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Abstract 

An important task of multidatabase systems 
is the integration of existing databases. Data- 
base Integration is achieved primarily through 
the use of generalization. Hence, it is impor- 
tant to develop good tactics for processing 
queries over generalization hierarchies. This 
paper defines the class of conjunctive generali- 
zation queries, and it describes four tactics for 
processing those queries that have boon developed 
for the MDLTIDASE system. Since query processing 
tactics are best describe algebraically, the 
paper shows how to model generalization as a 
sequence of algebraic operations. Three of the 
tactics described here are adapted from convon- 
tional distributed query processing techniqaes. 
However, it is argued that these tactics are of 
limited applicability to processing queries over 
generalization hierarchies. A fourth tactic, 
semioutorjoin, which is more widely applicable. 
is introduced. 

This research was jointly supported by the De- 
fense Advanced Research Projects Agency of the 
Department of Defense and the Naval Electronic 
Systems Command and was monitored by the Naval 
Electronic Systems Command under Contract No. 
NOOO39-82-C-0226. The views and conclusions 
contained in this document are those of the au- 
thors and should not be interpreted as neces- 
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NAVPLEX, or the U.S. Government. 

1. Introduction 

A multidatabase management system such as 
MULTIBASE LSBDG81, JR821 is a system that pro- 
vides uniform, integrated access to a hotorogone- 
ous distributed collection of databases. It 
differs from a conventional distributed database 
management system (e.g.. , SDD-1 [RBPGBO I , Sys tern 
R* WDBL821, Distributed INGRES [Ston771, DlM 
1CDFG831) in two significant respects. First, 
the databases are heterogeneous. i.e., stored 
under different local database management syr- 
teas, each with its own data model and language. 
Second. the databases are preexisting, i.e., have 
been designed and maintained independently of one 
another, and hence may be inconsistent. In 
[KG81, DE821 we describe how MDLTIDASE shields 
users from these problems of heterogeneity and 
inconsistency. The local databases are first 
‘homogenized’ by describing their schemas in a 
coatmon data model, DAPLEX [Ship 811. Database 
integration is then achieved by defining a global 
view tailored to the user’s application over 
these DAPLFX representations; the view definition 
incorporates directives for resolving differences 
between the local databases. 

A user formulates queries in DAPLEX over his 
global view. The processing of a global query 
conrists of four tasks: 

1. Query modification. The global DAPLEX query 
is modified into a DAPLEX query over the 
local schemas. 

2. Global query optimization. A global oxecu- 
tion plan is constructed for the modified 
query. The plan is composed of sinale-&g 
aueries (each posed against exactly one 
local schema), move operations that ship 
results of the single-site queries between 
sites, and posturocossing gueries that 
integrate the results of the single-site 
queries. In MULTIBASE, query modification, 
global query optimization, and the execution 
of postprocessing queries are performed at a 
special global a. 

3. Local query optimization. The single-cite 
queries sent to each local site are sub- 
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jetted to local aooess path optimization. 

4. Translation. The optimized queries at each 
site are translated into equivalent queries 
or programs in the data language of the host 
DBB8. 

Glory modification has been described in 
tKG81, DB821, and local query optimization in 
[DGLGSl , DG82 I. Here, we focus on global optiai- 
zation. 

There are several novel aspects of global 
query optimization in a multidatabase system that 
are not present in conventional distributed query 
optimization [BGWRR81, RY79, SA80, Y079, ESW781. 
These are direct consequences of heterogeneity 
and database integration. Heterogeneity is mani- 
fested in two ways: differences in the relative 
processing speeds of the sites, and differences 
in the capabilities of the sites. In BBLTIBASE, 
the speeds and capabilities of the sites are pro- 
vided as parameters to the global optimizer. 
When the global optimizer compares various alter- 
native global execution plans, it factors the 
differences in speeds into its cost evaluation. 
Also, it ensures that all queries sent to a site 
can be processed there. Thus, if the DBMS at a 
site cannot compute joins, process quantifiers, 
etc., queries bound for that site must be either 
decomposed into subqneries that can be processed 
there, or ‘filtered’ to remove parts of the query 
that can be processed (in which case appropriate 
compensatory postprocessing queries must be added 
to the plan). 

