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ABSTRACT 
Range queries for querying the current and future positions 
of the moving objects have received growing interests in 
the research community. Existing methods, however, 
assume that an object only moves along an anticipated path. 
In this paper, we study the problem of answering 
probabilistic range queries on moving objects based on an 
uncertainty model, which captures the possible movements 
of objects with probabilities. Evaluation of probabilistic 
queries is challenging due to large objects volume and 
costly computation. We map the uncertain movements of 
all objects to a dual space for indexing. By querying the 
index, we quickly eliminate unqualified objects and employ 
an approximate approach to examine the remaining 
candidates for final answer. We conduct a comprehensive 
performance study, which shows our proposal significantly 
reduces the number of object examinations and the overall 
cost of the query evaluation.   

1. INTRODUCTION 

There are growing demands for moving objects 
monitoring functions in numerous mobile applications, 
such as traffic monitoring, fleet management, flight control, 
etc. For instance, by continuously receiving location 
updates from buses on roads, a bus control system can 
perform a better bus scheduling. To avoid traffic 
congestion, a range query [17], which “retrieves all the 
buses that will arrive within 1 mile of the station in the next 
10 minutes”, may be issued to obtain estimated answers 
based on buses’ velocities or locations stored in the 
database.  

Research on spatio-temporal databases that manage 
objects’ moving information has produced fruitful results in 
indexing and querying techniques. A number of efficient 
methods for managing moving objects have been proposed. 

Typically, they assume that an object moves on an 
anticipated path. As a result, an object’s most possible path 
based on a linear function [11,16,19] or recent information 
[18] are maintained. In fact, the real location of an object is 
known for certain to the server only when an update is 
received. The uncertainty of the object’s location increases 
as time grows until the next update is received. Thus, the 
uncertainty has a great impact on the accuracy of these 
proposed methods.  

The scenarios of objects moving on routes have been 
widely considered in research studies appeared in the 
literature due to various moving object database 
applications (e.g., trucks in fleet management and buses in 
bus scheduling). Noticing that a route can be considered as 
a sequence of smaller line paths, we adopt line-segment 

uncertainty in this paper. Accordingly, for objects which 
moves along straight line paths, the uncertainty at any time 
is given by a line-segment [2].  

Since most objects move without deviating from their 
recent moving behaviors drastically, the uncertainty can be 
bounded, i.e., an object’s future positions could be captured 
probabilistically using an uncertainty probability density 

function (pdf) [2]. A pdf of an object Oi moving on a line-
segment (i.e., in a one-dimensional (1-D) space) can thus 
be represented as fi(x,t) where fi is the probability of Oi at 
the location x at the time instant t. Therefore, an object’s 
location at any time can be estimated with an uncertainty 
probability defined by its pdf. Typically, the function fi can 
be derived from Oi’s past moving behavior or the moving 
velocity distribution. Thus, each object can be stored in the 
server database with a pdf instead of a location from the 
last update. 

Typically, a moving object’s velocity distribution can be 
approximated as a normal distribution. In this paper, we 
employ the Brownian motion with drift process (called 
Brownian motion in short) [4,10,13] as an uncertainty 
model to produce a pdf from a normal velocity distribution 
for all objects. The Brownian motion model can be derived 
easily with only two parameters, i.e. mean velocity and 
variance. Thus, by adopting this model, computation cost at 
the server and communication cost between the server and 
the objects can be reduced. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the ACM. To copy otherwise, or to republish, to post on 
servers or to redistribute to lists, requires a fee and/or special 
permissions from the publisher, ACM.  

EDBT'09, March 24-26, 2009, Saint Petersburg, Russia.  

Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00. 

60



To query moving objects using an uncertainty model, [2] 
has proposed probabilistic range queries (PRQ), e.g., 
“retrieve the identifications of all the buses that will come 
within 1 mile of the station in the next 10 minutes with a 
probability more than 0.4.” Unlike a conventional range 
query, a probability is specified as part of query conditions. 
Additionally the answer is to be obtained over a time period 
instead of just a time instant. An object is returned as an 
answer if its probability inside the query range (1 mile) is 
greater than 0.4 at any moment during the next 10 minutes. 
This query, by taking into account both the location range 
over the time period, returns objects with probabilities 
satisfying the specified probability threshold.  

Probabilistic condition in the query can only be 
evaluated on objects with expensive integral computation, 
incurring significant overhead. Several methods have been 
proposed to index objects with uncertain movement [3,20]. 
A common idea is to pre-determine the uncertainty 
intervals of objects with the same probability bounds. 
Several different bounds are pre-defined with various 
probability values and grouped by the proposed indexes. A 
query is processed by first verifying these bounds to reduce 
the number of objects under consideration. However, these 
indexes are not applicable to time-varying uncertain data. 
In other words, the assumed uncertainty model is time-
independent, i.e., an object’s uncertain range and 
probability values remain unchanged no matter how much 
time passing by from the last update.  

