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Abstract  

Extraction of carotenoids and fatty acids from microalgae is a technological bottleneck 

in processing. An improved extraction process was developed to scale the production 

of these bioproducts from Nannochloropsis gaditana. Different cell disruption methods 

were evaluated in terms of carotenoids release. Ethanol was substituted by isopropyl 

alcohol in a three-component solution of water:isopropyl alcohol:hexane (WIH), in 

which the extracts were separated by solution partitioning. This resulted in higher 
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carotenoid and fatty acid recovery yields if compared to the standard method. The 

extraction method was replicated on a pilot scale obtaining similar carotenoid recovery 

yields, higher than those of the standard method. Although fatty acid recovery was 

lower than that of the small-scale tests, yields above 85% were obtained. This 

demonstrated that the method was scalable for the extraction of high-value products 

from microalgae up to 10 L reactor volume. The use of isopropyl alcohol, which is 

cheaper than ethanol, and the separation of the solution phases by partitioning 

(avoiding drying) could contribute to reduce operation costs of downstream processing. 
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1. Introduction 

Microalgae produce a variety of high-value products, some of which are 

available commercially such as carotenoids, phycobilins, fatty acids, sterols, 

polyhydroxyalkonoates, and polysaccharides, which are used as nutraceuticals and 

functional foods for human and animal consumption (Borowitzka 2013).  

Carotenoids are photosynthetic accessory pigments possessing several health 

benefits such as their antioxidant, anti-inflammatory and antitumor properties; they can 

also be used as natural food colorants (Sathasivam et al. 2017). The direct use of 

synthetic carotenoids for human consumption entails some health concerns due to their 

potential toxicity and its use is limited to animal feed, colorants and preservatives, while 

the natural ones have the advantage of being used as nutraceuticals (Gong and Bassi 

2016). Consequently, the search for natural carotenoid sources has widened.  

Similarly, there is great interest in the production of long-chain polyunsaturated 

fatty acids (LC-PUFAs) since they are responsible for regulating membrane fluidity, 
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help to reduce the risk of heart disease, are essential for the structure of eye and brain 

tissue and are prostaglandin precursors (Sathasivam et al. 2017). Despite all the 

functions they are involved in, LC-PUFAs are not synthesized by humans or animals 

and therefore need to be obtained through the diet.  

The resource-rich matrix of microalgae biomass provides a wide range of high-

value compounds (’t Lam et al. 2018); however, the downstream processing required to 

obtain them is expensive; for example, the extraction and purification of 

eicosapentaenoic acid (EPA) represents 57% of the total cost (Molina Grima et al. 

2003). The use of the biorefinery concept, in which as many bioproducts as possible 

are obtained during processing, would provide extra income (Chew et al. 2017; ’t Lam 

et al. 2018; Jacob-Lopes et al. 2019). On this basis, López-Rodríguez et al. (2019) 

proposed a multi-step extraction method for high-value added products from the 

dinoflagellate Amphidinium carterae which, in addition to the targeted product, enabled 

the recovery of amphidinolides and amphidinols (APDs) as well as carotenoids and 

fatty acids, thus contributing to the economic viability of the bioprocess. 

The extraction of high-value products from microalgae using conventional 

atmospheric solid-liquid extraction methods has been extensively studied, and a wide 

range of solvents have been evaluated for this purpose. Furthermore, this method is 

inexpensive, does not require sophisticated equipment and is easy to scale up (Gong 

and Bassi 2016; Saini and Keum 2018). When choosing an extraction method, one 

should consider the chemical characteristics of the product, such as its polarity, the 

recovery yield of the desired bioproduct, the amount of solvent required, the extraction 

time and cost, the environmental impact and the method’s scalability (Grosso et al. 

2015).  

The extraction method proposed by Cerón-García et al. (2018b, a) uses a 

three-component solution composed of water:ethanol:hexane (WEH) and 40% KOH to 

extract the unsaponifiable lipid fraction (the carotenoids) and the saponified lipids (the 



4 

fatty acids) from the microalgal biomass in a two-step procedure. Firstly, the fatty acids 

are saponified, then the solvents are evaporated, and the carotenoids are extracted 

with acetone and hexane. In the second step, the salts of fatty acids are released by 

pH adjustment and extracted with hexane. At the end, solvents are evaporated and no 

contamination of the final product should be checked by quality analysis. These 

solvents are amongst those listed as extraction solvents permitted for use in Europe 

(Directive 2009/32/CE and Directive 2010/59/UE) during the processing of raw 

materials, food-stuffs, food components or food ingredients.  

One concern when using ethanol in a three-component solution is the price of 

the solvent. Other polar solvents can be used, such as isopropyl alcohol, which is 

cheaper than ethanol and has a lower polarity index; it can thus enhance recovery 

yields of non-polar carotenoids. Including isopropanol in the hexanic solution enhances 

the extraction of polar lipids that are bound to proteins from the microalgae cell 

membranes (Halim et al. 2011). Similarly, using isopropyl alcohol as a co-solvent for 

hexane also resulted in higher carotenoid recovery yields than when just using hexane 

(Ryckebosch et al. 2014). 

The intermediate step of drying the solvents prior to extracting the carotenoids 

in the Cerón-García et al. (2018b) method is energy demanding and time consuming, 

which complicates its reproducibility at pilot scale. This requirement could be avoided 

by partitioning the solutions. Once the solvent proportions are adjusted, the hexanic 

non-polar phase with the carotenoids is separated from the hydroalcoholic polar phase, 

which contains the salts of fatty acids, using a separatory funnel to separate the two 

phases.  

