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ABSTRACT 
Nearest neighbor query is one of the most important operations in 
spatial databases and their application domains, e.g., location-
based services, advanced traveler information systems, etc. This 
paper addresses the problem of finding the in-route nearest 
neighbor (IRNN) for a query object tuple which consists of a 
given route with a destination and a current location on it. The 
IRNN is a facility instance via which the detour from the original 
route on the way to the destination is smallest.  This paper 
addresses four alternative solution methods. Comparisons among 
them are presented using an experimental framework. Several 
experiments using real road map datasets are conducted to 
examine the behavior of the solutions in terms of three parameters 
affecting the performance. Our experiments show that the 
computation costs for all methods except the precomputed zone-
based method increase with increases in the road map size and the 
query route length but decreases with increase in the facility 
density. The precomputed zone-based method shows the most 
efficiency when there are no updates on the road map.     

Categories and Subject Descriptors 
H.3 [Information storage and retrieval]: Information Search and 
Retrieval – Search process.  

General Terms: Algorithms. 

Keywords 
Nearest neighborhood query, route, road network, location-based 
services, advanced traveler information systems.  

1. INTRODUCTION 
A very important query in spatial database systems and 
geographic information systems is the nearest neighbor (NN) 
search [11, 14]. The problem is: given a set of instances of a 
facility type, a distance metric and a query object q, find a facility 
instance “closest” to q [14].  
In the nearest neighbor literature, the Minkowski metrics, e.g., 
Euclidean distance [4, 12, 18, 23, 24] and graph path length, e.g., 

road distance [2, 10] are common distance metrics. Query objects 
in the literature [1, 4, 5, 12, 18, 23, 24] can be of two types, 
namely, a point and line segments. Point-NN query is a 
conventional NN query [4, 12] (e.g., “find the nearest gas station 
to my hotel”).  A variant to the point-NN query is a closest pair 
query between two point datasets [1, 5] (e.g., “find the pair of a 
gas station and a restaurant that has the smallest distance between 
them.”). Otherwise, line segments-NN query can be of two cases.  
One finds the closest facility to all the line segments [18]. The 
other retrieves the nearest facilities of every point on the line 
segments [23, 24] (e.g., “find all nearest gas stations during my 
route from a starting position to a destination”). 
In this paper, we present the problem of finding the in-route 
nearest neighbor (IRNN) for a query object tuple q=<R, c>, where 
R is a given route with a destination d and c is a current location 
on the route R. The IRNN problem is searched with the detour 
distance via a facility instance from the query route R on the way 
to the destination d. As the following example illustrates, the 
problem can arise naturally in a travel environment.  It is an 
interesting issue in advanced traveler information systems [7, 8, 
15, 16, 17, 22] as well as location-based services [3, 13] for 
commuters with the strong preference for a specific route. 
Consider Figure 1 where a set of instances of a facility type (e.g., 
gas station), F={f1, f2, f3, f4, f5}, is represented by stars on the road 
map. A solid line R shows the daily route of a commuter, say from 
work to home. We call this a query route R. Suppose that the 
commuter’s vehicle, which came from the starting position s, is 
currently at position c. Then, the driver asks where the nearest gas 
station is.  The NN to the current location c is f2 using the 
Euclidean distance metric. Next, consider the IRNN problem 
using a road-distance metric. There are two facility instances, f4 
and f5, near the route to the destination d. Among new routes to d 
by way of a facility instance, let one via f4 be R1 and another via f5 
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be R2. The trip along R1 has the shortest distance to d via a 
facility instance. Otherwise, R2 deviates less from the original 
route R. A tourist only considering total travel distance to its 
destination prefers f4 on the shortest path route R1. However, a 
commuter wants to continue along his/her preferred route and 
chooses f5 rather than f4 since its deviation from R is smaller. In 
this paper, we focus on finding IRNN such as f5. 
This paper presents four alterative algorithms for processing the 
IRNN query on road networks. Relevant NN query processing 
techniques in the literature are extended for solving the problem 
by incorporating a path computation algorithm for a road-distance 
metric.    We provide comparisons between the different solutions 
using an experimental framework. The behavior of the solution 
methods is examined with parameters affecting the performance, 
e.g., road map size, facility density and query route length. The 
experiment result shows the precomputed-zone based method 
always outperforms the others under all setting.  
The rest of this paper is organized as follows. Section 2 outlines 
related NN query methods and presents our contributions. Section 
3 describes related basic concept and our problem definition.  In 
Section 4, four alternative IRNN query methods are presented. In 
Section 5, we evaluate the experimental results of these methods. 
The conclusion is given in Section 6. 
This paper focuses on urban street maps where the instances of a 
facility type are located on streets. For simplicity, we focus on 
road maps which can be represented as bi-directional graphs. 
Continuous NN queries and updates to road maps are beyond the 
scope of the paper. 