In this paper, we propose efficient techniques for 
querying uncertain time-varying data. We observe that the 
expensive query cost is due to: (1) the waste of time in 
evaluating objects far away from the query range, and (2) 
the expensive integral computation required for evaluating 
the probability. In order to solve problem (1), we transform 
the uncertain movements of objects into points in a dual 
space using the Hough Transform [8]; therefore, these 
points can be indexed by an arbitrary point access method 
[6]. After transforming the movements, however, only the 
most representative path with a timestamp is maintained in 
the index. As a result, some of the answers may get lost 
when querying on the index. We expand the query to avoid 
losing answers and transform the expanded query into a 
search range. Querying on the index using the search range 
allows pruning the unqualified points outside the search 
range. Thus, the cost of object examinations is reduced. 
After the elimination process, the remaining objects are 
examined to evaluate their probabilities. For problem (2), 
we present an approximate approach to reduce the cost of 
integral operations in evaluating the probabilistic query 
condition. While the proposed approximate approach 
results in false positives, none of the objects that should be 
included in the answers is lost. We also develop an error 
function to compute the probability bound for the answers. 

A performance study is conducted to compare the 
running time of the probabilistic range queries using our 
strategy with a non-indexing method. We show the 
effectiveness of elimination process with different number 
of objects and the accuracy of the examination with 
different query parameters. 

The rest of this paper is organized as follows. In Section 
2, we discuss related works. In Section 3 we define the 
problem, discuss the Brownian motion model, and review 
the Hough Transform technique. In Section 4, we describe 
our indexing method and query processing algorithms for 
PRQ. In Section 5, we evaluate the proposed method. 
Finally, we conclude the paper in Section 6. 

2. RELATED WORK 

Here we review the existing techniques for range queries 
on moving objects and the probabilistic queries over 
uncertain data. 

2.1 Range Queries over Moving Objects 

Dual transformation based on Hough Transform has 
been employed for querying spatial-temporal data. Kollios 
et al. [11] map predicted trajectories of moving objects into 
points in a two-dimensional space by dual transformation 
and reduce the problem of querying the objects’ locations 
to an issue of point access.  

Saltenis et al. [16] proposed time-parameterized R-tree 
(TPR-tree) to index moving objects. A minimum bounding 
box (MBR) and a velocity bounding vector (VBV) were 
used to cover the range where the covered objects will 
reach. Therefore, the extent of a node in the TPR-tree 
grows with time. While an update is performed as in the 
R*-tree, query processing needs to compare the query time 
with the update time in the MBRs. An improved index 
called TPR*-tree was proposed by Tao et al. [19]. TPR*-
tree creates tighter extends and develops better deletion and 
tree-splitting operations to improve the performance of the 
TPR-tree. 

2.2 Query Processing on Uncertain Data 

Cheng et al. [1] classify different types of probabilistic 
queries over imprecise data in sensor environments. 
Accordingly, several processing algorithms with 
probabilistic estimates were presented. The issue of quality 
measure for the answers was addressed by assuming that 
the uncertainty pdfs of moving objects are fixed and 
independent of time, which is unrealistic. Cheng et al. [2] 
also propose probabilistic queries over moving objects. 
Unlike the model in [1], the uncertainty model is dependent 
of time. The uncertainty range and pdf of a moving object 
is based on when the object updates and the query 
processes. The authors presented algorithms for range and 
nearest-neighbor query respectively.  
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Since both methods proposed by Cheng need to examine 
the uncertainty information of each object at least once for 
a query which incurs expensive integral operation, Cheng 
et al. [3] further develop several solutions to deal with this 
problem. The authors propose probability threshold 

indexing (PTI) to store the pre-computed probability 
bounds called x-bounds, which the uncertainty intervals in 
a PTI have the same probability bounds. Comparing the 
probability threshold in the query with the x-bounds, the 
cost of the query processing can be reduced. Tao et al. [20] 
followed this idea to propose conservative functional box, 
represented as a linear function, to bind the probabilities of 
objects for multi-dimensional uncertain data and arbitrary 
pdfs. U-tree is developed to index the conservative 
functional boxes.  

Cheng and Tao develop efficient indexes to reduce the 
cost of processing probabilistic queries. Nevertheless, these 
techniques costs a lot because each object needs to be 
evaluated at least once and indexed based on pre-computed 
bounds, which do not always satisfy the arbitrary 
probability threshold of queries. Additionally, these works 
do not take into account the uncertainty changing with time. 
The uncertainty ranges and probabilities in these works are 
assumed to be constant instead of basing on time-varying 
pdfs.  

3. PRELIMINARIES 

In this section, we first describe an uncertainty model 
for moving objects and then formally define probabilistic 
range queries. Finally, we describe Hough Transform.  