Microalgae from the genus Nannochloropsis have a resistant cell wall 

containing non-hydrolysable macromolecules called algaenans (Gelin et al. 1997). Any 

cell wall disruption procedure, whether mechanical, chemical, or enzymatic, can 

enhance the extraction of intracellular compounds such as carotenoids (Michelon et al. 



5 

2012). The required volume of solvents for extracting the lipids is dependent on the 

solubility of the molecules as well as their capacity to penetrate the cell wall (Yao et al. 

2012); hence, performing a cell breakage method might also be advantageous for 

reducing the amount of solvents.  

The present study has improved the standard extraction method of Cerón-

García et al. (2018b) to obtain carotenoids and fatty acids from the microalga N. 

gaditana. This has made the procedure more feasible in terms of cost by using 

isopropyl alcohol instead of ethanol in the three-component solution and by replacing 

the drying step with solution partitioning. In addition, different biomass disruption 

methods were assessed to enhance the extraction of the biomolecules of interest.  

 

2. Materials and methods 

2.1. Microalgal biomass  

Nannochloropsis gaditana strain B-3 was obtained from the Marine Culture 

Collection of the Institute of Marine Sciences of Andalucía (CSIC) Cádiz, Spain. This 

strain was cultured at the microalgae pilot plant of the University of Almería, Spain, in 

continuous mode at a 0.2 d-1 dilution rate in flat-panel and tubular photobioreactors 

(Menegol et al. 2019). When the cultures were at steady state, they were harvested. 

This resulted in two dry biomass batches, one during the spring (batch 1) and another 

during the summer (batch 2). The biomass was recovered at 9,000  g for 5 min in a 

Sigma 4-15 centrifuge (Sartorius, Göttingen A.G., Germany), washed with 0.5 M 

aqueous ammonium bicarbonate solution (Zhu and Lee 1997) and freeze-dried in a 

Cryodos 50 instrument (Telstar, Terrassa, Spain) prior to biochemical analyses.  

  

2.2. Cell disruption methods 

https://www.sciencedirect.com/topics/engineering/biochemicals
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Different cell disruption methods were evaluated with the aim of increasing the 

extraction yields of the desired compounds. Compared to the control extraction without 

molturation treatment (WM), the biomass from batch 1 underwent five cell disruption 

methods: (i) mortar milling with alumina at a 1:1 (w/w) biomass/alumina ratio at 25 ºC 

(MA25), (ii) mortar milling with alumina at a 1:1 (w/w) biomass/alumina ratio at 60 ºC 

(MA60), (iii) ultrasounds (UTS), (iv) lab-scale bead milling (LBM), and (v) pilot-scale 

bead milling (PBM). The ultrasound equipment used was an Ultrason bath from JP 

Selecta (Barcelona, Spain). The LBM equipment was a Mini-Beadbeater-16 cell 

disrupter (Biospec Products Inc., Bartlesville, USA). The PBM equipment used 28 mm 

diameter beads. Each disruption method, and the WM control, were evaluated with 5 

mg of dry biomass, using the analytical method to measure carotenoids described 

below. The carotenoid extraction attained for the sample without molturation treatment 

(WM, control) was stablished as 100% recovery yield. Therefore, if cell disruption 

methods improve carotenoids release, extraction yields above 100% would be 

achieved.  

2.3 Analytical procedures 

The carotenoids were analyzed on a Shimadzu SPDM10AV high performance 

liquid chromatograph (HPLC) (Shimadzu, Columbia, USA) using a photodiode array 

detector, applying the method adapted by Cerón-García et al. (2018a). The separation 

was performed on a LiChrospher© 100 RP-18 column (5-μm; 4.6 × 150 mm). The 

injection volume of each sample was 20 μL. Two eluents were used: (A) 

water:methanol 1:4 v/v; and (B) acetone:methanol 1:1 v/v in gradients of 25% B 0–8 

min, 75% B 8–18 min, 90% B 18–23 min, 100% B 25–27 min and 25% B 27–32 min, at 

an elution rate of 1 mL/min, with absorbance detection at 360–700 nm.  

The fatty acid analysis was performed as described by Rodríguez-Ruiz et al. 

(1998). For the analysis of the initial biomass, 10 mg of dry biomass was used. For the 

analysis of the microalga extracts, 1 mL of the extract was dried with argon (25 °C) and 
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then processed in the same way. 1 mL of hexane was added to the samples, followed 

by 1 mL of the methylation mixture (methanol:acetyl chloride  20:1 v/v) and 50 µL of an 

internal standard (25 mg nonadecanoic acid in 10 mL hexane) prior to heating at 105 

°C for 20 minutes. After cooling down, 1 mL of water was added so that the phases 

could be separated by centrifugation. The hexanic (upper) phase, containing the fatty 

acid methyl esters (FAMEs), obtained from saponifiable lipids present in microalgal 

biomass, was analyzed with an Agilent Technologies 6890N gas chromatograph 

(Avondale, PA, USA). The measurements were carried out in duplicate.  

The dry biomass was also fractioned using Sep-pack plus AT020520 single-use 

silica gel cartridges (Waters Corporation, Milford, MA, USA). Saponifiable lipids were 

separated into three fractions with different polarities, neutral lipids, glycolipids and 

phospholipids. A 10 mg sample of dry biomass was added to a glass Pyrex tube and 

dissolved with 0.5 mL of chloroform; the concentrated chloroform phase of the lipids 

was then introduced into the cartridge. A further 30 mL of chloroform was passed 

through the cartridge with the eluent containing the neutral lipids. Subsequently, 30 mL 

of acetone and 20 mL of chloroform:methanol (85:15 v/v) were passed through the 

cartridge to collect the glycolipids. Finally, 30 mL of methanol was passed through the 

cartridge to recover the phospholipid fraction. All eluents were evaporated in a R210 

rotary evaporator with a V-700 vacuum pump and a V-850 controller (Buchi, Flawil, 

Switzerland), and the content of each fraction was converted to FAMEs by methylation 

and then analyzed by gas chromatography as described by Navarro López et al. 

