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ABSTRACT 

Digital holography has been reported as an effective tool for particle analysis. Other image-based techniques have small 

depth of focus allowing only 2D analysis at microscopic level. On the other hand, digital holography offers the ability to 
study volume samples from a single recording as reconstructions at different depths can be obtained. This paper focuses 

on the processing of the digital hologram that follows its recording in order to obtain particle size. We present a step-

wise processing procedure with discussion on aspects such as reconstruction, background correction, segmentation, 

focusing, magnification and particles' feature extraction. Solutions to common obstacles faced during particle analysis 

which include ways to obtain fixed size reconstructions, automatically determine the threshold value, calculate 

magnification, and locate particles' depth position using effective focusing metrics are highlighted. Real holograms of 

microparticles are used to illustrate and explain the different stages of the procedure. Experimental results show that the 

proposed algorithm can effectively extract particle size information from recorded digital holograms. 

Keywords: Digital holography, microparticle analysis, particle size distribution measurement. 

1. INTRODUCTION 

Several applications require the precise measurement of the position, speed or the size distribution of particles or 

other micro objects suspended in gas or liquid mediums. Imaging based particle analysis techniques suffer from the 

reduced depth of field imposed by the required magnification. As a result they can only be used to study particles on very 

thin volumes and have increased number of false positive identifications corresponding to out of focus particles.1,2

Holographic particle analysis is an established technique for particle measurements.
3
 The use of high definition 

photographic films for the recording of particle holograms allows the study of samples with relatively large volumes and 

with high resolution but suffers from increased processing time required for film development and subsequent 

digitization of the reconstructions. With digital recording of holograms, the chemical processing step for the film 

development is eliminated, which substantially increases the practicability of the method.4-6 The resolution achievable by 

digital holographic systems might not be as high as the one obtained with holograms recorded on high resolution films, 

but the ease of processing has made digital holography more attractive. 

The recording of digital holograms for particle analysis is discussed in the literature.
4,6,7

 Similar techniques have 

been used for several applications including the study of plankton in sea water
8
 and holographic particle image 

velocimetry.9 This paper reviews several aspects of digital holographic analysis for particle size measurements and 
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focuses on the processing required following the recording of the digital hologram in order to identify and measure the 

recorded particles. The aim is to design an effective and accurate automated algorithm capable of extracting particles 

from digital holograms with the fewest possible tuning parameters and without any other assumptions about the size or 

the shape of the particles under consideration. Following this, the algorithm should be able to accurately measure 

properties of the extracted particles such as their size and shape. In this paper, we focus only on particle size distribution 

(PSD) and results about particle shape such as axis length distribution (ALD) obtained using the same algorithm are 

discussed elsewhere.10

Direct fringe analysis based methods for estimating the size or the focusing point of particles recorded in digital 

holograms without reconstruction have been reported,
11-13

 but these methods are only applicable in the case of spherical 

particles and hence are not considered in this paper. Our method uses edge detection
14

 to segment the particles from 

reconstructions at several depths. The best focusing depth for each particle is identified based on a focusing metric. 

Following focusing, the size and the shape of the particles are estimated. 

In order to verify the performance of the algorithm, several experiments with real particle holograms have been 

performed and the obtained experimental results are discussed. In particular, we present experiments verifying the 

focusing algorithm. In addition, we have measured the PSD of a population of particles with varying size using the 

proposed algorithm and we compare the results with corresponding results obtained from scanning electron microscope 

(SEM) images of particles from the same population. Finally, a number of particles with very narrow size distribution 

suspended in water is examined and the obtained PSD are compared to the expected ones. The experimental results 

verify that the algorithm can be used to accurately measure particles of sizes down to 10 m  with an error of ~ 5 m.

The paper is organized as follows: In Section 2, the in-line digital holographic microscopy recording setup is 

described together with the fundamentals of digital holography. In Section 3, the algorithm that is used for the processing 

of the recorded digital holograms is described in details followed by Section 4, where the results obtained from the 

experiments used to verify the accuracy and the effectiveness of the algorithm are presented and Section 5 concludes the 

paper. 

2. IN-LINE DIGITAL HOLOGRAPHIC MICROSCOPY 

2.1 In-line digital holographic recording setup 

The setup that has been used for the recording of the digital holograms is shown in Fig. 1. A laser beam is focused 

by a microscopic objective lens on a pinhole which is located at a distance D  from the recording camera. The resulting 

spherical diverging reference beam illuminates the sample which is located at a distance d  from the recording camera. 