  

2. RELATED WORK AND OUR 
CONTRIBUTIONS 
Relevant NN query processing techniques in the literature can be 
classified into two groups; namely, tree traversal [1, 4, 12, 23, 24] 
and zone-precomputation [18, 20].  
The tree traversal approach using the Euclidean distance metric 
employs a spatial database structure such as R-tree and searches it 
in a branch-and-bound manner.  There are two types of traversal 
manner, a depth-first [12] and a best-first [4].  The zone-
precomputation approach uses the pre-computed result of the NN 
obtained from partitioning a search data space. For instance, 
closest point problems in the computational geometry are usually 
solved using Voronoi diagrams partition [11]. 
The Euclidean distance based NN algorithms have been extended 
for a road-distance based NN.  Feng et al. [10] propose a method 
that intermixes a tree traversal and a path search. In the graph 
theory and network analysis literature, multiple runs of a single-
source all-destination shortest path algorithm [6] are used for a 
road-distance based zone-computation. Another approach [2] 
transforms a road network into a high dimensional space in order 
to utilize computationally simple metrics. However, the existing 
literature has not addressed the IRNN problem which is of interest 
to commuters.  
The contributions of this paper are: first, we define the IRNN 
query problem. Second, we extend relevant NN query methods for 
processing the IRNN query and incorporate a path search 
algorithm for a road-distance metric. Four alternative solution 
methods are presented. The first is a simple graph-based 

approach. It repeats a single-source shortest path finding 
algorithm by adjusting a path search area with the previous result. 
The second and third methods employ a spatial index tree of 
instances of a facility type and adopt a best-first tree traversal 
technique. The former uses recursive spatial range queries for 
filtering candidate IRNNs. The latter utilizes a spatial distance 
join technique between two datasets, a set of facility points and a 
set of a query route data.  In the final method, precomputed zone-
based, a road network is preprocessed to zones and the result of 
NN to every node is stored in the secondary memory. As the third 
contribution, we compare the four different solutions under an 
experimental framework. We examine the behavior of the 
algorithms as the facility density increases, the route length 
increases and the size of road map grows. The experiment result 
shows that the precomputed zone-based method always 
outperforms the other algorithms under all parameter setting. 
However, it needs more storage space for storing the precomputed 
results than the others. The overall response time in all methods 
but the precomputed zone-based method decreases with a facility 
density and increases with a road map size and a route length.  
The spatial distance join based method always shows better 
performance compared to the recursive methods with less path 
computations. 

