces are developed by [10] and

[11]. However, user skill affects the quality of the recol-

oring results of these algorithms. To solve such problems,

automatic algorithms have been developed for color discrim-

ination improvement [12] and color distribution adjustment

[13]. The effects of compensation are further improved

by optimization approaches [14–17]. Machado et al. [17]

enhances the contrast between color pairs and maintains
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luminance consistency by projecting all colors of an image in

the CIE L*a*b* color space to a flat plane, which is obtained

by principal component analysis, and then rotating projected

colors to dichromatic planes, which are proposed by [18].

Nevertheless, maintaining naturalness has not been taken into

account by contrast enhancement algorithms, and loss of nat-

uralness is significant in the results of these works.

For naturalness preservation, the difference between the

colors perceived by normal color vision users and those of

CVD simulation result is introduced by [18–21]. Color quan-

tization methods and the mass-spring system are adopted

by [18]. They attempt to maintain those colors, which have

small difference between the original value and simulation

result, by enlarging the mass of them in the mass-spring sys-

tem. However, the algorithm is easily trapped by the local

minimum; the selection principle of method and level of

color quantization, which has important influence on results,

are not suggested in [18]. Key colors are extracted by [19]

from the original image. Besides, those colors are selected as

anchor colors if their differences to CVD simulation results

are lower than threshold. However, the threshold may filter

all key colors out from anchor while at least one anchor color

is necessary for the algorithm. Hassan et al. [20, 21] simply

add the difference to the blue channel of each pixel without

considering the original level of the blue channel as well as

the relationship between neighboring pixels. Therefore, the

blue channel of pixels with original high values can become

saturated and severe contrast loss can occur in area with such

pixels.

Despite these problems, [17] and [20] have confirmed their

effectiveness in enhancing contrast and preserving natural-

ness, respectively, compared to [18]. Therefore, this study

conducted evaluation experiment involving subjects with

red–green CVD to compare the proposed method to [17]

and [20].

2.3 Image recoloring for visual sharing

When considering the sharing of visual contents between

normal color vision users and CVD users, it is important to

avoid visible changes to original images while processing

images for better perception by CVD users. Among studies

[22–25] that generate single recolored image from the orig-

inal one, Huang et al. [22, 23] introduce an error function

to mitigate bias, although bias remained significant among

normal color vision audiences. In [24] and [25], textures are

added to different areas in original images to improve con-

trast without changing colors; however, both normal color

vision audiences and CVD audiences are confused whether

the textures are imported one or belong to the original image.

The aforementioned issues in visual sharing are well handled

by subsequent research using stereo display [26, 27]. Chua

et al. [26] and Shen et al. [27] utilize two different expe-

riences of stereo display, namely wearing and not wearing

stereo glasses. Their methods synthesize a pair of images

from an original one. Normal color vision audiences who do

not wear stereo glasses perceive the blending of the paired

images, while CVD audiences wearing the glasses are pre-

sented with different contrast-enhanced images for left and

right eyes.

2.4 Compensating using augmented reality

With the development of augmented reality (AR) technol-

ogy, approaches in [28] and [29] aim to assist CVD users by

mixing the field of view with compensation overlays com-

puted from captured scenes of the real world. Such research

mainly focuses on how to reproduce the results of previous

CVD compensation algorithms on head-mounted displays

rather than putting forward new recoloring methods.

In this paper, a new recoloring algorithm based on [4] for

dichromats compensation is proposed. The recoloring pro-

cedure is performed on the color gamut of dichromats in the

LMS color space. Recoloring procedure is formulated as an

optimization problem that takes into consideration both nat-

uralness preservation and contrast enhancement.

3 Proposedmethod

Dichromacy simulation method [4] is adopted to simulate

the color perception of dichromats and the color gamut of

red–green dichromats is modeled as two half-planes which

are illustrated in Fig. 1a. Both protanopes and deuteranopes

identify blue and yellow well, and these colors correspond

to two types of visible light, namely wavelengths 475 nm

(blue) and 575 nm (yellow). These colors are referred as

vectors B and Y in the LMS color space, respectively, and

are used to construct the half-planes. In addition, responses

to achromatic light are introduced as vector W and then the

color gamut of red–green dichromats is defined. This allows

a color perceived by trichromats to be projected to the two

half-planes for simulations of protanopia (along the L axis)

and deuteranopia (along the M axis). In other words, except

for the anomalous component, the values of the two nor-

mal components of color perceived by trichromats remained

unchanged after projection. In three-dimensional space, if

two colors contain similar values of two normal components,

they are projected to nearby positions on the half-planes. As

Fig. 1a illustrates, colors ci and c j are far from each other in

the color space, but in the results of the protanopia simula-

tion, the distance between cs
i and cs

j is very short. Contrast

loss occurs in such situation.