One part of the illuminating beam passes through the sample without being diffracted and acts as the reference beam 

RU . The spherical diverging reference beam can be expressed as4

Fig. 1. Digital holographic microscopy setup. M. O. stands for microscopic objective lens. 
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where x  and y  are the spatial coordinates on the camera plane and  is the wavelength of the laser beam. Another part 

of the illuminating beam is diffracted by the particles within the sample generating the object beam dU  which 

propagates towards the recording camera. The object beam at the camera plane can be expressed by the Fresnel-

Kirchhoff integral as4

2 2 2

2 2 2
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exp ( ) ( )

( , ) ( , ) ,
( ) ( )

d

i x x y y d

U x y U x y dx dy
x x y y d

 (2) 

where 'x  and 'y  are the spatial coordinates on the object plane. In Eq. (2) constant phase terms have been omitted for 

simplicity. The interference pattern between the reference and the object waves is captured by a digital camera and can 

be expressed as 

2
( , ) ( , ) ( , ) .RI x y U x y U x y  (3) 

Fig. 2(a) shows a recorded digital hologram. In order to reconstruct the hologram at a distance d , I needs to be 

multiplied by the reference wave and then propagated using the Fresnel-Kirchhoff integral as
4

2 2 2

2 2 2

2
exp ( ) ( )

( , ) ( , ) ( , ) .
( ) ( )

d R

i x x y y d

U x y I x y U x y dxdy
x x y y d

 (4) 

For  d ' d ,  when quantization and other digitizing errors are negligible, the reconstructed wave dU  equals the object 

wave dU . Fig. 2(b) shows a reconstruction obtained from the hologram shown in Fig. 2(a). 

2.2 Digital holographic microscopy reconstruction 

In digital holographic microscopy, Eq.(4) has to be numerically calculated with the convolution reconstruction 

method in which case, the pixel size of the reconstructed image ,x y  equals the pixel size of the recording 

           

(a)       (b) 

Fig. 2. Digital holographic microscopy data of ceramic beads on a slice. (a) recorded digital hologram; and (b) a 

reconstruction. 
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camera ,x y , i.e. x x  and y y .
4
 Lateral magnification defined as ( ) ( ) /M d r d r , where ( )r d  is the 

measured object size at distance d  and r  is the real object size, can be introduced by changing the distance between the 

source of the spherical reference wave and the CCD, or the wavelength that is used for the reconstruction as4

1

( ) 1 ,
d d

M d
D D

 (5) 

where D  is the pinhole to CCD distance and  is the wavelength that are used for the reconstruction respectively. By 

changing D  and ,  the distance d  where the object will appear focused also changes as
4

1
1 1 1

.d
D d D

 (6) 

For our experiments we only change D as 100D D  and retain .

The digital holography setup which has been described above has three desirable characteristics. Firstly, it can 

magnify the reconstructed object wave allowing the study of smaller particles compared to systems which use collimated 

illumination. Secondly, it minimizes the effects of the twin image since the twin image is well out of focus for the depths 

where the particles appear focused.
7
 Finally, the described reconstruction method simplifies the spatial localization of the 

particles as it overcomes the pixel resizing problem which causes shifting of the x y  location of the particles for 

different depth reconstructions. 

3. DIGITAL HOLOGRAM PROCESSING FOR PARTICLE MEASUREMENTS 

Algorithms to extract particle size and location information from digital holograms without reconstruction assume 

spherical particle size and cannot be used for our study.
11-13

 Hence, in order to study a volume of the sample, each 
hologram needs to be reconstructed at several reconstruction depths. Our method is summarized as follows: 

1. The recorded hologram is reconstructed at several depths covering the volume to be studied with sufficiently 

small depth steps.  

2. For each reconstruction, edge detection is used to identify particles. The location, area, and focusing metric for 

each identified particle are recorded. 

3. Each particle may be identified on several depths. Occurrences of the same particle at different depths are 

identified by examining their x y  location on the reconstruction plane. 

4. Based on the focusing metric, the best focusing depth is identified for each particle. 

5. Following focusing, the size and the shape of the particles can be estimated. 

The distance between successive reconstructions depends on the minimum size of the particles to be studied. In 

general, this distance should be similar to the minimum particle size that needs to be identified, if not smaller. The details 

of the algorithm are described in the following sections. 