Database integration has a more profound 
impact on global query optimization. The princi- 
pal technique that we propose for the integration 
of databases that contain data about similar 
objects is generalization [SS77, KG81. DH82]. 
For example , consider two Ship databases. SUP- 
pose that different attributes are defined for 
the Ship entities in the two databases. (To dis- 
tinguish between the Ship entity types in the two 
different local schemas, LSl and LS2, we refer to 
them as LSl. Ship and LS2.Ship. ) In the global 
schema, we can define a generalization hierarchy 
consisting of LSl.Ship, LS2.Ship. and a generic 
entity type, Ship. The attributes of Ship are 
the common attributes of the two subtypes. We 
now have to efficiently process queries over this 
generalization hierarchy. We are not aware of 
any previous solutions to this problem. The main 
contribution of this paper is that it develops 
such a solution. 

If the databases are disjoint, the solution 
is straightforward. Thus, in our example, the 
logical Ship file in the view may be thought of 
as the union of the Ship files (appropriately 
projected] in the two local databases. Stra- 
tegies for processing queries against horizon- 
tally partitioned files have been developed 
before IBGWRR81, SA80, ESW781. In [DLYSZ] we 

show how to adapt and extend these strategies for 
our purpose. 

Bowever, the more interesting (and diffi- 
cult) problems ooour when the databases overlap. 
The definition of the global view must then 
specify a ~q~gg condition under which entities in 
different databases are to be considered as the 
same logical entity. For example, ($1 in 
LSl . Ship == s2 in LSZ.Ship when HullNo (81) = 
IdNo ($2)) is a merge oondition specifying that 
an LSl.Ship entity is ‘the same as’ an LS2. Ship 
entity iff the HullNo of the former is equal to 
the IWO of the latter. Now the logical Ship 
file in the view is no longer the union of the 
local Ship files but their ‘outerjoin’. 

Further oomplications arise when the data- 
bases are inconsistent, i.e., disagree on the 
attribute values of some entity. For example, 
the first database might reoord the value 50 for 
the deadweight of the ship that has BullNo 1234, 
while the second database records the value 60 
for the deadweight of the ship that has IdNo 
1234; but in the view these local entities 
represent the same logical Ship entity. The 
discrepancy is resolved in the view definition by 
an appropriate aaareaate function; for instance, 
the deadweight in the view might be specified to 
be the average of the deadweights in LSl and LS2. 
So the problem of processing queries over gen- 
eralization hierarchies in a multidatabase system 
is related t0 the problem of processing aggre- 
gates. 

In this paper we develop tactics for pro- 
cessing selection, projection, and join queries 
over generalization hierarchies in which some 

attributes of a generic entity type are defined 
by aggregation from attributes of its subtypes. 
In Section 2, we detine this class of queries, 
which we call conjunctive generalization queries. 

Query processing tactics typically are based 
on algebraic properties. Hence, in Section 3, we 
def ins generalization algebraically in terms of 
outerjoins and aggregates, and construct alge- 
braic equivalents of conjunctive generalization 
queries. 

In Section 4, four tactics for processing 
these queries are developed. Two of these tac- 
tics are for efficiently processing selections. 
The reader might find this surprising, because 
processing selections (and projections) in a con- 
ventional distributed database system is easy: 
they can be processed completely locally at a 
single site. Even if some files are horizontally 
partitioned, it is easy to process a selection 
and projection query: execut 0 the same query 
locally at each of the sites containing a hor- 
izontal fragment, and then construct the union of 
the partial results. (This is why most previous 
research on distributed we ry optimization 
ignored selections and projections. and focused 
on joins (BGWRR81, SA80, RY79, YO79, ESW781.J 
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When aggrrgatrr o&or in view definitions, this 
simple approach no longer works. Consider a 
query that selects all ships whose deadweight 
exceeds 55. In our example, the selection 
clearly cannot be done locally at each site 
because it is necessary to compute the average of 
the two deadweights. However, if instead of the 
average, the deadweight in the view was defined 
to be the maximum of the looal deadweights, then 
local selection is possible. Since ‘localizing’ 
selections reduces the volume of the data moved. 

we develop two tactics for it. One is to analyze 
special aggregate functions and to determine for 
them whether the selection can be distributed 
over the generalization. The othor tactic (which 
works for all aggrsgatea) is to perform 
‘semiouterjoin reductions’ (called ’ semiunion 
reductions’ in [DK821). In our example, the 
reduction of LSl.Ship by LS2.Ship requires Ship- 
ping IdNo values from tho latter sit0 to the 

former. The LSl.Ship entities are then parti- 
tioned into two subsets: those contained only in 
the first database, (i.e., the subset Is1 G 
LSl.Ship1 (fs2 e LS2.Ship) UiullNo(sll + 
IdNo(s2))1), and those having corresponding enti- 
ties in the second database. For the first sub- 
sot, the selection can be performed locally; the 
second subset mast be retrieved to perform the 
aggregate and selection by postprocessing at the 
global site. The other two tactics developed in 
Section 4 are for prooosaing joina. 