Simulation results of two images are illustrated in Fig. 2.

Figure 2a, b shows the lotus flowers of different colors.

Protanope and deuteranope simulation results of Fig. 2a,
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Fig. 1 Proposed compensation model (protanope)

Fig. 2 Protanope and deuteranope simulations of 2 images

b are shown in Fig. 2c–f, respectively. Figure 2 shows

the perception difference between protanope and deutera-

nope. Individuals with protanopia regard the color of lotus

flower in image 1 (Fig. 2a) is darker than that of image 2

(Fig. 2b). However, individuals with deuteranopia regard that

of image 2 (Fig. 2b) is darker. We utilized such kind of differ-

ence to classify protan and deutan deficiencies in Sect. 5.2.

In this paper, all procedures concerning the proposed opti-

mization model are performed in LMS color space and the

colors in this space can be represented as three-dimensional

vector (l, m, s)T . To compensate contrast loss, image I c is

synthesized from the original image I via optimization. The

dichromacy simulation image of I c is defined as I sc. The

contrast perceived from I c by dichromats, namely contrast

of I sc, is hoped to be as strong as that perceived from I

by trichromats. The optimization procedure for protanopes

is illustrated in Fig. 1a, and the view along the anoma-

lous axis (L axis) is shown in Fig. 1b. In Fig. 1, colors

cs
i (

(

ls
i , ms

i , ss
i

)T
) and cs

j are protanopia simulation results

of colors ci

(

(li , mi , si )
T
)

and c j . They are moved from

their original positions via optimization under the constraints

of naturalness preservation and contrast enhancement. csc
i

(

(lsc
i , msc

i , ssc
i )T

)

and csc
j are simulation results of cc

i
(

(lc
i , mc

i , sc
i )T

)

and cc
j in the recolored image. For enhancing

global contrast, each color is compared to all other colors

in the image. The optimization of contrast enhancement is

realized by minimizing the energy function Econt below

Econt �

N
∑

i�1

N
∑

j�1, j ��i

||csc
i − csc

j − δi j ||
2 (1)

where N denotes the number of colors in I , and δi j stands

for the modified contrast between colors ci and c j in I . Econt

requires the contrast strength in I sc to be consistent with that

in I . The lost contrast of anomalous component a can only

be compensated by modifying the two normal components

represented as k. In other words, distributing the lost contrast

of a to components k is necessary. In this study, the lost

contrast is equally distributed to two normal components:

for protanope, a � l, k � {m, s}; for deuteranope, a � m,

k � {l, s}; and for tritanope, though it is not implemented in

this paper, a � s, k � {l, m}. Components k of the modified

contrast, δk
i j , are thus represented as

δk
i j � αk

i j

√

(

vk
i − vk

j

)2
+ μ

(

va
i − va

j

)2
(2)

where vk
i , vk

j , v
a
i , and va

j denote values of normal and anoma-

lous components of colors ci and c j (for protanope, vk
i refers

to mi , si of ci and va
i refers to li of ci ; for deuteranope, vk

i

refers to li , si of ci and va
i refers to mi of ci ) in I , respectively,

and αk
i j determines the sign of the components k of contrast

δk
i j as

αk
i j �

{

1,

(

vk
i > vk

j

)

or
(

vk
i � vk

j and va
i > va

j

)

−1, otherwise
(3)

In this way, the magnitude consistency of two colors can

be preserved after optimization. In other words, given the

values of k components, vk
i and vk

j , of colors ci and c j , and

those of corresponding components, yk
i and yk

j , for colors csc
i

and csc
j in I sc, if vk

i is smaller than vk
j , then yk

i is also smaller
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than yk
j and vice versa. In the case that vk

i is identical to vk
j ,

the magnitude relation of va
i , va

j is referred to. Coefficient

μ controls the contrast strength of the recolored image. If

μ is set to 0.5, contrast strength of the recolored image is

identical to that of the original image because the square

sum of the normal components k of δi j is identical to that of

the three components of ci − c j . To enhance contrast, μ can

be enlarged, if necessary.