3.1 Preprocessing and background correction 

As shown in Fig. 2(b) the background of the reconstructed hologram is not uniform. The bright background is due to 

the zero order of the reconstruction which is also contaminated by noise caused by speckle due to the coherent 

illumination, the twin image and non uniform illumination. One approach to reduce the zero order term from the 

reconstruction is to high-pass the hologram with a low-cutoff frequency filter before reconstruction.
4
 Another approach 

is to record the reference wave (without the object) and subtract it from the hologram prior to reconstruction.7 This 

approach however, is impractical for real time monitoring systems as the sample needs to be removed from the system 

regularly in order to record updated images of the reference wave. In all cases, we have noticed that the suppression of 

the zero order term affects the particles, by blurring or changing their perimeter, leading to erroneous size measurements. 
As a result, these approaches offer practical disadvantages. In the following section, we propose an edge detection-based 

technique for particle segmentation which is immune to zero order and other irregularities of the background, thus 

eliminating preprocessing of the hologram. 
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3.2 Particle segmentation 

3.2.1 Threshold-based segmentation 

Segmentation can be performed by thresholding the intensity of the reconstruction.
15

 Pixels with intensity value 
lower than the threshold are considered to belong to a particle while any pixels with higher intensity values than the 

threshold are considered to belong to the background. This approach has several drawbacks related to the selection of the 

threshold value.  

A manual threshold selection can be done, but this would limit the usefulness of the method as input from the user 

would be required for every processed hologram. A threshold value can be calculated but knowledge of the median 

background intensity, the standard deviation of the background noise, and the expected size of the particles need to be 

assumed.
15

 Histogram-based approaches can also be utilized for automatic threshold selection.
16

 The histogram of the 

reconstruction intensity is expected to have 2 distinct peaks, one corresponding to dark areas (particles) and another 

corresponding to the bright areas (background). The threshold can then be selected as the value where the histogram 

valley between these peaks is located. However, reconstructed digital holograms suffer from increased noise causing 

several minima and maxima in the intensity histogram. As a result such histogram-based techniques usually fail to locate 

an adequate threshold value. Noise removal
17

 can reduce these effects but still multiple minima and maxima cannot be 

eliminated from the histogram. 

Even if a threshold value could be determined, manually or automatically, other factors such as variations of the zero 

order term in the reconstruction and irregular illumination prevent its use for accurate segmentation. Also as it can be 

seen in Fig. 3, a different threshold value changes the measured diameter of the particle, limiting the measurement 

accuracy. As a result, threshold-based segmentation methods offer limited accuracy in the case of digital holography and 
are not considered here. 

3.2.2 Edge detection-based segmentation  
In order to increase accuracy, we use the Canny edge detection technique which locates edges by examining 

gradients after a Gaussian filtered has been applied to the reconstruction.14 Gaussian filtering reduces the effect of noise 

on erroneous identification of edges. Following Gaussian filtering, the edge detection algorithm examines the derivatives 

for local maxima. Thresholding with hysteresis is used to classify the identified maxima. Two thresholds Lt  and Ht  are 

used for this. Maxima with a value lower than Lt  are identified as not being edges immediately. Maxima with a value 

higher than Ht  are identified as edges immediately too. Maxima with value between Lt  and Ht  are identified as edges 

only if they are connected to identified edges. The algorithm results in a set of ones (‘1’) where edges have been detected 

and zeros everywhere else. 

The method requires the selection of 3 parameters. The standard deviation  and the two thresholds Lt  and Ht .

is selected so that the filtering operation does not alter the size of the particles that need to be examined. A large standard

Fig. 3. A cross-section of normalized intensity around a particle and a threshold value used for segmentation. The 

selection of the threshold value affects the measured particle's diameter. 
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deviation results in a Gaussian filter with large length which may affect the size of small particles causing erroneous size 

measurements. The thresholds Lt  and Ht  on the other hand affect only the number of particles to be identified and not 

their size. High values lead to identification of fewer particles (only those with very sharp edges), while lower values 

increase the number of identified particles but also might lead to false positives (areas which happen to be surrounded by 

strong edges). Such areas correspond to fringes caused by the virtual image or out of focus particles and are much 

brighter than focused particles. As a result, they can be easily identified and neglected based on their average intensity. 

The selection of these parameters is not critical for the performance of the algorithm and they do not have to be 

tuned for each hologram. This is verified by the results presented in Section 4 where the same set of parameters has been 

found to give acceptable results for all the experiments which cover a large number of holograms recorded under 

different conditions and depicting different particle sizes. 

