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Abstract 

Phonocardiographic signals contain bioacoustic information reflecting the 
operation of the heart. Normally there are two heart sounds, and additional sounds 
indicate disease. If a third heart sound is present it could be a sign of heart failure 
whereas a murmur indicates defective valves or an orifice in the septal wall. The 
primary aim of this thesis is to use signal processing tools to improve the 
diagnostic value of this information. More specifically, three different methods 
have been developed:  

• A nonlinear change detection method has been applied to automatically 
detect heart sounds. The first and the second heart sounds can be found 
using recurrence times of the first kind while the third heart sound can be 
found using recurrence times of the second kind. Most third heart sound 
occurrences were detected (98 %), but the amount of false extra detections 
was rather high (7 % of the heart cycles).  

• Heart sounds obscure the interpretation of lung sounds. A new method 
based on nonlinear prediction has been developed to remove this undesired 
disturbance. High similarity was obtained when comparing actual lung 
sounds with lung sounds after removal of heart sounds. 

• Analysis methods such as Shannon energy, wavelets and recurrence 
quantification analysis were used to extract information from the 
phonocardiographic signal. The most prominent features, determined by a 
feature selection method, were used to create a new feature set for heart 
murmur classification. The classification result was 86 % when separating 
patients with aortic stenosis, mitral insufficiency and physiological 
murmurs.  

The derived methods give reasonable results, and they all provide a step forward 
in the quest for an intelligent stethoscope, a universal phonocardiography tool able 
to enhance auscultation by improving sound quality, emphasizing abnormal events 
in the heart cycle and distinguishing different heart murmurs. 
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Preface 

The intelligent stethoscope has occupied my mind for three years now, this dragon 
which consumes my time and drowns me in endless riddles. Many times have I 
looked at its mysteries in despair, but once and again the dusk disperses. Perhaps 
you can liken the process with the butterfly effect, where a butterfly flapping its 
wings over the beautiful island of Gotland can cause a hurricane in Canada. 
Similarly, the seed of an idea can be planted in the most unlikely ways; while 
hanging on the edge of a cliff or when biking along a swaying trail, while waiting 
in line at the local grocery store and sometimes even at work. A fragment of a 
thought suddenly starts to make sense, the idea tries to break free but gets lost and 
sinks into nothingness. Somewhere in a hidden corner the seed lay fallow, waiting 
for a new opportunity to rise. This could happen any day, any week or any year. In 
the end, you can only hope that the idea is unleashed while it still makes sense. 
After all, what would I write in my book if the seed decided not to grow?  

Linköping, April 2006 
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AR Autoregressive 
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AS Aortic stenosis 
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RQA Recurrence quantification analysis 
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1. Introduction 

“The way to the heart is through the ears.”

Katie Hurley 

The history of auscultation, or listening to the sounds of the body, is easily 
described by a few evolutionary leaps. Hippocrates (460-377 BC) provided the 
foundation for auscultation when he put his ear against the chest of a patient and 
described the sounds he could hear from the heart. The next leap was made by 
Robert Hooke (1635-1703) who realized the diagnostic use of cardiac 
auscultation:  

"I have been able to hear very plainly the beating of a man's heart…Who knows, I 

say, but that it may be possible to discover the motion of the internal parts of 

bodies…by the sound they make; one may discover the works performed in several 

offices and shops of a man's body and thereby discover what instrument is out of 

order."   

The biggest breakthrough in auscultation came in 1816 when René Laennec 
(1781-1826) invented the stethoscope. Laennec was about to examine a woman 
with the symptoms of heart disease, but due to her sex and age, direct auscultation 
was inappropriate. Also percussion and palpation gave little information on 
account of the patient’s obesity [1]. Consequently, Laennec used a roll of paper to 
avoid physical contact during the examination. As a spin-off, he found that heart 
and lung sounds were amplified and previously unheard sounds emerged. The 
invention of the stethoscope resulted in, without precedent, the most widely spread 
diagnostic instrument in the history of biomedical engineering. The stethoscope 
has evolved over the years, but the underlying technology remains the same. 
Attempts have been made to take the stethoscope into the IT age, but the success 
has so far been limited. A selection of stethoscopes from different eras is presented 
in Figure 1. 

Mechanical working processes in the body produce sounds which indicate the 
health status of the individual. This information is valuable in the diagnosis of 
patients, and it has been widely used since the days of Hippocrates. In modern 
health care, auscultation has found its primary role in primary or in home health 



Processing of the Phonocardiographic Signal 

2

care, when deciding which patients need special care. The most important body 
sounds are heart sounds and lung sounds, but sounds from swallowing, 
micturition, muscles and arteries are also of clinical relevance. The main sources 
for production of body sounds are acceleration or deceleration of organs or fluids, 
friction rubs and turbulent flow of fluids or gases. 

The auscultatory skills amongst physicians demonstrate a negative trend. The loss 
has occurred despite new teaching aids such as multimedia tutorials, and the 
reasons are the availability of new diagnostic tools such as echocardiography and 
magnetic resonance imaging, a lack of confidence and increased concern about 
litigations [2]. The art of auscultation is often described as quite difficult, partly 
because of the fact that only a portion of the cardiohemic vibrations are audible, 
see Figure 2. 

Figure 1. Early monaural stethoscopes (top left), Cummanns and Allisons stethoscopes (lower left), a 

modern binaural stethoscope (middle) and a modern electronic stethoscope, Meditron M30 (right). 

Acoustic stethoscopes transmit sound mechanically from a chest-piece via air-
filled hollow tubes to the listener's ears. The diaphragm and the bell work as two 
filters, transmitting higher frequency sounds and lower frequency sounds, 
respectively. Electronic stethoscopes function in a similar way, but the sound is 
converted to an electronic signal which is transmitted to the listener by wire. 
Functionalities often included in electronic stethoscopes are amplification of the 
signal, filters imitating the function of the diaphragm and the bell and in some 
cases recording abilities to allow storage of data. 

Heart sounds and murmurs are of relatively low intensity and are band limited to 
about 10–1000 Hz. Meanwhile, the human hearing is adapted to speech. This 
explains why physicians sometimes have easier to detect heart sounds by palpation 
than by auscultation. Part of this problem can be avoided by amplification of the 
sound, but much information contained in the phonocardiographic signal is hard to 
reach using acoustic stethoscopes as well as electronic stethoscopes. An intelligent 
stethoscope could make use of this extra information. Possible tasks for an 
intelligent stethoscope are to classify different murmurs, to detect differences in 
the heart sounds (such as the splitting of the second heart sound) and to detect 
additional sounds (such as the third heart sound and ejection clicks).  
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Figure 2. The frequency content of heart sounds and murmurs in relation to the human threshold of 

audibility. Drawn from [3]. Note that without amplification, the area representing the audible part of 

the phonocardiographic signal is very small. 

50-80% of the population has murmurs during childhood, whereas only about 1% 
of the murmurs are pathological [2]. A simple tool able to screen murmurs would 
be both time- and cost-saving while relieving many patients from needless anxiety. 
The sensor technology in such a tool is basically simple and the parameters 
obtained are directly related to mechanical processes within the body (in contrast 
to ECG which measures the heart’s electrical activity). In the new field of 
telemedicine and home care, bioacoustics is definitely a suitable method. 

1.1. Aim of the Thesis 

The all-embracing goal of bioacoustic research is to establish a relationship 
between mechanical events within the body and the sounds these events give rise 
to. The medical use of this knowledge is of course to link sounds that diverge from 
normality to certain pathological conditions. Clearly, there is valuable information 
hidden in the bioacoustic signal, and the primary aim of this thesis is to make use 
of signal processing tools to emphasize and extract this information. Clinical value 
has been a guiding-star throughout the work, and the goal has been to develop 
methods for an intelligent stethoscope. More specifically, the aims of this thesis 
were to: 

• identify and compare signal analysis tools suitable for phonocardiographic 
signals. 

• emphasize audibility of bioacoustic signals (Paper I emphasizes lung 
sounds by removal of heart sounds). 

• extract specific components in the phonocardiographic signal (Paper II 
describes a method able to detect the third heart sound). 

• extract information suitable for classification of heart diseases (Paper III 
presents a feature set for classification of systolic murmurs). 
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1.2. Thesis Outline 

The thesis consists of two parts. The first part, chapter 1-7, contains an 
introduction while the second part consists of three papers. 

Chapter 1 introduces the problem at hand and defines the aim of the thesis. 

Chapter 2 contains a brief summary on the physiology of the heart and the origin 
of the phonocardiographic signal.  

Chapter 3 describes methods for nonstationary and nonlinear time series analysis 
and introduces dynamical systems theory within the context of signal processing. 

Chapter 4 covers the characteristics of phonocardiographic signals in different 
domains. 

Chapter 5 discusses applications of phonocardiographic signal processing using 
the methods and results from chapter 3 and 4. 

Chapter 6 contains discussion and conclusions, including notes on future work. 

Chapter 7 is a review of the papers presented in the second part of the thesis. 
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2. Preliminaries on Heart Sounds and Heart Murmurs 

"The heart is of such density that fire can scarcely damage it."

Leonardo da Vinci (1452-1519) 

This chapter sets the scene for up-coming sections. The physics of sound is 
introduced followed by a review of the operation of the heart and the associated 
terminology. The genesis of heart sounds and heart murmurs is discussed and 
finally a short presentation of auscultation techniques and signal acquisition is 
given. 

2.1. Physics of Sound 

It would be a mistake for a study on heart sounds to leave out an introduction to 
the acoustic phenomena where everything actually starts. A sound is generated by 
a vibrating object and propagates as waves of alternating pressure. The vibrating 
source sets particles in motion, and if the sound is a pure tone, the individual 
particle moves back and forth with the frequency of that tone. Each particle is thus 
moving around its resting point, but as it pushes nearby particles they are also set 
in motion and this chain effect results in areas of compression and rarefactions. 
The alternating areas of compression and rarefaction constitute a pressure wave 
that moves away from the sound source, see Figure 3. These pressure variations 
can be detected via the mechanical effect they exert on some membrane (the 
diaphragm of the stethoscope, the tympanic membrane etc.). If the sound source 
vibrates in a more irregular manner, the resulting sound wave will be more 
complicated. Usually, sound is described by its intensity, duration, frequency and 
velocity [4]. If the sound is nonstationary, these measures have to be time varying 
to give relevant information. Time varying analysis techniques are described in 
section 3.1. 

The number of vibrations per second, or frequency, is a physical entity. What 
humans perceive as frequency is however called pitch. The two are closely related, 
but the relationship is not linear. Up to 1 kHz, the measured frequency and the 
perceived pitch are fairly the same. Above 1 kHz, a larger increase in frequency is 
required to create an equal perceived change in pitch. 
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Figure 3. The left figure is a schematic drawing of nine particles in simple harmonic motion at twelwe 

moments in time. The sound source is located on the left side and the pressure wave, indicated by 

clustering of three adjacent particles, moves from left to right. Note that each particle moves 

relatively little around a rest position. In the right figure a pressure wave emanating from a sound 

source (black circle) is illustrated. Drawn from [4]. 

2.2. Physiology of the Heart 

The primary task of the heart is to serve as a pump propelling blood around the 
circulatory system. When the heart contract, blood is forced through the valves, 
from the atria to the ventricles and eventually out through the body, see Figure 4.  

There are four heart chambers; right and left atria and right and left ventricles. The 
two atria mainly act as collecting reservoirs for blood returning to the heart while 
the two ventricles act as pumps to eject the blood to the body. Four valves prevent 
backflow of blood; the atrioventricular valves (the mitral and tricuspid valve) 
prevent blood from flowing back from the ventricles to the atria and the semilunar 
valves (aortic and pulmonary valves) prevent blood from flowing back into the 
ventricles once being pumped into the aorta and the pulmonary artery. 
Deoxygenated blood from the body enters the right atrium, passes into the right 
ventricle and is ejected into the pulmonary artery on the way to the lungs. 
Oxygenated blood from the lungs re-enter the heart in the left atrium, passes into 
the left ventricle and is then ejected into the aorta.

The blood pressure within a chamber increases as the heart contracts, generating a 
flow from higher pressure areas towards lower pressure areas. During the rapid 
filling phase (atrial and ventricular diastole), venous blood from the body and from 
the lungs enters the atria and flows into the ventricles. As the pressure gradient 
between the atria and the ventricles level out (reduced filling phase), a final 
volume of blood is forced into the ventricles by atrial contraction (atrial systole). 
In the beginning of ventricular systole, all the valves are closed resulting in an 
isovolumic contraction. When the pressure in the ventricles exceeds the pressure 
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in the blood vessels, the semilunar valves open allowing blood to eject out through 
the aorta and the pulmonary trunk. As the ventricles relax the pressure gradient 
reverses, the semilunar valves close and a new heart cycle begins.

Superior Vena Cava

Pulmonary Semilunar
Valve

Right Atrium

Tricuspid Valve

Right Ventricle

Inferior Vena Cava

Arch of Aorta

Pulmonary Trunk

Left Atrium

Aortic Semilunar Valve

Mitral Valve

Left Ventricle

Interventricular Septum

Figure 4. Anatomy of the heart (left) and the blood flow pathways through left and right heart 

(right). 

2.3. Heart Sounds 

The relationship between blood volumes, pressures and flows within the heart 
determines the opening and closing of the heart valves. Normal heart sounds occur 
during the closure of the valves, but how they are actually generated is still 
debated. The valvular theory states that heart sounds emanate from a point sources 
located near the valves, but this assumption is probably an oversimplification [5]. 
In the cardiohemic theory the heart and the blood represent an interdependent 
system that vibrates as a whole [5]. Both these theories originate from a time when 
the physiological picture was based on a one-dimensional conception of flow. 
Recent research provides means to visualize the actual three-dimensional flow 
patterns in the heart [6], and this new knowledge will probably clarify our view on 
the underlying mechanisms of heart sounds. An example of a visualisation 
technique called particle trace is shown in Figure 5. The blood’s pathway through 
the heart is far from fully understood, but the induced vortices seem optimized to 
facilitate flow and thereby increase the efficiency of the heart as a pump. The 
impact of this new knowledge on the understanding of heart sounds and their 
origin is yet to be investigated. Awaiting this new insight, the cardiohemic theory 
will be assumed valid. 