The difference between the result of dichromacy simula-

tion of the original image I and that of the recolored image I c

is minimized for naturalness preservation. Therefore, image

I sc of the dichromacy simulation for I c is constrained by

image I s of dichromacy simulation to I . The energy func-

tion is represented as

Enat �

N
∑

i�1

||csc
i − cs

i ||
2 (4)

where cs
i denotes the result of the dichromacy simulation of

ci . The energy function of contrast pushes csc
i away from cs

i ,

while naturalness pulls it back (Fig. 1b). Then, two contra-

dictory constraints are put in a unified optimization model

by combining two energy functions. The combined energy

function of the optimization model is represented as

E � λEnat + Econt (5)

In this implementation, the weight λ of the naturalness

term is set to 1. Setting the partial derivations of yk
i in E to

0 results in the simultaneous linear equations system below

(6)

(N − 1 + λ) × yk
i − λ × vk

i −

N
∑

j �1, j ��i

(

yk
j + δk

i j

)

� 0, for i � 1, 2, . . . , N

Bi-Conjugate Gradient (BiCG) iterative method of [30]

is adopted to solve the linear equations system. In fact, the

values of anomalous component a of the simulation image

I sc are not updated because component a depends on two

normal components and can be obtained using the projection

method in [4]. Though the contrast of the anomalous compo-

nent between colors in I sc is not counted, it does not benefit

global contrast enhancement. To obtain the recolored image

I c from the simulation image I sc and to minimize deviations

from the original image I , the values of the anomalous com-

ponent a of I sc are moved to the same levels as those of I .

In this way, the distance between I c and I was shortened as

much as possible. Nevertheless, I c can still be perceived as

I sc by dichromats.

Fig. 3 Partially enlarged image of a lotus

4 Implementation

Because of the requirement of global contrast enhancement,

each color is compared with all colors in an image. How-

ever, this makes the coefficients matrix of the simultaneous

linear equations system non-sparse and memory occupying.

For example, if N� 100,000, the coefficient matrix needs

74.5 GB memory space. In fact, an area that looks having

uniform color to human may actually consist of a lot of dif-

ferent colors. For example, in Fig. 3, a patch with size 24×

17 captures a part of flower petal (Fig. 3a). In the patch, there

are 216 different values in RGB, but the patch is likely to

be perceived to have uniform color pink (Fig. 3b). Although

these small color differences are important for representing

shading and local texture, more distinct color differences,

such as the differences between red and green or between

yellow and purple, are usually important for representing

global structures. Thus, the size of the coefficients matrix

is reduced by grouping similar colors together and select-

ing a representative color from each group. This procedure

is called representative color extraction. Then, after recolor-

ing the representative colors with the proposed optimization

procedure, the local information is recovered via the edit

propagation method proposed by [31].

K-means clustering [32] and Mean-shift [33] are usually

used to divide samples into several clusters, and the centers

of the clusters are selected as the representative. Based on k-

means clustering, Chang et al. [34] selects color palette from

the original image. However, these methods may produce

fake representative colors that do not exist in the image. The

affinity propagation [35] algorithm extracts existing sample

from each cluster but requires users to set the preference

parameter.

The dominant color-extracting technique used in Liu

et al.’s [36] color to gray algorithm produces a more satisfy-

ing result of color feature extraction. In this implementation,

a representative color extraction method similar to that of [36]

was used to reduce the number of colors for global contrast

enhancement.
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Fig. 4 Procedure of representative color extraction. The scale of the

particle and the radius of a circle represent the pixel number and the

range of the cluster, respectively

4.1 Representative color extraction

Representative color extraction reduces the number of color

clusters while inhibiting noise. The extraction procedure is

illustrated in Fig. 4. As the three channels of the RGB color

space [0, 255]3 have homogenous value ranges and are inde-

pendent from each other, the extraction is performed within

this space. It starts with obtaining local peak clusters from

the I , referring to the Euclidean distance in the RGB color

space (Fig. 4a); the number of clusters is then further reduced

via neighboring clusters comparison, which refers to both the

color space and image space (Fig. 4b, c). The final process is

to compare each cluster to all other clusters, referring to the

number of pixels, to reject noise (Fig. 4d).