(2016). All analytical measurements were performed in triplicate. 

 

2.4 Multi-step approach for the small-scale extraction of carotenoids and fatty 

acids  

The biomass with a higher content of carotenoids (batch 1) was used for the 

small-scale experiment. Prior to extraction, the biomass was milled in a mortar with 
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alumina (1:1 w/w). Modifications were made to the extraction method proposed by 

Cerón-García et al. (2018b). The substitution of ethanol with alcohol isopropyl in the 

three-component solution was evaluated, the hexanic phase (with the unsaponified 

lipids) being separated from the hydroalcoholic phase (with the fatty acid salts) by 

partitioning.  

The carotenoid and fatty acid extraction was compared using three-component 

solutions of different compositions. Water-ethanol-hexane (6:77:17) and 40% KOH d.w. 

(WEH) was compared to water-isopropyl-hexane and 40% KOH d.w. (WIH) with water-

isopropyl-hexane proportions of 6:77:17, 9:74:17, 10:73:17 and 12:71:17. Then, the 

phases of the solutions were separated using either water-ethanol-hexane or water- 

isopropyl alcohol-hexane at the ratios of 36:14:50 and 10:40:50, respectively.  

The first step (saponification) was performed under the best disruption 

conditions (maceration in a water-bath at 60 °C) for 2 min. The monophasic solution 

was partitioned by adding water and hexane, then separated by centrifugation. After 

the separation, the upper phase containing the unsaponified lipids and the lower phase 

containing the saponifiable lipids were collected to analyze the carotenoid and fatty 

acid compositions, respectively. Recovery yields were calculated as the percentage of 

carotenoid and fatty acid contents with respect to the total carotenoids and fatty acids 

in the original biomass, extracted by the standard method. 

 

2.5. Scaled-up multi-step approach for the extraction of carotenoids and fatty 

acids   

The biomass from batches 1 and 2 were used to scale-up the improved 

carotenoid and fatty acid extraction method (Fig. 1). Prior to the extraction, the biomass 

was milled in the PBM for 10 min. The three-component WIH 12:71:17 solution (with 

40% KOH) and the WIH 10:40:50 solution were tested. The saponification reaction was 

performed using a 10-L reactor jacketed to maintain 60 °C and supplying agitation at 
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150 rpm for 1h. The volume of solvents added to the biomass was calculated based on 

the ratio volume for saponifiable lipids proposed by Hita Peña et al. (2015), such that 

276 mL of the three-component solution (WIH 12:71:17 with 40% KOH) was added for 

1g of saponifiable lipids from the dried N. gaditana biomass. Consequently, considering 

the 14% of saponifiable lipids for the batches, 4830 mL of the three-component solution 

(WIH in a ratio of 580:3429:821) was added to 125 g of biomass. The extract was 

filtered and the residual biomass was washed with 400 mL WIH solution (3.2 mL g-1 dry 

weight) without KOH. For the extraction of carotenoids, the solvent ratio was adjusted 

to 10:40:50 WIH, by adding 278 and 3465 mL of water and hexane, respectively, and 

agitating for 30 min at 100 rpm. The phases were allowed to separate over 30 min. The 

hydroalcoholic phase, which contained the salts of fatty acids, had its pH adjusted to 

2.0. Water and hexane were then added to the hydroalcoholic phase in a ratio of 

0.6:0.3:1 in accordance with Navarro López et al. (2016). Considering a volume of 

approximately 4L for the hydroalcoholic extract obtained from the first step, 2.4 and 1.2 

L of water and hexane were added, respectively. The second reaction lasted 10 min at 

150 rpm, and the phases were allowed to separate for 30 min, this process being 

repeated twice. Samples were taken to evaluate the carotenoid and fatty acid 

composition and recovery yields at several steps: saponification and washing of the 

biomass (SAP), extraction (EXT), and the residual biomass (RES). The extraction 

procedure was repeated two times for each batch. The recovery yields were 

determined as the content of carotenoids and fatty acids in the extraction steps with 

respect to the content of carotenoids and fatty acids in the original biomass (extracted 

by the standard method. 

 

2.6 Statistical analysis  

Results are expressed as mean ± standard deviation. Data in percentages were 

arcsine square root transformed and checked for homogeneity and normality, with the 
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results being compared by one-way analysis of variance (ANOVA). In addition, 

significantly different treatments (p < 0.05) were determined using Tukey’s post-hoc 

test.   

 

3. Results and discussion  

In order to scale up the extraction processes, small-scale studies are essential 

to obtain data on the solvent phase equilibrium, the mass transfer rate and the 

solubility (Grosso et al. 2015). Some algal compounds are not easily reached by 

solvents; therefore, the biomass must be submitted to some form of cell disruption 

before extraction, with the industrial applicability of such procedures being based on 

scalability, energy requirements, accessibility to the desired compounds and mass 

transfer (Roux et al. 2017). Accordingly, in the present study, the proposed 

improvements to the standard extraction method were tested on the small-scale prior to 

their pilot-scale application. 