Normally, there are two heart sounds, see Figure 6. The first sound (S1) is heard in 
relation to the closing of the atrioventricular valves, and is believed to include four 
major components [3]. The initial vibrations occur when the first contraction of the 
ventricle move blood towards the atria, closing the AV-valves. The second 
component is caused by the abrupt tension of the closed AV-valves, decelerating 
the blood. The third component involves oscillation of blood between the root of 
the aorta and the ventricular walls, and the fourth component represents the 
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vibrations caused by turbulence in the ejected blood flowing into aorta. The 
second sound (S2) signals the end of systole and the beginning of diastole, and is 
heard at the time of the closing of the aortic and pulmonary valves [7]. S2 is 
probably the result of oscillations in the cardiohemic system caused by 
deceleration and reversal of flow into the aorta and the pulmonary artery [5].

Figure 5. Particle trace (path line) visualization of intra-cardiac blood flow. The colour coding 

represents velocity according to the legend to the right. The image was adapted from [6]. 

There is also a third and a fourth heart sound (S3 and S4). They are both connected 
with the diastolic filling period. The rapid filling phase starts with the opening of 
the semilunar valves. Most investigators attribute S3 to the energy released with 
the sudden deceleration of blood that enters the ventricle throughout this period 
[8]. A fourth heart sound may occur during atrial systole where blood is forced 
into the ventricles. If the ventricle is stiff, the force of blood entering the ventricle 
is more vigorous, and the result is an impact sound in late diastole, S4 [7]. There 
are also sounds such as friction rubs and opening snaps, but they will not be 
treated further. 

2.4. Heart Murmurs 

Murmurs are produced by turbulent blood flow as a result of narrowing or leaking 
valves or from the presence of abnormal passages in the heart. More specifically, 
heart murmurs occur when the blood flow is accelerated above the Reynolds 
number. The resulting blood flow induces non-stationary random vibrations, 
which are transmitted through the cardiac and thoracic tissues up to the surface of 
the thorax. There are five main factors involved in the production of murmurs [7]: 

• High rates of flow through the valves. 

• Flow through a constricted valve (stenosis). 

Left atrium Mitral valve 

Left ventricle 
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• Backward flow through an incompetent valve (insufficiency or 
regurgitation). 

• Abnormal shunts between the left and right side of the heart (septal 
defects). 

• Decreased viscosity, which causes increased turbulence. 

Heart murmurs are graded by intensity from I to VI. Grade I is very faint and 
heard only with special effort while grade VI is extremely loud and accompanied 
by a palpable thrill. Grade VI murmurs are even heard with the stethoscope 
slightly removed from the chest. When the intensity of systolic murmurs is 
crescendo-decrescendo shaped and ends before one or both of the components of 
S2, it is assumed to be an ejection murmur (S2 is composed of two components, 
one from the aortic valve and one from the pulmonary valve). Murmurs due to 
backward flow across the atrioventricular valves are of more even intensity 
throughout systole and reach one or both components of S2. If the regurgitant 
systolic murmur starts with S1 it is called holosystolic and if it begins in mid- or 
late systole it is called a late systolic regurgitant murmur. Besides murmurs, 
ejection clicks might also be heard in systole. They are often caused by 
abnormalities in the pulmonary or aortic valves. Different murmurs, snaps, knocks 
and plops can also be heard in diastole, but such diastolic sounds are beyond the 
scope of this thesis.
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Figure 6. The four heart sounds in relation to various hemodynamic events and the ECG. All units 

are arbitrary.  
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2.5. Auscultation and the Phonocardiogram 

Auscultation is the technical term for listening to the internal sounds of the body. 
The loudness of different components varies with the measurement location. For 
instance, when listening over the apex, S1 is louder than S2. Also, the location of a 
heart murmur often indicates its origin, e.g. mitral valve murmurs are usually 
loudest at the mitral auscultation area. The traditional areas of auscultation, see 
Figure 7, are defined as [7]: 

• Mitral area: The cardiac apex. 

• Tricuspid area: The fourth and fifth intercostal space along the left sternal 
border. 

• Aortic area: The second intercostal space along the right sternal border. 

• Pulmonic area: The second intercostal space along the left sternal border. 

Even though the definition of these areas came to life long before we had much 
understanding of the physiology of the heart, they are still good starting points. 
Revised areas of auscultation, allowing more degrees of freedom, have however 
been adopted [7]. 

A

M

P

T

Figure 7. Traditional areas of auscultation (M refers to the mitral area, T the tricuspid area, P the 

pulmonic area, and A the aortic area). 

A graphical printing of the waveform of cardiac sounds is called a 
phonocardiogram, PCG. An example of a phonocardiogram was shown in Figure 
6. To obtain the phonocardiogram, a microphone is placed on the patient’s chest 
and the signal is plotted on a printer, similar to the ones used in ECG recordings. 
This technique promotes visual analysis of cardiac sounds, thus allowing thorough 
investigation of temporal dependencies between mechanical processes of the heart 
and the sounds produced. 

2.6. Acquisition of Phonocardiographic Signals 

The audio recording chain involves a sequence of transformations of the signal: a 
sensor to convert sound or vibrations to electricity, a pre-amplifier to amplify the 
signal, a prefilter to avoid aliasing and an analogue to digital converter to convert 
the signal to digital form which can be stored permanently. In the setting of the 
intelligent stethoscope, this chain is complemented with an analysis step and an 
information presentation step. 
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2.6.1. Sensors 

Microphones and accelerometers are the natural choice of sensor when recording 
sound. These sensors have a high-frequency response that is quite adequate for 
body sounds. Rather, it is the low-frequency region that might cause problems [9]. 
There are mainly two different kinds of sensors, microphones and accelerometers. 
The microphone is an air coupled sensor that measure pressure waves induced by 
chest-wall movements while accelerometers are contact sensors which directly 
measures chest-wall movements [10]. For recording of body sounds, both kinds 
can be used. More precisely, condenser microphones and piezoelectric 
accelerometers have been recommended [11]. 

Electronic stethoscopes make use of sensors specially designed to suit cardiac 
sounds. Compared to classic stethoscopes, electronic stethoscopes tries to make 
heart and lung sounds more clearly audible using different filters and amplifiers. 
Some also allow storage and the possibility to connect the stethoscope to a 
computer for further analysis of the recorded sounds. The leading suppliers of 
electronic stethoscopes are Thinklabs, Welch-Allyn and 3M. Thinklabs uses a 
novel electronic diaphragm detection system to directly convert sounds into 
electronic signals. Welch-Allyn Meditron uses a piezo-electric sensor on a metal 
shaft inside the chest piece, while 3M uses a conventional microphone. 

The studies included in this thesis have used two different sensors; the Siemens 
Elema EMT25C contact accelerometer and an electronic stethoscope from Welch-
Allyn Meditron (the Stethoscope, Meditron ASA, Oslo, Norway). 

2.6.2. Pre-processing, digitalization and storage 

The preamplifier amplifies low level signals from transducer to line level. This is 
important to be able to use the full range of the analogue to digital converter and 
thus minimizing quantization errors. Another matter concerning the digitalization 
of signals is aliasing which will occur unless the Nyquist-Shannon sampling 
theorem is fulfilled. 

In this work, when using EMT25C, a custom-built replica of a phonocardiography 
amplifier (Siemens Elema E285E) was used. This amplifier includes a lowpass 
filter with a cut-off frequency of 2 kHz. The signal was digitized with 12-bits per 
sample using analogue to digital converters from National Instruments (see paper I 
and II for specific details). Acquisition of the data was conducted in a Labview-
application (National Instruments, Austin, Texas, US) after which the data were 
stored on a personal computer. 

For the electronic stethoscope, the matching acquisition equipment and software 
were used (Analyzer, Meditron ASA, Oslo, Norway). According to the 
manufacturer, the digital recordings are stored without pre-filtering. An excessive 
sampling frequency of 44.1 kHz was thus used to avoid aliasing (and with the idea 
of post-filtering in mind). The signals were stored in a database on a personal 
computer. This approach was used in paper III. 
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3. Signal Analysis Framework 

“Calling a science nonlinear is like calling 

 zoology the study of non-human animals.”

Stanislaw Ulam 

The underlying assumption of many signal processing tools is that the signals are 
Gaussian, stationary and linear. This chapter will introduce methods suitable for 
analysing signals that do not fall into these categories. Two short examples will 
precede the theoretical treatment to illustrate the problem at hand.  

Example 1, Characteristics that vary with time: A sinusoid with changing mean, 
amplitude and frequency is shown in Figure 8. Using the Fourier transform to 
investigate the signal’s frequency content, it can be seen that the signal contains 
frequencies up to about 35 Hz. However, much more information can be obtained 
by investigating how the frequency content varies over time. Methods able to 
investigate how a certain signal property varies over time are suitable for 
nonstationary signal analysis. A number of such methods are introduced in section 
3.1.   
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Figure 8. A sinusoid with changing mean, amplitude and frequency plotted as a waveform in the time 

domain (a), as a frequency spectrum in the frequency domain (b) and in a combined time-frequency 

domain (c). 

Example 2, Distinguishing signals with similar spectra (example adapted  from 

[12]): In many traditional linear methods it is assumed that the important signal 
characteristics are contained in the frequency power spectrum. From a stochastic 
process perspective, the first and second order statistics of the signal are 
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represented by this power spectral information. However, there are many types of 
signals, both theoretical and experimental, for which a frequency domain 
representation is insufficient to distinguish two signals from each other. For 
example, signals generated through nonlinear differential or difference equations 
typically exhibit broadband spectral characteristics that are difficult to interpret 
and compare. Two signals with indistinguishable power spectra are presented in 
Figure 9.  
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Figure 9. The logistic map, s(t+1) = c•s(t)[1-s(t)], where c is a constant, is often used as a model in 

population studies. Here a logistic map with c=4 and s(0) = 0.1 is presented in (a) and a phase 

randomized correspondence is shown in (b). Their respective frequency spectra, which are almost 

identical, are shown in (c) and (d). Finally, in (e) and (f) their corresponding phase portraits are 

shown. 

The first signal is the logistic map and the second signal is its phase randomized 
correspondence. Even though they have the same (but rather obscure) frequency 
spectrum, the logistic map has structure in its phase portrait while the phase 
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randomized signal does not (the phase portrait is just the signal plotted against a 
time delayed version of itself). To distinguish between the two, or for that matter, 
to find the structure in the logistic map, it is obviously not enough to study their 
spectra. Methods for nonlinear signal analysis will be introduced in section 3.3.

3.1. Measuring Characteristics that Vary in Time 

Much information can be gained by investigating how certain signal properties 
vary over time. Some properties possess natural time dependence, such as the 
envelope when calculated as the energy of a signal. In other cases, there is a 
typical trade-off between time resolution and accuracy in the sought parameter 
(the typical example being the short time Fourier transform, STFT). The property 
under investigation is then either a function of some quantity other than time (such 
as frequency) or a scalar value (such as the mean value of the data). In either way, 
time dependence can be introduced by calculating the wanted characteristic with a 
sliding window.  

3.1.1. Intensity 

The textbook approach to extract a signal’s envelope, E(t), is via the analytic 
signal [13, 14]. The continuous analytic signal is composed by the original signal 
and its Hilbert transform according to equation (3.1) where H(t) is the Hilbert 
transform (equation (3.2)). 

( ) ( ) ( )A Hs t s t i s t= + ⋅  (3.1) 

( )
( )1

H

s
s t d

t

τ
τ

π τ

∞

−∞

=
−∫  (3.2) 

The Hilbert transform can be interpreted as a convolution between the signal and -
1/ t, or as a rotation of the argument with /2 for positive frequencies and – /2 for 
negative frequencies. Similarly, the analytic signal can be obtained by removing 
the negative frequencies and multiplying the positive frequencies by two [13]. 
Amongst several interesting properties of the analytic signal, the desired envelope 
can be found as: 

 Analytic signal envelope: ( ) ( ) ( )
2 2

A Hs t s t s t= +  (3.3) 

Other envelope-like measures are the absolute value or the square of the signal, 
see equations (3.4)-(3.5). The absolute value gives equal weight to all samples 
regardless of the signal’s intensity. The energy (square) on the other hand colours 
the measure by emphasizing higher intensities compared to lower intensities. Two 
other envelope-like measures are the Shannon entropy and the Shannon energy 
[15], see equation (3.6)-(3.7). These measures give greater weight to medium 
intensity signal components, thus attenuating low intensity noise and high intensity 
disturbances. A practical issue with these approaches is that the envelope becomes 
rather jagged. This is usually dealt with by low-pass filtering E(t) [13, 15]. A 
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method developed by Teager, equation (3.8), results in an on-the-fly envelope-
estimate that is very useful for analyzing signals from an energy point of view 
[16]. 

 Absolute value: ( ) ( )E t s t=  (3.4) 

 Energy (square): ( ) ( )
2

E t s t=  (3.5) 

 Shannon entropy: ( ) ( ) ( )logE t s t s t= − ⋅  (3.6) 

 Shannon energy: ( ) ( ) ( )
2 2

logE t s t s t= − ⋅  (3.7) 

 Teager’s energy operator: ( ) ( ) ( ) ( )
2

1 1E t s t s t s t= − − +  (3.8) 

A comparison of the methods can be seen in Figure 10. The test signal was a 200 
Hz sinusoid with amplitude ranging from 0 to 1 and sampled with 10 kHz. In this 
comparison, all outputs (but Teager), were low pass filtered by a 5th order 
Butterworth filter with the cut off frequency 150 Hz.  
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Figure 10. Comparison of different envelope estimation methods. The test signal is presented in (a) 

and the result of various envelope-measures are shown in (b). The smoothed envelope measures are 

presented in (c). 

Another way to extract a signal’s envelope is through homomorphic signal 
processing. Algebraically combined signals are here mapped into a domain where 
linear signal processing tools can be used [17]. The envelope can be seen as an 
amplitude modulation, where the slow varying envelope is multiplied with a 
higher frequency signal. By taking the logarithm of the signal, equation (3.9), the 
non-linear multiplication changes into a linear addition, equation (3.10). The low 
frequency contribution l(t) may then be extracted from the high frequency 
contribution h(t) by a low pass filter. Exponentiation takes the result back to the 
original signal domain, equation (3.11). If the low pass filter is properly chosen, 
l(t) will be a good estimate of the envelope. 

