

Processing In-Route Nearest Neighbor Queries:
A Comparison of Alternative Approaches
Shashi Shekhar

Department of Computer Science and Engineering,
University of Minnesota, 200 Union ST SE 4-192,

Minneapolis MN 55414
(612) 624-8307

shekhar@cs.umn.edu

Jin Soung Yoo
Department of Computer Science and Engineering,
University of Minnesota, 200 Union ST SE 4-192,

Minneapolis MN 55414
(612) 626-7703

jyoo@cs.umn.edu

ABSTRACT
Nearest neighbor query is one of the most important operations in
spatial databases and their application domains, e.g., location-
based services, advanced traveler information systems, etc. This
paper addresses the problem of finding the in-route nearest
neighbor (IRNN) for a query object tuple which consists of a
given route with a destination and a current location on it. The
IRNN is a facility instance via which the detour from the original
route on the way to the destination is smallest. This paper
addresses four alternative solution methods. Comparisons among
them are presented using an experimental framework. Several
experiments using real road map datasets are conducted to
examine the behavior of the solutions in terms of three parameters
affecting the performance. Our experiments show that the
computation costs for all methods except the precomputed zone-
based method increase with increases in the road map size and the
query route length but decreases with increase in the facility
density. The precomputed zone-based method shows the most
efficiency when there are no updates on the road map.

Categories and Subject Descriptors
H.3 [Information storage and retrieval]: Information Search and
Retrieval – Search process.

General Terms: Algorithms.

Keywords
Nearest neighborhood query, route, road network, location-based
services, advanced traveler information systems.

1. INTRODUCTION
A very important query in spatial database systems and
geographic information systems is the nearest neighbor (NN)
search [11, 14]. The problem is: given a set of instances of a
facility type, a distance metric and a query object q, find a facility
instance “closest” to q [14].
In the nearest neighbor literature, the Minkowski metrics, e.g.,
Euclidean distance [4, 12, 18, 23, 24] and graph path length, e.g.,

road distance [2, 10] are common distance metrics. Query objects
in the literature [1, 4, 5, 12, 18, 23, 24] can be of two types,
namely, a point and line segments. Point-NN query is a
conventional NN query [4, 12] (e.g., “find the nearest gas station
to my hotel”). A variant to the point-NN query is a closest pair
query between two point datasets [1, 5] (e.g., “find the pair of a
gas station and a restaurant that has the smallest distance between
them.”). Otherwise, line segments-NN query can be of two cases.
One finds the closest facility to all the line segments [18]. The
other retrieves the nearest facilities of every point on the line
segments [23, 24] (e.g., “find all nearest gas stations during my
route from a starting position to a destination”).
In this paper, we present the problem of finding the in-route
nearest neighbor (IRNN) for a query object tuple q=<R, c>, where
R is a given route with a destination d and c is a current location
on the route R. The IRNN problem is searched with the detour
distance via a facility instance from the query route R on the way
to the destination d. As the following example illustrates, the
problem can arise naturally in a travel environment. It is an
interesting issue in advanced traveler information systems [7, 8,
15, 16, 17, 22] as well as location-based services [3, 13] for
commuters with the strong preference for a specific route.
Consider Figure 1 where a set of instances of a facility type (e.g.,
gas station), F={f1, f2, f3, f4, f5}, is represented by stars on the road
map. A solid line R shows the daily route of a commuter, say from
work to home. We call this a query route R. Suppose that the
commuter’s vehicle, which came from the starting position s, is
currently at position c. Then, the driver asks where the nearest gas
station is. The NN to the current location c is f2 using the
Euclidean distance metric. Next, consider the IRNN problem
using a road-distance metric. There are two facility instances, f4
and f5, near the route to the destination d. Among new routes to d
by way of a facility instance, let one via f4 be R1 and another via f5

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GIS’03, November 7-8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-730-3/03/0011…$5.00.