 

3.1. Optimization of extraction processes 

The carotenoid and fatty acid profiles of batches 1 and 2 are presented in 

Tables 1 and 2, respectively. The polar fraction (glycolipids and phospholipids) and the 

non-polar fraction of the lipids from both batches were 65% ± 1.08 and 34% ± 0.58 for 

batch 1, and 29% ± 0.72 and 71% ± 0.68 for batch 2, respectively.  

The results from the disruption methods evaluated are presented in Table 3. 

The carotenoid concentrations in the samples submitted to the MA25, MA60, UTS, 

LBM and PBM disruption methods were similar and significantly higher than the sample 

extracted without any pre-treatment (WM; p < 0.05). The application of cell disruption 

methods was recommended to improve the recovery of intracellular products from the 

microalga, such as pigments, fatty acids and proteins (Molina Grima et al. 2003; 

Vizcaíno et al. 2019). Microalgae from the genus Nannochloropsis have robust cell 
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walls made up of algaenan and cellulose, which are resistant to hydrolysis (Scholz et 

al. 2014); therefore, it is necessary to break up these cell walls using mechanical 

disruption methods.  

The total carotenoid recovery yields from the different disruption methods are 

presented in Fig. 2. The control sample (WM, no cell disruption) was stablished as 

100% recovery yield. The recovery yields of the samples submitted to disruption 

methods were significantly higher than for the biomass that did not undergo molturation 

(WM; p < 0.05); nonetheless, no differences were observed between the different 

disruption methods themselves (p > 0.05). On reviewing the various cell disruption 

methods, Gong and Bassi (2016) classified grinding as efficient but time-consuming, 

which restricts its scalability. Ultrasound was classified as highly efficient although 

different studies have shown variable results. Bead milling, on the other hand, was 

classified as highly efficient but concerns were raised relating to small-sized cells. 

Although N. gaditana is a small-cell organism (~2 µm), bead milling was efficient in 

disrupting the cells. Therefore, results show that there is a need to use a cell disruption 

method and among them bead milling could be the preferred one because of the 

easiness to be used in an industrial scaled-up process. However, any of the other 

tested methods could be chosen for a pilot-scale extraction of high-value products. 

 

3.2. Multi-step approach for the small-scale extraction of carotenoids and fatty 

acids 

The carotenoid and fatty acid composition from the small-scale extraction with 

the three-component solution (6:77:17) using ethanol and isopropyl alcohol are 

presented in Tables 4 and 5, respectively. The total concentration of carotenoids and 

fatty acids extracted with the isopropyl alcohol three-component solution (WIH) was 

higher than with ethanol (WEH). The polarity index of isopropyl alcohol is lower (4.3) 

than ethanol (5.2), which is likely to have enhanced the extraction of non-polar lipids. 
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Regarding the partitioning ratios, 10:40:50 presented a higher concentration of 

carotenoids than 36:14:50, regardless of which alcohol was used (ethanol or isopropyl 

alcohol). However, it was not possible to measure the fatty acid concentration of the 

samples extracted with the 36:14:50 ratio because of its elevated water content.  

The 40% KOH in the three-component solution was not well dissolved in the 

6:77:17 solution ratio using isopropyl alcohol. For this reason, other solvent ratios with 

higher water contents were evaluated, namely 9:74:17, 10:73:17 and 12:71:17. The 

carotenoid and fatty acid composition from the samples extracted using these different 

three-component solutions (WIH) are presented in Tables 4 and 5, respectively. 

Overall, the different solvent ratios presented similar concentrations of carotenoids and 

fatty acids. Furthermore, the carotenoid concentration from the samples extracted with 

the 10:40:50 WIH partitioning ratio was higher than for the 36:14:50 WIH solution ratio. 

The carotenoid content in the 12:71:17 WIH treatment with the 10:40:50 WIH 

partitioning ratio was 2.05%, while the carotenoid content of the same solution, but with 

the 36:14:50 WIH partitioning ratio, was less at 1.06%. The fatty acid concentration 

was only evaluated for the 10:40:50 WIH ratio (Table 5).  

The carotenoid recovery yields from the small-scale extraction are presented in 

Fig. 3. When comparing the use of ethanol or isopropyl alcohol in the three-component 

solutions, at both proportions (6:36 and 6:10), the recovery yield with isopropyl alcohol 

was significantly higher than when using ethanol (p < 0.05). Using solvents with 

different polarities facilitates the extraction of complex molecules that have diverse 

polarities. Carotenoids are composed of a complex mixture of non-polar compounds, 

such as carotenes (lycopene and β-carotene), and xanthophylls, which contain polar 

groups (violaxanthin, zeaxanthin and canthaxanthin). Thus, to simultaneously extract 

both types of carotenoids, a mixture of polar and non-polar solvents are used.  

The WIH 6:10 treatment presented higher carotenoid recovery yields than the 

WEH 6:36, WIH 6:36 and WEH 6:10 treatments (p < 0.05). The WIH 9:10, 10:10 and 
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12:10 treatments showed the highest carotenoid recovery yields, with the WIH 10:10 

and 12:10 treatments being significantly higher than for WIH 6:36, WIH 10:36 and WIH 

12:36 (p < 0.05). The higher yield treatments were those with a higher concentration of 

isopropyl alcohol, as this aided the extraction. The carotenoid recovery yields of the 

treatments WIH 9:10, 10:10 and 12:10 were higher than 100% (which corresponds to 

the control, measured with the standard method that uses ethanol) so the proposed 

method using isopropyl alcohol improved carotenoid extraction. 

Carotenes are found in free form while xanthophylls are normally coupled to 

fatty acids as esters; hence, when extracting carotenoids, a saponification step is 

essential for releasing the esterified xanthophylls in free form (Mercadante et al. 2017). 