An extent Φr
c that is centered on color c with a radius r in

the RGB color space is used for the local peak cluster extrac-

tion. If the color c has the largest number of pixels among the

colors within Φr
c , then a local peak cluster p centered on c is

obtained. All colors are classified to the nearest peak cluster

and each peak cluster p contains not only the center color

but also its neighboring colors. The center of a cluster never

shifts and the number of pixels in p is defined as N Pp and

counted as

N Pp �
∑

c∈p

N Pc (7)

where c is a color belonging to cluster p, and N Pc denotes

the number of pixels with c in the image. Local peak cluster

extraction reduces similarities. The distance between colors

in the color space is adopted as the extraction principle. How-

ever, it is difficult or even impossible to complete extraction

for diverse images relying on a constant extent radius. There-

fore, the extent radius is continuously enlarged to adapt to

various images, until the termination condition is satisfied.

For further cluster reduction, each cluster pi must be com-

pared to neighboring clusters, such as cluster p j , which is

within the enlarged extent of pi . In the comparison of pi and

p j , cluster pi that is assumed to hold larger pixel number

must be reserved and cluster p j with smaller pixel number

is decomposed unless it holds both a certain scale of number

of pixels and a certain distance to pi in pixel distribution.

Detailed conditions of the scale and distance are defined as

the ratio of pixel numbers of two clusters, RN P
i j , and the ratio

of distribution distance to the diagonal line d �

√

d2
h + d2

v

(dh , dv denote the width, height of the image, respectively) of

the image, RD
i j , respectively. Consideration that more is the

number of pixels in p j and farther is the distribution distance,

more possible is the p j reserved, makes both as numerators

of the ratios. Thus, two ratios are computed as

RN P
i j �

N Ppj

N Ppi

(8)

RD
i j �

||Hpi − Hpj ||

d
(9)

where N Ppi , N Ppj denote the numbers of pixels of pi , p j ,

and Hpi , Hpj stand for the average coordinates of pixels in

pi , p j , which are computed as

Hp �
1

N Pp

∑

c∈p

∑

q∈c

qco (10)

where qco
(

xp, yp

)

denotes the coordinates (xp: horizon-

tal, yp: vertical) of a pixel with color c in cluster p in the

image space. Two ratios are combined by multiplication.

With the dilating of the extent of cluster, similarity between

clusters diminishes and the reservation condition of cluster

p j decreases as consequence. Therefore, the reciprocal of

difference between center colors ci , c j of clusters pi , p j is

set as the border of abandon and reservation. In other words,

if

RN P
i j × RD

i j ≥ α
1

||ci − c j ||
(11)

then p j is also reserved; otherwise, colors that are origi-

nally classified into cluster p j are assimilated to the nearest

reserved clusters. In this implementation, α was set to 1.

Extent radius r used for local peak cluster extraction starts

from 10 and is increased by 10 each round during cluster

reduction. For some iterative solution methods of simultane-

ous linear equations system, such as BiCG method adopted

above, difference between two solutions before and after and
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Fig. 5 Representative color extraction results. a, f Are input images. b,

g Are representative colors extracted from a, f by k-means and d, i are

those extracted by the proposed method. c, e, h, j Are representative

color maps of b, d, g, i, respectively

the maximal iteration number are set as the terminations con-

dition of the iteration. Similar to such iterative method, the

dilation of the extent radius is terminated if the numbers of

clusters are the same as that of the previous round. At the

same time, the upper limit of the extent radius is also adopted.

Heckbert et al. [37] considered a difference at approximate

80 in the RGB color space as large enough to discriminate

two colors. Therefore, a larger value of 100 is selected as the

upper limit of the extent radius.

The last issue concerning representative color extraction

is noise rejection. Clusters with very small scales may be

reserved as being far from others, but no color feature repre-

sentative ability. Therefore, a cluster with very small number

of pixels less than 1% of that of the largest cluster is treated

as noise and rejected. Finally, center colors of reserved peak

clusters are chosen as representative colors, RC, of the orig-

inal image. For the extraction example in Fig. 4, finally, four

representative colors were extracted.

Figure 5 illustrates two extraction results of the proposed

method and k-means. Figure 5b, g shows the results of k-

means and Fig. 5d, i shows those of the proposed method.