( ) ( ) ( )s t l t h t=  (3.9) 

  ( ) ( ) ( )log log logs t l t h t= +  (3.10) 

( ) ( ){ } ( ){ } ( ){ } ( ){ } ( )
log log log log logLP l t h t LP l t LP h t LP l t

e e e l t
+ +

= ≈ ≈  (3.11) 
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3.1.2. Frequency 

The Fourier transform can be used to produce a time-averaged frequency 
spectrum. However, it is often desirable to study how the frequency content of a 
signal varies over time. There are many techniques available to perform such 
analyses, and they are generally named time-frequency representations (TFR). The 
simplest approach is probably the short time Fourier transform (STFT), which is 
merely a windowed Fourier transform:  

  ( ) ( ) ( )
2

1

,
ktN i
N

t

STFT m k s t w t m e
π−

=

= −∑  (3.12) 

where w denotes the time window, m is the translation parameter and k the 
frequency parameter. If w is chosen as the Gaussian function in equation (3.13), 
the obtained TFR is called the Gabor transform [18].  

( )

2

22
1

2

t

g t e σ

σ π

−

=  (3.13) 

 denotes the variance and is related to the width of the analyzing window. The 
STFT does, however, suffer from the uncertainty principle. This means that the 
frequency resolution decreases as the time resolution increases and the other way 
around (since time is the dual of frequency). One way to obtain better resolution is 
to use shorter windows for higher frequencies and longer windows for lower 
frequencies. One such approach is the wavelet transform (WT) [13]: 

  ( ) ( )
1

1
,

N

t

t m
WT m a s t w

aa =

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (3.14) 

where m is a translation parameter and a is a scale parameter. The main idea is that 
any signal can be decomposed into a series of dilatations or compressions of a 
mother wavelet denoted w(t). The mother wavelet should resemble interesting 
parts of the signal, and the choice is important for the results. An issue with 
wavelets is that the link to local frequency is lost (hence the term scale is preferred 
instead of frequency). A similar but phase corrected transform, able to maintain 
the notion of frequency, is the S-transform (ST) [19]: 

  ( ) ( )
( )

2 2

2
2

1

,
2

t m k ktN i
N

t

k
ST m k s t e e

π

π

−
−−

=

=∑  (3.15) 

Compared to STFT, the window function is chosen as a Gaussian function where 
the variance is allowed to vary proportionally with the period of the analyzing 
sinusoid. When changing the variance, the width of the window is altered giving a 
multi-resolution description of the signal. An example comparing STFT, WT and 
ST is given in Figure 11.  
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There are many other approaches available for joint time-frequency analysis. The 
methods just described belong to the linear nonparametric group. The quadratic 
nonparametric group, the parametric group etc., will not be treated in this thesis.  
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Figure 11. An example signal consisting of two well separated sinusoids (sample 1-500) and two 

chirps, one ascending and one descending (sample 600-1100)  is given in (a). TFR-plots calculated 

with STFT, WT (with a Daubechie 2 mother wavelet) and ST are given in (b-d), respectively. The 

frequency axes are in arbitrary units. 

3.2. Nonlinear Systems and Embedology 

Dynamical systems theory is an important ingredient in nonlinear signal 
processing. A dynamical system is a system whose state changes with time. In 
continuous time, the system is described by differential equations and in discrete 
time by iterated maps. Finding explicit solutions for these equations is not the 
purpose of this chapter. Instead, the main goal is to improve knowledge about the 
system by deducing quantitative information. Since sampled data is used, only 
iterative maps will be considered. 

The dynamics of a time discrete system is determined by its possible states in a 
multivariate vector space (called state space or phase space). The transitions 
between the states are described by vectors, and these vectors form a trajectory 
describing the time evolution of the system according to equation (3.16). 

( ) ( )( )1x t x tϕ+ =  (3.16) 

where x(t) is the state of the system, t is the time index,  is a mapping function 
such that :M M and M is the true state space. A geometrical display of the 
trajectory, such as in Figure 12, provides a phase portrait of the system. If the 
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trajectory is drawn to a particular set this set is called an attractor. Examples of 
different attractors are given in Figure 12. 

(a) (b) (c)

Figure 12. Examples of a fixed point attractor (a), a limit cycle (b) and a strange attractor from a 

Lorenz system (c). A physical example of a fix point attractor is a pendulum, where all initial states 

will converge to a single point. Modifying this example so that the pendulum has a driving force, thus 

creating a simple oscillation, a periodic attractor is obtained. Chaotic systems like the Lorenz system 

have been used to describe weather, and give rise to strange attractors, where the trajectories never 

cross or touch each other.   

The true state space (M) thus contains the true states x, whose time evolution is 
described by the map , x(t)= t(x(0)). Now suppose that the only information 
available about this system is what we can find in a scalar measure s(t)=h(x(t)), 
where h:M → � . If s(t) is a projection from the true (multivariate) state space M, 
then it might be possible to undo the projection, see Figure 13. That is, given a 
measured signal s(t) in � , is there a way to create a map from an unknown state 
x(t) in M to a corresponding point y(t) in a reconstructed state space in � d? 
Takens’ theorem provides us with such a map [20]: 

( ) ( )( ) ( ) ( ) ( )( )

:

( ) , ,..., 1

d
F M

x t y t F x t s t s t s t dτ τ

→

⎡ ⎤→ = = + + −⎣ ⎦

�

 (3.17) 

where  is a delay parameter, d is the embedding dimension and F is the map from 
the true state space to the reconstructed state space. The selection of  and d affects 
how accurately the embedding reconstructs the system’s state space. These issues 
are important, but there are no bullet-proof ways to determine  and d. In this 
thesis  will be determined using average mutual information [21] and d will be 
chosen based on Cao’s method [22]. 

What Takens actually proved was that the reconstructed state space � d is a 
dynamical and topological equivalent to M. Since the dynamics of the 
reconstructed state space contains the same topological information as the original 
state space, characterization and prediction based on the reconstructed state space 
is as valid as if it was made in the true state space. 
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Table 1. Comparison of linear and nonlinear signal processing techniques. The table is adapted from 

[21]. 

Linear signal processing  Nonlinear signal processing 

Finding the signal: 

Separate broadband noise from 
narrowband signal using spectral 
characteristics. Method: Matched filter 
in frequency domain. 

Finding the signal: 

Separate broadband signal from broadband 
noise using the deterministic nature of the 
signal. Method: Manifold decomposition 
or statistics on the attractor. 

Finding the space: 

Use Fourier space methods to turn 
difference equations into algebraic 
forms. 

( )s t  is observed and 

( ) ( ) 2i tf
S f s t e

π=∑  is used. 

Finding the space: 

Time lagged variables form coordinates for 
a reconstructed state space in d 
dimensions. 

( ) ( ) ( ) ( )( ), ,..., 1y t s t s t s t dτ τ⎡ ⎤= + + −⎣ ⎦

where d and  are determined by false 
nearest neighbours and mutual 
information.  

Classify the signal: 

• Sharp spectral peaks 

• Resonant frequencies of the 
system 

Classify the signal: 

• Lyapunov exponents 

• Fractal dimension measures 

• Unstable fixed points 

• Recurrence quantification 

• Statistical distribution of the 
attractor 

Making models, predict: 

( 1) ( )ks t s t kα+ = −∑
Find parameters k consistent with 
invariant classifiers – location of 
spectral peaks. 

Making models, predict: 

( ) ( 1)t t→ +y y

1 2( 1) ( ), , , , pt F t a a a⎡ ⎤+ = ⎣ ⎦y y …

Find parameters aj consistent with 
invariant classifier – Lyapunov exponents, 
fractal dimensions. 
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Figure 13. Delay reconstruction of states from a scalar time series (example using the Lorenz system). 

Redrawn from [20]. 

3.3. Nonlinear Analysis Tools 

Nonlinear analysis tools are rather different from their linear analogue. A brief 
comparison between linear and nonlinear methods can be found in Table 1.  

3.3.1. Non-integer dimensions 

The concept of non-integer dimensions may sound abstract, but it can be 
intuitively motivated. For example, is the Henon map one or two dimensional? It 
seems two-dimensional when looking at it from a broad scale, and, it never breaks 
down into a one-dimensional line no matter how much it is magnified, see Figure 
14. The answer to the question whether the Henon map is one or two-dimensional 
seems to be that it is “somewhere in between”, i.e. it has a fractal dimension. 
Strange attractors are fractal, and their fractal dimension is less than the dimension 
of the state space it lives in. 
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Figure 14. Zooming into the Henon map reveals new levels of complexity. No matter how much the 

figure is magnified it will never collapse into a one-dimensional line, nor does it fill the two-

dimensional space in (a). Instead, the Henon map has a dimension somewhere in between one and 

two, i.e. a fractal dimension. 
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There are two types of approaches to estimate the fractal dimension; those that 
operate directly on the waveform and those that operate in the reconstructed state 
space. Note that the dimension of the attractor (measured in the reconstructed state 
space) is normally different from the waveform fractal dimension (measured on 
the projected signal s(t), and thus limited to the range 1  dim  2. There are a 
number of problems when determining the fractal dimension of an attractor in 
state space, one being the computational burden [23]. For this reason, we will only 
consider waveform fractal dimensions. In this setting, the signal is looked upon as 
a planar set in � 2, where the waveform is considered a geometric figure. Even 
though there are many ways to estimate the fractal dimension of a waveform, we 
focus on the variance fractal dimension (VFD) due to its robustness to noise [24]. 
The calculations are based on a power law relation between the variance of the 
amplitude increments of the signal and the corresponding time increments, see 
equation (3.18). 

( ) ( )( )
2

2 1 2 1

H
Var s t s t t t− −∼  (3.18) 

where H is the Hurst exponent, a measure of the smoothness of a signal. The Hurst 
exponent can be calculated by taking the logarithm of (3.18): 

( ) ( )( )( ) ( )2 1 2 1log 2 logVar s t s t H t t− = ⋅ −  (3.19) 

Plotting log(Var(s(t2)-s(t1))) against log(|t2-t1|) for different time increments in a 
log-log plot, H is determined as the slope of the linear regression line, see Figure 
15. 
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Figure 15. An example showing Brownian motion (a) and the corresponding log-log plot (b). H is 

calculated to 0.4983 which is very close to the theoretical answer 0.5. The variance fractal dimension 

is VFD = Ed+1-H = 1+1-0.5 = 1.5. 
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The variance fractal dimension is related to H as VFD = Ed+1-H, where Ed is the 
Euclidian dimension (Ed = 1 for time series). The choice of time increments is 
reflected in the VFD trajectory for the part of the signal where signal exists. If the 
time increments are chosen in a dyadic manner (1, 2, 4, 8,…), differences between 
various signal components are emphasized whereas if the time increments are 
chosen by unit decimation (1, 2, 3, 4,…), segmentation of signal from noise is 
favourable [24]. Since VFD is a scalar value calculated from the samples at hand, 
a sliding window approach has to be used to describe the complexity over time. 

3.3.2. Recurrence quantification analysis 

The state space of a system is often high-dimensional, especially when 
reconstructed from experimental data where noise tends to inflate the dimension. 
Its phase portrait can therefore only be visualized by projection into two or three 
dimensions. This operation does however fold the attractor, and by doing so, 
destroys its structure. A recurrence plot (RP) is a way to visually investigate the d-
dimensional state space trajectory through a two-dimensional representation. RPs 
can be used on rather short time series and represent the recurrence of states of a 
system (i.e. how often a small region in phase space is visited). Unlike other 
methods such as Fourier, Wigner-Ville or wavelets, recurrence is a simple relation, 
which can be used for both linear and nonlinear data [25]. An RP is derived from 
the distance plot, which is a symmetric NxN matrix where a point (i, j) represents 
some distance between y(i) and y(j). Thresholding the distance plot at a certain 
cut-off value transforms it into an RP:   

( ) ( )( )( , )RP i j y i y jε= Θ − −  (3.20) 

where i,j=1,…,N,  is a cut-off distance, •  is some norm and (•) is the 
Heaviside function. An example of a recurrence plot is shown in Figure 16. States 
that are close to each other in the reconstructed state space are represented by 
black dots in the recurrence plot. 
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Figure 16. A noisy sinusoid represented with its waveform, its phase portrait (in a reconstructed state 

space) and by its recurrence plot. Dots are positioned on the waveform near amplitude values of 0.5, 

red dots for increasing amplitude and blue dots for decreasing amplitude. The recurrence plot shows 

clear diagonal lines which arise when trajectories in the state space run in parallel for some time 

period. The red and blue dots end up on these lines, and it can be seen that the distance between two 

diagonal lines is the period of the sinusoid.   
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There are seven parameters affecting the outcome of an RP; the embedding 
dimension d, the time delay , the range (or length) of the time series under 
investigation, the norm • , the possibility to rescale the distance matrix, the cut-
off distance  and the minimal number of adjacent samples to be counted as a line 
(minimum line length) [26]. The last parameter is not used when creating RPs, but 
rather when trying to quantify them (recurrence quantification analysis, RQA). 
Measures used for RQA are often based on diagonal structures, vertical structures 
and time statistics. Isolated recurrence points occur if states are rare, if they do not 
persist for any time or if they fluctuate heavily. Diagonal lines occur when a 
segment of the trajectory runs in parallel with another segment, i.e. when the 
trajectory visits the same region of the phase space at different times, see Figure 
16. Vertical (horizontal) lines mark a time length in which a state does not change 
or changes very slowly. The most common RQA-parameters are [27-29]: 

• Recurrence rate: The percentage of recurrence points (black dots) in the 
recurrence matrix. 

• Determinism: The percentage of the recurrence points that form diagonal 
lines. Diagonal lines are associated with deterministic patterns in the 
dynamic, hence determinism.  

• Laver: The average length of the diagonal lines. 
• Lmax: The length of the longest diagonal line. Lmax is inversely proportional 

to the largest Lyapunov exponent which describes how fast trajectories 
diverge in the reconstructed state space. 

• Entropy: The Shannon entropy of the distribution of the diagonal line 
lengths. Measures the complexity of the signal.  

• Laminarity: The percentage of recurrence points which form vertical lines. 
• Trapping time: The average length of the vertical lines. 
• Vmax: The length of the longest vertical line. 
• T1: Recurrence time of the first kind, see below. 
• T2: Recurrence time of the second kind, see below. 

Detection of changes based on recurrence times 

Detection of changes in signals is traditionally fitted into a residual based 
framework [30]. The main idea is to make a time varying model of the signal. If 
the model is correct, the residuals are expected to be white (or ideally zero). When 
the model and the signal no longer correspond to each other a change is indicated.  

A change in the dynamics of a signal may also be detected as a change in the 
trajectories in the reconstructed state space. Distance measures of such changes 
often involve some count of nearest neighbours since the neighbours indicate 
recurrence of states. Actually, the RQA-parameters T1 and T2, recurrence times of 
the first and second kind, are such measures. Nearest neighbours in the 
reconstructed state space can be divided into true recurrence points and sojourn 
points [27], see Figure 17, where T1 is all the points and T2 is the black points. 
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y(ref)

Figure 17. Recurrence points of the second kind (solid circles) and the sojourn points (open circles) in 

B (y(ref)). Recurrence points of the first kind comprise all circles in the set. 