Probably, the saponification process in the 6:77:17 WIH monophasic solution did not 

perform as efficiently as in the solutions with different ratios; thus, some of the 

xanthophylls might have remained esterified. In addition, other compounds may have 

interfered with the analysis, such as triacylglycerides (TAGs), proteins, lipids, 

chlorophylls and carbohydrates (Mercadante et al. 2017; Saini and Keum 2018), 

resulting in lower recovery yields.  

The recovery yields of fatty acids in the small-scale extraction are presented in 

Fig. 4. The fatty acid recovery yields for both solutions WEH 6:10 and WIH 6:10 were 

similar (p > 0.05). The WIH 9:10, 10:10 and 12:10 treatments presented higher 

recovery yields, while the WIH 10:10 and WIH 12:10 treatments were significantly 

higher than for WEH 6:10 and WIH 6:10 (p < 0.05). Similarly to the extraction of 

carotenoids, fatty acid recovery yields of the treatments WIH 10:10 and WIH 12:10 

were higher than 100% showing an extraction improvement by the use of isopropyl 

alcohol. 

The 12:71:17 WIH saponification solution with 40% KOH and the 10:40:50 WIH 

partitioning ratio presented the best results for carotenoid and fatty acid extraction; 

hence, these solution ratios were chosen for replication in the pilot-scale experiments.  
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3.3 Scaled-up multi-step approach for the extraction of carotenoids and fatty 

acids   

The carotenoid profiles from batches 1 and 2 were very different from each 

other, with the total carotenoid content of batch 1 being much higher. Even so, the 

carotenoid profiles were similar. The most abundant carotenoids in both batches were 

violaxanthin and β-carotene. The fatty acid content and profile from batch 1 was quite 

different from batch 2. Batch 1 showed higher LC-PUFAs while batch 2 had higher 

saturated, monounsaturated and total fatty acids. The fraction of polar and non-polar 

lipids was also different, with batch 1 having more polar lipids and batch 2 more non-

polar lipids. 

The carotenoid and fatty acid recovery yields from the scaled-up experiment are 

presented in Figs. 5 and 6. The carotenoid recovery yield patterns when extracting both 

batches were similar; that is to say, the total carotenoid recovery yields from samples 

having undergone the saponification step in the pilot-scale procedure (Ysap) were 

between 130-160%, and were similar to the extraction step (Yext; p > 0.05). There were 

almost no carotenoids left in the residual biomass after saponification, with Yres being 

lower than 8%, a value significantly lower than that of Ysap and Yext (p < 0.05). The total 

recovery yields for the saponification and the extraction steps performed on the pilot-

scale were similar to the results obtained on the small scale for the WIH 12:10 

treatment (p = 0.684). These results indicate that the scaling-up of the saponification 

and carotenoid extraction steps was successful, with all the compounds present in the 

saponified extract being successfully recovered and the residual biomass showing few 

carotenoids. Comparing the two batches, batch 1 had higher carotenoid recovery yields 

for the saponification and extraction steps than batch 2 (p < 0.05); nevertheless, the 

residual yield was similar. The higher carotenoid recovery yield in batch 1 was probably 

due to a higher β-carotene content in the biomass than in batch 2 (33% compared to 
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26%). Since β-carotene had non-polar characteristics, it had a higher affinity for 

isopropyl alcohol and was extracted more efficiently. 

The fatty acid Ysap was high, at around 100% for both batches. The Yext for batch 

1 and 2 were around 90% and 75%, respectively, both significantly lower than the Ysap 

(p < 0.05). Possibly, the amount of fatty acids remaining (25%) was not fully extracted 

from the hydroalcoholic phase. In the present study, two series of extractions were 

performed. Perhaps a third one would have enhanced the extraction step recovery 

yield. The fatty acid recovery yield from the residual biomass was low, at around 2%. 

The extraction of fatty acids on the small scale (treatment WIH 12:10) was significantly 

higher than both extract samples (Ysap and Yext) in the pilot scale extraction (p < 0.05). 

Several parameters affected the extraction kinetics, such as the amount of lipids in the 

biomass, the reaction time and the mass transfer coefficient, which was related to the 

degree of solution agitation, the ratio of organic solvent to microalgae biomass and the 

temperature (Halim et al. 2012). The mass transfer of the extraction changes from the 

small-scale to the pilot scale situation, affecting the interaction of solvents with the 

substrate. Possibly for this reason, some of the fatty acids from the biomass were not 

fully extracted in the pilot scale experiments, causing fatty acid recovery yields to be 

lower than for the small-scale extractions. Therefore, attention must be paid to the 

mechanism of lipid mass transfer from the microalgae biomass to the solvents in the 

scaled-up extractions. The recovery yields from the saponification step and the residual 

biomass were similar for both batches; however, the fatty acid recovery yield (Yext) from 

batch 1 was significantly higher than from batch 2. It was hypothesized that including 

isopropyl alcohol in the three-component solution (with hexane, a non-polar solvent) 

would enhance the extraction of polar lipids (phospholipids, glycolipids, and 

cholesterols). Since batch 1 had a higher level of polar lipids than batch 2, the 

biochemical composition of the biomass would have been a positive influence on the 

extraction of the fatty acids.  
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4. Conclusions 

The extraction of high-value bioproducts from N. gaditana has been improved. It 

is necessary to pretreat the biomass in order to release intracellular compounds. Bead 

milling is proposed as the most adequate method for a scaled-up process. The 

extraction step, which employed isopropanol instead of ethanol in the three-component 

extraction solution, resulted in a similar recovery yield of fatty acids (85%), but higher 

yields of carotenoids recovery (120%). The lower price of isopropanol compared to 

ethanol and the labour-saving partitioning of the three-component solution could 

contribute to reduce operation costs in the downstream processing. 
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Figure Captions 
 
Fig. 1 Scheme of the extraction process for recovering carotenoids and fatty acids 

simultaneously from the Nannochloropsis gaditana microalga, a modification of the 

method proposed by Cerón-García et al. 2018b. 