Figure 5c, e, h, j shows the RC map of Fig. 5b, d, g, i, respec-

tively, where RC map is generated through exchanging the

color of each pixel in the original image by its nearest RC. In

Fig. 5c, the yellow color was not preserved at the center of

the lotus flower, and in Fig. 5h the black boat disappeared,

while those are well preserved in Fig. 5e, j.

4.2 Representative color recoloring

With the extracted representative colors, the optimization

model in Sect. 3 is revised as

ERC � λ
∑

i∈RC

‖csc
i − cs

i ‖
2+

∑

i∈RC

∑

j∈RC, j ��i

‖csc
i − csc

j − δi j ‖
2

(12)

Each representative color is viewed as an important color

feature of the original image, and hence uniform weight is

assigned to them, though the number of pixels may be dif-

ferent from each other. The simultaneous linear equations

system is consequently revised as

(13)

(N − 1 + λ) × yk
i − λ × vk

i −
∑

j ∈RC, j ��i

(

yk
j + δk

i j

)

� 0, for i ∈ RC

The BiCG iterative method is then adopted to solve the

revised equations system, and recolored representative colors

(RRC) are obtained.

4.3 Representative color diffusion

After the representative colors are recolored in the LMS color

space, they are then transformed into CIE L*a*b* color space

and are diffused throughout the whole image via edit propa-

gation model in [32].

Chen et al. [32] collects user edits and specifies these edits

as diffusion sources. In this paper, user edits are exchanged

by RRC. Then, the specified source is propagated via a locally

linear embedding (LLE) model [38].

According to the LLE model, a color ci can be represented

by the weighted sum of a set of nearest neighboring colors,

�i . The weights are obtained by minimizing the formula

below

N
∑

i�1

||ci −
∑

j∈�i

wi j c j ||
2

(14)

where wi j denotes the weight of the jth neighbor color of ci

and is constrained by the formula

∑

j∈�i

wi j � 1 (15)

Then, obtained weights are used to maintain the local lin-

ear structures of neighboring colors while propagating the

specified colors via the optimizing model. The energy func-

tion of the propagation model is represented as

Eprog �
∑

i∈RC

||zi − gi ||
2+

N
∑

i�1

||zi −
∑

j∈�i

wi j z j ||
2 (16)

where zi , z j denote the results of recoloring colors ci , c j ; gi

stands for the recolored representative colors and is speci-

fied as the diffusion source. Similar to [32], the propagating

optimizing model is also rewritten in a matrix form

Eprog � (Z − G)T Λ(Z − G) + Z T (I − W )T (I − W )Z

(17)
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Fig. 6 Two sets of example images used in subjective evaluation involving subjects with protan deficiency

where Z denotes the colors after propagation, and I, W are

identity and weight matrices, respectively. Diffusion source

related matrices Λ and G are defined as

Λi i �

{

1, i ∈ R RC

0, otherwise
, Gi �

{

gi , i ∈ R RC

0, otherwise
(18)

To complete the propagation optimization, the partial

derivation of Z is taken to 0 and the equation below is

obtained

[

(I − W )T (I − W ) + Λ

]

Z � ΛG (19)

5 Results and evaluations

5.1 Results

Figures 6 and 7 show two sets of recolored image exam-

ples. Each example occupied two rows. The first row of each

example showed the original image, results of [17] and [20],

and the proposed method, from (a) to (d), respectively. Per-

ceptions to these images by dichromats were simulated by

[4] and are shown below to demonstrate the effectiveness of

the corresponding methods.

In Fig. 6, the red sun in the original image in Exam. 1

was considered an important feature of the image; however,

this feature became very weak in protanopes’ perception

(Fig. 6a) because of contrast loss while was almost unper-

ceivable from results of [20] (Fig. 6c). Though the result

of the proposed method (Fig. 6d) appears strange to normal

color vision viewers, the simulation of the recolored image

demonstrated a more brilliant and contrast-enhanced result

and the subjects with severe protan deficiency voted it as

the most natural among all the four images in the evaluation

experiment, which is to be described in 5.2. In Exam. 2, “gray

sky” in Fig. 6b led to both naturalness and information loss;

the tulips in Fig. 6c were decolorized; for the result of the

proposed method (Fig. 6d), the “blue sky” was preserved and

the tulips were not decolorized.