 

3. BASIC CONCEPT AND PROBLEM 
DEFINITION  
3.1 Basic Concept 
Road Networks: A road network N=N(V, E) is modeled as a 
directed graph G(V, E) which consists of a finite set of vertices V 
(or nodes) and a set of edges E (or links). An intersection on a 
road map is represented as a vertex and a road segment between 
two intersections as an edge in the graph. A bi-directional road is 
represented using two edges. Each edge has its weight (or cost). 
We suppose the weight represents the road distance between two 
neighboring intersections. In this paper, we assume that a road 
network N=N(V, E) is adjusted with a set of point instances of a 
facility type F= {f1, f2, …, fm}. Let the original road network 
N’=N’(V’, E’).  The adjusted network with F is N=N(V, E) where 
V=V’ ∪ F and E’ is subdivided to E if E’ contains a facility point 
fi 
Shortest Path Finding Algorithms: The road distance between 
two points can be calculated using a shortest path finding 
algorithm for which many well established graph-theoretic 
algorithms are available in the literature [11, 15]. We use 
Dijkstra’s single-source shortest path finding algorithm [21]. 
Other shortest path finding algorithms [15], however, can be used. 
We will explore those in the future work.   
Distance Functions:  Consider a set of instances of a facility type 
F= {f1, f2, …, fm}. A given route R can be represented by a starting 
point s and a destination d and a set of consecutive intersections 
between them, R={r1, r2 ,…, rt} where  r1 is s and rt is d. We call 
them the branch points of the route. The current position c is a 
point on the route R.  
The total travel distance functions from c to d via fi can be defined 
as follows: 
General total travel distance via fi: 
D(c, d, fi) = {D(c, fi) + D(fi, d)}                         (1) 
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Route constrained total travel distance via fi: 
D(c, d, fi, R) = Dj(c, fi, R) + Dk( fi, d, R) 
   = 

Rrj

Min
∈

{D(c, rj) + D(rj, fi)} +
Rrk

Min
∈

{D(fi, rk) + D(rk, d)}      (2) 

   If maximize the reuse of a route on a trip,   
   D (c, d, fi, Rmax) = Dj(c, fi, Rmax) + Dk( fi, d, Rmax) 
  = 

Rrj

Min
∈

{D(rj, fi)}+ D(c, rj
min) +

Rrk

Min
∈

{D(fi, rk)}+D(rk
min,d)   (3) 

      If use undirected network,  
        D (c, d, fi, Rmax) = Dj (c, fi, Rmax) + Dj ( fi, d, Rmax) 
           = 2*

Rrj

Min
∈

{D(rj, fi)}+ D(c, rj
min)+D(rj

min,d)                  (4) 

From the above (4) total travel distance function, the shortest 
detour distance via fi from R is defined as follows: 
Shortest Detour distance from R via fi: 
Ddetour(c, d, fi, Rmax) = D(c, d, fi, Rmax) - D(c,d)                         (5) 
 

3.2 Problem Definition 
The IRNN problem is defined as follows:  
Given: 
1. A set of instances of a facility type, F={f1, f2, …, fm} 
2. A road network, N=N(V, E) 
3. A query object q=<R, c>, 

                 where R is a route with a starting position s  
                    and a destination d, and c is a current location on R  

Find: A facility instance fi 
Objectivity:  

The detour distance via a facility instance fi from the route R 
is shortest such that 

       Ddetour(c, d, fi, Rmax) ≤  Ddetour(c, d, fj, Rmax),   fi∈ F, fj∈ F- fi 
Constraints: 

1. A graph path length is used as a distance metric. 
2. A set of instances of a facility type F is located on the road 

network N. 
3. The cost to locate a query object q on the network N is 

ignored. 
4. Computation time and user reaction time is negligible with 

respect to travel time. 
 

4. IRNN QUERY PROCESSING METHODS  
In this section, we discuss four solution methods for solving the 
IRNN problem: simple graph-based (SGB), recursive spatial 
range query-based (RSR), spatial distance join-based (SDJ) and 
precomputed zone-based (PCZ).  