Fig. 2 Carotenoid recovery yields (%) of Nannochloropsis gaditana batch 1 submitted 

to different disruption methods: i) without molturation (WM), ii) mortar milling with 

alumina at a 1:1 w/w biomass/alumina ratio at 25ºC (MA25); (iii) mortar milling with 

alumina at a 1:1 w/w biomass/alumina ratio at 60ºC (MA60); (iv) ultrasound (UTS); (v) 

lab bead mill (LBM); (vi) pilot bead mill (PBM). Results are presented as the average ± 

SD of two independent experiments. * Extraction recovery yield (% d.w.): percentage of 

carotenoids extracted with respect to the compounds present in the biomass without 

any molturation (batch 1) extracted by the standard method (Cerón-García et al. 

2018b). Different letters represent a significant difference between treatments. 

Fig. 3 Carotenoid recovery yields (%) of Nannochloropsis gaditana biomass batch 1 in 

the small-scale experiment for the treatments WEH 6:36 – ethanol solution, 

monophasic - 6:77:17 biphasic 36:14:50; WIH 6:36 – isopropyl alcohol solution, 

monophasic - 6:77:17 biphasic 36:14:50; WEH 6:10 - ethanol solution, monophasic - 

6:77:17 biphasic – 10:40:50; WIH 6:10 - isopropyl alcohol solution, monophasic - 

6:77:17 biphasic – 10:40:50; WIH 9:36 – isopropyl alcohol solution, monophasic - 

9:74:17 biphasic – 36:14:50; WIH 10:36 – isopropyl alcohol solution, monophasic - 

10:73:17 biphasic – 36:14:50; WIH 12:36 – isopropyl alcohol solution, monophasic - 

12:71:17 biphasic – 36:14:50; WIH 9:10 – isopropyl alcohol solution, monophasic - 

9:74:17 biphasic – 10:40:50; WIH 10:10 – isopropyl alcohol solution, monophasic - 

10:73:17 biphasic – 10:40:50; WIH 12:10 – isopropyl alcohol solution, monophasic - 

12:71:17 biphasic – 10:40:50. Results are presented as the average ± SD (n = 3). * 

Extraction recovery yield (% d.w.): percentage of carotenoids extracted with respect to 

the compounds present in the initial biomass (batch 1) extracted by the standard 
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method (Cerón-García et al. 2018b). Different letters represent a significant difference 

between treatments, lowercase letters represent the comparison of the three-

component solutions (WEH 6:36, WEH 6:10, WIH 6:30 and WIH 6:10); uppercase 

letters represent the comparison between the three-component solution with isopropyl 

alcohol.  

Fig. 4 Fatty acid recovery yields (%) of Nannochloropsis gaditana batch 1 in the small-

scale experiment for the treatments: WEH 6:10 - ethanol solution, monophasic - 

6:77:17 biphasic – 10:40:50; WIH 6:10 - isopropyl alcohol solution, monophasic - 

6:77:17 biphasic – 10:40:50; WIH 9:10 – isopropyl alcohol solution, monophasic - 

9:74:17 biphasic – 10:40:50; WIH 10:10 – isopropyl alcohol solution, monophasic - 

10:73:17 biphasic – 10:40:50; WIH 12:10 – isopropyl alcohol solution, monophasic - 

12:71:17 biphasic – 10:40:50. Results are presented as the average ± SD (n = 3). * 

Extraction recovery yield (% d.w.): percentage of fatty acids extracted with respect to 

the compounds present in the initial biomass (batch 1).  

Fig. 5 Carotenoid recovery yields (%) of Nannochloropsis gaditana biomass (batches 1 

and 2) extracted by the improved method at the pilot scale after saponification (SAP); 

the extract fraction (EXT) and for the residual algal biomass (RES). Results are 

presented as the average ± SD of two independent experiments. * Extraction recovery 

yield (% d.w.): percentage of carotenoids extracted with respect to the compounds 

present in the initial biomass (batches 1 and 2) extracted by the standard method 

(Cerón-García et al. 2018b) for the saponification step, the extraction and the residue.  

Fig. 6 Fatty acid recovery yield (%) of Nannochloropsis gaditana biomass (batches 1 

and 2) extracted by the improved method at the pilot scale for the extract after 

saponification (SAP); the extract fraction (EXT) and for the residual algal biomass 

(RES). Results are presented as the average ± SD of two independent experiments.* 

Extraction recovery yield (% d.w.): percentage of fatty acids extracted with respect to 
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the compounds present in the initial biomass (batches 1 and 2) for the saponification 

step, the extraction and the residue.  
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Table 1 - Carotenoid content in dry weight (% d.w.) mean ± SD of batches 1 (spring) and 2 (summer) of Nannochloropsis gaditana 

biomass extracted by the standard method (Cerón-García et al. 2018b).  

 

Carotenoid 
% d.w. 