More formally, an arbitrary state, yref, is chosen somewhere on the trajectory 
whereupon all neighbouring states within a hypersphere of radius  are selected. 

( )( ) ( ) ( ) ( ){ }:B y ref y t y t y ref tε ε= − ≤ ∀  (3.21) 

The recurrence points of the first kind (T1) are defined as all the points within the 
hypersphere (i.e. the entire set B ). Since the trajectory stays within the 
neighbourhood for a while (thus generating a whole sequence of points), T1 
doesn’t really reflect the recurrence of states. Therefore, the recurrence points of 
the second kind (T2) are defined as the first states entering the neighbourhood in 
each sequence (these points are commonly called true recurrence points). T2 is 
hence the set of points constituted by B (y(ref)) excluding the sojourn points, see 
Figure 17. Both T1 and T2 are related to the information dimension via a power 
law, motivating their ability to detect weak signal transitions based on amplitude, 
period, dimension and complexity [31]. Specifically, T2 is able to detect very 
weak transitions with high accuracy, both in clean and noisy environments while 
T1 has the distinguished merit of being more robust to the noise level and not 
sensitive to the choice of . A mathematically more rigorous definition of T1 and 
T2 can be found in [31]. A sliding window approach is necessary to obtain time 
resolution.  

3.3.3. Higher order statistics 

Standard methods in signal processing are based on second-order statistics, but 
second-order measures contain no phase information. As a consequence, non-
minimum phase signals and certain types of phase coupling (associated with 
nonlinearities) cannot be correctly identified. In contrast to second-order statistics, 
higher order statistics are based on averages over products of three or more 
samples of the signal, thus allowing nonlinear dependencies among multiple signal 
samples to be evaluated. Assuming zero mean signals and limiting the survey to 
order 4, the order moments and their corresponding cumulants are defined as [32]: 
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where E represents the expected value. Interesting special cases are cs
(1)

(0), 

cs
(2)

(0,0) and cs
(3)

(0,0,0) which represent the variance, skewness and kurtosis of 
s(t). The Fourier transforms of cumulants are called polyspectra, and are defined 
according to equation (3.23). An example of a simple bispectrum, the Fourier 
transform of the third order cumulant, is shown in Figure 18. 
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Figure 18. An example of phase coupling. The frequency spectrum of a signal composed of three 

sinusoids with frequencies 1, 2 and 3 = 1 + 2 is shown in (a). The corresponding bispectrum is 

shown in (b). Since 3 is caused by phase coupling between 1 and 2, a peak due to the phase 

coupling will appear in the bispectrum at 1 = 1, 2 = 2 (another peak will also emerge at 1 = 2, 

2 = 1). 
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Complete characterisation of a stochastic process requires knowledge of all 
moments. Generally speaking, moments correspond to correlations and cumulants 
correspond to covariances. Even though both measures contain the same statistical 
information, cumulants are preferred in practice since [33]: 

1. Cumulant spectra of order n > 2 are zero for Gaussian signals and their 
polyspectra provide a measure of the extent of non-Gaussianity. 

2. The covariance function of white noise is an impulse function and its 
spectrum is flat. Similarly, cumulants of white noise are multidimensional 
impulse functions with multidimensionally flat polyspectra. 
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3. The cumulant of two independent random processes equals the sum of the 

cumulants of the individual random processes.  

Higher order cumulants provide a measure of how much a random vector deviates 

from a Gaussian random vector with an identical mean and covariance matrix. 

This property can be used for extracting the nongaussian part of a signal (one 

application is removal of Gaussian noise). Other interesting properties are that the 

bispectrum is zero for a Gaussian signal and that the bicoherence (normalized 

bispectra) is constant for a linear signal.  

3.4. Nonlinear Prediction 

There are different sources of predictability in a time series. If the signal contain 

linear correlations in time, then linear models are suitable (moving average (MA) 

models, autoregressive (AR) models, autoregressive moving average (ARMA) 

models etc.). MA models can be used if the spectrum of the signal behaves like 

coloured noise while AR models are preferable if the spectrum is dominated by a 

few distinct peaks. The ARMA model is a natural extension of AR and MA. The 

AR model is obtained as a sum of weighted previous outputs s(t-k) and the 

innovation signal e(t): 

( ) ( ) ( )
1

N

k

k

s t s t k e tα
=

= − +∑  (3.24) 

where k are the linear weights. For prediction, only the weighting coefficients are 

important and the prediction is obtained by ignoring the unknown innovation. This 

model can be expanded to allow nonlinear dependencies between previous outputs 

s(t-k). Actually, a very general framework for predicting time series is given in 

Ljung [34] (  may include all available signal samples including multivariate 

inputs and outputs):  
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 (3.25) 

where all the gk are formed from dilated and translated versions of a mother basis 

function .  is a vector of weights and  is a vector of known signal samples. 

are the coordinates or weights,  are the scale or dilation parameters and  are the 

location or translation parameters. A few examples of how this model framework 

can be used are: 

Autoregressive model: set most of the parameters to unity. 

Sigmoid Neural Network:  is a ridge construction such as the sigmoid function. 

Radial basis networks:  is a radial construction such as the Gaussian bell. 
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Turning back to the reconstructed state space setting, it can be seen that  in 

equation (3.25) is very similar to a reconstructed coordinate. Toss in a delay 

parameter , or set  = 1, and  turns into y (see equation (3.17)). A way to look at 

the model in (3.25) is thus as a function describing the whole attractor. Usually, all 

parameters but the :s are design parameters that either vary in a predetermined 

way or are fixed. Inserted into a cost function, (3.25) leads to linear equations 

when estimating the :s, thus simplifying their determination [23]. Since this 

modelling attempt tries to model the whole attractor, it is called a global model. 

That being said about global models, we will abandon them altogether and focus 

on local methods working directly in the reconstructed state space. Similar 

trajectories in state space share the same waveform characteristics in time domain, 

and a way of predicting the future is thus to mimic the evolution of neighbouring 

trajectories, see Figure 19. If the data is sampled with high frequency, most of the 

discovered nearest neighbours will probably be samples adjacent to each other in 

the time series. A considerable improvement could thus be obtained by using 

nearest trajectories instead of nearest neighbours see Figure 20. 

y(t)

y(t+1)^

Figure 19. Three trajectory segments and a (forward) predicted trajectory in a two-dimensional 

phase space. The average change between the nearest neighbouring trajectory points (black stars) 

and their successors (white circles) are used to predict the next point (white square). 

y(t)

Figure 20.  Many of the nearest neighbours to y(t), stars, are actually phoneys due to the high 

sampling rate.  Using a nearest trajectory algorithm instead of a nearest neighbour algorithm is one 

solution.   
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There are two approaches to predict p steps ahead, either using iterated prediction 

or direct prediction. If the prediction is iterated, the algorithm predicts one step 

ahead p times (the predicted values will then be used as a starting point in the next 

iteration). In direct prediction, the evolutions of the nearest neighbours are 

modelled and the resulting function maps p steps into the future. It is empirically 

shown that iterated prediction is better on short term forecasts for a variety of non-

linear models. However, iterated predictions do not take the accumulated errors in 

the input vector into account, and these errors grow exponentially [35].  

More options are available. In averaged prediction, the average of the neighbours’ 

successors (white circles) locations are chosen as the predicted value while in 

integrated prediction the next point is estimated as the current point plus the 

average change amongst the neighbours. If the trajectory that is to be predicted is 

an outlier; the mean of the nearest neighbours will always be misleading. 

To conclude, local models can give excellent short-term prediction results, they 

are conceptually simple but may require a large computational burden due to the 

dependence of nearest neighbour calculations.  
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4. Properties of Phonocardiographic Signals 

“Let your heart guide you. It whispers, so listen closely…”

The land before time (1988) 

During auscultation, identification of heart sounds and murmurs is primarily based 

on pitch and timing of occurrences. In phonocardiography, information about 

morphology, and to some extent frequency content, is also included in the 

diagnosis. There is however more knowledge to extract. Physicians talk about 

auscultation as an art. The diagnosis is often based on a sensation that is hard to 

explain and even harder to implement in a computer. To automatically extract 

information that is even close to this sensation, every possible grain of information 

has to be exploited, even though it means going beyond the well-known properties 

of time and frequency. 

Some examples in this chapter are based on data (used with permission) from 

FamilyPractice.com (http://www.familypractice.com/) and The Auscultation 

Assistant (http://www.med.ucla.edu/wilkes/). These data were chosen to give 

distinct and illustrative figures. The data were originally intended for educational 

purposes, and consists of text-book examples of recorded phonocardiographic 

signals and in some cases even simulated sounds. Other examples and all the 

presented results are however obtained using data from paper I-III. This means 

that noisy signals with, in some cases, large interpatient variability are used in the 

calculations.  

4.1. Time and Frequency 

Time and frequency properties are the most important features when physicians 

perform auscultation on a patient. In healthy subjects, the frequency spectrum of 

S1 contains a peak in the low frequency range (10-50 Hz) and in the medium 

frequency range (50-140 Hz) [36]. S2 contains peaks in low- (10-80 Hz), medium- 

(80-220 Hz) and high-frequency ranges (220-400 Hz) [37]. S2 is composed of two 

components, one originating from aortic valve closure and one originating from 

pulmonary valve closure. Normally, the aortic component (A2) is of higher 

frequency than the pulmonary component (P2) [38]. The peaks probably arise as a 

result of the elastic properties of the heart muscle and the dynamic events that 
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causes the various components of S1 and S2 [36, 37]. S3 and S4 are believed to 

originate from vibrations in the left ventricle and surrounding structures powered 

by the acceleration and deceleration of blood flow. 75 % of the total energy in S3 

is contained below 60 Hz [39] while S4 mainly contain frequencies below 45 Hz 

[40]. The time and frequency properties of heart sounds are summarized in  

Table 2 and examples of two heart sounds and their frequency spectra are 

illustrated in Figure 21. The different heart sounds are affected by various heart 

diseases, and the main changes are described in sections 4.1.1 - 4.1.3. 

 

Table 2. Time and frequency properties for the heart sounds. 

Sound Location (ms) Duration 

(ms) 

Main frequency 

range (Hz) 

S1 10-50 after R-peak in ECG 100-160 10-140 

S2 280-360 after R-peak in ECG 80-140 10-400 

S3 440-460 after R-peak in ECG or

120-180 after closure of semilunar 

valves 

40-80 15-60 

S4 40-120 after beginning of P-wave in 

ECG 

30-60 15-45 
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Figure 21.  Heart sounds and their respective frequency spectra from a 13 year old girl (top row) and 

a 36 year old male (bottom row). Data obtained from paper I and II. 

There is a small delay between the aortic component and the pulmonary 

component causing a splitting of S2 (since right ventricular ejection terminates 

after left ventricular ejection). Normally, the splitting increases with inspiration 

due to increased blood return to the right heart, increased vascular capacitance of 

the pulmonary bed and decreased blood return to the left heart [7]. That is, the 
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aortic component occurs earlier and the pulmonary component occurs later during 

inspiration. In certain heart diseases, this splitting can become wide, fixed or 

reversed (see sections 4.1.1 - 4.1.3). FFT analysis does not take timing into 

consideration, so it cannot reveal which of the two valves closes first. Meanwhile, 

it is hard to notice any difference between the two components in the time domain. 

A tool able to investigate how the signal’s frequency content varies over time is 

thus called for. Such methods were introduced in section 3.1.2, and an example 

showing the four heart sounds is presented in Figure 22. Taking a closer look at S2 

in Figure 22, it can be seen that the two components are merged together, but it is 

also clear that the higher frequency aortic component precede the lower frequency 

pulmonary component. 
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Figure 22. Example of TFR contour plots of S1, S2, S3 and S4 (note the different scaling of the x-

axis). Stockwell’s method was used to calculate the TFR.  Data obtained from paper II. 

An exposé of systolic murmurs is given in sections 4.1.1 - 4.1.3, where the 

emphasis is on the changes imposed by pathologies on the phonocardiogram. 

More information can be found in [7]. Basic layout sketches describe the time 

domain properties, while frequency domain information is illustrated with TFR-

plots (since heart murmurs are nonstationary [41], useful frequency investigations 

have to be conducted using joint time frequency analysis tools).
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4.1.1. Murmurs from stenotic semilunar valves 

If the aortic or pulmonary valve becomes narrowed or constricted (stenotic), blood 

has to be forced through the valve opening. The arising turbulent blood flow 

causes vibrations in the cardiac structure which are transmitted through the tissue 

and perceived as a murmur. The murmur peaks in mid-systole at the time of 

maximal ejection and produces a crescendo-decrescendo shape in the 

phonocardiographic signal. The severity of the stenosis influences the shape of the 

murmur, where the intensity will increase and the peak will occur later in systole 

as the stenosis becomes more severe. An ejection click may occur if the valves are 

brought to an abrupt halt instead of opening completely when moving from their 

closed position in diastole to their open position in systole. Since a large boost 

from the atrium might be necessary to help build up the pressure in the ventricle, a 

fourth heart sound may be present. The appearance of a murmur caused by 

stenosis in the semilunar valves is illustrated in Figure 23. 
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Figure 23. A basic layout sketch of the phonocardiographic signal from a murmur caused by stenosis 

in the semilunar valves is presented in the left plot while an example TFR (showing pulmonary 

stenosis, calculated by Stockwell’s transform) is illustrated in the right plot. EC = Ejection click. 

In aortic stenosis, there will be a paradoxical splitting of S2 that increases with 

expiration. If the stenosis is severe the aortic component is attenuated or even 

missing. Aortic stenosis is usually caused by congenital aortic valve disease, 

rheumatic fever or degenerative calcification. 

In pulmonary stenosis, the splitting of S2 is caused by increased capacitance in the 

dilated pulmonary trunk. In severe stenosis, S2 is widely split but difficult to hear 

since the pulmonary component is faint and the aortic component is obscured by 

the murmur. The degree of stenosis correlates well with the width of S2. In mild 

stenosis the murmur ends before the aortic component of S2 while it is stretched 

up to the pulmonary component in severe cases. Pulmonary stenosis is usually 

caused by congenital fusion of the pulmonary valve cusps.  