3.1 Uncertainty Model 

Given a set of moving objects Θ, where the ith object in 

Θ is denoted as Oi, we assume that Oi is moving in one 
dimension (1-D), e.g., x-axis, and is able to compute its 
own location x at any time t. Location updates are 
submitted to a server based on some update policies, which 
is out of scope of this paper since they do not affect the 
uncertainty model. Upon receiving an update from object 
Oi, the server calculates the uncertainty with respect to Oi’s 
location and timestamp. Based on [2], the uncertainty 
function can be defined in 1-D space as follows: 

Definition 1: Uncertainty Probability Density Function 

(pdf). The pdf of an object Oi, denoted by fi(x, t), is a 

probability value of Oi’s location x at time t.                      ■ 

After receiving the update from Oi, the server calculates fi 
to represent the after-update motion of Oi. The server re-
calculates fi when the next update is received. It has the 
property that fi(x0, t0) =1 if an update information (x0, t0) is 
issued by any object Oi. 

Since the past moving behavior (i.e., velocity 
distribution) of an object usually has an impact on its future 

motion in reality, it is feasible to derive Oi’s pdf fi from its 
past velocity distribution. However, the derived functions 
may incur excessive overhead due to extra cost for 
exchanging probabilistic parameters and performing 
complex integral operations. To reduce the overhead, we 
choose normal distribution to express velocity distributions 
of moving objects. Even though not all moving objects’ 
velocity distributions fit well, most objects can be 
approximated by a normal distribution. Since the 
uncertainty of an object’s location increases as the time 
goes, a good candidate model of uncertainty is Brownian 

motion with drift process [4,10,13] (called Brownian 
motion for simplicity in this paper). Lei et al. [12] and Rose 
[15] present methods to minimize the paging cost both 
based on the model Brownian motion. The one-dimensional 
Brownian motion is represented and formulated as follows: 

Definition 2: Brownian motion with drift process. The 

pdf of an object Oi, starting at location x0 at time t0, model 

by Brownian motion is denoted by 
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The mean function of fi is denoted by 
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The variance function of fi is denoted by 
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2
ttDttxVar iii −==σ .            ■ 

The above function is based on a normal velocity 
distribution. The mean and the variance of the process are 
linear functions of the time interval (t - t0). Di is the 
diffusion parameter, also called the variance, with units of 
(length2/time) and v is the average velocity (length/time), or 
named the mean, of Oi’s velocity distribution [15]. The 
distribution of Brownian motion is a Gaussian pdf at any 
time and is parameterized by the time interval (t - t0). The 
uncertainty probabilistic density function of an object can 
be evaluated by two parameters mean and variance. 

Example 1. As shown in Figure 1, an object Oi updates at 
the location 0 at time 0 with the mean v1 = 10 meter/min 
and the variance D1 = 4 meter2/min for its velocity 
distribution. The time instants t1, t2, and t3 refer to the 
moment after 1 min, 2 min and 5 min from the update. Note 
that f1(x, t1) is a normal distribution, and so are f1(x, t2) and 
f1(x, t3). In other words, at any time t except when the 
update is received, f1(x, t) is a normal distribution. The 
mean and the variance functions are linear to time such as 
μ1 (t1) = v1 × t1 = 10 and σ1

2 (t1) = D1 × t1 = 4.         ■ 
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3.2 Probabilistic Range Query Definition 

Based on the above model, the probability of an object 
inside a given location range can be obtained. Users are 
usually interested in objects in a query range with a certain 
probability or above. Therefore, a probabilistic range query 

(PRQ) [2] is defined by augmenting range queries with a 
probability threshold. An object whose probability over the 
specified query range satisfies the probability threshold will 
be returned as part of the query results. We modify and re-
define PRQ from [2] in 1-D space as follows: 

Definition 3: Probabilistic Range Queries (PRQ). Given 
(1) a closed location interval ],[ 21 xx ( axisxxx −∈21,  and 

21 xx ≤ ), (2) a time period ],[ 21 tt (
21 tttnow ≤≤ ), and (3) a 

probability threshold p. A PRQ returns the object Oi if 

ppij ≥∃  at any time instant )( 21 tttt jj ≤≤  where 

            ∫=
2

1

),(
x

x
jiij dxtxfp                                    ■ 

 

The query q in Figure 2 is a probabilistic range query. An 
object Oi updated its information at (x0, t0). Its uncertainty 
pdf is modeled by Brownian motion (the arrow indicates 
the mean velocity of the object’s distribution). At any time 

tj (t1 ≦ tj ≦ t2), if the cumulated probability value pij 

corresponding to where Oi is located inside the interval [x1, 

x2] (i.e., the grey area in the figure) is greater than or equal 
to the probability threshold p, then the object Oi will be in 
the answers for the query q. On the contrary, if none of pij 
satisfies the threshold, Oi will not be returned by this query. 
This definition of PRQ is different from [2] as the time 
instant of a PRQ is generalized to a time period. 