Batch 1 Batch 2 

Neoxanthin 0.066 ± 0.009 0.054 ± 0.006 

Violaxanthin 0.899 ± 0.064 0.123 ± 0.013 

Anteroxanthin 0.058 ± 0.046 0.005 ± 0.001 

Vaucheroxanthin 0.077 ± 0.075 0.015 ± 0.002 

Zeaxanthin 0.074 ± 0.061 0.015 ± 0.001 

Vaucheroxanthin ester 0.044 ± 0.054 0.001 ± 0.001 

Canthaxanthin 0.009 ± 0.007 0.003 ± 0.000 

β-carotene 0.622 ± 0.039 0.077 ± 0.012 

Total 1.850 ± 0.217 0.292 ± 0.036 
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Table 2 – Fatty acid content in dry weight (% d.w.) mean ± SD of batches 1 (spring) and 2 (summer) of Nannochloropsis gaditana 

biomass. 

 

Fatty acid 
% d.w. 

Batch 1 Batch 2 

14:0 0.78 ± 0.04 1.75 ± 0.00 

16:0 1.90 ± 0.07 7.33 ± 0.07 

16:1n7 2.40 ± 0.07 5.32 ± 0.04 

18:0       0.18 ± 0.00 

18:1n9 0.53 ± 0.03 1.80 ± 0.02 

18:2n6 0.45 ± 0.01 0.30 ± 0.00 

20:4n6 1.10 ± 0.11 0.77 ± 0.00 

20:5n3 5.62 ± 0.06 2.31 ± 0.03 

Others 1.56 ± 0.15 0.16 ± 0.02 

∑ SFA 2.69 ± 0.05 9.26 ± 0.07 

∑ MUFA 2.93 ± 0.10 7.12 ± 0.06 

∑ LC-PUFA 6.72 ± 0.14 3.08 ± 0.03 

Total FA 14.37 ± 0.37 19.92 ± 0.14 
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Table 3 – Carotenoid content in dry weight (% d.w.) mean ± SD from Nannochloropsis gaditana batch 1 submitted to different disruption 

methods: without maceration (WM); mortar with alumina at a biomass/alumina ratio 1:1 w/w at 25ºC (MA25); mortar with alumina at a 

biomass/alumina ratio 1:1 w/w at 60ºC (MA60); ultrasound (UTS); lab bead mill (LBM); pilot bead mill (PBM). Different letters represent 

significant difference between treatments (p < 0.05).  

Carotenoid 
% d.w.  

WM   MA25   MA60   UTS   LBM   PBM 

Neoxanthin 0.033 ± 0.002 b 0.057 ± 0.003 a 0.070 ± 0.003 a 0.059 ± 0.003 a 0.063 ± 0.003 a 0.066 ± 0.003 a 

Violaxanthin 0.450 ± 0.022 b 0.776 ± 0.039 a 0.953 ± 0.048 a 0.810 ± 0.041 a 0.864 ± 0.043 a 0.899 ± 0.045 a 

Anteroxanthin 0.029 ± 0.001 b 0.050 ± 0.003 a 0.061 ± 0.003 a 0.052 ± 0.003 a 0.056 ± 0.003 a 0.058 ± 0.003 a 

Vaucheroxanthin 0.039 ± 0.002 b 0.067 ± 0.003 a 0.082 ± 0.004 a 0.070 ± 0.003 a 0.074 ± 0.004 a 0.077 ± 0.004 a 

Zeaxanthin 0.037 ± 0.002 b 0.064 ± 0.003 a 0.078 ± 0.004 a 0.067 ± 0.003 a 0.071 ± 0.004 a 0.074 ± 0.004 a 

Vaucheroxanthin ester 0.022 ± 0.001 b 0.038 ± 0.002 a 0.047 ± 0.002 a 0.040 ± 0.002 a 0.042 ± 0.002 a 0.044 ± 0.002 a 

Cantaxanthin 0.005 ± 0.000 b 0.008 ± 0.000 a 0.010 ± 0.000 a 0.008 ± 0.000 a 0.009 ± 0.000 a 0.009 ± 0.000 a 

β-carotene 0.311 ± 0.016 b 0.537 ± 0.027 a 0.659 ± 0.033 a 0.560 ± 0.028 a 0.598 ± 0.030 a 0.622 ± 0.031 a 

Total 0.925 ± 0.046 b 1.596 ± 0.080 a 1.960 ± 0.098 a 1.666 ± 0.083 a 1.778 ± 0.089 a 1.850 ± 0.092 a 
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Table 4 - Carotenoid content in dry weight (% d.w.) mean ± SD of carotenoid composition of Nannochloropsis gaditana batch 1 extracted 

in small scale. 

 

Carotenoid 

Phas
es 

 %  dw. 