In Section 5, wo describe briefly how to use 
those four tactics to construct global execution 
plans. For a cost model and further details of 
global queiy optimization in MULTIBASE, the 
reader is referred to IDLY821. 

To suaazarize, the main contribution of this 
paper is that it extends traditional relational 
query processing techniques, which focus on 
soltot-project-join queries, to techniques for 
processing queries containing outerjoins and 
aggregates. 

for each x in X 
for each i2 in 
. 

. 
for each x in X 

whore ?qualification> 
output <targotJist> 

endfor 

. 
ondf or 

endf or 

The Xi are entity types. The target-liat is a 
list of terms f(x), where x ia one of the itera- 
tion variabloa xl, x,...,x,andfisa ainglo- 
valued function whgae range is a sot of scalars 
(e.g., Real, Integer, String, Boolean). The 
qualification is a conjunction of atomic formulas 
of the following types: one-variable selection 
clauses: (f(z) op cl, (fl(z) op f (zll, (c isin 
h(r) ); value-baaod join clauses: d(z) op g(r)); 
and linhed join clauses: (w - f(z)), (w iain 
h(z)); whore w, z aro variables; o is a constant; 
f,f ,f2.g are 

4 
single-valued functions; h is a 

mu1 ivaluod function; and op fs one of the arith- 
motic comparison operations (e.g., =, 1. Cl. 

The query graph of a oonjunctivo query is an 
undirected graph that has one node for oath vari- 
l blo occurring in the query, and one edge f”. zl 
for each set of join clauses involving variables 
w and z in the qualification. Attached to each 
node are any one-variable selection clauses 
(labeled u) and target-list functions (labeled IT) 
defined on the corresponding variable. Each edge 
is laboled with the corresponding join clauses. 

Examples of a DAPLEX schema, a conjunctive 
query and its query graph are given in Figure 
2.1. 

2.2 Coniunctivo Qonoralization Queries 
2. Coniunctivo Generalization Queries 

We first define conjanotive DAPLSX queries, 
which correspond roughly to the conjunctive rela- 
tional queries considered by tBGWKK81, BY79, 
SA80, YO70, ESW781. We then extend this class to 
conjunctive generalization queries. 

2.1 Coniunctivo DAPLKX Queries and Query Grauha 

A databaso schema in the DAPLEX Model is a 
directed multigraph, whore nodes aro entity 
tYDes, and whose edges aro sinnlo-valued or 
multi-valued functions. For our purpose, a QOIl-- 
junctive DAPLEX auerv is in the following canoni- 
cal form: 

A conjunctive zonoralization auerv is a oon- 
junotivo query, somo of whose variables may range 
over gonoralization hierarchies. A conjunctive 
gonoralization query is produced by modifying a 
oonjunctivo query containing a variable that 
tangos over a generic entity type in a view, 
where the generic ontity typo’s functions are 
defined in terma of its subtypes’ functions. The 
details of view definition and query modification 
in DAPLEX are irrelevant to our discussion hero 
(roe [KG 81, DE 82. DLY 821). 

The query graph of a conjunctive gonoraliza- 
tion query is very similar to that of a conjunc- 
tive query, except that variables ranging over 
generalization hierarchies aro represented by 
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Schema : 

Ship weapons Weapon 

*cation fi*e 

q 0 q q 0 q q 
String String Integer String String String Integer 

for each sl in Ship 
for each s2 in Ship 

for each rl in Weapon 
for each w2 in Weapon 

where rl isin weapont(s1) AND Deadweight( AND 
Locationf 81) = Locationf 82) AND 
w2 isin weapona(s2) AND 
Type(w1) = Type(w2) AND Range(wZ))Range(wl) 

output ID(sl), Nametall, WID(w1) 
endfor 

endfor 
endfor 

endfor 

Graoh: Query 

o: De:Yiithkiip Location = Location(s2; s2 

wl isin weapoas(s1) .,k wi isin weapons(s2) 

n: WID w2 
Type(w1) = Type(w2) 