3.3 Hough Transform 

Hough Transform [8] is widely used in pattern 
recognition. A number of indexing structures have been 
proposed based on this technique. Jagadish [9] proposes to 
use Hough Transform to index line segments, and Kollios 
et al. [11] transformed moving objects’ trajectories into 
points for indexing. Hough Transform maps a hyperplane h 
from Rd to a point in Rd. We present the concept in a two-
dimensional case. Three basic properties of Hough 
Transform between the primal 2-D space and the 2-D dual 
space (called by [11]) are as follow. 

 A line S: y = mx + b in the primal space can be mapped 

to a point S’: (m, b) in the dual space, where m is the 

slope of S and b is the intercept of y-axis in the primal 

space.  

 A point T: (x, y) in the primal space can be mapped to a 

line T’: n = - xm + y in the dual space, where x is the 

slope of T’ and y is the intercept of n-axis in the dual 

space. 

 A line segment U defined by the two points T1: (x1, y1) 
and T2: (x2, y2) in the primal space can be mapped to an 

area U’ in the dual space, and U’ is bounded in the two 

lines T1’: n = - x1m + y and T2’: n = - x2m + y. If a line 

S intersects the line segment U in the primal space, then 

the mapped point S’ form S is definitely included by U’. 

We take an example to illustrate these properties. 

Example 2. Given a line S: y = 2x + 1 and a point T: (2, 1) 
in the primal space as shown in Figure 3(a), we map the 
line S to a point S’: (2, 1) and the point T to a line T’: n = - 
2m + 1 in the dual space (see Figure 3(b)) based on the first 
two properties. If the line S: y = 2x + 1 intersects the 
segment U, defined by two points T1: (1, 4) and T2: (2, 1) in 
the primal space (see Figure 3(c)), the mapped point S’ in 
the dual space is included in the area U’ where U’ is 
mapped from U (see Figure 3(d)).                   ■ 

The transform with the above properties is called Hough-X 
transform, which does not treat a vertical line since its 
slope is infinite. In contrary, Hough-Y [9] transform treats 
vertical lines but not horizons. Our method is based on 
Hough-X transform since no vertical lines appear in our 
method. 
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63



 

4. INDEXING AND QUERY PROCESSING 

A naïve method to process the probabilistic range query 
is to retrieve all objects and to evaluate their pdfs for the 
probability values. The objects whose probabilities satisfy 
the probability threshold of the query are returned. Two 
problems arise from this approach. First, as the number of 
moving objects is very large, it is inefficient to retrieve all 
objects in query processing. Second, as shown in Definition 
3, the calculation of each object’s pdf involves an 
expensive integral operation at a time instance. This is 
particularly impractical as the query is defined with a time 
period. 

Since the movements of an object are uncertain, it is 
infeasible to maintain all possible future positions of any 
object. One important characteristic of Brownian motion is 
that the average velocity during the closest two updates is 
the same, i.e. an object’s expected movement can be 
represented with a linear function of time. Using Hough 
Transform, we transform an object’s expected movement, 
i.e., a line, into a point in a dual space. By mapping the 
moving objects into a dual space, points in the dual space 
become much easier to be indexed. Meanwhile, a query can 
be transformed into a search range in the dual space. 
Therefore, we can eliminate unqualified objects for the 
query via the index. Moreover, we develop an approximate 
approach to examine the remaining objects to prevent the 
costly integrals. Furthermore, we can assure the returned 
answers to be within bounded errors. 

4.1 Uncertain Movements Indexing 

The location uncertainty of an object increases from its last 
update (as shown in Figure 4). The probability of an object 
Oi’s location varies at different time instant, i.e., the 
probability value depends on the Oi’s location x at the 
instant time t. Therefore, three attributes, location, time, 
and probability, are to be considered when we index 
uncertain movements of objects. Based on [3], we can 
intuitively derive a curve that bounds objects’ locations 
with the same probability. However, it’s difficult to 
formulate the curve as a function. Further, to answer query 
on these curves, numerous curves need to be maintained in 
the index. 

 

 

Since the mean function of Brownian motion is linear 
(see Definition 2), the curve of fi, which is a normal 
distribution function, is symmetrical with respect to Ei. 
Hence, we index the mean functions of the moving objects. 
These linear functions are illustrated in Figure 5(a). The 
equation of each line is μi (t) = x = vit + a in the plane (v, t) 
where vi is the slope (the mean velocity in this case) of Oi 
and a is the intercept of x-axis. Note that t is corresponding 
to the pre-defined time origin To. 

    With the first property of Hough Transform, we can 
map any mean function μi (t) = x = vit + a as a line to a 
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indexing. 
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Figure 3. Hough Transform. 
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point (vi, a) as shown in Figure 5(b). In the dual space, the 
horizontal and vertical axes indicate the velocity and the 
intercept, respectively. A vertical line is never mapped 
because no object moves in a velocity of infinity. In the 
dual space, these points are easy to index by a number of 
point access methods [6]. Kollios et al. [11] has conducted 
a complete study on the quality of various indexing 
structures. Since our work does not focus on indexing 
structures, we choose to use R-tree [5] for its popularity.  