Following edge detection, the dark areas that are completely enclosed by edges are filled in to form blobs that are 

considered as possible particles. Open ended lines are removed by erosion followed by dilation in order to eliminate 

noisy formations that frequently appear in the background. This does not change the size of the identified blobs. Blobs 

that are touching the edges of the reconstruction correspond to partially shown particles and are therefore removed in 

order to avoid size measurements corresponding to partial particles. Also blobs with very small diameter are removed as 

are likely to correspond to noise. 

Apart from good localization, the use of edge detection-based particle segmentation on digital holograms also has 

the advantage that particles are surrounded by strong edges only close to their best focusing point. As a result, highly 

unfocused particles are not considered easing depth localization. The procedure described above results in a set of blobs 

which correspond to particles shown in the reconstruction. These blobs have the same size and shape as the 

corresponding particles and can be use for particle measurement as discussed in Section 3.4. 

3.3 Particle focusing 

As it can be seen from Eq.(5), magnification depends on the object distance from the camera. On the other hand, it is 

practically impossible to know the exact location of the particles within the sample, hence this distance need to be 

accurately determined from the recorded hologram for each particle separately. Direct interferogram analysis methods
11-

13
 assume circular particles and hence cannot be used. As a result, reconstructions corresponding to several distances 

have to be obtained and then the best focusing distance for each particle has to be identified separately using a focusing 

metric. Mean intensity and the variance of the intensity have been reported as an appropriate focusing methods.
7,18

The focusing algorithm is as follows: 

1. Following segmentation of each reconstruction, the focusing metric is calculated and stored for each identified 

blob separately. 

2. Once this has been done for all the blobs and reconstruction distances, blobs which have overlapping spatial 

positions at different depths are labeled as one particle. 

3. The depth profile of the focusing metric is formed for each particle. 

4. The best focusing depth for each particle is selected as the depth where the focusing metric is minimized. 

Normalized depth profiles of the mean intensity and the variance of the intensity for one particle are shown in Fig. 4. 

In this case the best focusing depth is 36 mm. There are cases where the minimum of the particle's depth profile appears 

at the last or the first examined depth. In these cases, the particle is probably located outside the examined depth range 

and hence such particles are ignored to avoid erroneous measurements. 

3.4 Particle size measurement 

Following segmentation and particle focusing, the area which each particle occupies at its best focusing depth is 

determined accurately. In general, the particles are not spherical and as a result the identified regions are not circular.  As

a result, it is not always easy to measure their sizes. However, several properties of these areas can be extracted for 

further size and shape analysis. For example, the equivalent diameter (the diameter of a circle with the same area as the 
identified region) can be used to extract the PSD of the particles. The measured PSD will be correct assuming that the 

particles are close to circular. Also an ellipse with the same normalized second central moment as the identified region 

can be used to calculate the lengths of the major and the minor axes. Assuming that the identified ellipses characterize 
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Fig. 4. Depth profile of the normalized focusing metrics (mean intensity and variance of the intensity) for one particle. 

The best focusing depth for this particle is 36 mm. 

the particles, these lengths can be used to calculate ALD, or to differentiate between circular, ellipsoidal, and needle-like 

particles. 

In order to convert the measured size to real length, the value needs to be converted using the magnification factor M  as 

,
( )

pixels

o

r x
r

M d
 (7) 

where pixelsr  is the measured size of the particle in pixels and od  is the best focusing depth of each particle. 

4. EXPERIMENTS AND RESULTS 

In this section, several experiments are presented to verify the performance of algorithms described in Section 3. 

This paper focuses on particle measurement results. Results of shape measurement obtained using this algorithm are 

shown in another paper.
10

 Section 4.1 describes an experiment that is used to verify the accuracy of the focusing step. 

Sections 4.2 to 4.4 present other experiments which verify the performance and the accuracy of the whole particle 

measurement procedure. 

Three particle populations were examined: 

- A population of ceramic beads with a large diameter range ( ~ 50 m  to ~ 150 m).  The average diameter of 

the population was ~ 80 m.

- A population of polymer microspheres with a certified diameter of 40 m.

- A population of polymer microspheres with a diameter of 10 m.