4.1.2. Murmurs from regurgitant atrioventricular valves 

Backward flow through the mitral or tricuspid valves causes a murmur that begins 

as soon as the atrioventricular valves closes and continues up to the semilunar 

valve closure. Because the pressure gradient between ventricle and atrium is large 

throughout systole, the murmur tends to have a constant intensity throughout 
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systole (holosystolic). The appearance of a murmur caused by insufficient 

atrioventricular valves is illustrated in Figure 24. 

In mitral insufficiency (MI), the murmur begins with systole and continues as long 

as left ventricular pressure exceeds that of the enlarged left atrium. The murmur 

engulfs the aortic component of S2 but stops before the pulmonary component. In 

acute mitral insufficiency the murmur is diamond-shaped, loud (grade IV or more) 

and does not necessarily extend to the end of systole. Due to the decrease in the 

rate of rise of the ventricular pressure, S1 is weak. A third heart sound is often 

present, although it doesn’t necessarily imply systolic dysfunction or elevated 

filling pressure as it usually does. The mitral valve apparatus is composed of five 

different structures; mitral annulus, leaflets, chordae tendinae, papillary muscles 

and the free wall of the left ventricle. Malfunction in any of these may result in 

mitral insufficiency. Typical examples are rheumatic heart disease in the mitral 

valves, papillary muscle dysfunction or calcified mitral annulus. 

In tricuspid insufficiency, the holosystolic murmur increases with inspiration. 

Unlike mitral insufficiency the murmur of tricuspid insufficiency persists through 

S2 and engulfs the pulmonary component. In mild cases, S4 may be present. 

Tricuspid insufficiency is often found in severe right heart failure.  
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Figure 24. A basic layout sketch of the phonocardiogram from a murmur caused by a regurgitant 

atrioventricular valve is presented in the left plot while an example TFR (mitral insufficiency, 

calculated by Stockwell’s transform) is illustrated in the right plot. 

4.1.3. Murmurs caused by septal defects 

A septal defect is an opening between the left and the right side of the heart. In 

atrial septal defect the opening connects the two atria and in ventricular septal 

defect the opening connects the two ventricles. Septal defects are often congenital, 

and ventricular septal defects are in fact the most common congenital heart 

defects. 

In ventricular septal defect, already oxygen-rich blood is pumped back to the 

lungs, causing a dilation of the heart. During systole, a jet from the left to the right 

ventricle causes a holosystolic murmur that sometimes engulfs S2. The aortic 

component of S2 is early due to the short ejection period (caused by low 

impedance in the systemic circulation system). This results in an S2-split that 

increases with inspiration.  
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In atrial septal defect, recently oxygenated blood leaks back to the right atrium 

where it is, again, sent through the pulmonary circulation system. The increased 

flow through the pulmonary valve produces a soft mid-systolic ejection murmur. 

S2 has a large fix split caused by decreased resistance in the pulmonary aorta 

which delays the pulmonary component of S2.  

4.1.4. Quantifying the results 

It is a well known fact that systolic ejection murmurs like aortic stenosis are 

crescendo-decrescendo shaped while systolic murmurs due to backflow, like 

mitral insufficiency, are holosystolic (do not vary in intensity). This is not always 

obvious when looking at actual recorded signals. Using normalized Shannon 

energy as a measure of intensity, the shape of the murmur in aortic stenosis (AS), 

mitral insufficiency (MI) and physiological murmurs (PM) are shown in Figure 

25. The data used is from the 36 patients in paper III. The classical shapes are 

indicated, but having the standard deviation in mind, this conclusion is not evident. 

In the AS case, the large standard deviations are probably due to the progress of 

the disease, which is ranging from moderate to severe.  

The nine presented instants were selected at times before S1, peak S1, after S1, ¼ 

into systole, ½ into systole, ¾ into systole, before S2, peak S2 and finally after S2. 

The data were derived as mean values of each heart cycle in one patient. These 

mean-values were then used to create the plots in Figure 25. Similarly, the mean 

and standard deviation TFRs of AS, MI and PM were calculated. An average TFR 

was derived for each patient using all available heart cycles. These averaged TFRs 

were then used to create the mean and standard deviation TFRs in Figure 26. 

Distinct areas in the standard deviation plots are clearly areas where there are great 

differences between patients (this might be a hint on which time-frequency areas 

that are stable to use in a murmur classifier). From the figure, it is obvious that 

there is great interpatient variability. This is unfortunate when the aim is to 

classify patients into various categories; ideally all patients with the same disease 

behave similarly. Focusing on differences between diseases, it can be seen that the 

murmur in MI has frequency content up to about 160 Hz and that the murmur 

doesn’t change much over systole (holosystolic). The murmur in AS on the other 

hand seems very unstable. Since the murmur in AS is crescendo-decrescendo 

shaped where the peak depends on the severity of the stenosis, it makes sense that 

the mean of several AS murmurs deviates between patients. The frequency content 

reaches up to about 180 Hz (as can be seen in the standard deviation plot). Finally, 

PM are known to be of low frequency, which is verified by the figure. 

The TFR technique is a valuable tool when visually inspecting signals, but the 

amount of information is immense. In a classification setting we need to find a 

compact representation consisting of a manageable number of informative 

features. Paper III describes a number of methods able to quantify time-frequency 

information.  
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Figure 25.  Mean value of the Shannon energy calculated at nine time instants in systole, the whiskers 

show the standard deviation. Data obtained from paper III.  
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Figure 26.  Mean (top) and standard deviation (bottom) TFRs (calculated by Stockwell’s transform) 

of aortic stenosis, mitral insufficiency and physiological murmurs. The time scale was resampled to 

2048 samples after calculating the TFR, and is here represented in arbitrary normalized units. Data 

obtained from paper III.  

4.2. Higher Order Statistics 

Since methods based on second-order statistics do not take nonlinearity and non 

Gaussianity into account, higher order statistics might provide more information 

about the phonocardiographic signal. Bispectra for signals from various systolic 

murmurs are presented in Figure 27. First of all it can be seen that the bispectrum 

is not zero, as it would be if the signals were Gaussian. Secondly, the main 

frequency content is well below 300 Hz and exhibits distinct peaks. Thirdly, 

considerable phase coupling exists between different frequencies. Finally it is also 

seen that the patterns revealed in the bispectra differ between various pathologies. 

It has previously been indicated that phonocardiographic signals are non Gaussian 
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[42, 43], but it has not been explicitly stated that this is the case. When performing 

Hinich's Gaussianity test on each heart cycle in the data from paper III, it turns out 

that each and every one of the 445 heart cycles have zero skewness with 

probability <0.05. This strongly suggests that the data are non Gaussian (nonzero 

skewness) and that investigations of the higher-order statistics of 

phonocardiographic signals are relevant. Similarly, a hypothesis regarding 

linearity could be rejected using Hinich's linearity test (for a nonlinear process, an 

estimated statistic may be expected to be much larger than a theoretical statistic, 

and in this case the estimated value is, on average, 3.4 times larger). This 

motivates the use of nonlinear techniques in the two subsequent sections, 0-4.3. 

Both Hinich’s tests are described in [44].  
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Figure 27. Examples of bispectra from one heart cycle in different heart diseases. One heart cycle 

here roughly corresponds start S1 to stop S2. All axes represent frequency in Hz.  

The bispectra in Figure 27 are all very nice to look at, but we need to quantify 

them somehow. To make the number of quantifying units manageable, the 

bispectrum can be discretized [45], see Figure 28. Due to symmetry, it is enough 

to investigate the first nonredundant region [33]. Using data from paper III, box 

and whisker plots were derived for these 16 features, see Figure 29 are presented 

in. Unfortunately the features overlap and are more or less useless for 

classification purposes (t-tests show significant differences (p<0.05) for feature 2 

between AS PM, feature 3 between AS MI and AS PM, feature 7-8, 11 

between MI PM). The bispectrum is however a useful tool and Figure 27 does 

reveal a lot of information. If nothing more, it could be used as a visualisation 

technique to support the physician’s decision. 
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There are distinct differences between the various heart valve diseases in Figure 

27. Obviously these differences are lost in the discretization when attempting to 

reduce the information into a manageable feature set. A different approach is thus 

needed to extract this information. A few ideas are Gaussian mixture models or 

perhaps some parametric models like the non Gaussian AR model, but these issues 

are left for future studies.    
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Figure 28. Example of bispectrum from a patient with aortic stenosis. The different regions of the 

bispectrum is plotted in (a) where the bold triangle shows the first non-redundant region. In (b) the 

region of interest is highlighted. The smaller triangles indicate the 16 features obtained from the 

bispectrum, where each feature is calculated as the mean intensity of each triangle. 

AS MI PM
0

5

10

Feature 1

AS MI PM
0

2

4

6

Feature 2

AS MI PM
0

2

4

6

8

Feature 3

AS MI PM
0

2

4

Feature 4

AS MI PM
0

5

10

Feature 5

AS MI PM
0

2

4

6
Feature 6

AS MI PM
0

2

4

Feature 7

AS MI PM
0

1

2

3

Feature 8

AS MI PM
0

2

4

Feature 9

AS MI PM
0

1

2

3

Feature 10

AS MI PM
0

1

2

Feature 11

AS MI PM
0

1

2

Feature 12

AS MI PM
0

5

10

Feature 13

AS MI PM
0

5

10

Feature 14

AS MI PM
0
2
4
6
8

Feature 15

AS MI PM
0

2

4

6

Feature 16

Figure 29. Box and whisker plots showing results from the bispectral analysis. The boxes have lines 

at the lower quartile, median, and upper quartile values.  The whiskers show the extent of the data.  

Outliers (+) are data with values beyond the ends of the whiskers. Data obtained from paper III. 
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4.3. Reconstructed State Spaces 

Phonocardiographic waveforms consist of a large variety of types, ranging from 

impulses (snaps and clicks) through turbulence induced sounds (murmurs) to 

nearly periodic oscillations (heart sounds). The transition between these types 

could be described by switching between different linear models, but using a 

nonlinear setting, such transitions occur naturally as bifurcations [46].  

Hypothesising that the blood flow is a dynamic system which is observed via the 

recorded phonocardiographic signal, then the reconstructed state space would be 

an attempt to recreate the characteristics of the flow (compare with Figure 13). 

Since turbulence is a nonlinear phenomenon with strong interaction between the 

flow and the associated acoustic field [47], the theoretical foundation for the 

hypothesis seems valid. 

Before pursuing any attempts to use nonlinear analysis tools, one should execute 

some tests to see whether the data really behave in a nonlinear fashion. Two such 

tests were performed on the data in paper III; Hinich's linearity test (see section 

4.2) and phase randomized surrogate data [23]. Both tests indicated nonlinearity 

by rejecting the hypothesis of linearity.  
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Figure 30. Average mutual information calculations are used to determine the time delay embedding 

parameter  (a). The first minimum of the mutual information function indicates a delay where the 

signal contains little mutual information compared to a delayed version of itself (why the comb-

ination of the two provides as much information as possible). Cao’s method (b) is used to determine 

the embedding dimension d. This method is similar to the common false nearest neighbour approach, 

which make use of the fact that points are moved closer together in a reconstructed state space, 

compared to the true state space, by folding. Data obtained from paper III. 

Nonlinear analysis of measured data is generally based on the reconstruction of the 

signal in a multidimensional state space. Proper embedding parameters were 

calculated via mutual information and Cao’s method. The embedding dimension 

was found to be d = 4, which can be seen by the clearly defined knee in Figure 30. 

Determination of the delay parameter was however less obvious. The mean value 

of first minima in the mutual information function was  = 233 ± 72 samples. 
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Since roughly half of the patients had a minimum in the vicinity of  = 150, while 

the other half lacked an obvious minimum in the range  = 1…500 samples,  was 

set to 150. These routines should not be used on nonstationary data, and to 

minimize the damage, these values were determined on data consisting of only 

murmur data. En example of a phonocardiographic signal embedded in three 

dimensions is given in Figure 31. The heart sounds are clearly encircling the more 

complex murmur.  
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Figure 31. Example of embedded heart sound with d = 3 and  = 200. Heart sounds (S1 and S2) are 

plotted in red and the murmur (AS) in blue. The small bumps in the trajectory are due to 

concatenation of segments. Data obtained from paper III. 

4.3.1. Quantifying the reconstructed state space 

Quantifying a four-dimensional phase portrait is not easy. There are a few 

common dynamical invariants that can be used. One of them is the fractal 

dimension which will be used in section 4.4. Another example of an invariant 

measure is the largest Lyapunov exponent. Disadvantages with invariant measures 

are that they are not sensitive to initial conditions or smooth transformations of the 

space. Another approach for quantification of the reconstructed state space is by 

direct modelling of its statistical distribution. A parametric model could be 

constituted by a Gaussian mixture model (GMM). In paper III, a GMM with five 

mixtures, see Figure 32, was fitted to the reconstructed state space using the 

Expectation-Maximization (EM) algorithm.  

The centres of the mixtures and the eigenvalues of their covariance matrices can 

be used as a rather compact representation of the trajectory in the reconstructed 

state space. However, the five mixtures used here to describe the four-dimensional 

geometry require 40 parameters. Using only five mixtures to estimate the density 

function of the trajectory is probably far from enough, but the number of 

parameters increases rapidly with the number of mixtures. Due to the difficulty of 

giving an overall summary of three groups (AS, MI and PM) and 40 parameters, 

these results are omitted in this section. They are however used as features for 

murmur classification in section 5.4 and in paper III. 
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Figure 32. A reconstructed state space (d = 2,  = 150) of the systolic period from a patient with aortic 

stenosis. The red ellipses symbolize a Gaussian mixture model with five mixtures. Note that d = 2 is 

not enough to unfold the trajectory. 

4.3.2. Recurrence time statistics 

In previous sections, higher dimensional state spaces have been visualized by 

projection into lower subspaces. Recurrence plots were introduced to avoid this 

procedure by visualizing high dimensional trajectories through a two-dimensional 

representation of its recurrences [28]. An example of recurrence plots is presented 

in Figure 33. Figure 34 shows the RQA results using the data in paper III. It is 

clear that several of these parameters are good at separating physiological 

murmurs from pathological murmurs (determinism, longest diagonal line, longest 

vertical line and trapping time). Unfortunately, the results obtained from AS and 

MI are heavily overlapping.  
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Figure 33. Example of recurrence plots for a normal phonocardiographic signal and for an AS case. 

The interpretation of recurrence plots was briefly explained in section 3.3.2. 
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Figure 34. Box and whisker plots showing results from the recurrence quantification analysis. The 

boxes have lines at the lower quartile, median, and upper quartile values.  The whiskers show the 

extent of the data.  Outliers (+) are data with values beyond the ends of the whiskers. Data obtained 

from paper III. 