4.1 Simple Graph-based Method 
An acceptable solution of the IRNN query needs to find a correct 
NN of every branch position {r1, r2 …, rt} of a query route R. The 
naïve solution is the method to execute a shortest path search 
recursively at every branch point and compare their detour 
distances. When Dijkstra’s single-source shortest path finding 
algorithm is used for a path computation, the facility node first 

permanently labeled during the path search becomes the NN to 
the branch point. The computation complexity of the simple 
graph-based method is O(|t|(|e| +|v|log|v|)), where t is the number 
of branch points on the route, e is the number of edges of the 
network and v is the number of nodes of it since the computation 
complexity of Dijkstra’s algorithm is O(|e| +|v|log|v|) if F-heap is 
employed [21] and it is launched t times. One heuristic of this 
method repeats the path computation by adjusting the path search 
area using the previous result. The disadvantage of this solution, 
however, is that the more the number of branch points on the 
route increases, the more expensive the processing is. 

4.2 Recursive Spatial Range Query-based 
Method 
The motivation of the second solution method is from the 
following property. 
Property 1. The Euclidean distance between two points p and q is 
less than equal to the road-distance between them. 
Although the Euclidean distance does not estimate the exact road-
distance between two points, the distance can provide the lower 
bound of the road-distance. If there is no facility within the 
Euclidean distance search bound, it is clear that no road-distance 
based facility exists in the search area. In this case, a new path 
computation for finding IRNN is unnecessary. The cost of 
Euclidean distance based query processing is relatively cheaper than 
that of a path finding computation and the methods for it are well 
studied in the spatial database literature [14]. In our work, it is 
reasonable that we consider a half of detour distance via a facility 
point since it is supposed to use bi-directional road network. We 
utilize a spatial range query to use property 1. It is used to check if 

candidate facilities exist within the search area. We assume that a set 
of facility points is stored in a spatial index tree. 
Our method works as follows. At the first branch point, the start 
position of a given route, launch a shortest path search algorithm 
and calculate the detour distance to its NN.  The result is set to the 
minimum detour distance so far, T, which will be used as the 
search bound of the next branch point.   At the next branch point, 
a spatial range query whose search radius is T is executed. If there 
exist a facility within the search area, calculate a path length to the 
candidate facility from the branch point. If the new detour 
distance is less than T, T is update with the new value. The 
procedure continues until the last branch point, the destination 
with adjusting its search bound. 

r1            r2         r3           r4         r5           r6

f1   

f2    

s 

T'   

T"  

f3   

c  T"' d 

T'   

T"  T"' 

Figure 2. Recursive spatial range query-based method 
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Consider the example given in Figure 2. In the figure, let the grids 
be a road network and the grid size be 1.  A query route R={r1, r2, 
r3, r4, r5, r6} is represented by a solid line. A current position c is 
located at r2. A set of facility points F={f1, f2, f3} is represented by 
stars. The detour distance to each facility point is depicted by a 
dashed line. Now let’s trace the IRNN query processing step. 
First, we execute a path search at the start position r1. We know 
that NN to r1 is f1 and its detour distance is 2 since the way to f1 is 
against the current direction to the destination. The minimum 
detour distance T is set to 2, T'. At the next branch point r2, a 
spatial range query whose radius is T' is executed. There is a 
facility within the search area. Thus, the detour length to f2 is 
calculated from a new path search at r2. Let the result, 1 be T". T 
is updated with smaller T". The same procedure continues until 
the destination r6.  In this example, path computations at r3 and r4 
are skipped since there is no candidate facility within their search 
bound. The branch points that need a new path search are colored 
gray in the Figure 2. This method shows less expensive path 
computations than the simple graph-based method. In this 
example, IRNN is f3 because its detour distance from R is 
smallest. 