The ceramic beads could not be suspended in water as their density was too high, hence they have been used only 

for experiments requiring a dry sample, such as the experiments described in Sections 4.1 and 4.2. A glass slide was used 

to hold the sample for digital holography experiments and the sample holder of the SEM instrument for the SEM 
experiments. The polymer microsphere particles were suspended in water, hence they were used in the cases where a 

volume sample was needed (Sections 4.3 and 4.4). For these experiments the sample was contained in a cuvette. The 

length of the cuvette along the optical axis was 1 cm. 

For the digital holographic microscopy experiments the recording setup shown in Fig. 1 was used with a green 

laser 532 nm , a 60  microscopic objective and 1 m  pinhole. The distance between the point source and the CCD 
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camera for the recording was approximately D 62 mm  and for the reconstruction, a point source to CCD camera 

distance of ' 100 6.2 mD D was used. The camera used for the experiments had 1280 960  square pixels of 

size 4.65 mx y . Prior to the described experiments the setup was tested with a USAF target. The obtained 

resolution for 62 mmD was ~7 m.  The theoretical magnification of the setup according to Eq.(5) was also 

experimentally verified. 

The threshold values that were used for the edge detection algorithm for all the experiments were chosen as 0.3Lt

and 0.6Ht . The standard deviation of the Gaussian filter used for the edge detection in the experiments described in 

Sections 4.1, 4.2, and 4.3 was selected as 1.5  which results in a filter size of 6 6 pixels . This filter length has been 

found to give good noise reduction without affecting the size of the smallest particles studied in these experiments which 

had a diameter of 40  m or ~17 pixels particles. In the experiments described in Section 4.4, particles with a diameter of 

10 m or ~3 pixels were studied. Due to the small size of these particles, no Gaussian filtering was used prior to edge 

detection. Nevertheless it is shown in Section 4.4 that the algorithm was still able to detect the particles and measure 

their size with acceptable levels of accuracy. 

4.1 Verification of the focusing algorithm 

In order to verify the accuracy of the focusing method a series of experiments were carried out. For these 

experiments, the object consisted of seven ceramic beads with sizes ~80 m  positioned on a glass slide. The slide was 

positioned in the setup normal to the optical axis so that the particles were located at the same depth and a hologram was 

captured. The slide was then consecutively displaced by 1 mm along the optical axis every time, and a hologram was 

recorded for each displacement. The experiment was then repeated for a slide displacement of 0.1 mm. In both cases, the 

displacement was achieved with a device that had an accuracy of  0.1  mm.

Following this, the focusing algorithm was used to find the best focusing point for the particles of each hologram. In 

the case of 1 mm displacement, the algorithm was used to find the best focusing point within a depth range of 27.5 to 

32.5 mm and in the case of 0.1 mm within a range of 20 to 34 mm. In both cases, the depth step was selected as 50 m .

Following the focusing of the particles the depth of the slide for each position was estimated by averaging the depth of 

the particles. Error! Reference source not found. shows the measured slide positions. The best focusing depth of the 

particles and the estimated slide positions are shown in Fig. 5(a) for the displacement of 1 mm and in Fig. 5(b) for the 

displacement of 0.1 mm.  

According to Table 1, the maximum observed error between the measured and the expected slide displacement is 

120 m. Also, assuming that all the particles are located at the same depth as the slide, the maximum observed error 

between a particle's depth and the corresponding slice depth is 110 m  as it can be seen in Fig. 5. According to Eq.(5), a 

110 m  focusing error causes an error in magnification of ~0.35% under these conditions. 

4.2 Comparison with Scanning Electron Microscopy 

In order to verify the performance of the particle measurement algorithm, we studied ceramic beads from a 

population with a wide range of sizes around 80 m.  Several holograms of particles from the population positioned on 

glass slides were recorded using the setup shown in Fig. 1. The recorded holograms were processed following the 

procedure described in Section 3. A depth of 3 mm with a step size of 50 m  was used for each hologram. The 

algorithm identified 437 different particles. 

In addition, an SEM was used to record several images of different particles taken from the same population. One 

such image is shown in Fig. 6(a). The SEM images were segmented using Canny edge detection, using the same 

parameters as before, to extract the particles (bright areas) and the size of each particle was measured considering the 

magnification of the SEM. 615 different particles were measured from the SEM captured images. 
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Fig. 6(b) shows the resulting PSD measurements from the holography and the SEM experiments. The mean particle 

size identified from the holographic microscopy and the SEM were 81.1 m  and 79.2 m  respectively and their 

standard deviation were 14.2 m  and 13.9 m  respectively. In the case of SEM focusing was performed manually 

during the recording, and the magnification was provided automatically from the instrument. On the other hand, in the 

case of digital holography, focusing and the calculation of the magnification factor was performed by the algorithm. The 

results of this experiment verified the accuracy of the digital hologram based measurement algorithm. 