In Fig. 7, color difference the lotus and the leaves in

Exam. 1 became difficult to be distinguished by deuteranopes
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Fig. 7 Two sets of example images used in subjective evaluation involving subjects with deutan deficiency

(Fig. 7a) and was improved to some extent in the result of [20]

(Fig. 7c). Machado et al. [17] (Fig. 7b) enhanced contrast;

however, the yellow bud which was perceivable to deutera-

nopes was recolored to blue. The color difference between the

lotus and leaves was more significant and the bud remained

yellow in the result of the proposed method (Fig. 7d). Two

of the three subjects with severe deutan deficiency voted the

result of the proposed method as the most natural. In Exam. 2,

though the color of the flower perceived by deuteranopes was

different from that perceived by trichromats, the texture of the

flower was identifiable to them (Fig. 7a). However, because

of the overflow of the blue channel, some areas became

homogeneous and texture loss occurred in [20] (Fig. 7c). The

proposed method (Fig. 7d) preserved the information well.

5.2 Evaluation experiment

To verify the effectiveness of the proposed method, its results

were compared to those of state-of-the-art methods [17, 20]

in terms of objective and subjective evaluation experiments.

Objective experiments were performed to measure the

naturalness and information preservation in the dichromacy

simulation images of the results. Since human’s visual system

is more sensitive to the difference, rather than the absolute

level of intensity and color, contrast is regarded as an impor-

tant index of information amount. In [17], a relative contrast

metric, root-mean-square (RMS), was proposed; it calculates

the contrast difference between the test image and the refer-

ence image. However, such a metric may regard an enhanced

contrast as a contrast loss. Another contrast metric, the aver-

age gradient norm (AGN) proposed in [39], can measure the

absolute strength of contrast; it is formulated as follows:

AGN �
1

N

N
∑

i�1

(

√

Gh(i)2 + Gv(i)2
)

, (20)

where Gh(i) and Gv(i) denote horizontal and vertical Sobel

gradient operators, respectively. The larger the AGN value,

the stronger the contrast. The AGN values of both the two

state-of-the-art methods and the proposed method are shown

in Table 1. The dichromacy simulation results of 10 images,

including natural scenes and artificial objects, were used to

compute AGN. A portion of the images were selected from

the contrast preservation benchmark used in recoloring stud-

ies such as color-to-gray [40, 41] and edit propagation [32].

Some images were selected because they are supposed to

contain information which is unperceivable based on dichro-

macy simulation [4]. The average AGN values of the 10

simulated images are also shown in Table 1. The values of
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Table 1 AGN (average gradient norm) as the contrast evaluation metric

for 10 images

CVD type CVD Machado Hassan Proposed

Protan 0.251 0.241 0.250 0.256

Deutan 0.258 0.254 0.257 0.273

Table 2 Results for the naturalness evaluation metric

CVD type Machado Hassan Proposed

Protan 16.0 11.0 10.2

Deutan 16.8 8.3 11.7

the proposed method are higher than those of the existing

methods for both protanope and deuteranope.

As discussed in Sect. 1, because the individuals with

CVD have perceived the natural world since birth, the orig-

inal images, especially the photographs of natural scenes

(supposed to be copies of the world), are considered as nat-

ural; therefore, deviation from the original image should

be minimized in recoloring images for CVD compensation.

Hassan et al. [20] used a naturalness evaluation metric, which

summed ‖ci −c
′

i‖
2 where ci , c

′

i denote the colors in the origi-

nal image and recolored image, respectively, and i is ith color

in the image. A shortcoming of this naturalness evaluation

metric is that it does not take the fact that a change to the

original image may not lead to a change to the perceptions

of individuals with CVD into consideration. For example,

deuteranope cannot perceive the change from “purple” to

“blue” because both colors are perceived as “blue”. Conse-

quently, for the evaluation of naturalness preservation, the

chromatic difference between CVD simulated image of the

original image and that of the recolored image are consid-

ered.

The results of the naturalness evaluation for the three

methods are shown in Table 2. The proposed method obtained

the best score for protanope. For deuteranope, the quantita-

tive evaluation results indicate that images synthesized by

[20] have a lower naturalness error than those of the proposed

method. Subjects with a severe deutan deficiency scored the

images recolored by the proposed method as slightly better

than those by [20], which will be described subsequently in

this section.