f1

f2

f3

f4

f5

c d

R
R1
R2s

Figure 1. An example query

9

be R2. The trip along R1 has the shortest distance to d via a
facility instance. Otherwise, R2 deviates less from the original
route R. A tourist only considering total travel distance to its
destination prefers f4 on the shortest path route R1. However, a
commuter wants to continue along his/her preferred route and
chooses f5 rather than f4 since its deviation from R is smaller. In
this paper, we focus on finding IRNN such as f5.
This paper presents four alterative algorithms for processing the
IRNN query on road networks. Relevant NN query processing
techniques in the literature are extended for solving the problem
by incorporating a path computation algorithm for a road-distance
metric. We provide comparisons between the different solutions
using an experimental framework. The behavior of the solution
methods is examined with parameters affecting the performance,
e.g., road map size, facility density and query route length. The
experiment result shows the precomputed-zone based method
always outperforms the others under all setting.
The rest of this paper is organized as follows. Section 2 outlines
related NN query methods and presents our contributions. Section
3 describes related basic concept and our problem definition. In
Section 4, four alternative IRNN query methods are presented. In
Section 5, we evaluate the experimental results of these methods.
The conclusion is given in Section 6.
This paper focuses on urban street maps where the instances of a
facility type are located on streets. For simplicity, we focus on
road maps which can be represented as bi-directional graphs.
Continuous NN queries and updates to road maps are beyond the
scope of the paper.

2. RELATED WORK AND OUR
CONTRIBUTIONS
Relevant NN query processing techniques in the literature can be
classified into two groups; namely, tree traversal [1, 4, 12, 23, 24]
and zone-precomputation [18, 20].
The tree traversal approach using the Euclidean distance metric
employs a spatial database structure such as R-tree and searches it
in a branch-and-bound manner. There are two types of traversal
manner, a depth-first [12] and a best-first [4]. The zone-
precomputation approach uses the pre-computed result of the NN
obtained from partitioning a search data space. For instance,
closest point problems in the computational geometry are usually
solved using Voronoi diagrams partition [11].
The Euclidean distance based NN algorithms have been extended
for a road-distance based NN. Feng et al. [10] propose a method
that intermixes a tree traversal and a path search. In the graph
theory and network analysis literature, multiple runs of a single-
source all-destination shortest path algorithm [6] are used for a
road-distance based zone-computation. Another approach [2]
transforms a road network into a high dimensional space in order
to utilize computationally simple metrics. However, the existing
literature has not addressed the IRNN problem which is of interest
to commuters.
The contributions of this paper are: first, we define the IRNN
query problem. Second, we extend relevant NN query methods for
processing the IRNN query and incorporate a path search
algorithm for a road-distance metric. Four alternative solution
methods are presented. The first is a simple graph-based

approach. It repeats a single-source shortest path finding
algorithm by adjusting a path search area with the previous result.
The second and third methods employ a spatial index tree of
instances of a facility type and adopt a best-first tree traversal
technique. The former uses recursive spatial range queries for
filtering candidate IRNNs. The latter utilizes a spatial distance
join technique between two datasets, a set of facility points and a
set of a query route data. In the final method, precomputed zone-
based, a road network is preprocessed to zones and the result of
NN to every node is stored in the secondary memory. As the third
contribution, we compare the four different solutions under an
experimental framework. We examine the behavior of the
algorithms as the facility density increases, the route length
increases and the size of road map grows. The experiment result
shows that the precomputed zone-based method always
outperforms the other algorithms under all parameter setting.
However, it needs more storage space for storing the precomputed
results than the others. The overall response time in all methods
but the precomputed zone-based method decreases with a facility
density and increases with a road map size and a route length.
The spatial distance join based method always shows better
performance compared to the recursive methods with less path
computations.

3. BASIC CONCEPT AND PROBLEM
DEFINITION
3.1 Basic Concept
Road Networks: A road network N=N(V, E) is modeled as a
directed graph G(V, E) which consists of a finite set of vertices V
(or nodes) and a set of edges E (or links). An intersection on a
road map is represented as a vertex and a road segment between
two intersections as an edge in the graph. A bi-directional road is
represented using two edges. Each edge has its weight (or cost).
We suppose the weight represents the road distance between two
neighboring intersections. In this paper, we assume that a road
network N=N(V, E) is adjusted with a set of point instances of a
facility type F= {f1, f2, …, fm}. Let the original road network
N’=N’(V’, E’). The adjusted network with F is N=N(V, E) where
V=V’ ∪ F and E’ is subdivided to E if E’ contains a facility point
fi
Shortest Path Finding Algorithms: The road distance between
two points can be calculated using a shortest path finding
algorithm for which many well established graph-theoretic
algorithms are available in the literature [11, 15]. We use
Dijkstra’s single-source shortest path finding algorithm [21].
Other shortest path finding algorithms [15], however, can be used.
We will explore those in the future work.
Distance Functions: Consider a set of instances of a facility type
F= {f1, f2, …, fm}. A given route R can be represented by a starting
point s and a destination d and a set of consecutive intersections
between them, R={r1, r2 ,…, rt} where r1 is s and rt is d. We call
them the branch points of the route. The current position c is a
point on the route R.
The total travel distance functions from c to d via fi can be defined
as follows:
General total travel distance via fi:
D(c, d, fi) = {D(c, fi) + D(fi, d)} (1)