4.4. Fractal Dimension 

Theories attempting to explain turbulence forecast the existence of eddies (vortices 

with a characteristic size) at multiple scales [48], and this multiscale structure of 

turbulence can in some cases be quantified by fractals. It has therefore been 

suggested that turbulent flow is fractal in nature [48]. 

As illustrated in section 2.3, Figure 5, in vivo measures obtained with the particle 

trace technique show that blood flow through the normal heart contains large 

vortices. The resolution of the particle trace technique does not allow a thorough 

investigation on a wide range of scales, but model studies show that the interaction 

with the ventricle wall results in the generation of smaller secondary vortices 

which may in turn interact with the ventricle wall and thus creating even smaller 

vortices [49]. However, flow in the normal heart is predominantly laminar, even 

though it may involve vortices on a large scale. This behaviour fits the fractal 

theory with self similarity across scale, but only for large scales.   

Stenosed or leaking valves give rise to turbulent flow in the heart or in the great 

vessels leaving the heart. In turbulent flow, unsteady vortices appear on many 

scales and interact with each other. Numerical studies on stenotic tube flow show 

that the positions at which vortices are initiated, their size, and their life span are a 

function of the Reynolds number [50]. There is thus a link connecting the 
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Reynolds number to the degree of turbulence which in turn is connected to fractal 

behaviour. It has been shown that the smallest length scales of turbulence is about 

three times larger than the size of a red blood cell [51], so self similarity can be 

found from very small scales up to large scales bounded by the size of the 

ventricle. Finally, the last piece of the puzzle is provided by the strong interaction 

between the flow and its induced sound field [47]. It is thus reasonable to believe 

that the turbulence can be quantified using the fractal dimension of the measured 

acoustic signal.  

Considering the mere waveform of bioacoustic time series, it appears that these 

signals possess valid characteristics for pursuing fractal dimension calculations: 

• The signals do not self-cross. 

• The waveform is often self-affine, i.e. in order to scale the signal, a 

different scaling factor is required for each axis. In physical systems, this 

property is not strict but probabilistic, and there are minimum and 

maximum scaling limits (depending on the accuracy of the measurement, 

the sampling resolution etc.).  

• The waveform exhibits clear quasiperiodicity (heart beats and breathing 

specifically).  

• The power spectral density is broad-band. 

An example is given in Figure 35, where the acoustic waveform from a patient 

with aortic stenosis is plotted along with its fractal dimension calculated over time. 

Comparing heart sounds, murmurs and background noise, HS have a curtain 

structure while murmurs are more complex and noise has no structure at all. It can 

also be seen that the fractal dimension of the murmur is rather constant despite the 

large amplitude variations (crescendo-decrescendo) in the time domain.
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Figure 35. Example of aortic stenosis (a) showing the variance fractal dimension plotted over time 

(b).  



 Chapter 4. Properties of Phonocardiographic Signals  

  45

Variance fractal dimension for the data in paper III is shown in Figure 36. The 

nine chosen instants were selected at times analogous to the Shannon energy plot 

in Figure 25. Again, the variance is rather large, especially in the AS case. VFD of 

the different murmurs are however quite well separated in their mean; AS = 1.202, 

MI = 1.037 and PM = 1.336 (calculated as mean values for feature number 4-6 in 

Figure 36, the values deviate from those in the figure due to normalization). 

Hypothesis testing for the difference in mean between the groups (t-test) shows a 

difference with significance p = 0.03, p = 0.07 and p = 0.01 when comparing 

AS MI, AS PM and MI PM, respectively. Boxplots of the same data are 

shown in Figure 37. Here the VFD was calculated using a concatenation of all S1 

segments, all S2 segments and all murmur segments from each patient. Focusing 

on the murmur, the trend from Figure 36 is recognised; MI has lowest dimension, 

PM has highest dimension and AS is somewhere in between. The interpatient 

variability is still a problem, especially in the AS case (probably due to the wide 

range of mild to moderate AS).  
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Figure 36. Mean values of the variance fractal dimension at nine time instants in systole, the whiskers 

show the standard deviation. The data were normalized so S1 had unit fractal dimension (for visual 

appearance). Data obtained from paper III. 
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obtained from paper III. 
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5. Applications in Phonocardiographic  
Signal Processing 

“The modern age has a false sense of security because of the great  

mass of data at its disposal. But the valid issue is the extent to which  

people know how to form and master the material at their disposal.”

Johann Wolfgang von Goethe (1832) 

This chapter presents some applications that make use of the knowledge gained in 

previous chapters. Almost all phonocardiographic signal processing tasks are 

dependent on accurate segmentation of the signal. The segmentation algorithms 

that are described in 5.1 are later used in 5.2 - 5.4. Other treated applications 

include detection of the third heart sound, denoising of lung sound signals and 

classification or heart murmurs. 

5.1. Segmentation of the Phonocardiographic Signal 

Dividing the recorded signal into S1, systole, S2 and diastole is of great 

importance in all phonocardiographic signal processing tasks. While this is 

sometimes performed manually, several techniques are available to accomplish the 

task automatically. A quite simple and robust way to do this is by ECG gating. The 

ECG signal does usually have a better SNR than the sound signal, and numerous 

algorithms exist for automatic detection of the rather distinct R-peak. Since it is 

known that S1 follows shortly after the R wave in the ECG, segmentation into 

heart cycles is easily obtained. 

Using additional sensors is not an optimal approach in the intelligent stethoscope 

setting, where simplicity is one of the key words. Present approaches for 

segmentation of the phonocardiographic signal are often based on peak picking 

after transformation into a domain where S1 and S2 are emphasized. Several 

choices of this transformation has been presented; coefficients from an 8th order 

AR model in a narrow sliding window [52], Shannon energy [15], wavelet 

decomposition plus Shannon energy [53], homomorphic filtering [17], matching 

pursuit [54] and fractal dimension trajectories [55, 56]. Typically, a threshold is 

used to locate the heart sounds, without classification into S1 and S2. The actual 

classification is done using interval statistics (the duration of systole is rather 
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constant and normally shorter than the duration of diastole, giving a binominal 

distribution, see Figure 38). A problem with all of these approaches is that it is 

hard to distinguish the heart sounds in noisy phonocardiographic signals. Noise in 

this case could be heart murmurs, lung sounds and/or background noise such as 

speech. 
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Figure 38. Histogram showing the distribution of systolic and diastolic duration in a heart cycle 

(based on 604 heart cycles from six subjects). It can be seen that the duration of systole is rather 

constant and normally shorter than the duration of diastole, giving a binominal distribution. Data 

obtained from paper I. 

Different change detection methods have been employed for segmentation of heart 

sounds (unpublished work). One-model, two-model as well as multiple-model 

approaches were tried out, but neither of them was suitable for segmentation of 

heart sounds. A reason could be that they were all based on a linear regression 

framework, which was not able to separate changes due to heart sounds from 

changes due to noise. Parts of paper I was devoted to a nonlinear change detection 

method for the task of emphasizing S1 and S2 (as an alternative to the above 

mentioned transformations and change detection approaches). Heart sounds have a 

transient waveform that is superpositioned upon lung sounds and other 

disturbances. Since the heart sounds and the noise originate from different sources, 

they have different attractors, see Figure 39. These changes in signal dynamics can 

be detected with the change detection scheme in section 3.3.2 (based on recurrence 

times of the first kind, T1).  

A sliding window was used to partition the phonocardiographic signal into 

overlapping segments to obtain time resolution. T1 is plotted in Figure 40. Since 

the application in paper I was to find and remove both S1 and S2, no attempts 

were made to actually classify the two sounds. This method was used in both 

paper I and paper II, and resulted in an error rate of 12.4 % and 0.5 %, 

respectively. The big difference in detection accuracy depends on heavy breathing 

in one of the provocation sequences in paper I.  
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Figure 39. State space trajectories (d = 3,  = 12) of a sound signal with S1 and S2 cut out (a). In (b) 

the whole signal including S1 and S2 is shown. The transition between the two attractors is reflected 

in the recurrence time statistic, hence indicating when a heart sound is present. 
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Figure 40. An example showing how the recurrence time statistic indicate the location of heart 

sounds. Note the obscuring noise (a deep breath) in the end of the signal. In (a) T1 is plotted over 

time for various -values where the grey scale indicates the strength of T1. Superimposed in the 

figure is the phonocardiographic signal (black waveform). T1( ) for one fixed -value is plotted in (b).  

5.2.  Finding S3 

The third heart sound occurs normally in children but disappears with increasing 

age. The sound can reappear in elderly persons and is clinically important because 

of its established connection with heart failure [8, 57]. Compared to the task of 

locating S1 and S2, finding S3 is harder due to its low amplitude, short duration 

and low frequency. 

Previous methods to detect S3 is limited to a matched wavelet approach, where the 

mother wavelet was designed to have similar morphology as S3 [58, 59]. The idea 

was to divide the signal into four frequency bands; 17, 35, 60 and 160 Hz.  S1 and 
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S2 are present in all frequency bands while a potential S3 should be represented in 

the three lower bands. 

Paper II presents a novel technique based on the same method as the heart sound 

locator in paper I. Recurrence points of the first kind, T1, are used to locate S1 and 

S2 after which S3 is sought in time windows 100-300 ms after the two heart 

sounds. To avoid the problems involved in discriminating between S1 and S2, S3 

was sought for within the predetermined time window following both heart 

sounds. As mentioned in section 3.3.2, T1 is more robust to noise while T2 is more 

sensitive to changes in the signal. S3 is a very weak signal, so T2 statistics is the 

better choice in this case. 

Selecting the proper neighbourhood can be a problem. In Figure 41, T1 and T2 are 

plotted for a range of -values to visualize the dependence on the neighbourhood 

size. When looking for S1 and S2, a simple threshold can be used, but looking for 

S3 (in T2) is somewhat harder. The chosen approach was to use a whole range of 

-values to calculate a T2-matrix, see Figure 41d. The resulting 2D image can then 

be converted to 1D by an edge detection algorithm (here implemented by lowpass 

filtering and detection of the maximum value in each column). In the 1D signal, 

occurrences of S3 can be found by looking for a maximum within the previously 

defined time window. The detection rule could, for example, compare the 

amplitude of the maximum and the amplitude of the base line level. In paper II this 

rule states that the amplitude of the maximum should be one third larger than the 

base line level. Comparing the described method with the matched wavelet 

approach shows improved detection rate, 98 % compared to 93 %, at the expense 

of more false detections, 7 % compared to 2 %. The comparison was based on data 

from paper II consisting of ten children. 

5.3. Filtering out Signal Components 

Noise is a big problem in phonocardiography. The sensor, the sensor contact 

surface, the patient’s position, the auscultation area, respiration phase and 

background noise all influence the quality of the sound. In practice this means that 

the recordings often contain noise such as friction rubs, rumbling sounds from the 

stomach, respiratory sounds from the lungs and background noise from the clinical 

environment. Most of these noise sources have frequency content in the same 

range as the signal of interest. 

A special case of noise cancellation techniques deals with removal of transient 

noise. Potential use in a phonocardiographic setting is to remove disturbances such 

as friction rubs, but in paper I we focus on a related field in respiratory sound 

analysis, where the heart sounds themselves are the interfering noise. 



 Chapter 5. Applications in Phonocardiographic Signal Processing  

  51

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.5

0

0.5

(a)

A
m

p
lit

u
d

e

(b)

ε

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

(c)

T
1

(0
.4

)

(d)

ε

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.3

0.2

0.1

(e)

T
2

Time (s)

S1 S2

S3

S1 S2

S3

Figure 41. Example of a heart sound signal where S1, S2 and S3 are marked (a). T1, calculated for a 

range of -values, is shown in (b) while a single T1 is shown in (c) for  = 0.4. T1(0.4) is used to find S1 

and S2. T2, calculated for a whole range of -values is shown in (d). An edge detection algorithm is 

used to convert T2 to the 1D signal in (e) which is used to detect S3 (marked as arrows by the 

detection algorithm). 

There are many different methods available for heart sound cancellation from lung 

sounds. Heart sounds and lung sounds have overlapping frequency spectra, and 

even though high pass filtering is often employed to reduce the influence of heart 

sounds, this results in loss of important signal information [60]. Previous 

approaches to heart sound cancellation include wavelet based methods [60], 

adaptive filtering techniques [61] and fourth-order statistics [62], all resulting in 

reduced but still audible HS. Recent studies indicate that cutting out segments 

containing HS followed by interpolation of the missing data yields promising 

results [63, 64]. The method developed in paper I is based on work by Thomas et 

al. [63, 64], but the used signal processing techniques are fundamentally different 

and allow nonlinear behaviour in the lung sound signal. This is an important 

difference since it has been indicated that lung sounds are indeed nonlinear [65-

68]. 

The method suggested in paper I uses the heart sound locator presented in section 

5.1. The detections are simply cut out and the resulting gaps are filled with 

predicted lung sound using the nonlinear prediction scheme described in section 
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3.4. Since the prediction error grows exponentially with prediction length [23], 

both forward and backward prediction was used (hence dividing the missing 

segment in two parts of half the size). To avoid discontinuities in the mid point, 

the number of predicted points was allowed to exceed past half of the segment. 

The two predictions were then merged in the time domain close to the midpoint at 

an intersection where the slopes were similar.  

Figure 42. Example of a recorded lung sound signal with heart sounds present (a) and reconstructed 

lung sounds with heart sounds removed (b). The bars indicate heart sound detections. A zoomed in 

version showing the predicted lung sound (solid) and lung sound including heart sounds (dashed), is 

shown in (c). 

The results are a bit hard to evaluate since the actual lung sound is unknown in the 

segments that are predicted. However, the waveform similarity between predicted 

segments and actual lung sound data is very high with a cross-correlation index of 

CCI = 0.997±0.004. The spectral difference was 0.34±0.25 dB/Hz, 0.50±0.33 

dB/Hz, 0.46±0.35 dB/Hz and 0.94±0.64 dB/Hz in the frequency bands 20 – 40 Hz, 

40 – 70 Hz, 70 – 150 Hz and 150 – 300 Hz, respectively. Since the main objective 

of the method was to give auditory high-quality results, a simple complementary 

listening test was performed by a skilled primary health care physician. The 

impression was that most heart sounds had been successfully replaced, but that 

some predictions had a slightly higher pitch than pure lung sounds. An example of 

heart sound cancellation is illustrated in Figure 42. 