4.2 Query Transformation 

Our indexing scheme aims at obtaining the mean 
functions of the objects’ pdfs efficiently. The original 
problem of querying uncertain movements becomes an 
issue of querying which lines cross the range of the query. 
Thus, the range query should be transformed to another 
query that supports querying of lines. Unfortunately, some 
answers are lost when the results of querying lines are 
taken as the answers of querying uncertain movements. 

4.2.1 Query Expansion 
 

 Figure 6(a) illustrates an example where an object Oi is 
missed if objects (represented as lines) are queried by 
specified by a range in time-location space with a 
probability threshold p = 0.3. Since the line of μi does not 
cross the query range, Oi is not qualified. However, Oi is 
indeed an answer since there exists a probability value pij = 
0.4 (> p). This issue can be addressed by expanding the 
query range by ε (as shown in Figure 6(b)). Lemma 
1estimates ε based on different query conditions. 

Lemma 1: A probabilistic range query q is specified by a 

location interval ],[ 21 xx  (
21 xx ≤ ), a time period ],[ 21 tt  (

21 tt ≤ ), and a probability threshold p (0<p<1). If an object 

Oi satisfies the query conditions of q, then the mean 

function μi of Oi’s pdf crosses the range defined by location 

interval ],[ 21 εε +− xx  and time period ],[ 21 tt   where 

(1) if p≧0.5, then ε=0; 

(2) if p<0.5, then ))(
5.0

( 12 xx
p

p
−

−
<ε .        ■ 

Proof: Let pij be the evaluated probability of Oi’s location 
being inside the interval ],[ 21 xx  at any time instant tj where 

21 ttt j ≤≤ . 

(1) If p ≥ 0.5. Since the locations in Brownian motion at 
any time is a normal distribution, the curve of fi is 
symmetrical with respect to mean function μi at any time 
instant. Thus, the cumulated probability from any end to 
the center where μi is equal to 0.5. If μi does not cross q, q 
must be in one of the two sides separated by the mean 
function μi. The cumulated probabilities over any finite 
location intervals, not across μi, are never larger than or 
equal to 0.5. If the mean function μi does not cross q, its 
probability pij cannot satisfy the probability threshold p. 
Therefore, we do not expand the query when p is larger 
than or equal to 0.5. 

(2) If p < 0.5. We expand the query only when p is less 
than 0.5. As mentioned in (1), the cumulated probability is 
not larger than 0.5 in one side of the curve of the normal 
pdfs. Consider that an object’s pij satisfies p but its μi does 
not cross q, then pij is greater than or equal to p as shown in 
Figure 6(a). The cumulated probability over the interval 
between μi(tj) and the nearest end of [x1, x2] to μi(tj) (it is x2 
in this case) is less than (0.5 – p). In normal distribution, it 
is obvious that the probability at the location near the center 
(i.e. mean) is definitely greater than that on the side. If a 
pdf cumulated over two different intervals, which have the 
same length without crossing the center, then the cumulated 
probability over the interval near the center is greater than 
the one on the side. In other words, with the same 
cumulated probability value, the length of the interval near 
the center is less than the interval on the side. (0.5 – p)/p is 
the multiple of p, and p is cumulated over the length (x2 – 
x1). Therefore, since it is nearer than the interval [x1, x2] to 
μi(tj) the length ε of the interval between μi(tj) and x2 is less 
than

))(
5.0

( 12 xx
p

p
−

− .                         ■                      

Therefore, we expand the query by ε to obtain all the 
objects which should be in the answers. Lemma 1 also 
confirms that if a line μi does not cross the expanded query 
range, there is not a probability pij satisfying the query 
probability threshold p. 

4.2.2 Query Representation 
After indexing the uncertain movements of the objects 

and expanding the query range of a PRQ, we reduce the 
problem of querying uncertain movements into an issue of 
determining which lines cross the query range. These lines, 
representing the most likely moving paths, are transformed 
into the points and indexed in the dual space. Consider that 
a range query specified by the two intervals [x1 - ε, x2 + ε] 
and [t1, t2] with probability threshold p as shown in Figure 
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Figure 6. The solution for the lost answers. 

(a) pij = 0.4 is larger than 
the threshold p = 0.3. 