4.3 Spatial Distance Join-based Method 
In the recursive spatial range query-based method, a new spatial 
range search should be repeated at every branch point, even 
though the number of path computations for processing the IRNN 
query decreases. One possibility for our progressive solution is a 
method to find IRNN candidates as possible as quickly. If we 
tighten the search bound at the beginning, we can reduce more 
path computations. To make the idea concrete, we adopt a spatial 
distance join operation whose output is ordered by the distance 
between two data sets [1, 3]. The distance join operation assumes 
two data sets are indexed by each spatial index tree and searches 
two trees in a branch-and-bound manner. In our case, the two data 
sets are a set of point instances of a facility type and a set of 
branch points of a given query route. A spatial index tree for the 
latter is built during the IRNN query processing.  For the spatial 
distance join operation, we adopt the functionality of the heap 
algorithm by [1].  
The spatial distance join-base method works as follows. First, set 
the initial minimum detour distance T to infinite and start the 
distance join operation between the two data sets. According to a 
tree traversal method between two spatial trees, a heap is occupied 
with the following pairs, i.e., <ri, fj, dist>, <ri, MBRf, dist>, 
<MBRr, fj, dist> or <MBRr, MBRf, dist> where ri is a route branch 
point object, fj is a facility point object, MBRr is MBR of route 
branch points and MBRf is  MBR of facility points, and dist is the 
Euclidean distance between two objects or one object and MBR 
or two MBRs. They are ordered by dist in the heap. If one pair 
from the top of the heap consists of two objects <ri, fj> and its dist 
is less than the current minimum detour distance T, then compute 
the detour distance from ri to fj. If the result is smaller than T, it is 
set to T and fj becomes IRNN so far. The procedure is repeated 
until the dist of the next pair form the top of the heap is greater 
than T. 
Figure 3 shows a difference between this method and the previous 
recursive spatial range query-based method. We can find the 
Euclidean distance closest pair (r5, f3) directly using the spatial 
distance join. From a path computation at r5, we get the tightening 

bound of the next search. This example shows only one path 
search at r5 colored gray. Compared with the previous recursive 
solution, this method expects efficiency with less path 
computations. 

4.4 Precomputed Zone-based Method 
One important approach in NN queries uses the pre-computed 
result of NN. In this section, we present a solution based on the 
pre-computed zones of the road network. 
In the preprocessing step, given a set of instances of a facility type 
F located on the road network, we compute a service zone si of 
each facility instance fi. The service zone satisfies the following 
property. 
Property 2.  For every node vj in a service zone si on the road 
network,      
                          D(vj, fi) ≤  D(vj, fk),  
                         where fi is the facility in service zone si and fk  not. 
The information of the service facility, <vj, fi, D(vj, fi)>  for every 
node vj, is stored in a traditional index structure, e.g., B-tree, with 
a key vj.  
 

    
 
 
 

For preprocessing the road-distance based service zones, we use 
the network partition algorithm by [19]. It is a slight variation of 
Dijkstra’s algorithm, a multiple source shortest path finding 
algorithm. It has a running time O(|e|m+|v|log|v|), where m is the 
number of instances of a facility type, e is the number of edges of 
the network, and v is the number of nodes of it. Figure 4a shows 
partitioned service zones on the road network and Figure 4b 
shows the service zones intersected by a given query route, which 
have candidate IRNNs.  

r1            r2         r3           r4         r5           r6

f1   

f2    

s 
T'   

f3   

c  
T'   

d 
     

Figure 3. Spatial distance join-based method 

         (a) Service zones on                   (b) Filtered zones 
              the road network                        with a query route  

Figure 4. Precomputed zone-based method 

f1
f2

f3
f4

f5 

f2

f3 

s 

d
f5 

f4

f1 

12



 

 

The precomputed service zones-based method works as follows. 
First, it finds service zones that route branch points are included 
using a traditional index search. And then, calculate the detour 
distance to the facility fi of a found service zone si using the 
precomputed distance D(vj, fi).  The IRNN becomes a facility 
having the smallest detour distance among the intersected service 
zones.  

5. EXPERIMENTS 
We performed experimental evaluations to compare the four 
different solutions using four real road network datasets. The 
following experiments to study the parameters affecting the 
performance of the algorithms are conducted:   
1. How does road map size affect the response time and the 

storage needs of all methods? 
2. What is the effect of facility density on the performance of all 

methods? 
3. What is the effect of route length on the performance of all 

methods? 