A subjective evaluation experiment involving 12 subjects

(ages 20 to 50) with red–green CVD (5 protan, 7 deutan)

were conducted to evaluate the naturalness and information

preservation. Subjects were divided into protan and deutan

groups according to the Ishihara Test [42] results and the

instance illustrated in Fig. 2. Depending on the results of

interviews with subjects regarding how CVD influenced their

quality of life, 2 of 5 subjects with protan deficiency and 3

of 7 subjects with deutan deficiency were further classified

Table 3 Average number of times the three methods received the “nat-

ural” label from subjects with severe CVD

CVD type Input Machado Hassan Proposed

Protan 0.75 0.25 0.35 0.65

Deutan 0.80 0.37 0.57 0.60

Table 4 Average number of times the three methods received the “nat-

ural” label from subjects with mild CVD

CVD type Input Machado Hassan Proposed

Protan 0.90 0.23 0.60 0.53

Deutan 0.93 0.38 0.63 0.48

Table 5 Average naturalness rank of the three methods sorted by sub-

jects with severe CVD

CVD type Input Machado Hassan Proposed

Protan 1.75 3.00 3.05 2.20

Deutan 1.90 3.13 2.67 2.30

Table 6 Average naturalness rank of the three methods sorted by sub-

jects with mild CVD

CVD type Input Machado Hassan Proposed

Protan 1.73 3.27 2.40 2.60

Deutan 1.50 3.20 2.43 2.88

as severe protan and deutan deficiencies, respectively. They

reported that it was difficult to distinguish the colors of traffic

lights, which contain red and green. Since their perceptions

are comparable to those of dichromats, particular attention

was directed to their feedback.

This experiment consisted of two parts. The first evalu-

ated naturalness. The subjects were presented with one set

of examples at a time (as with the examples shown in Figs. 6

and 7), but without dichromacy simulation images or method

labels; 10 sets of examples were shown. The images were

sorted in random order in one set of examples. Both absolute

and relative evaluations were performed during the natu-

ralness evaluation. For the absolute naturalness evaluation,

subjects determined whether the image was natural or not.

For the relative naturalness evaluation, subjects needed to

sort the images in order (from the most natural as “1” to the

least natural as “4”), including the original image, which was

also anonymous to the subjects.

The results of the absolute naturalness evaluation are pre-

sented in Tables 3 and 4. The results of the relative naturalness

evaluation are presented in Tables 5 and 6.

The average results of the 10 examples evaluated by the

subjects with severe CVD for absolute naturalness are shown

in Table 3. With the exception of the original images, the
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average number of times that the proposed method received

the label “natural” was the highest for both the protan and

the deutan deficiencies. This indicates that the images syn-

thesized by the proposed method were more natural to them

than those of the previous studies. The results for the sub-

jects with mild CVD are shown in Table 4. Because the

image synthesized by the proposed method can be unnat-

ural to trichromats, these images were likely to receive a less

“natural” label from them. The important reason for this is

that the subjects with mild CVD reserved a much greater

extent of the ability to identify colors like trichromats do.

This phenomenon is discussed further in Sect. 6. Among the

three methods, the results of [20] were more comparable to

the original images and Table 4 shows that they were likely

to be evaluated as natural by mild subjects. In those cases, the

proposed method’s performance was slightly inferior to that

of [20]. For the relative naturalness evaluation results, the

average ranks of the three methods are presented in Table 5

(severe CVD) and Table 6 (mild CVD). The lower the num-

ber, the better the performance of the method. According to

the evaluation by the severe subjects, the proposed method

obtained the best scores for both protan and deutan deficien-

cies among the three methods. The results of the relative

naturalness evaluation by the mild subjects were similar to

those for the absolute naturalness evaluation.

The results of both the absolute and the relative naturalness

evaluations demonstrate that the proposed method performed

better than previous studies [17] and [20] for subjects with

severe CVD.

The second part of the experiment was the evaluation of

the information preservation. Both contrast enhancement and

CVD-identifiable information preservation were evaluated.