10

Route constrained total travel distance via fi:
D(c, d, fi, R) = Dj(c, fi, R) + Dk(fi, d, R)
 =

Rrj

Min
∈

{D(c, rj) + D(rj, fi)} +
Rrk

Min
∈

{D(fi, rk) + D(rk, d)} (2)

 If maximize the reuse of a route on a trip,
 D (c, d, fi, Rmax) = Dj(c, fi, Rmax) + Dk(fi, d, Rmax)
 =

Rrj

Min
∈

{D(rj, fi)}+ D(c, rj
min) +

Rrk

Min
∈

{D(fi, rk)}+D(rk
min,d) (3)

 If use undirected network,
 D (c, d, fi, Rmax) = Dj (c, fi, Rmax) + Dj (fi, d, Rmax)
 = 2*

Rrj

Min
∈

{D(rj, fi)}+ D(c, rj
min)+D(rj

min,d) (4)

From the above (4) total travel distance function, the shortest
detour distance via fi from R is defined as follows:
Shortest Detour distance from R via fi:
Ddetour(c, d, fi, Rmax) = D(c, d, fi, Rmax) - D(c,d) (5)

3.2 Problem Definition
The IRNN problem is defined as follows:
Given:
1. A set of instances of a facility type, F={f1, f2, …, fm}
2. A road network, N=N(V, E)
3. A query object q=<R, c>,

 where R is a route with a starting position s
 and a destination d, and c is a current location on R

Find: A facility instance fi
Objectivity:

The detour distance via a facility instance fi from the route R
is shortest such that

 Ddetour(c, d, fi, Rmax) ≤ Ddetour(c, d, fj, Rmax), fi∈ F, fj∈ F- fi
Constraints:

1. A graph path length is used as a distance metric.
2. A set of instances of a facility type F is located on the road

network N.
3. The cost to locate a query object q on the network N is

ignored.
4. Computation time and user reaction time is negligible with

respect to travel time.

4. IRNN QUERY PROCESSING METHODS
In this section, we discuss four solution methods for solving the
IRNN problem: simple graph-based (SGB), recursive spatial
range query-based (RSR), spatial distance join-based (SDJ) and
precomputed zone-based (PCZ).

4.1 Simple Graph-based Method
An acceptable solution of the IRNN query needs to find a correct
NN of every branch position {r1, r2 …, rt} of a query route R. The
naïve solution is the method to execute a shortest path search
recursively at every branch point and compare their detour
distances. When Dijkstra’s single-source shortest path finding
algorithm is used for a path computation, the facility node first

permanently labeled during the path search becomes the NN to
the branch point. The computation complexity of the simple
graph-based method is O(|t|(|e| +|v|log|v|)), where t is the number
of branch points on the route, e is the number of edges of the
network and v is the number of nodes of it since the computation
complexity of Dijkstra’s algorithm is O(|e| +|v|log|v|) if F-heap is
employed [21] and it is launched t times. One heuristic of this
method repeats the path computation by adjusting the path search
area using the previous result. The disadvantage of this solution,
however, is that the more the number of branch points on the
route increases, the more expensive the processing is.