(b) The query is expanded 
by the parameter ε. 
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7(a). If an infinite line crosses a rectangle, then this line 
intersects at least one of the diagonal lines of the rectangle. 
Thus, the issue of determining lines crossing the range can 
be decomposed into two problems: 1) which lines with 
positive slopes intersect the line segment defined by the 
two points (t1, x2 + ε) and (t2, x1 - ε); and 2) which lines 
with negative slopes intersect the line segment defined by 
the two points (t1, x1 - ε) and (t2, x2 + ε). Since the slopes of 
the all lines are the mean velocities of moving objects, they 
are constrained by various conditions, e.g., speed limit of 
the cars and roads. We can define the Vmax and  Vmin as the 
velocity bounds of objects. Let vi be the mean velocity of 
an object Oi’s velocity distribution. A query is transformed 
into a search range (see Figure 7(b)), expressed using a 
linear constraint query [7] as: 

 If v ≥ 0, then Q = C1∧C2∧ C3∧ C4, where C1 = a + 

vt2 ≥ (x1 – ε), C2 = a + vt1 ≤ x2 + ε, C3 = v ≤ Vmax and C4 

= v ≥ Vmin. 

 If v < 0, then Q = D1∧D2∧ D3∧ D4, where: A1 = a + 

vt1 ≥ (x1 – ε), C2 = a + vt2 ≤ x2 + ε, C3 = v ≤ Vmax and C4 

= v ≥ Vmin. 

 

The linear constraint query is transformed by the two 
diagonal line segments using the third property of Hough 
Transform discussed in section 3.3. The search range is 
transformed by the expanded query in the primal space to 
query which points are inside the range. The process of 
querying the points on the index can be efficiently 
performed by eliminating the points outside the search 
range since all points are indexed by the R-tree. 

4.3 Examination Process 
While the above strategy allows us to obtain candidate 

objects, not all of candidates satisfy the query conditions. 
To evaluate the probabilistic condition of queries, a costly 
integral operation, ∫=

2

1

),(
x

x
jiij dxtxfp

, for each candidate needs 

to be evaluated. It can be evaluated at every time instant tj 

until there is a pij satisfying the query threshold or tj is out 
of the query time period. However, this approach is 
inefficient due to excessive number of the integral 
computation for each object. 

4.3.1 Examination Region 
To address the inefficiency of objects examination, we 

propose a technique to reduce the overhead of probability 
evaluation for each object. If an object Oi is in the answers, 
then: 

pdxtxft
x

x
jij ≥⇒∃ ∫

2

1

),(  

Since fi is a normal distribution at time tj, it can be 
written as:  

 

where μi(tj) is the mean function and σi(tj) is the deviation 
function of fi(x, tj) of fi at time tj. Here, Φ(x) denotes the 
cumulative distribution function of a standard normal 
distribution. Figure 8(a) shows an example of what values 
of μi(tj) and σi(tj) make equation (1) satisfy the probability 
threshold p. Three pdfs f1, f2, and f3 have the same mean 
value and different deviations σ1, σ2, and σ3, respectively, 
where σ1 ≤ σ2 ≤ σ3. Only the cumulated probability over the 
interval [x1, x2] of f2 satisfies the threshold p. Figure 8(b) 
shows another example. Three pdfs f1, f2, and f3 have the 
same deviation value and different mean values μ1, μ2, and 
μ3 where μ1 ≤ μ2 ≤ μ3. Only f1 with the nearest mean value 
to the interval [x1, x2] satisfy the threshold. Only some 
values of the mean with the corresponding deviations make 
Equation (1) satisfy the threshold. 
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(a) Three different pdfs f1, f2, and f3 with the same
mean value and different deviations (σ1 ≤ σ2 ≤
σ3). Only f2 satisfies the threshold p. 

(b) Three different pdfs f1, f2, and f3 with the same
deviation value and different mean values
(μ1 ≤ μ2 ≤ μ3). Only f1 satisfies the threshold p. 

Figure 8. Evaluating the probability values of different 

pdfs. 
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From the above, we observe that the mean and deviation 
values are correlated. When the mean value of a pdf fi is 
fixed, only values within a deviation range can make fi 
satisfy the query threshold. Likewise, when the deviation 
value is fixed, a mean range is used for evaluating the 
probabilistic condition. Accordingly, Equation (1) can be 
evaluated as a closed area Ep (where the suffix p is the 
query probability threshold) in as shown in Figure 9. We 
define Ep in Definition 4. 

Definition 4: Given a probability threshold p and an 

interval    [x1, x2], a mean value μ and a deviation value σ 
of a normal probability function f(x) become a point (μ, σ) 
the mean-derivation space. An Ep is a closed area in this 

space. Any probability value of an f(x) cumulated over the 

interval [x1, x2] is greater than or equal to p. 

The area Ep is symmetrical with respect to (x1 + x2)/2 
because of the symmetry of the normal distribution. Only 
when the values of μ and σ are both inside the closed area, 
the corresponding cumulated probability value can satisfy 
the threshold. The point on the sideline of Ep indicates that 
the cumulated probability value of the pdf defined by this 
point is equal to p. If the point is inside Ep, then the 
probability value is greater than p. From Definition 2, the 
mean and deviation functions can be combined as follows: 
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Dxt
t

))((
)( 0−
=

μ
σ                                  )2(  

Equation (2) becomes a curve in μ–axis and σ–axis (as 
shown in Figure 9), and therefore, if it intersects Ep during 
the time period [t1, t2], then the object will be one of the 

answers. Unfortunately, Equation (1) cannot be written as a 
closed form function since the equation involves normal 
distribution integral. Thus, in the next section, we provide 
an approximation to Equation (1). 