AND Range(wZ)>Range(wl) 

Figure 2.1 A Conjunctive DAPLRX Query and its Query Graph 

generalization nodes A generalization node is 
labeled with thecorresponding generalization 
hierarchy, a merge condition on the subtypes, and 
a SobRange Table(SRT) that encapsulates the 
definition of the functions on the generic entity 
type in terms of the functions on its subtypes. 
The SRT in Figure 2.2, for example, shows that 
(a) for each entity in LSl.Ship that has no 
corresponding entity in LS2.Ship. the Deadweight 

-in the view is equal to its Deadweight1 value in 
the LSl database; (b) symmetrically, for each 
entity in LSZ.Ship that has no matching LSl.Ship 
entity, the Deadweight is equal to its Dead- 
weight2 value in LS2; and (cl for each ship that 
is represented in both LSl.Ship and LSZ.Ship, the 

Deadweight is the maximum of its two deadweight 
values in LSl and LS2. 

3. Alaebraic Eauivalents a Conjunctive 
Generalization Queries 

3.1 Modeling a DAPLRX Schema 

We model a DAPLEX sohema by a relational 
schema as follows. For each entity type there is 
one relation whose attributes are exactly the 
functions defined on that entity type. (We shall 
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Suppose that in the example of Figure 2.1, Ship is a generic entity type defined over subtypes 
LSl.Ship and LSf.Ship. ASSUW that for each function f on Ship, the corresponding functions in 
LSl.Ship and LSZ.Ship are named fl and f2, respectively. Then the query of Figure 2.1 becomes a con- 
junctive generalization query after modification. 

Node and edge labels are identical to those in Figure 2.1. S is the generalization hierarchy 

Sh P 

A 
LSl . Ship LS2. Ship 

g is the merge condition: (xl in LSl.Ship == x2 in LSZ.Ship when llullNo(x1) = IdNo(x2)) 

SRT(si) for i = 1~2: 

LSl.Ship - LSZ.Ship 
LS2 .Ship - LSl.Ship 
LSl.Ship n LSZ.Ship 

LSl.Ship - LSZ.Ship 
LSIL.Ship - LSl.Ship 
LSl . Ship fl LS2. Ship 

rd 
HullNo 
IdNo 
Ed 1No t IdNo 

Location 
Loca tionl 
Location2 

Deadwsinht &gg 
Deadueightl Name1 
Deadveightt Name2 
max(Deadveight1, Name1 l+meZ 

Deadweightl) 

Weapons 
weapons1 
neapons2 

avg(Looationl,Looation2) neaponslUweapons2 

1. LSl.Ship - LSZ.Ship denotes Is G Shipl(3sl G LSl.Ship)(ID(s) = BullNo 
Ws2 8 LS2.Ship) (HullNo # IDNo( 

2. LSl.Ship n LSZ.Ship denotes {s 8 Ship I(3sl G LSl.Shipl(3sZ 8 LSZ.Ship) 
(ID(s) = HullNo = IDNo(s2))l 

3. NamellName2 denotes ‘either Name1 or Name2’ 

Figure 2.2 Query Graph of a Conjunctive Generalization Query 

use X.A to demote attribute A of relation X.1 Note that because of multivalued functions, the 
Assume that each entity type X has a unique iden- resulting relations are not in First Normal Form 
tifier function X.ID. The relations are popu- (1NF). 
lated by one tuple per entity: if f is a function 
from X to a scalar range, then for entity x G X, 
the corresponding tuple x has X[X.fl = f(x); if f 3.2 Modeling 5 Conjunctipe DAPLEX Query 
is a function from X to entity set Y, then for 
entity x 8 X. the corresponding tuple x has A conjunctive DAPLEX query can be modeled 
x[X.fl = ID(f(x)l when f is single-valued, and algebraically using the relational operations of 
x[X.fl = {ID(y) Iy G f(x)] when f is multivalued. Cartesian product (or join), selection, and pro- 
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jectfon.* The mapping is essentially the same as 
for Relational Calculus [Codd72]. QIJBL [HSW75], 
or SQL [CAEG76]. Thus, the canonical conjunctive 
DAPLEX query of Section 2.1 is equivalent to the 
algebraic expression n where n denotes pro- 
jection on the target T” i% and E Q T s an algrbraio 