As with the naturalness evaluation, 10 sets of examples were

displayed set-by-set to the subjects. In contrast to the natu-

ralness evaluation, the original image of each example in the

information evaluation was marked out and the subjects were

asked to label the images with tags (“information increased,”

“not changed,” and “information decreased”) after compar-

ing the recolored images to the original image. Before the

experiment began, the meaning of the tags was explained to

the subjects, using examples such as “increased: contrast is

enhanced while no incorrect information (for example, blue

is recolored to other colors) is induced,” “not changed: almost

no change from the original image,” or “decreased: texture

on flower petal disappeared.”

The average number of times that each of the three meth-

ods received the labels from the severe and mild CVD

subjects is listed in Tables 7 and 8. The larger the num-

ber of the “increased” label, and the lower the number of

the “decreased” label, the better the method performed for

increasing information. Among the three methods, the num-

bers for the “increased” label of the proposed method were

largest and the numbers for the “decreased” label were small-

Table 7 Average number of times the three methods received each label

from subjects with severe CVD in the information evaluation

CVD type Label Machado Hassan Proposed

Protan Increased 0.25 0.10 0.35

Decreased 0.60 0.40 0.25

Deutan Increased 0.07 0.03 0.10

Decreased 0.83 0.77 0.40

Table 8 Average number of times the three methods received each label

from subjects with mild CVD in the information evaluation

CVD type Method label Machado Hassan Proposed

Protan Increased 0.17 0.17 0.30

Decreased 0.50 0.40 0.43

Deutan Increased 0.23 0.10 0.23

Decreased 0.60 0.33 0.25

est for both severe protan and deutan deficiencies, as shown

in Table 7. Because of the contrast enhancement constraint in

this optimization model, the proposed method received the

largest number of “increased” labels for mild protan and deu-

tan deficiencies (Table 8). From both the naturalness and the

information evaluations, the proposed method worked best

for severe CVD subjects.

During the experiment, the naturalness preservation eval-

uation was performed first and the answer sheets for the

naturalness preservation evaluation were withdrawn before

the information evaluation began. In Tables 1–8, the best

scores of the three methods are in bold.

6 Discussion

The subjective experiment results showed inconsistency

between severe and mild CVD, especially for naturalness

evaluation. For instance, as the example shown in Fig. 8,

mild anomalous trichromats or trichromats tended to regard

the result synthesized by the proposed method (Fig. 8d) as

unnatural. However, when it was presented to the two severe

protan deficiency subjects, both of them regarded it as the

most natural among four images without any hesitation, and

the original image (Fig. 8a) ranked second. Color gamut

of dichromats varies from that of trichromats or anomalous

trichromats. And color gamut of severe CVD individuals is

more approximate to that of dichromats than those of mild

ones. This study recolored images within the color gamut of

dichromats, and it performed better for subjects with severe

CVD. Therefore, it is assumed that if deficiency level or color

gamut of anomalous trichromats is calibrated, then the CVD

simulation projection method can be exchanged and better

compensation results can be provided to them.
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Fig. 8 An example used in naturalness evaluation involving subjects

with protan deficiency

In this implementation, the attention is focused on syn-

thesizing optimal recolored result with algorithm trade-off

being time efficiency for accuracy. Extracting representa-

tive colors from a 640×480 image may take approximately

40 s, but it could be accelerated by parallel computation opti-

mization. For the simultaneous linear equation for recoloring

representative colors, we can solve it in real time. The edit

propagation method adopted in this implementation was not

optimal from the view point of speed. Faster method such as

[43] has been proposed. However, this method cannot pro-

duce deterministic result because it downsizes the user edits

by random sampling. What is more, [32] has shown that their

method outperformed [43] in propagation accuracy. There-

fore, method in [32] is chosen for achieving better recoloring

accuracy. Since we could confirm the effectiveness of the

proposed method, reducing the processing time, such as by

replacing the current edit propagation by faster one, will be

our next step.

7 Conclusion

In this paper, a recoloring algorithm for dichromats compen-

sation was proposed and the result of the proposed method

was compared with the state-of-the-art works [17, 20] by

objective and subjective evaluations. The results of the exper-

iment showed that the proposed method performs the best in

naturalness preservation and contrast enhancement for severe

red–green CVD and is comparable to the state-of-the-art

methods for subjects with mild red–green CVD.

In particular, feedbacks from subjects with anomalous

trichromacy showed the necessity of extending the proposed

method for individual assistance. For practical application,

accelerating the algorithm is also an important future work.
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