4.3.2 Approximate Examination 
First, when the mean value μi is not inside the interval 

[x1, x2] and μi is greater than x2, the probability of fi at the 
location x2 is greater than the probability at location x1. 
When we transform the pdf fi into a normal distribution 
function n(θ), the location x2 and x1 can be transformed into 
the location θ2 and θ1 in n(θ). As shown in Figure 10(a), the 
probability of ni at the location θ2 is also greater than θ1 
and: 
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We then derive the following equation from Equation (1): 
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where n(θ2) is the probability value of n at the location θ2. 
Then we combine this equation with Equation (1): 
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Since the pdfs are symmetrical with respect to the mean 
values, the margin functions of Ep where μ > x2 or μ< x1 are 
as follows:  

     

Second, as shown in Figure 10(b), when the mean value 
μi of a pdf fi is inside the interval, μi is transformed into the 
location θμ which is also the mean value in the normal 
distribution n. Because θμ is the greatest probability at the 
location 0 in the normal distribution, we have: 
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Figure 9. The closed area Ep. 
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The margin formula of Ep where μ < x2 and μ > x1 is:  

 

From Equations (3) and (4), we derive the following lemma 
for objects examination. 

Lemma 2: Given an interval [x1, x2] and a probability 

threshold p, the closed area Ep can be approximated as: 
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where σ ≥ 0. The error of the approximate Ep can be 

bounded with the following function: 

 

Proof: (1) If μ > x2 or μ < x1, we choose the greatest 
probability value from the interval [θ2, θ1] to multiply the 
length of the interval [θ2, θ1]. Because the probability value 
cumulated over the interval [θ2, θ1] lies in between the 
values of n(θ2) and n(θ1), it has the following properties: 
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(2) If μ ≤ x2 and μ ≥ (x1 + x2)/2, the greatest probability 
value between the interval [θ2, θ1] is at the mean location 0. 
The cumulated probability over the interval [θ2, θ1] is 
between n(0) and n(θ1). Similarly, if μ ≥ x1 and μ ≤ (x1 + 

x2)/2, then the cumulated probability over the interval [θ2, 
θ1] is between n(0) and n(θ2). It can be written as: 
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Therefore, we derive the error function as follows: 

 

We propose an object examination algorithm (see Figure 
11) to determine which of the remaining objects satisfy the 
query conditions. This algorithm first evaluates the 
approximate closed area Ep by Lemma 2, and then 
examines each object by using the area Ep. The objects 
examination first inspects the satisfactions of t1 and t2 in 
line 4. Next, it intersects the function σi(t) of an object Oi to 
the area Ep in line 6. If there is any point intersected by σi(t) 
and Ep inside the range between σi(t1) and σi(t2), then object 
Oi is one of the answers since there is at least one point 
inside Ep in the query time period [t1, t2]. Line 6 is simple 
since we can derive the σi(t) with Equations (3) and (4). 
This process produces false positives because some points 
inside Ep do not satisfy the query condition. Based on 
Lemma 2, we have the same error bounds for the 
correctness of the answers obtained from the algorithm. 

 

Algorithm Objects Examination (O, q) 

/* Input: O is the set of moving objects. A query q has the 
predicates of a time period [t1, t2], a location interval [x1, x2], and a 
probability threshold p. 

Output: A contains the moving objects that satisfy the conditions 
of query q. */ 

1.    Evaluate Ep from the query q 
2.    while (O is not empty) 
3.        get an object Oi from O 
4.    if ((μi(t1), σi(t1)) or (μi(t2), σi(t2)) inside Ep) 
5.        insert Oi into A 
6.   else if (μi(t) has intersection with Ep between μi(t1) and μi(t2)) 
7.        insert Oi into A 
8.    delete Oi from O 
9.    return A 

End Objects Examination 

 

Figure 11. The algorithm for objects examination. 
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5. EXPERIMENTS 

We conduct experiments to evaluate our proposal for 
processing probabilistic spatio-temporal range queries over 
uncertain object movements. We first show the running 
time of querying with time instant and time period. Then, 
we display the percentage of the elimination and 
examination stages in the total query time. Next, we show 
the ratio of the dropped objects in the processes of 
elimination to the examination. Finally, we compare the 
accuracy of the querying results using our method with a 
method without using index (labeled as non-indexing 
method in Figure 12). 

Note that a closed form formula for the integral of the 
normal distribution does not exist, but several approximate 
functions can be employed. In our experiments, we use the 
functions in [14]. The error of this integral function is less 
than 7.5×10-8, when performed in the non-indexing method. 
All the algorithms are implemented in C++ and carried out 
on a 3.2GHz Intel Pentium IV PC with 1G main memory, 
running Windows XP SP2. 