4.2 Recursive Spatial Range Query-based
Method
The motivation of the second solution method is from the
following property.
Property 1. The Euclidean distance between two points p and q is
less than equal to the road-distance between them.
Although the Euclidean distance does not estimate the exact road-
distance between two points, the distance can provide the lower
bound of the road-distance. If there is no facility within the
Euclidean distance search bound, it is clear that no road-distance
based facility exists in the search area. In this case, a new path
computation for finding IRNN is unnecessary. The cost of
Euclidean distance based query processing is relatively cheaper than
that of a path finding computation and the methods for it are well
studied in the spatial database literature [14]. In our work, it is
reasonable that we consider a half of detour distance via a facility
point since it is supposed to use bi-directional road network. We
utilize a spatial range query to use property 1. It is used to check if

candidate facilities exist within the search area. We assume that a set
of facility points is stored in a spatial index tree.
Our method works as follows. At the first branch point, the start
position of a given route, launch a shortest path search algorithm
and calculate the detour distance to its NN. The result is set to the
minimum detour distance so far, T, which will be used as the
search bound of the next branch point. At the next branch point,
a spatial range query whose search radius is T is executed. If there
exist a facility within the search area, calculate a path length to the
candidate facility from the branch point. If the new detour
distance is less than T, T is update with the new value. The
procedure continues until the last branch point, the destination
with adjusting its search bound.

r1 r2 r3 r4 r5 r6

f1

f2

s

T'

T"

f3

c T"' d

T'

T" T"'

Figure 2. Recursive spatial range query-based method

11

Consider the example given in Figure 2. In the figure, let the grids
be a road network and the grid size be 1. A query route R={r1, r2,
r3, r4, r5, r6} is represented by a solid line. A current position c is
located at r2. A set of facility points F={f1, f2, f3} is represented by
stars. The detour distance to each facility point is depicted by a
dashed line. Now let’s trace the IRNN query processing step.
First, we execute a path search at the start position r1. We know
that NN to r1 is f1 and its detour distance is 2 since the way to f1 is
against the current direction to the destination. The minimum
detour distance T is set to 2, T'. At the next branch point r2, a
spatial range query whose radius is T' is executed. There is a
facility within the search area. Thus, the detour length to f2 is
calculated from a new path search at r2. Let the result, 1 be T". T
is updated with smaller T". The same procedure continues until
the destination r6. In this example, path computations at r3 and r4
are skipped since there is no candidate facility within their search
bound. The branch points that need a new path search are colored
gray in the Figure 2. This method shows less expensive path
computations than the simple graph-based method. In this
example, IRNN is f3 because its detour distance from R is
smallest.

4.3 Spatial Distance Join-based Method
In the recursive spatial range query-based method, a new spatial
range search should be repeated at every branch point, even
though the number of path computations for processing the IRNN
query decreases. One possibility for our progressive solution is a
method to find IRNN candidates as possible as quickly. If we
tighten the search bound at the beginning, we can reduce more
path computations. To make the idea concrete, we adopt a spatial
distance join operation whose output is ordered by the distance
between two data sets [1, 3]. The distance join operation assumes
two data sets are indexed by each spatial index tree and searches
two trees in a branch-and-bound manner. In our case, the two data
sets are a set of point instances of a facility type and a set of
branch points of a given query route. A spatial index tree for the
latter is built during the IRNN query processing. For the spatial
distance join operation, we adopt the functionality of the heap
algorithm by [1].
The spatial distance join-base method works as follows. First, set
the initial minimum detour distance T to infinite and start the
distance join operation between the two data sets. According to a
tree traversal method between two spatial trees, a heap is occupied
with the following pairs, i.e., <ri, fj, dist>, <ri, MBRf, dist>,
<MBRr, fj, dist> or <MBRr, MBRf, dist> where ri is a route branch
point object, fj is a facility point object, MBRr is MBR of route
branch points and MBRf is MBR of facility points, and dist is the
Euclidean distance between two objects or one object and MBR
or two MBRs. They are ordered by dist in the heap. If one pair
from the top of the heap consists of two objects <ri, fj> and its dist
is less than the current minimum detour distance T, then compute
the detour distance from ri to fj. If the result is smaller than T, it is
set to T and fj becomes IRNN so far. The procedure is repeated
until the dist of the next pair form the top of the heap is greater
than T.
Figure 3 shows a difference between this method and the previous
recursive spatial range query-based method. We can find the
Euclidean distance closest pair (r5, f3) directly using the spatial
distance join. From a path computation at r5, we get the tightening

bound of the next search. This example shows only one path
search at r5 colored gray. Compared with the previous recursive
solution, this method expects efficiency with less path
computations.