.exprerrion constructed from the qualification Q 
by first forming the Cartesian product P of all 
entity sets referenced by the query, and then 
restricting P by selections corresponding to the 
clauses in Q. (Note that the operations of rela- 
tional algebra apply equally well to non-U@ 
relations [JS821. For non-1NF relations, the fol- 
lowing selection and join. conditions are applioa- 
ble in addition to those listed in [Codd’lOl: 

%ARe which corresponds to the selection clause 
a irin A(r); and S[S.ID G R.f]R, which 
corresponds to the linked join clause s isin 
f(r).) Applying this procedure to the query in 
Figure 2.1 yields: 

n 
sl.ID,sl.Name,wl.WID uwl.ID G rl.weapons 

Q 
sl.Deadweight>SS ‘sl.Location = s2.Location 

Q 
w2.ID G s2.Weapons uwl.Type = w2.Type 

0 
w2.Range)wl.Range (rl x wl x 92 x w2) 

where sl, 32 are copies of the Ship relation, and 
Wl. w2 are copies of the Weapon relation. 

3.3 Modelins Generalization 

We define generalization algebraically in 
two steps. First, construct the outerjoin of the 
subtype relations on the merge condition. 
(Informally, the G-terioin of R and S on condi- 
tion p, denoted R(g)S, is the union of the join 
R[ulS together with taples constructed from the 
unjoined taples of R and the unjoined tuples of S 
by padding them out with NULL values [Codd79] .) 

The second step is to define the attributes 
of the generic relation by aggregation over the 
attributes of its subtypes. Informally, we 
proceed as follows. Consider the outerjoin of 
LSl.Ship and LS2.Ship. Add a column (an attri- 
bute) Deadweight to this relation; the value of 
Deadweight in each tuple is the maximum of the 
Deadweight1 and Deadweight2 values of the tuple. 
Delete the Deadweight1 and Deadweight2 columns. 
Once this is done for all generic attributes, the 

Vhis is only partly true, since DAPLEX queries 
do not usually remove duplicates. (SQL 
[CAEG76] has similar semantics.) To be accu- 
rate, therefore, we must use a multiset rela- 
tional algebra to model DAPLEX ZDGK821. Howev- 
er, for simplicity, we describe our query pro- 
cessing tactics in terms of relational algebra. 
They apply equally well to multiset relational 
algebra. 

resultant relation is Ship. Proceeding formally, 
wo introduce an .8ggrorate operation as follows. 
Lot P be a relation ovor attributes a. Lot X = 
r+.., Al 2 a. Denoto domain (Al) x . . . x 
domain(A 7 by domain(X). Lot A be an attribute 
mm0 no! in lt, and agg [XI be a function: 
domain(X) --> domain(A). TkOSl. wo extend aggA[X] 
to apply to the relation R in the obvious way; 
i.o., *gg [Xl 
dof ined 6 

is a relation over (1 - X)UUl 
Y: for each tuple r 8 R, there is a 

tuple t in aggAIXl (R), such that t[a - Xl = r@ - 
Xl and tlA1 = aggA(r[Xl). We call agg [Xl an 
anrronato function over _a. (Often wo shal 6 drop 
X from the name of the function, if it is clear 
from the context.) Some aggregate functions that 
will be of interest to us aro listed in Figure 
3.1. 

Thus, goneralixation can be expressed as a 
roquence of outerjoin and aggregate operations. 
(If tho subtypor being gonoralized are disjoint, 
then the outerjoin reduces to the outerunion 
[Codd791, and aggregation is unnecessary.) For 
the example of Figure 2.2, wo can write: 

Ship := chooreanyId [HullNo, IdNol 

chooseany 
Name maxdoadweight 

averageLocation chooseallWeapons 

(LSl.Ship (HullNo = IdNo) LSZ.Ship) 

3.4 Rodelina Conjunctive Generalization Queries 

A conjunctive generalization query is simi- 
lar to the canonical conjunctive DAPLEX query of 
Section 2.1, except that some of the Xi’s may be 
the result of generalization. In the algebraic 
expression corresponding to the query, replace X. 
by the outerjoin-aggrogation expression definini 
X . . 

1 

Applying this procedure to the query in Fig- 
aro 2.2 yields the same expression as in Section 
3.2, except that now sl and 92 are copies of Ship 
as defined in Section 3.3. 