5.1 Experimental Setting 

The experimental data is generated as follows. We 
simulate N objects moving on a line segment forthright [0, 
200000], which has the length 200 kilometers. We vary N 
from 100K to 1M. The time unit used in our experiments is 
1 second (1s). In the initial stage (i.e., at time t = 0), N 
objects are uniformly distributed on the forthright. The 
objects speeds are randomly generated from vmin = 10 
meter/sec to vmax= 50 meter/sec (10 meter/sec is equal to 36 
km/h and 50 meter/sec is equal to 180 km/h.) and the 
direction is randomly positive or negative. The objects 
velocity variance is also randomly assigned from 4 
meter2/sec to 16 meter2/sec. Then the objects start moving. 
Each object re-generates its speed and variance until the 
distance between the location it moves to and the previous 
updated location is up to 500 meters. At each time instant 
we execute 100 random queries, where the length of the 
location is randomly chosen from 100 to 10000, the time 
length is from 1 to 600. Note that we have two kinds of 
queries with time instant and time period, respectively. We 
randomly generate a time instant from 1 to 3600 to assign 
the start time of a time period. We implement R-tree as our 
indexing structure. We keep all the information including 
the index and moving objects’ data in the main memory 
instead of in the hard disk since performance of index is out 
of scope of this study. 

5.2 Performance Study 

Figure 12 presents the query execution time using our 
approach (labeled by HT since it’s based on Hough 
Transform) in comparison with the non-indexing method 
for 500K and 1M objects. The HT-process includes two 
stages: a) elimination, and b) approximate examination. 

Non-index method retrieves all objects for evaluation by 
cumulative normal density function, which as shown in the 
figure, has basically constant costs. The query execution 
time of HT-process decreases as the query probability 
increases till the probability threshold exceeds 0.5, because 
the generated queries with the same location interval are 
mapped to the same search range when the probabilities 
exceeds 0.5. 

 

 

Figure 13 shows the execution time for querying with 
time period using our approach. The execution time on 1M 
objects decreases more significantly than on 500K objects 
as the probability threshold increases because the 
elimination and examination are effective. The ratio of the 
1M to the 500K in the low probability is larger than the 
high probability because the time of the examination stage 
increases more than the elimination. Comparing with the 
execution time of time instant, the growth of time involves 
three factors, the extension of the searching range, the 
increasing number of objects, and the more complicated 
operations in the examination stage. 

 

5.3 Effectiveness Analysis 

In this section, we compare the effectiveness between 
the elimination and the examination stages in the query 
process. We also evaluate the correctness of the answers 
using our methods for the probabilistic range queries. 

Figure 13. Execution time for the queries with time period.
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Figure 12. Execution time for the queries with time instant.
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Figure 14 illustrates the ratio of the remaining objects to 
the total 500K objects with respect to different probabilities 
for queries with time period. Since the query is not 
expanded when the probability exceeds 0.5, the 
corresponding portion of the elimination stage does not 
decrease. Figure 15 shows the ratio of the answers 
examined among candidates remaining from the 
elimination stage. The ratio increases as the probability 
increases until it is over 0.5. It shows that our query 
expansion is effective at for the queries with low 
probability threshold. 

We further evaluate the correctness of the answers among 
candidates examined at the examination stage. The results 
of non-indexing method are used as the correct answers. 
Only the queries with time instant are considered because 
the non-indexing method does not support queries with 
time period. As shown in Figure 16, the accuracy decreases 
when the probability increases because our method 
produces false positive results. Figure 17 shows the relation 
between the accuracy and the length of the location 
interval. The examination stage approximately evaluates 
the stratifications of the objects according to its mean and 
variance. The error becomes larger when the mean is near 
the ends of the interval. The ratio of the objects near the 
ends rises when the length of the query interval gets 
shorter.  

6. CONCLUSION AND FUTURE WORK 

In this paper, we investigate the problem of probabilistic 
query on objects with uncertain movements. We employ 
Brownian motion model for all the moving objects. In this 
model, every moving object’s uncertain movements are 
represented as a probability density function. We extend 
conventional probabilistic range queries (PRQ) with a time 
period and a probability threshold. To process the query 
efficiently, we transform all objects uncertain movements 
into simple points and indexed these points for efficient 
querying. We developed approximate formulas and an 
algorithm with error bounds to evaluate probabilities of the 
moving objects and to ensure the correctness of the 
querying answers. Experimental results show the 
effectiveness and efficiency of our approach. We plan to 
further study the problem in the high dimensional space by 
developing methods to reduce the query cost via 
dimensionality reduction of the mapped space. 
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Figure 16. The accuracy of the examined answers. 
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Figure 17. Accuracy vs. Query Length. 

Figure 15. The proportion of the examination process. 
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Figure 14. The proportion of the elimination process. 
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