5.4. Classification of Murmurs 

Common for all classification tasks is the importance of appropriate features, i.e. 

measures that retain similarities within classes while revealing differences between 

classes. Chapter 4 described characteristics of the phonocardiographic signal in 
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different domains. Although not mentioned explicitly, the underlying goal of the 

characterization was to find data representations with distinct differences between 

heart murmurs. This section is devoted to the problem of extracting features from 

these data representations and selecting those features with best discriminative 

power. Finally, the selected features are used to classify three different heart 

murmurs; aortic stenosis, mitral insufficiency and physiological murmurs. 

5.4.1. Feature extraction 

Feature extraction is about quantifying available information into a few descriptive 

measures. The different ways data were viewed upon in chapter 4 should hence be 

summarized in a few informative features. In phonocardiographic classification, 

the features are derived on a heart cycle basis. Knowledge about the accurate 

timing of events in the heart cycle is thus of great importance. Segmentation into 

the first heart sound (S1), systole, the second heart sound (S2) and diastole were 

discussed in section 5.1. In paper III the ECG gating technique was used, mostly 

because of its superior robustness when the phonocardiographic signal is noisy. 

Once the features have been extracted, averaging each feature over available heart 

cycles reduces the influence of noise. 

A large amount of features were extracted in paper III. Some features provided 

information about the phonocardiographic signal’s time varying behaviour. 

Shannon energy was used to measure intensity and a wavelet detail was used to 

measure intensity in a certain frequency interval. The variance fractal dimension 

was used to measure the time progress of the signal’s complexity. An example of 

these features is shown in Figure 43.  

Stockwell’s TFR was used as a foundation when investigating how the frequency 

content varied over time. These representations are information rich, but they also 

contain a lot of data. Assuming a sample rate of 44.1 kHz and that one heart cycle 

is one second long, then each TFR matrix will contain 1.9448·10
9
 samples. 

Clearly, considerable data reduction is required. The easiest way to do this is by 

down-sampling as in Figure 44. A perhaps more refined method for data reduction 

of TFR matrices use singular value decomposition. More details about this 

approach can be found in paper III.  

These measures are based on second order statistics. Expanding the view to third 

order statistics, a measure of the non Gaussianity and nonlinearity of the signal can 

be obtained. Similarly to TFR down-sampling, the same technique can be applied 

to the bispectra, see Figure 28. Finally, features from the reconstructed state space 

can be derived. This procedure follows section 4.3 and uses the RQA measures 

and the GMM measures as features. These last additional features incorporate 

nonlinear behaviour into the description of the signal.
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Figure 43. An example showing one heart cycle from a patient with aortic stenosis (a). In (b) the 

signal’s envelope has been extracted (Shannon energy), the rings indicate the selected features. A 
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over the region of interest.  The absolute sum between each marker constitutes feature values. In (d) 

the variance fractal dimension trajectory is plotted together with the selected features marked as 
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5.4.2. Finding relevant features 

A large number of features were described in the previous section. However, too 

many features often result in classifiers with low generality [69]. Actually, there 

are many potential benefits in reducing the number of features; facilitating data 

visualization, reducing the measurement and storage requirements, reducing 

training and utilization times and defying the curse of dimensionality [70].  

Auscultation is an old science where a lot of information and experience have been 

gathered over the years. This domain knowledge should be incorporated in the 

classification task, and as a matter of fact, it is already included in the features. 

Many of the features in section 5.4.1 are based on the changes in timing, intensity 

and pitch that physicians use to separate normal from abnormal 

phonocardiographic signals. The first step in any feature selection process should 

be to incorporate domain knowledge, but as this was done in the feature extraction 

process, this important step can be omitted.  

Scalar feature selection means that each feature is treated individually. A scoring 

function is defined, and its outcome indicates the predictive power of the feature. 

This way, all features can be ranked in decreasing order, and the best ones are 

selected for the classification task. The scoring function could, for example, be the 

distance from the feature to the centre of the distribution of the class it is supposed 

to belong to. Selecting the most (individually) relevant features is usually 

suboptimal for building a predictor though, particularly if the selected features are 

correlated and thus contain redundant information [70].  

A problem with scalar feature selection is that is does not account for 

combinations of features that together have great predictive power. An optimal 

selection of features requires an exhaustive search over all features, but this is 

practically infeasible. Instead suboptimal search algorithms are employed, many of 

which uses greedy hill climbing (hill climbing is a search algorithm where the 

current path is extended with a successor node which is closer to the solution than 

the end of the current path). A possible subset of features is then evaluated, and 

other features are successively added or removed from this set to see if an 

improvement can be achieved [70]. A simple way to do this is to start with one 

feature (the one with highest ranking according to scalar feature selection), say x1. 

Expand the set to contain two features by forming all possible pairs, say {x1, x2}, 

{x1, x3}, {x1, x4}. The pair that maximizes some class separability criterion is 

selected as the new feature subset. More features are then progressively added into 

larger and larger subsets until the desired number of features is reached. This 

method is often used when the size of the final subset is supposed to be small 

compared to the total amount of features. If the final subset is supposed to be 

large, then all features could be included in a preliminary subset which is 

progressively reduced. These methods are called sequential forward selection and 

sequential backward selection. A common drawback for both of these is that once 

a feature is included there is no way of getting rid of it (and vice versa in backward 

selection). Pudil’s sequential floating forward selection is a workaround to this 
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problem, allowing features to be both included and excluded several times [71]. A 

flow chart describing the algorithm is presented in Figure 45.  

Let k = 0

Apply one step of
the sequential forward

selection algorithm

Let k = k + 1

Desired
number of features

reached?

Conditionally exclude
one feature found by
applying one step of 

the sequential backward
selection algorithm

Is this
the best (k-1)-
subset so far?

Return the conditionally
excluded feature

Leave out the 
conditionally excluded

feature

Let k = k -1Stop
Yes

No

YesNo

Figure 45. Flow chart of Pudil’s sequential floating forward selection method, where k is the current 

number of features in the subset. 

In paper III, Pudil’s sequential floating forward selection method was used to 

reduce the number of features from 213 to 14. Inclusion or rejection of features 

was based on the error estimate of a 1-nearest neighbour leave-one-out classifier 

where the performance criterion equals 1 – the estimation error. The number of 

features used in the final set was chosen to maximize the performance criterion 

while keeping the number of features as low as possible.  

14 features were selected, see Table 3, and the resulting set was denoted the SFFS 

subset. Bearing in mind that the investigated murmurs are aortic stenosis, mitral 

insufficiency and physiological murmurs, the selected features are actually very 

reasonable. A wavelet detail represents the end of systole, where it can be used to 

separate holosystolic mitral insufficiency murmurs from physiological murmurs 

and aortic stenosis murmurs which are of crescendo-decrescendo shape. Three 

Shannon energy measures represent the signal’s intensity in mid systole, thereby 

describing the shape of the murmur in the time domain. A fractal dimension 

measure represents the complexity of the murmur in relation to the heart sounds. 

This measure can be seen as the amplitude normalized complexity of the murmur. 

Another fractal dimension measure, located at S1, represents the change of S1 that 

is associated with mitral insufficiency. Remaining features are a bit hard to explain 

in a physiologically meaningful way.  
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Table 3. A brief summary of the features selected by Pudil’s sequential forward feature selection 

method, the SFFS subset.  

Wavelet detail: One feature representing the end of systole  

Wavelet entropy: One feature describing the information content in the high frequency 

range.  

Shannon energy: Three features in mid systole able to describe the shape and intensity of 

the murmur and one feature after S2 revealing the noise level. 

Stockwell’s TFR: Two features giving a collected view of the low frequency content over 

the heart cycle.  

Bispectrum: One feature indicating phase coupling and frequency content for low 

frequencies.  

Reconstructed state space: Three features describing the width of the Gaussian mixture 

model (probably located in the part of state space where the murmur lives), two of these 

belong to the largest mixture. 

Variance fractal dimension: Two features, one giving the amplitude normalized 

complexity of the murmur and the other describing S1. 

5.4.3. Classifying murmurs 

The work in this thesis does not intend to cover the classification step. However, 

to show the abilities of the feature set derived in the last section, a simple, off-the-

shelf classifier was however employed. A fully connected feed-forward neural 

network was set up, with logarithmic sigmoid transfer functions and biased values 

throughout. The number of input units was set to the nearest larger integer of the 

square root of the number of features in the set, the number of units in the hidden 

layer was set to three and the number of output units was set to two. The target 

values were 00 (mitral insufficiency), 01 (aortic stenosis) or 10 (physiological 

murmur). Each output from the network was thresholded at 0.5 and compared to 

the results from a clinical echocardiography investigation. A leave-one-out 

approach was used for training and testing due to the limited amount of patients.  

Three additional subsets were used for comparison with the SFFS subset. The first 

set consisted of the Shannon energy features, the second set consisted of the 

wavelet detail features and was adapted from [17, 72] and the third set consisted of 

a TFR decimated to 4x4 values (adapted from [73]). 

Confusion matrices showing the classification results for the four tested feature 

subsets are presented in Table 4. The percentage of correct classifications was 

58%, 44%, 53% and 86% for Shannon energy, Wavelet detail, TFR and the SFFS 

subset, respectively. If all pathological cases (mitral insufficiency and aortic 

stenosis) are treated as one group, sensitivity and specificity can be specified. In 

this setting, the sensitivity was 90%, 90%, 93% and 93% and the specificity was 

28%, 14%, 57% and 100%, respectively. The number of patients with valve 
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pathology that were erroneously classified as physiological was comparable for all 

feature subsets; 10%, 10%, 7% and 7%, respectively.

Table 4. Confusion matrices showing the classification results from four different feature subsets. 

Target groups are presented horizontally while the predicted groups are presented vertically. Each 

number represents number of patients (total number of patients in the study is 36).  

 Shannon Energy  Wavelet detail  TFR features  SFFS

 AS MI PM  AS MI PM  AS MI PM  AS MI PM 

AS 17 4 4  15 5 2  14 4 3  19 1 0 

MI 3 2 1  6 0 4  8 1 0  2 5 0 

PM 3 0 2  2 1 1  1 1 4  2 0 7 
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6. Discussion 

“Doubt is not a pleasant condition,  

but certainty is absurd.” 

Voltaire (1694 - 1778) 

The focus of this thesis has been to investigate and develop new tools to facilitate 

physicians’ daily work. Evaluation of patients with heart disease is a complex task, 

where auscultation provides one piece of the puzzle. Therefore, our intelligent 

stethoscope is not to be seen as a tool capable of replacing clinicians, but rather as 

a provider of quantitative decision support. The stethoscope’s main usage will be 

in the primary health care, when deciding who requires special care. 

Consequently, it should neither be seen as a replacement of more advanced 

techniques such as echocardiography. 

The main tasks for the intelligent stethoscope are to improve sound quality, to 

emphasize weak or abnormal events (such as reverse splitting of S2) and to 

distinguish different heart murmurs from each other. In a small pilot study from 

2002, interviews with nine primary health care physicians revealed that the most 

interesting task for an intelligent stethoscope was classification of heart murmurs, 

especially to distinguish physiological murmurs from pathological murmurs. 

A danger with projects such as the intelligent stethoscope is that technology is 

sometimes introduced for the sake of technology. Heart sound cancellation from 

lung sounds (paper I) tends in this direction, see section 6.1. Detection of the third 

heart sound is somewhat different since S3 can be very difficult to hear. Notifying 

the physician that a third heart sound is present could thus be of great value (paper 

II). When it comes to decision support and classification (paper III), the intended 

use of the system becomes an important issue, see section 6.2. 

6.1. Context of the Papers 

The research on signal processing of heart sound recordings has been extensive 

[74, 75], and several authors have investigated the possibility to automatically 

classify cardiac murmurs. The contribution of paper III is partly a thorough survey 

of features available for murmur classification and partly the addition of several 
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new features. The survey is based on features from the literature, ranging from 

time domain characteristics [76-78], spectral characteristics [79-81] and frequency 

representations with time resolution [17, 72, 73, 81-83]. The main contribution 

compared to previous works is the incorporation of nonlinear and chaos based 

features, a source of information that has not previously been explored in the 

context of heart murmur classification.  

There are a number of methods available for heart sound cancellation from lung 

sound recordings. This is quite interesting since heart sound cancellation have 

limited clinical use (physicians are able to more or less ignore heart sounds while 

tuning in on lung sounds during auscultation). The problem at hand is a very 

intriguing engineering problem though, and this is probably one reason for its 

popularity. A justification of all these methods is that automatic classifiers seem to 

be confused by the heart sounds. When trying to separate different lung diseases 

based on lungs sounds, results tend to improve after removal of the heart sounds. 

Some of the previous approaches to heart sound cancellation include wavelet 

based methods [60], adaptive filtering techniques [61] and fourth-order statistics 

[62], all resulting in reduced but still audible HS. The contribution of paper I is 

that nonlinear behaviour in the lung sound signal is taken into account while 

cancelling out the heart sounds. This is an important extension since it has been 

indicted that lung sounds are indeed nonlinear [65-68]. 

In contrast to the other two papers, there is not much work available on detection 

of the third heart sound. A matched wavelet approach giving good results has 

previously been developed in our research group [58, 59]. The method presented 

in paper II is based on a change detection scheme developed to find weak transient 

components in signals. Compared to the wavelet approach, the change detection 

method finds more third heart sounds at the expense of more false detections. It is 

thus a complement rather than a replacement of the wavelet method, where the 

new approach could be used to find the third heart sounds while the wavelet 

approach could be used to exclude false detections. 

6.2. Patients and Data Sets 

Since this project is about developing of a new tool, a full clinical trial was not the 

goal when assessing the developed methods. Nevertheless, to emulate the 

environment where the intelligent stethoscope most likely will be used, most data 

has been recorded in a clinical environment (paper I and III). Below is a run-

through of limitations implied by the selected study groups in paper I-III. 

Paper I: This study was performed on six healthy male subjects (aged 28.5 ± 3.7 

years). Limitations implied by the study population are that no adventitious lung 

sounds are present. Future work should thus contain patients with various 

pulmonary diseases. These limitations result in a few implications: 

1. How would the heart sound detector perform in the presence of 

adventitious sounds? In paper I, it is indicated that the detector performs 

quite well even when the signal is obscured by heavy breathing. The 
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attractor of wheezing sounds has a similar morphology as the attractor of 

heart sounds, and it is not inconceivable that wheezes will disturb the 

detection algorithm. In paper I, the measurements contained several 

friction rubs and one test subject had a distinct third heart sound. Most of 

these friction rubs and third heart sounds were detected and removed along 

with the other heart sounds. Explosive lung sounds like crackles will 

probably be marked by the method as well. By including extra criteria, 

such as interval statistics or the degree of impulsiveness, it is possible that 

these false detections could be avoided. 