5.1 Data and Query Sets 
We used a publicly available real road map. The dataset covers 
seven counties in Minnesota: Anoka, Carver, Dakota, Hennepin, 
Ramsey, Scott and Washington. We converted it into four bi-
directional road networks. The first network dataset, RAMSEY 
contains 14,412(15K) nodes. The second dataset, HENNEPIN, 
contains 35,869(36K) nodes. The third, D&H, covers Dakota and 
Hennepin counties. It contains 75,739(76K) nodes. The final, 
ALL, covers all seven counties with a total of 190.354(191K) 
nodes. We used the sets of points of a facility type randomly 
generated from above road network datasets whose densities were 
0.001%, 0.01%, 0.1%, 0.5%, 1%, 5% and 10% respectively. In 
this paper, facility density is defined as the number of facility 
points over the number of nodes of a road network. A query route 
was also randomly selected using the road network datasets. In 
this paper, a route length is defined by the number of branch 
points which a route consists of. We used different route lengths, 
e.g., 30, 50, 100, 200, 500, 1000 and 2000. A current position on 
the route was randomly selected from the route branch points. 

5.2 Experiment Layout 
Figure 5 shows the overall experiment layout. Performance is 
measured by executing workloads, each of them consisting of 100 
queries generated as follows: i) A new set of facility points is 
randomly generated with a given density in every query. ii) A new 
query route is randomly generated. First a node is randomly 
chosen as a starting position. Then consecutive nodes are selected 
randomly as much as a given route length. iii) A current position 
is randomly selected from the route dataset. The experiments were 
performed on a Sun Ultra SPARC IIe workstation, which has 512 
M Bytes of main memory. The experiments were written in 
C/C++. 
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5.3 Experiment Results 
We evaluated the effect of road map size, facility density and route 
length on the performance of four different methods, SGB, RSR, 
SDJ and PCZ.  
Effect of road map size: In the first experiment, we compared the 
effect of road map size on the performance and the storage need of 
all methods. Figure 6 illustrates the response time as a function of 
road map size, e.g., ALL is the largest among the four road maps. 
The query route length is fixed to 100 and the number of facility 
points to 200 in all road map datasets. As shown in Figure 6, PCZ 
always outperforms the other methods. Its performance is not 
much affected by road map size. The computation complexity of 
PCZ is O(|t|log|v|) where t is the number of branch points of a 
given route and v is the number of nodes of road map. As road map 
size, i.e., v, increases, the computation complexity increases. 
However, the cost is much cheaper compared with the other 
methods. Overall response time in all methods but PCZ increases 
with a road map size. This happens because, as road map size is 
larger, the facility density becomes sparser with a fixed number of 
facilities, increasing a path computation time.  The performance of 
SGB becomes worse as a road map size since it launches more 
path finding algorithm than the others. SDJ always outperforms 
SGB and RSR.  
Figure 7 shows the number of path computations as a function of 
road map size. PCZ has no online path search. SGB shows 

independently of road map size. The reason is the number of path 
computations depends on a route length not a road map size.  In 
RSR and SDJ, the number of path computations increases slightly.  
We can infer that the number of path computations has an effect on 
the response time from Figures 6 and 7. 
Next, we compare the storage sizes that the methods need. As 
shown in Figure 8, it is clear that the storage size that PCZ needs 
depends on the road map size since it stores the precomputed NN 
result of all nodes of the road map. Otherwise, SBD does not need 
storage for the query processing. RSR and SDJ are independently 
of the road map size. The reason is they need storage to store a 
spatial index tree of facility points and a spatial index tree of route 
branch points for SDJ.  
Effect of facility density: In the second experiment, we examined 
the impact of the performance of the methods as the facility density 
varies. Figure 9 shows the response time as facility density for 
RAMSEY, D&H and ALL respectively. The other parameter is 
fixed: route length=100. Figure 9 illustrates that the response time 
for all methods except PCZ decreases with increase in the facility 
density. It is the reason that the possibility that a facility exists near 
a query route is higher as a facility density is greater, triggering a 
smaller search bound. It is known that with a smaller search 
bound, the branch-and-bound algorithm which is adopted in RSR 
and SDJ become more efficient. A path computation also can be 
terminated earlier without the exhaustive scan of the road 