4. Tactics for Processing Conjunctive 
Generalization Queries 

In Section 3 we showed how to construct an 
algebraic expression equivalent to a conjunctive 
(generalization) query. A straightforward 
approach to processing a query would be to 
retrieve all the relations appoaring in this 
expression to a result site (the global site in 
MULTIBASE) and then to directly evaluate the 
expression there. However, this direct approach 
would be extremely inefficient in general. 

In practice, algebraic identities are used 
to transform the expression into equivalent 
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1. max. rin, sum, count, average: Let B be a relation over a, and Al. A2 4l R. Then raxAlAl.A21 is 
the aggregate function defined by: 

marA IAl,A2l(r) - 

I 

r[Al]. if rMl1 # null, rIA21 = null 
r[A21, if rtAl1 = null, rU21 C null 
max (r[All, rM21). otherwise 

The other aggregate funotiona are defined similarly. 

2. chooaal: Let B, B. Al, A2 be as before. Then, 

choose1 [Al;A2](r] = 
I 

rfAl1, if r[All C null 
rU21, if r[All = null 

choose2 is defined aymme trical ly. 

3. chooseany: Let B, lk, Al, A2 be as before. Then, 

chooseanyA [Al&l(r) = 

i 

rUl1. if r[All # null, rtA21 = null 
r[A2], if .r[All = null, rtA21 # null 
rtAl1 (or rfA2]). if r[All = rtA21 
null otherwise 

4. chooaeall: Let B, R, Al, A2 be as before. Then, 

chooseallA [Al&!1 (r) = 

1 

rkl], if rfAl1 # null, rU21 = null 
rlA21, if r[AlI - null, r[A2] # null 
(rlAl1, r[A2] ] otherwise 

If Al, A2 are multivalued then chooseallA [Al&?](r) = r[Al] U r(A21. 

These definitions can be easily extended to more than two attributes Al, A2, AS . . . . 

Figure 3.1 Some Common Aggregate Funotions 
. 

expressions that potentially are cheaper to pro- 
cess. First, the product-selection expression EQ 
is replaced by an equivalent expression involving 
joins and selections as follows. Consider any 
spanning tree of the query graph. For each edge 
e of the spanning tree, replace the product IU X 
R2 and the selection by by the join Rl[J]aZ, 
where Rl,R2 are the endpoints of e and J is the 
join condition labeling e. 

Other transformations are based on various 
tactics for reducing the volume of data moved 
between sites. (Our cost function is a weighted 
sum of data movement costs and local processing 
costs.) The tactics usually entail a tradeoff 
between reduced data movement and increated looal 
processing. ho commonly used tactics for pro- 
cessing conjunotive queries in oonventional dis- 
tributed systems are: (1) performing selections 
(and projections) locally at individual sites 
before performing any inter-site join; and (2) 
semijoin reductions [BGWRRSll. There tactics are 
applicable even when some of the relations are 
horizontally partitioned. The usual approach is 
to transform the query into the union of a ool- 
lection of conjunctive subqueries. For example, 

if Rl is partitioned into Rl,R2, and S is parti- 
tioned into Sl,S2, then the query 

“T U&A = a u&B = b (R[Jls) 
is transformed into 

i,j S ‘(1.21 “T oRi.A = a uSj.B = b tRi[J1sj)’ 

Each subquery is then separately optimized using 
the two tactics listed above. Thia approach 
works because selection, projection, and join 
distribute over union. 

However, these tactics are not always appli- 
cable to conjunctive generalization queries that 
involve selection, projection, or join over 
aggregated attributes. Below, we investigate the 
distribution of selection and join over generali- 
zation. Then we deaoribe conditions under which 
semij oin reductions can be used. Finally, 
observing that these three ‘conventional’ tactics 
can be used only in rather special cases, we 
introduce a fourth tactic, semiouterjoin reduc- 
tion, which plays an important role in processing 
generalization queries. 
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Tactic 1: Distributinz Selection m 
Generalization 

Lot Rl,lU be subtypes of B. Consider the 
solootion query u* We remarked in Section 
3.3 that gonoraliza?!o~lt*ovor disjoint subtypes 
can be modollod as the outeranion operation. In 
this case, selection can, indeed, be distributed 
over the generalization, since a(Rl(+)R2) = 
uRl(+)uBz, whore (+I denotes outerunion. This 
PO8llS that we can perform the selection locally 
at Rl’s site and at R2’s site, and then merge tho 
results. 