4.4 Precomputed Zone-based Method
One important approach in NN queries uses the pre-computed
result of NN. In this section, we present a solution based on the
pre-computed zones of the road network.
In the preprocessing step, given a set of instances of a facility type
F located on the road network, we compute a service zone si of
each facility instance fi. The service zone satisfies the following
property.
Property 2. For every node vj in a service zone si on the road
network,
 D(vj, fi) ≤ D(vj, fk),
 where fi is the facility in service zone si and fk not.
The information of the service facility, <vj, fi, D(vj, fi)> for every
node vj, is stored in a traditional index structure, e.g., B-tree, with
a key vj.

For preprocessing the road-distance based service zones, we use
the network partition algorithm by [19]. It is a slight variation of
Dijkstra’s algorithm, a multiple source shortest path finding
algorithm. It has a running time O(|e|m+|v|log|v|), where m is the
number of instances of a facility type, e is the number of edges of
the network, and v is the number of nodes of it. Figure 4a shows
partitioned service zones on the road network and Figure 4b
shows the service zones intersected by a given query route, which
have candidate IRNNs.

r1 r2 r3 r4 r5 r6

f1

f2

s
T'

f3

c
T'

d

Figure 3. Spatial distance join-based method

 (a) Service zones on (b) Filtered zones
 the road network with a query route

Figure 4. Precomputed zone-based method

f1
f2

f3
f4

f5

f2

f3

s

d
f5

f4

f1

12

The precomputed service zones-based method works as follows.
First, it finds service zones that route branch points are included
using a traditional index search. And then, calculate the detour
distance to the facility fi of a found service zone si using the
precomputed distance D(vj, fi). The IRNN becomes a facility
having the smallest detour distance among the intersected service
zones.

5. EXPERIMENTS
We performed experimental evaluations to compare the four
different solutions using four real road network datasets. The
following experiments to study the parameters affecting the
performance of the algorithms are conducted:
1. How does road map size affect the response time and the

storage needs of all methods?
2. What is the effect of facility density on the performance of all

methods?
3. What is the effect of route length on the performance of all

methods?

5.1 Data and Query Sets
We used a publicly available real road map. The dataset covers
seven counties in Minnesota: Anoka, Carver, Dakota, Hennepin,
Ramsey, Scott and Washington. We converted it into four bi-
directional road networks. The first network dataset, RAMSEY
contains 14,412(15K) nodes. The second dataset, HENNEPIN,
contains 35,869(36K) nodes. The third, D&H, covers Dakota and
Hennepin counties. It contains 75,739(76K) nodes. The final,
ALL, covers all seven counties with a total of 190.354(191K)
nodes. We used the sets of points of a facility type randomly
generated from above road network datasets whose densities were
0.001%, 0.01%, 0.1%, 0.5%, 1%, 5% and 10% respectively. In
this paper, facility density is defined as the number of facility
points over the number of nodes of a road network. A query route
was also randomly selected using the road network datasets. In
this paper, a route length is defined by the number of branch
points which a route consists of. We used different route lengths,
e.g., 30, 50, 100, 200, 500, 1000 and 2000. A current position on
the route was randomly selected from the route branch points.

5.2 Experiment Layout
Figure 5 shows the overall experiment layout. Performance is
measured by executing workloads, each of them consisting of 100
queries generated as follows: i) A new set of facility points is
randomly generated with a given density in every query. ii) A new
query route is randomly generated. First a node is randomly
chosen as a starting position. Then consecutive nodes are selected
randomly as much as a given route length. iii) A current position
is randomly selected from the route dataset. The experiments were
performed on a Sun Ultra SPARC IIe workstation, which has 512
M Bytes of main memory. The experiments were written in
C/C++.