One WEH 6:77:17 WIH 6:77:17 WIH 9:74:17 WIH 10:73:17 WIH 12:71:17 

Two 
WEH 
36:14:50 

WEH 
10:40:50 

WIH 
36:14:50 

WIH 
10:40:50 

WIH 
36:14:50 

WIH 
10:40:50 

WIH 
36:14:50 

WIH 
10:40:50 

WIH 
36:14:50 

WIH 
10:40:50 

Neoxanthin 
0.00
9 

± 
0.00
0 

0.00
1 

± 
0.00
2 

0.02
5 

± 
0.00
2 

0.04
5 

± 
0.00
6 

0.07
5 

± 
0.02
6 

0.05
1 

± 
0.05
2 

0.02
2 

± 
0.00
2 

0.08
5 

± 
0.02
9 

0.03
0 

± 
0.00
7 

0.06
7 

± 
0.00
8 

Violaxanthi
n 

  
0.03
6 

± 
0.00
5 

0.06
4 

± 
0.01
4 

0.40
6 

± 
0.09
3 

0.67
5 

± 
0.02
9 

0.65
8 

± 
0.04
2 

0.70
9 

± 
0.08
2 

0.25
6 

± 
0.00
6 

0.86
8 

± 
0.11
1 

0.35
0 

± 
0.03
0 

0.79
6 

± 
0.30
0 

Anteroxant
hin 

  
0.00
3 

± 
0.00
0 

0.00
5 

± 
0.00
0 

0.05
0 

± 
0.01
1 

0.06
4 

± 
0.00
3 

0.04
6 

± 
0.01
2 

0.05
2 

± 
0.02
2 

0.02
4 

± 
0.00
1 

0.06
7 

± 
0.00
2 

0.03
2 

± 
0.00
4 

0.06
7 

± 
0.02
7 

Vaucheroxanthin 
0.00
4 

± 
0.00
0 

0.00
5 

± 
0.00
0 

0.08
0 

± 
0.01
6 

0.10
2 

± 
0.00
4 

0.03
4 

± 
0.01
9 

0.04
4 

± 
0.02
0 

0.03
8 

± 
0.00
7 

0.07
2 

± 
0.03
3 

0.05
4 

± 
0.01
1 

0.10
3 

± 
0.04
2 

Zeaxanthin   
0.00
2 

± 
0.00
3 

0.00
3 

± 
0.00
5 

0.00
9 

± 
0.00
2 

0.01
0 

± 
0.00
2 

0.01
2 

± 
0.00
2 

0.01
6 

± 
0.00
0 

0.00
6 

± 
0.00
0 

0.02
0 

± 
0.00
7 

0.00
8 

± 
0.00
0 

0.01
5 

± 
0.00
5 

Vaucheroxanthin 
ester 

0.00
0 

± 
0.00
0 

0.00
0 

± 
0.00
0 

0.06
7 

± 
0.01
5 

0.08
7 

± 
0.00
5 

0.06
1 

± 
0.02
6 

0.07
2 

± 
0.05
7 

0.03
3 

± 
0.00
6 

0.07
1 

± 
0.02
1 

0.05
0 

± 
0.00
9 

0.09
2 

± 
0.03
5 

Cantaxant
hin 

  nd nd nd nd nd nd nd nd nd nd 

β-carotene   
0.39
4 

± 
0.04
3 

0.91
7 

± 
0.14
4 

0.46
3 

± 
0.07
6 

0.49
7 

± 
0.03
7 

0.57
0 

± 
0.03
5 

0.94
4 

± 
0.14
7 

0.37
9 

± 
0.02
6 

1.11
1 

± 
0.21
6 

0.54
3 

± 
0.02
1 

0.91
6 

± 
0.33
5 

Total   
0.44
8 

± 
0.04
5 

0.99
7 

± 
0.16
1 

1.10
0 

± 
0.21
5 

1.47
9 

± 
0.07
4 

1.45
5 

± 
0.08
6 

1.88
8 

± 
0.23
6 

0.75
8 

± 
0.04
1 

2.29
4 

± 
0.37
8 

1.06
7 

± 
0.02
6 

2.05
6 

± 
0.75
2 

* nd – non detected 
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Table 5 – Fatty acid content in dry weight (% d.w.) mean ± SD of fatty acid composition of Nannochloropsis gaditana batch 1 of the 

extraction in small scale. 

 

Fatty 
acid 

Phases % d.w. 

One WEH 6:77:17 WIH 6:77:17 WIH 9:74:17 WIH 10:73:17 WIH 12:71:17 

Two 10:40:50 

14:0 0.43 ± 0.01 0.52 ± 0.18 0.79 ± 0.02 0.92 ± 0.10 0.89 ± 0.03 

16:0 1.08 ± 0.03 1.33 ± 0.56 2.00 ± 0.03 2.20 ± 0.27 2.16 ± 0.09 

16:1n7 1.26 ± 0.01 1.56 ± 0.60 2.37 ± 0.02 2.68 ± 0.33 2.65 ± 0.09 

18:1n9 0.28 ± 0.00 0.41 ± 0.19 0.51 ± 0.00 0.59 ± 0.08 0.59 ± 0.01 

18:2n6 0.21 ± 0.00 0.28 ± 0.12 0.43 ± 0.00 0.48 ± 0.06 0.47 ± 0.01 

20:1n9 0.15 ± 0.10 0.17 ± 0.05 0.23 ± 0.21 0.23 ± 0.04 0.56 ± 0.19 

20:4n6 0.55 ± 0.00 0.65 ± 0.24 0.97 ± 0.08 1.11 ± 0.14 1.10 ± 0.02 

20:5n3 2.97 ± 0.02 3.24 ± 1.11 5.08 ± 0.01 5.91 ± 0.74 5.85 ± 0.11 

Others 0.63 ± 0.30 0.18 ± 0.02 1.61 ± 0.08 1.13 ± 0.68 1.50 ± 0.07 

∑ SFA 1.51 ± 0.04 1.85 ± 0.74 2.78 ± 0.38 3.11 ± 0.37 3.06 ± 0.12 

∑ MUFA 1.69 ± 0.11 2.14 ± 0.74 3.11 ± 0.02 3.50 ± 0.37 3.80 ± 0.29 

∑ LC-PUFA 3.52 ± 0.02 3.89 ± 1.35 6.05 ± 0.03 7.02 ± 0.88 6.95 ± 0.13 

Total FA 7.56 ± 0.13 8.34 ± 2.92 13.99 ± 0.63 15.25 ± 2.35 15.78 ± 0.48 



28 

 

 

 



29 

 

 



30 

 



31 

 

 



32 

 

 