Eowovor, when the subtypes overlap and the 
soleation clause is on an aggregated attribute. 
the following equality holds sometimes, but does 
not hold in general: 
aggA fuA1 
merge con8 
holds, it is possible to perform solootion 
locally, and then generalize the results. 

For the example in Section 1, equality holds 
for the mar aggregate function and the given 
query, which selects on deadweight > 55. However 
it does not hold if we replace the max aggregate 
function in the definition of deadweight by the 
*vg aggregate function, or if we change the 
selection clause in the query to deadweight = 55. 

In some cases, through strict distributivity 
does not hold, it is possible to perform a modi- 
fied selection at each site, and then perform a 
postselection after generalization (in practice, 
the postselection and aggregation can be implo- 
monted together in one pass through the outerjoin 
file); i.e., it is possible to find opl, op2 such 
that: 

uA op 8 aggA(R1(p)R2) = 

uA op a aggA’uAl opl a Rl(p) uA2 op2 a R2)* 

For example, if the max aggregate is used to 
define deadweight and the selection query is 
deadweight = 55, then we can perform local soloc- 
tions on the modified condition deadweight 155, 
and the postselection on deadweight = 55. For 
the average aggregate function, oven this 
approach is not applicnblo. Figure 4.1 lists 
scuao cases in which this tactic can be used. 

The benefit of this tactic is the reduction 
in the volamo of data moved: u 
orally is smaller than Ri. 

Ai opi a Ri Vn- 

Tactic 2: Distributing Joins over Generalization 

In conventional distributed systems that 
support horizontal partitioning, joins are always 
distributed over unions [BGWRRIl, SA801. Thus, 
if Rl, R2 are horizontal fragments of R, and if 
Sl, S2 are horizontal fragments of S, then the 
query R[JIS is always replaced by the union of 

four suti&eiios Ei[J]S), l<i, ji2. Aotually. IS 
SOIO instances this might not be the cheapest 
strategy. It is sometimes cheaper to first oon- 
struot R or S (or both) using unions, and than 
perform the join. We treat distribution of joins 
as a tactic to be used only if it is beneficial. 
In a multidatabases system, whore RI. R2 8ro sub- 
types of R, and Sl, S2 are subtypes of S, distri- 
buting joins over gonoraliztion ray not oven bo 
possible. Hence, we first have to consider 
whether the tactic is applicable before wo assess 
its benefit. 

Let Rl,R2 be subtypes of R, and lot Sl,S2 be 
subtypes of s. Consider the join RtA op BIS. 
When the subtypes of R are disjoint, the join can 
be loft-distributed over the outerunion, thus: 
Rl[Al op BIS (+) R2[A2 op BIS. This moans that 
it is possible to join S separately with Rl and 
82, and then merge the results. (Symmetric, for 
right-distribution.) 

However, when the subtypes overlap and the 
join condition is on aggregated attributes, one 
or the other (or both) typos of distributivity 
may not hold. Given the results of Figaro 4.1, 
it is not surprising that loft distributivity 
holds when aggA is ohoosoany or chooseallA (sym- 
metric for right distribu ivity). e For other 
aggregate functions, we could analyze the combi- 
nation of agg,. agg , and op, to find a modified 
op for each join RlkAi op BjlSj, and to determine .B 
the postprocessing required to produce the 
correct result. To keep the query processing 
strategies simple, however, we decided not to do 
thin. Instead of distributing joins over gon- 
eralization, we distribute only semijoins [BC811. 

The somijoin R<A op B!S is the sot of R- 
tuplos that will join with at least one S-tuplo. 
and is equivalent to a union of selections 

be; S”A op bR’ 
B 

Thus, to determine if the somijoin can be loft- 
distributed, we can use the tables in Figaro 4.1 
(for each b). 

Distribution is advantageous in two cases. 
The first occurs when the subtypes of both R and 
S are disjoint, sito(Ri) = sito(Si) for all i, 
and the ‘cross-terms’ Ri[Ai op BjlSj = 0 for all 
i # j. Now, the join of R and S reduces to the 
completely local joins of Ri and Si (for all i), 
followed by the outerunion of their results. The 
second case occurs when the somijoin reduction 
tactic is beneficial. We discuss this tactic 
next. 