0

1

2

3

4

5

6

7

RAMS EY HENNEP IN D&H ALL

road map

cp
u

tim
e

S GB RS R S DJ P CZ

0

20

40

60

80

100

120

RAMS EY HENNEP IN D&H ALL

road map

no
 o

f p
at

h
co

m
pu

ta
tio

ns

S GB RS R S DJ P CZ

0

500 000

100000 0

150000 0

20000 00

25000 00

30000 00

35000 00

40000 00

45000 00

RAMS EY HENNEP IN D&H ALL

raod map

st
or

ag
e

si
ze

(B
yt

es
)

S GB RS R S DJ P CZ

 Figure 6. Performance Figure 7. Number of path computations Figure 8. Storage size
 vs. road map size vs. road map size vs. road map size

 (Number of facilities=200, route length =100)

Generate a set of facility points randomly
and create R*tree of it

Digital map of
seven counties in
Minnesota

workload=100 queries

Covert to graph data structures

Generate a query route randomly

Process IRNN query

Choose a road network

Simple graph-based
method

Recursive spatial
range query-based
method

Spatial distance
join-based method

Precomputed zone-
based method

Gather the result statistics

Summarize and analyze

A given facility
density

A given route
length

Four road network datasets

Choose a current position on the route
randomly

Figure 5. Experiment layout

13

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 0.01 0.1 0.5 1 5 10

facility density

cp
u

tim
e

S G B RS R S DJ P CZ

0

0 .5

1

1.5

2

2 .5

3

3 .5

4

0 0.01 0.1 0.5 1 5 10

facility density

cp
u

tim
e

SGB RSR SDJ PCZ

0

1

2

3

4

5

6

7

8

9

10

0 0.01 0.1 0.5 1 5 10

facility density

cp
u

tim
e

SGB RSR SDJ PCZ

0

20

40

60

80

100

120

0 0.01 0.1 0.5 1 5 10

facility density

no
 o

f p
at

h
co

m
pu

ta
tio

ns

S GB RSR SDJ PCZ

0

20

40

60

80

100

120

0 0.01 0.1 0.5 1 5 10

facility density

no
 o

f p
at

h
co

m
pu

ta
tio

ns

SGB RSR SDJ PCZ

0

20

40

60

80

100

120

0 0.01 0.1 0.5 1 5 10

facility density

no
 o

f p
at

h
co

m
pu

ta
tio

ns

S GB RSR SDJ PCZ

5.3 Experiment Results
We evaluated the effect of road map size, facility density and route
length on the performance of four different methods, SGB, RSR,
SDJ and PCZ.
Effect of road map size: In the first experiment, we compared the
effect of road map size on the performance and the storage need of
all methods. Figure 6 illustrates the response time as a function of
road map size, e.g., ALL is the largest among the four road maps.
The query route length is fixed to 100 and the number of facility
points to 200 in all road map datasets. As shown in Figure 6, PCZ
always outperforms the other methods. Its performance is not
much affected by road map size. The computation complexity of
PCZ is O(|t|log|v|) where t is the number of branch points of a
given route and v is the number of nodes of road map. As road map
size, i.e., v, increases, the computation complexity increases.
However, the cost is much cheaper compared with the other
methods. Overall response time in all methods but PCZ increases
with a road map size. This happens because, as road map size is
larger, the facility density becomes sparser with a fixed number of
facilities, increasing a path computation time. The performance of
SGB becomes worse as a road map size since it launches more
path finding algorithm than the others. SDJ always outperforms
SGB and RSR.
Figure 7 shows the number of path computations as a function of
road map size. PCZ has no online path search. SGB shows

independently of road map size. The reason is the number of path
computations depends on a route length not a road map size. In
RSR and SDJ, the number of path computations increases slightly.
We can infer that the number of path computations has an effect on
the response time from Figures 6 and 7.
Next, we compare the storage sizes that the methods need. As
shown in Figure 8, it is clear that the storage size that PCZ needs
depends on the road map size since it stores the precomputed NN
result of all nodes of the road map. Otherwise, SBD does not need
storage for the query processing. RSR and SDJ are independently
of the road map size. The reason is they need storage to store a
spatial index tree of facility points and a spatial index tree of route
branch points for SDJ.
Effect of facility density: In the second experiment, we examined
the impact of the performance of the methods as the facility density
varies. Figure 9 shows the response time as facility density for
RAMSEY, D&H and ALL respectively. The other parameter is
fixed: route length=100. Figure 9 illustrates that the response time
for all methods except PCZ decreases with increase in the facility
density. It is the reason that the possibility that a facility exists near
a query route is higher as a facility density is greater, triggering a
smaller search bound. It is known that with a smaller search
bound, the branch-and-bound algorithm which is adopted in RSR
and SDJ become more efficient. A path computation also can be
terminated earlier without the exhaustive scan of the road