4.3 Microparticles suspended in water (average diameter of 40  m)

The experiments described in Sections 4.1 and 4.2 verify that the algorithm can effectively locate particles and 

accurately measure their sizes. For this experiment, particles with certified diameter of 40 m  suspended in water were 

examined. One hologram was recorded from the sample. The hologram was reconstructed at 200 different depths with a 

distance of 25 m  from each other so that an overall depth of 0.5 cm was covered. 42 different particles were identified. 

Fig. 7(a) shows one reconstruction of the hologram and Fig. 7(b) the calculated PSD. There is an error of ~5 m

between the actual particle size and the location of the PSD peak. This error is below the resolution of the system and it 

can also be partially attributed to inaccurate measurement of the distance D  between the point source and the recording 

      

(a)       (b) 

Fig. 5. Verification of the focusing algorithm (a) for 1 mm displacement and (b) for 0.1 mm. Asterisks show the 

measured position of the particles od and the lines show the estimated slide depth (average depth of the particles). 

Table 1. Numerical results of the focusing algorithm for displacement of (a) 1 mm and (b) 0.1 mm. 

d

(mm) 

Measured 

Displacement 

(mm) 

Expected 

Displacement 

(mm) 

Error 

(mm) 

d

(mm) 

Measured 

Displacement 

(mm) 

Expected 

Displacement 

(mm) 

Error 

(mm) 

32.26 - - - 32.14 - - - 

31.19 1.07 1 0.07 32.06 0.08 0.1 -0.02 

30.11 1.08 1 0.08 31.94 0.12 0.1 0.02 

29.03 1.08 1 0.08 31.81 0.13 0.1 0.03 

27.91 1.12 1 0.12 31.73 0.08 0.1 -0.02 

 (a)       (b) 
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camera, which for practical reasons, cannot be measured accurately. 

4.4  Microparticles suspended in water (average diameter of 10  m )

In this experiment, 10 m  particles suspended in water were examined. 40 reconstructions with a distance of 25 

m  between each other were obtained from one hologram to cover a depth of 1 mm. 47 different particles were 

identified from the algorithm. Fig. 8(a) shows one reconstruction of the hologram and Fig. 8(b) the calculated PSD. The 

particle size is very close to the resolution limit of the system (~7 m)  leading to the relatively large spread around the 

expected size which can be seen in Fig. 8(b). 

The experiments presented in Sections 4.3 and 4.4 verify the performance of the algorithm, when applied to 

holograms recorded from particles suspended in water. As it can be seen in Fig. 7(a) and Fig. 8(a), the presence of the 

     

(a)       (b) 

Fig. 6. (a) An image of ceramic beads obtained from the SEM. Bright areas correspond to particles whereas the dark 

circular areas on the background are irregularities of the sample holder. (b) Comparison of PSD obtained from 

digital holography and SEM. 

(a)       (b) 

Fig. 7. Digital hologram of 40 m  particles suspended in water: (a) example of reconstruction; and (b) measured PSD 

from 42 particles. 
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cuvette and the water does not change the reconstructed holograms significantly and hence the performance of the 

algorithm is not affected. 

5. CONCLUSIONS 

In this paper, a particle size measurement methodology based on digital holographic microscopy was presented. The 

steps of the measuring procedure were described in details. Apart from the known parameters related to the recording 

(such as the wavelength and the reconstruction distance), and the minimum size of particles to be identified, the method 

requires the selection of a small set of unknown parameters, namely the standard deviation of the Gaussian filter, and the 

threshold values needed for the edge detection. No assumptions on aspects such as the shape of the particles were used 

for the identification. 

A series of digital holographic microscopy experiments using holograms of real particles were used in order to 

verify the algorithm. The results revealed that the method can measure particles as small as 10 m  with an error of  

~5 m  which is close to the resolution of the system used. It has also been demonstrated that the method is able to 

identify dry particles and particles suspended in water. Finally, the experiments showed that the selection of the 

parameters (standard deviation of Gaussian filter, and edge detection thresholds) is not crucial for the performance of the 

algorithm, as the same values can be used under several different circumstances giving satisfactory results. 
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