          (a) RAMSEY (15K)                                          (b) D&H (76K)                                                  (c) ALL (191K) 
Figure 9.  Performance vs. facility density (route length =100) 

 

          (a) RAMSEY (15K)                                            (b) D&H (76K)                                                (c) ALL (191K) 
Figure 10.  Number of path computations vs. facility density (route length =100) 
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network. Figures 9a, 9b and 9c show similar curves. The facility 
density has the overall positive impact on the performance. 
Otherwise, PCZ receives little effect from changes in the facility 
density.   
Figure 10 displays similar experiments except that the dependent 
variable is the number of path computations. In SGB, the number 
of path computations is independent of facility density since SGB 
repeats a new path search the route length times. RSR and SDJ 
show the number of their path computation drop with the larger 
density.  
Effect of route length: In the third experiment, we examined the 
impact on the performance of all methods as the route length 
varies. Figure 11 shows the response time as a route length for 
RAMSEY, D&H and ALL respectively. The facility density was 
fixed at 0.5%. As shown in Figure 11, the overall response time of 
all methods but PCZ increase with increase in the route length. In 
recursive methods, SGB and RSR, the longer the route length, the 
worse the performances become. SDJ clearly shows better 
performance than the recursive methods. PCZ shows a very little 
effect to route length. Figures 11a, 11b and 11c have similar 
curves.  
Figure 12 shows similar experiments except that the dependent 
variable is the number of path computations. The number of path 
computations in SGB is the same as the route length. The 

experiment clearly shows that a non recursive method SDJ 
receives a little effect of route length.  
To summarize, in the first experiment to examine the effect of the 
road map size on the performance and storage needs of the four 
different solutions, the precomputed based method, PCZ always 
outperforms the other methods. However, it needs more disk 
storage space than the others. Among non pre-processing 
methods, SBG, RSR and SDJ, SDJ always shows better 
performance with less number of path computations.  
Second, in the experiment to examine the effect of facility density 
on the performance, all methods but PCZ shows the performance 
decreases as their facility density increases. PCZ has no impact of 
facility density. The number of path computations in RSR and 
SDJ decreases with increase in the facility density. 
In the third experiment to examine the impact on the performance 
of the methods as the route length varies, the overall response 
time of all methods except PCZ increases with increase in route 
length. The recursive methods, SGB and RSR show that the 
longer route length, the worse the performances become. SDJ 
clearly shows the better performance than them. PCZ shows a 
very little effect to the route length. The number of path 
computations of non recursive method SDJ receives a little effect 
of route length. 

          (a) RAMSEY (15K)                                            (b) D&H (76K)                                                 (c) ALL (191K) 
Figure 11.  Performance vs. route length (facility density =0.5%) 

 

          (a) RAMSEY (15K)                                        (b) D&H (76K)                                                 (c) ALL (191K) 
Figure 12.  Number of path computations vs. route length (facility density =0.5%) 
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6. CONCLUSION 
We studied the in-route nearest neighbor query for a given route 
and presented the four different solution methods. The 
experimental results show that the precomputed zone-based 
method always outperforms the other methods but it needs more 
storage space for storing the precomputed results. In the other 
methods, the overall response time decreases with the facility 
density and increases with the route length and the size of road 
map.  The spatial distance join-based method always outperforms 
the recursive methods with less number of path computations. The 
experiment shows our strategy to reduce the number of path 
computations to minimize the response time is reasonable.  
One direction of future work is to concrete the current IRNN 
work. First, we study the effect of updates on dominance zones. 
Second, we examine IRNN query with other shortest path finding 
algorithms, e.g., A* etc. Another direction is to search a more 
general case of IRNN without a given route constraint and extend 
the IRNN problem with a continuous query problem.  
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