 (a) RAMSEY (15K) (b) D&H (76K) (c) ALL (191K)
Figure 9. Performance vs. facility density (route length =100)

 (a) RAMSEY (15K) (b) D&H (76K) (c) ALL (191K)
Figure 10. Number of path computations vs. facility density (route length =100)

14

0

2

4

6

8

10

12

3 0 5 0 10 0 2 0 0 5 0 0 10 0 0 2 0 0 0

route length

cp
u

tim
e

SGB RSR SDJ PCZ

0

10

20

30

40

50

60

30 50 100 200 500 1000 2000

route length

cp
u

tim
e

SGB RSR SDJ PCZ

0

20

40

60

80

100

120

140

30 50 100 200 500 1000 2000

route length

cp
u

tim
e

SGB RSR SDJ PCZ

0

500

1000

1500

2000

2500

30 50 100 200 500 1000 2000

route length

no
 o

f p
at

h
co

m
pu

ta
tio

ns

S G B RS R S DJ P CZ

0

500

1000

1500

2000

2500

30 50 100 200 500 1000 2000

route length

no
 o

f p
at

h
co

m
pu

ta
tio

ns

S G B RS R S DJ P CZ

0

500

1000

1500

2000

2500

30 50 100 200 500 1000 2000

route length
no

 o
f p

at
h

co
m

pu
ta

tio
ns

S G B RS R S DJ P CZ

network. Figures 9a, 9b and 9c show similar curves. The facility
density has the overall positive impact on the performance.
Otherwise, PCZ receives little effect from changes in the facility
density.
Figure 10 displays similar experiments except that the dependent
variable is the number of path computations. In SGB, the number
of path computations is independent of facility density since SGB
repeats a new path search the route length times. RSR and SDJ
show the number of their path computation drop with the larger
density.
Effect of route length: In the third experiment, we examined the
impact on the performance of all methods as the route length
varies. Figure 11 shows the response time as a route length for
RAMSEY, D&H and ALL respectively. The facility density was
fixed at 0.5%. As shown in Figure 11, the overall response time of
all methods but PCZ increase with increase in the route length. In
recursive methods, SGB and RSR, the longer the route length, the
worse the performances become. SDJ clearly shows better
performance than the recursive methods. PCZ shows a very little
effect to route length. Figures 11a, 11b and 11c have similar
curves.
Figure 12 shows similar experiments except that the dependent
variable is the number of path computations. The number of path
computations in SGB is the same as the route length. The

experiment clearly shows that a non recursive method SDJ
receives a little effect of route length.
To summarize, in the first experiment to examine the effect of the
road map size on the performance and storage needs of the four
different solutions, the precomputed based method, PCZ always
outperforms the other methods. However, it needs more disk
storage space than the others. Among non pre-processing
methods, SBG, RSR and SDJ, SDJ always shows better
performance with less number of path computations.
Second, in the experiment to examine the effect of facility density
on the performance, all methods but PCZ shows the performance
decreases as their facility density increases. PCZ has no impact of
facility density. The number of path computations in RSR and
SDJ decreases with increase in the facility density.
In the third experiment to examine the impact on the performance
of the methods as the route length varies, the overall response
time of all methods except PCZ increases with increase in route
length. The recursive methods, SGB and RSR show that the
longer route length, the worse the performances become. SDJ
clearly shows the better performance than them. PCZ shows a
very little effect to the route length. The number of path
computations of non recursive method SDJ receives a little effect
of route length.

 (a) RAMSEY (15K) (b) D&H (76K) (c) ALL (191K)
Figure 11. Performance vs. route length (facility density =0.5%)

 (a) RAMSEY (15K) (b) D&H (76K) (c) ALL (191K)
Figure 12. Number of path computations vs. route length (facility density =0.5%)

15

6. CONCLUSION
We studied the in-route nearest neighbor query for a given route
and presented the four different solution methods. The
experimental results show that the precomputed zone-based
method always outperforms the other methods but it needs more
storage space for storing the precomputed results. In the other
methods, the overall response time decreases with the facility
density and increases with the route length and the size of road
map. The spatial distance join-based method always outperforms
the recursive methods with less number of path computations. The
experiment shows our strategy to reduce the number of path
computations to minimize the response time is reasonable.
One direction of future work is to concrete the current IRNN
work. First, we study the effect of updates on dominance zones.
Second, we examine IRNN query with other shortest path finding
algorithms, e.g., A* etc. Another direction is to search a more
general case of IRNN without a given route constraint and extend
the IRNN problem with a continuous query problem.