2. How would the prediction scheme perform in the presence of adventitious 

lung sounds? Wheezing sounds have a periodic structure and their attractor 

is well defined (an example can be found in [84]). This would pose no 

problem to the predictor. Crackles on the other hand occurs rather 

stochastic (actually they come in avalanches following a fractal behaviour 

[85]), and are thus harder to predict. This will most likely fail. 

Paper II: Ten healthy children were used in this study (male = 5, female = 5, aged 

5-13 years), mostly because third heart sounds with high signal quality are 

common in this group. Investigation of pathological phonocardiograms is left for 

future studies. In a validation study, patients with heart failure should be chosen. 

After all, the intended use of the algorithm is to use S3 as a marker of heart failure.    

Paper III: In total, 36 patients (19 male, 17 female, ages 69 ± 14 years, all with 

native heart valves) were enrolled in the study. The prerequisite for including a 

patient in the study was that a primary health care physician had identified a 

murmur and that the patient had been sent to the cardiology clinic for further 

investigations. As stated previously, physicians ask for a method able to separate 

physiological murmurs from pathological murmurs. The usage of such a tool is 

however more applicable in a young population. In a material with data from 

elderly patients, it is more interesting to determine the actual source of the 

murmur. This is exemplified in the following heart murmur classification 

scenarios, where the demands on the system turn out to be quite different from 

each other. 

1. Screening in a young population. Physiological murmurs are very common 

in children, and methods able to separate physiological murmurs from 

pathological murmurs would be of great value. However, the performance 

requirements are extremely high. For example, physiological murmurs have 

to be separated from even very mild aortic stenosis due to the latter’s 

implications on choice of profession, insurance issues and whether follow-

ups of a possible disease are needed or not. Due to the consequences of an 

incorrect diagnosis, the tolerance for false positives and negatives is low. 

The performance requirements of the system are huge and the interesting 

question it all comes down to is: does the phonocardiographic signal 

contain enough information?



Processing of the Phonocardiographic Signal 

62

2. Measuring the degree of stenosis in the elderly. Pathological changes in the 

aortic valves are common in the elderly. Usually this change has little 

physiological importance since the stenosis is mild. However, it is 

important to find those patients who really have a significant narrowing of 

the valve opening; partly because surgical correction improves the 

prognosis of these patients and partly because, when surgery is out of the 

question, some medications should be avoided. The classification task 

would then be to measure the degree of the stenosis and decide whether the 

stenosis is mild or moderate/severe. This scenario is easier so solve 

compared to the previous scenario since the grey area between a 

physiological murmur and a mild stenosis is not of interest.

6.2.1. Measurement noise 

The data sets used in this thesis where all more or less affected by noise, and as a 

matter of fact, the data in paper I and III were actually very noisy. In practice this 

means that the recordings contained friction rubs, rumbling sounds from the 

stomach, breathing sounds from the lungs (a necessity in paper I and an obstacle in 

paper III) and background noise from the clinical environment. All of these 

influence the recorded sound in a negative way, but a perhaps bigger problem is 

handling the stethoscope. This is a setback since the whole idea behind the 

intelligent stethoscope is that it should be easy to use (perhaps even in home care 

by the patient herself). Firm application of the sensor cannot be stressed enough to 

achieve high quality recordings. 

6.3. Methodology 

Most methods used in this thesis suffer from high computational burden. This is a 

problem since the software is supposed to be implemented in a portable 

stethoscope, preferably in real time. It is however difficult to assess the actual 

performance limitations of the used methods because they were never designed to 

be quick or efficient. A number of potential speed-ups come to mind.  

• Matlab was used to implement all algorithms, but using a lower level 

language would increase performance.  

• Fast nearest neighbour routines are available, but currently a very simple 

search routine is used.  

• A sliding window approach is often used to gain time resolution. The 

reconstructed state space is nearly identical between iterations due to the 

overlap between segments, and this fact is not exploited.  

A fundamentally different bottle-neck is the fact that the some calculations are 

non-causal. For instance, many of the features in paper III were derived as 

averages over all available heart cycles. In most cases this could be dealt with by 

only using old data. Accumulated statistics could then be used to increase the 

accuracy of the output as more data become available.
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Significance tests could have been performed to statistically verify if there were 

any differences between the different groups in paper III. The number of tests 

would have been large, trying to separate three groups from each other in 213 

cases (the total number of features). There are at least two reasons why these tests 

were not performed. Firstly, when performing a great number of statistical tests, 

the probability of getting significant differences by chance is rather high and 

secondly, variables that are useless by themselves might be useful in combination 

with others. 

The greatest problems when using chaos based signal analysis tools are that the 

results are almost always open for interpretation, that nearly noise free data is 

required and that the amount of data should be large. Phonocardiographic data is 

rather cyclo-stationary than nonstationary, so by concatenating stationary 

segments, large data sets can be obtained. In this thesis, these segments were 

simply concatenated in the time domain, while a better approach would have been 

to append the reconstructed state space matrices to each other. An extra flag would 

then be appended to each coordinate, keeping track of the last coordinate in each 

segment. This way, false neighbours due to the concatenation procedure can be 

excluded from the calculations. This addendum would have impact on all methods 

where a reconstructed state space is constructed from concatenated data 

(prediction in paper I and certain features in paper III). 

Estimation of fractal dimension characteristics should also be based on large 

enough data sets [86]. This implies a trade-off between time resolution and 

accuracy in the estimation of the time dependent fractal dimension (similar to the 

uncertainty principle when calculating time-frequency representations). As the 

investigated signal segment does not possess self-similarity over an infinite range 

of scales, the self-similar properties of the segment are lost if the sliding window is 

too short. Similarly, if the window size is set too long, the different characteristics 

of consecutive signal segments will be blurred together. Another reason for not 

using too short windows is that the number of signal amplitude increments used to 

calculate the variance in the variance fractal dimension algorithm must be greater 

than 30 to be statistically valid [24]. 

Ideally, four different data sets should have been used in paper III. One set for 

selecting analysis methods able to extract features, one set for selecting the most 

important features, one set for training the classifier and a final set for validation. 

This set-up requires an extensive database of phonocardiographic signals. 

Unfortunately, this was unattainable within the scope of this project. A good 

compromise when the number of data is limited is the leave-one-out approach. 

Here the training is performed on N-1 samples and the test is carried out on the 

excluded sample. This is repeated till all samples have been tested. The results 

when using separate training and testing sets compared to the leave-one-out 

approach are very similar [69]. However, the independence between the training 

and testing sets are compromised since the same sets are used for both feature 

selection and training of the classifier.  
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Selecting descriptive measures to demonstrate the performance of an algorithm 

can be cumbersome. In paper I and II, receiver operating curves (ROC) would 

have been informative to describe the dependence of thresholds. This was not 

feasible since all detections had to be confirmed or rejected manually.  

In paper I, the accuracy of the predictions was difficult to verify since the true 

signal was not known. The spectral difference between the reconstructed lung 

sound signal and a lung sound signal with cut-out heart sounds was small. 

However, comparing spectral densities might be questionable as phase information 

is lost. Another attempt is to compare the waveform similarity between predicted 

segments and actual lung sound data. The results from this measure were very 

good, but this is not surprising since the prediction scheme exploits that 

trajectories in state space share the same waveform characteristics in time domain 

(i.e. the prediction tries to reproduce past parts of the time series). Since both of 

these measures are questionable, a simple complementary listening test was 

performed by a physician. However, such tests are certainly not quantitative. 

6.4. Future Work 

6.4.1. Clinical validation  

The methods presented in paper I-III have not been clinically evaluated, validation 

on a large number of patients are thus necessary. The number of patients is 

especially low in paper III, where the methods used for feature selection as well as 

classification requires a lot of data to give reliable results. When recording a new 

material, the clinical need and the selected patient groups should be re-evaluated 

together with medical personnel. The two scenarios in section 6.2 are typical 

examples of interesting study groups. 

6.4.2. Multi-sensor approach 

The magnitude of different components in the phonocardiographic signal varies 

with the measurement location. For instance, listening over the apex, S1 is louder 

than S2. Also, the location where a heart murmur is best heard often indicates its 

origin. By using multiple sensors in parallel, this difference in intensity could be 

used as a parameter in a classification system. Further uses could be to derive time 

differences between the different signals and, using this information, calculate an 

estimate of the location of the event. For instance, using S1 and S2 as reference 

locations, the murmur location could be of diagnostic value. A third possible use 

of multiple sensors is to use several sources of the signal when creating the 

reconstructed state space. This would probably give better resistance to 

measurement noise and, above all, a better embedding of the signal.  

The major drawback with multiple sensors is that the simplicity of the stethoscope 

would be afflicted. Nevertheless, if additional sensors are to be used, there are no 

reasons not to use conceptually different techniques such as ECG and Doppler 

ultrasound.   
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6.4.3. Dimension reduction 

The recorded phonocardiographic signal is one-dimensional, and this signal can be 

unfolded into a high-dimensional space (section 3.2). This is all very nice, but how 

should the results be interpreted when they cannot even be visualized. One 

possibility is to use recurrence plots (section 3.3.2), but there might be better ways. 

Classical linear methods for dimension reduction include principal component 

analysis and multidimensional scaling. A drawback with linear methods is that 

data may not always be accurately summarized by linear combinations. An 

example is a helix in a three dimensional space, whose one dimensional structure 

cannot be discovered by linear methods.  

Since the manifold on which the embedded phonocardiographic signal resides is 

non-linear, linear methods are not adequate. Instead of finding the most important 

linear subspace from a set of data points (like in principal component analysis), 

non-linear parameterizations can be sought. Many of these manifold learning

techniques are based on a distance matrix (like multidimensional scaling, which 

tries to preserve the distance between each data point even after the dimensionality 

has been decreased). In principle, the difference compared to multidimensional 

scaling is the way that distances are calculated. Instead of measuring a global 

distance (a straight line through space), the distance is calculated by summing up 

local distances between states as we move from one point to another (i.e. we are 

only allowed to travel from point a to point b via other data points located in 

between). 

A problem associated with these techniques is whether the embedded 

phonocardiogram really resides on a manifold and if so, whether the manifold is 

sampled dense enough to be able to draw any valid conclusions.   

6.4.4.      Choosing an appropriate classifier 

A proper set-up of the classifier in paper III, and, for that matter, the choice of the 

actual classifier, was out of the scope of this thesis. The common picture is that the 

actual type of classifier is not extremely important, at least not in comparison with 

the importance of good features. Nevertheless, a good classifier should be used, 

and some effort should be spent on its design. Looking at it from a practical point 

of view, the chosen classifier might be adequate enough. After all, it works 

properly for the application in question. 
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7. Review of Papers 

“There is a coherent plan in the universe,  
though I don't know what it's a plan for.” 

Fred Hoyle (1915 - 2001) 

This chapter introduces the papers which are included in the second part of this 
thesis. 

7.1. Paper I, Heart Sound Cancellation 

This paper presents a new method to detect and remove heart sounds from 
recorded lung sound signals. The idea is to locate the heart sounds, remove them 
altogether and predict what should have been in their place using surrounding data. 
The location of the heart sounds is found using a nonlinear change detection 
method based on recurrence time statistics. Once the heart sounds have been 
removed, the missing gap is filled in using a nonlinear prediction scheme. 

The reason for using this rather odd change detection algorithm was that the data 
was very noisy (high flow in the respiratory part of the signal). The error rate was 
4% false positives and 8% false negatives using this method. Results from other 
algorithms were not explicitly derived, but fast visual comparisons rejected 
methods like Shannon energy. Similarly, the choice of a nonlinear local prediction 
method was based on the fact that lung sounds are indeed nonlinear. 

The proposed solution to the problem of heart sound cancellation was tested on six 
subjects. The spectral difference between the denoised lung sound signal and a 
lung sound signal with removed heart sounds was 0.34±0.25 dB/Hz, 0.50±0.33 
dB/Hz, 0.46±0.35 dB/Hz and 0.94±0.64 dB/Hz in the frequency bands 20-40 Hz, 
40-70 Hz, 70-150 Hz and 150-300 Hz, respectively. The cross-correlation index 
was found to be 99.7%, indicating excellent similarity between actual lung sound 
data and predicted lung sound data. 

7.2. Paper II, Detection of the 3rd Heart Sound 

An algorithm, actually based on the same recurrence statistics as the heart sound 
locator in paper I, was developed for detection of the third heart sound. Recurrence 
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points of the first kind (T1) are known to be rather noise insensitive and robust, 
while recurrence points of the second kind (T2) are better suited for finding very 
weak signals. The two could be used as a pair where T1 is used on a coarse scale 
to locate the first and second heart sounds, while T2 could be used on a finer scale 
to locate the third heart sound within a predetermined window succeeding the 
other heart sounds. The reason to look for S3 after both S1 and S2 was to avoid the 
problem of distinguishing the two (statistics about their timing is hard to use on a 
young population where the heart rate is high). 

Since S3 is normally heard during auscultation of younger individuals, the method 
was tested on ten children. Most S3 occurrences were detected (98 %), but the 
amount of false extra detections was rather high (7% of the heart cycles). 

  

7.3. Paper III, Feature Extraction from Systolic Murmurs 

Available features for heart murmur classification were reviewed and new 
features, mostly inspired by research in speech processing, dynamical systems and 
chaos theory, were introduced. Techniques such as Shannon energy, wavelets, 
fractal dimensions and recurrence quantification analysis were used to extract 213 
different features. 163 of these features have not previously been used for heart 
murmur classification. However, this many features often result in high 
computational complexity, mutual correlation and classifiers with low generality. 
Not to mention the curse of dimensionality. For this reason, a subset selection 
method was employed to reduce the number of features. The derived feature 
subset, maximizing a performance criterion while keeping the number of features 
low, resulted in a subset of 14 features. 

Heart sound data from 36 patients with aortic valve stenosis, mitral insufficiency 
or physiological murmurs were used to test the new feature set. Using the results 
from a neural network classifier, this new feature set was compared with three 
other feature sets. The selected subset gave the best results with 86 % correct 
classifications, compared to 58 % for the first runner-up. In conclusion, the 
derived feature set was superior to those previously used, seems rather robust to 
noisy data sets and will be tested in more clinically oriented studies in the future. 
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