7. REFERENCES
[1] A. Corral, Y. Manolopoulos, Y. Theodoridis, M.

Vassilakopoulos, Closes Pair Queries in Spatial Databases,
ACM SIGMOND, 2000.

[2] C. Shahabi, M. R. Kolahdouzan, M Sharifzadeh, A Road
Network Embedding Technique for K-Nearest Neighbor
Search in Moving Object Databases, SSTD, 2001.

[3] GITA and OGC's Emerging Technology Summit Series -
Location-Based Services.
http://www.openls.org/dvd1/ets1/index.htm.

[4] G. Hjaltason, H. Samet, Distance Browsing in Spatial
Databases, ACM TODS, 1999.

[5] G. Hjaltason, H. Samet, Incremental Distance Join
Algorithms for Spatial Databases, ACM SIGMOD, 1998.

[6] H. Edelsbrunner, Alogirthms in Computational Geometry,
EATCS Monographs on Theoretical Computer Science,
1987.

[7] J. H. Rillings and R. J. Betsold. Advanced Driver
Information Systems. IEEE Trans. on Vehicular Technology,
1991.

[8] J. L. Wright, R. Starr, S.Gargaro, GENESIS-Information on
the Move, In Proc. of Annual IVHS American Conference,
1993.

[9] J. Zhang, N. Mamoulis, D. Papadias, Y. Tao, All-Nearest-
Neighbors Queries in Spatial Databses, 2002.

[10] J. Feng, T. Watanbe, Fast Search of Nearest Target Object in
Urban District Road Networks, PYIWIT, 2002.

[11] M. F. Worboys, GIS: A Computing Perspective, Taylor &
Francis, 1995.

[12] N. Roussopoulos, S. Kelleym, F. Vincent. Nearest Neighbor
Queries, In proceedings of the ACM SIGMOD, 1995.

[13] S. Shekhar, R. R. Vatsava, X. Ma, J. Yoo, Navigation
Systems: A Spatial Database Perspective, In chapter 3 of the
book, Location-Based Services, 2003.

[14] S. Shekhar, S.Chawla, Spatial Databases: A Tour, Prentice
Hall, 2003.

[15] S. Shekhar, M. Coyle, A. Kohli, Path Computation
Algorithms for Advanced Traveller Information Systems,
IEEE Computer Society, 1993.

[16] S. Shekhar, A. Fetterer, D. Liu, Genesis: An Approach to
Data Dissemination in in Advanced Travel Information
Systems, Bulletin of the Technical Committee on Data
Engineering: Special Issue on Data Dissemination, 1996.

[17] S. Shekhar, A. Fetterer, B. Goyal, Materialization Trade-Offs
in Hierarchical Shortest Path Algorithms. Proc. Intl. Symp.
on Large Spatial Databases, 1997

[18] S. Bespamyatnikh, J. Snoeyink, Queries with Segments in
Voronoi Diagrams. SODA, 1999.

[19] S. Hakimi, M. Labbe, and E. Schmeichel, The Voronoi
Partition of a Network and its Implications Location Theory
ORSA, 1992.

[20] S. Berchtold, B. Ertl, D. Keim, H.Kriegel, and T.Seidl. Fast
nearest neighbor search in high-dimensional space. In
proceedings of International Conference on Data
Engineering, 1998.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,
Introduction to Algorithms, Second Edition, MIT Press,
2001.

[22] W. C. Collier and R. J. Weiland. Smart Cars, Smart
Highways, IEEE Spectrum, 1994.

[23] Y. Tao, D. Papdias, Q. Shen, Continuous Nearest Neighbor
Search, VLDB, 2002.

[24] Z. Song, N. Roussopoulos, K-Nearest Neighbor Search for
Moving Query Point, SSTD, 2001.

16