Taotic 3: Somiioin Reduction -- 

The somijoin R<A op BIS is executed by 
retrieving nBS at S’s site, shipping it to R’s 
site, and then restricting R. This tactic was 
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agg case 1. = chooseany [Al,A21 or chooseall U.I,AZI: True dirtribotivity holds 

opl = op2 = op 

Care 2a. agg = maxMl,A21: 
OP > P < 

OPl . OP2 > 1 True 

2b. Case agg = rinlAl,A21: 
OP < = > 

OPl, OP2 < I True 

Case 3 - -* am = count[Al,A21, rum[Al,A21, or avvrrageMlJ21: 

for any op, opl = 0p2 = True 

Case 4 - -. am = choose1 Ml,A21: 
for any op. opl = True 

op2 = op 

Note: op = True indicates no reduction is possible. 
opl = op2 - op implies that portselection is unnecessary. 

Figure 4.1 Distribution of Selection Over Generalization 

proposed in [BCSll, and it is used by both SDD-1 
and System Be. The utility of the semijoin as a 
tactic for distributed query processing is based 
on the following properties: 

1. B<A op BIS 2 B 

2. (RCA op BIS) [A op BIS = R[A op BIS 

Proper.tp 1 says that the semijoin oan reduce 
the size of R before R is shipped to the global 
site for tinal processing. Property 2 says that 
after the redaction, R retains all the tupler 
that could possibly participate in the join. 
Hence the remijoin reduction will be beneficial 
if the total cost of retrieving and shipping the 
joining field of S, and performing the semijoin 
at R’s site, is offset by the reduction in the 
size of R. 

When R and S are the results of generaliza- 
tion, the applicability of this taotic is lim- 
ited. If the join is not distributable over the 
generalization, both R and S have to be material- 
ized before they are joined. Rowever, in RDLTI- 
BASE, this materialization occurs at the global 
site. But then, since R and S are already at the 
result site, the remijoin reduction of R by S (or 
vice versa) is useless. Hence, the remijoin tac- 
tic should be considered only when Taatic 2 is 
applicable. 

Tactic 4: Semiouterioin Reduction 

We have seen that the first three tactics 
are seldom applicable when overlapping subtypes 
are generalized. Thus, there is the need for a 
tactic that can be widely used and that has the 
potential to reduce query processing cost. 

Consider a selection query uA o a R, where 
R - wA (RI(~)IU). If we can ‘demarcate the 
boundary’ between the ‘private’ and ‘overlap’ 
parts of Rl (resp. R21, then we can perform the 
releotion over the private part of Rl (resp. R2); 
only the overlap part will then have to be 
retrieved for aggregation. The pverlan Dart of 
Rl is the set of Rl-tuples that have matching 
R2-tupler, i.e., the semijoin of Rl by R2 on the 
merge condition g. Then the private Dart is 
Rl - Rl<plIu. We call this the antiioin of Rl by 
R2 on p. The remiouterioin of Rl by R2 on p is 
an operation that partitions Rl into the semijoin 
and the antijoin, i.e., Rl<P)S = iRl<plR2, Rl - 

R.l<rlazl. 

The utility of the semiouterjoin is based on 
the following identity: agg (Rl(g)aZ) = (Rl- 
Rl<plR2) (+) agg ((RlWR2) C&U). 

6 
(Similarly, 

we can reduce 82 p Rl, or both Rl and R2 by each 
other.) The selection u can now 
formed against the privh5tgPp&t. 

be per- 
For the overlap 

part, we must use the tables of Figure 4.1 to 
datemine if a modified selection can be per- 
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formed before the generalization. For example, 
consider the query 
Deadweight is defined %e6$w%ttt ;vi5 

Ship, where 

we can- 
aggregate. 

reduce LSl .Ship, then perform the sslec- 
tion Deadweight = 55 on the private part of 
LSl.Ship. Figure 4.1 shows that no modified 
selection is possible for the overlap part. which 
must be retrieved in toto. Let these results be 
Tll and T12. At the global site, T12 is general- 
ized with the result of the query executed at 
LS2, and postselection is performed on the result 
of generalization. Finally, Tll is merged with 
the result of postselection. 

The semiouterjoin can be implemented in much 
the same way as the semijoin, since the semijoin 
and antijoin can be computed simnltansoasly. 
Observe that by itself the semiouterjoin is use- 
less. Its utility as a tactic is that it can 
reduce the cost of a subsequent selection (or 
join). Thus, a semiouterjoin Rl<g)R2 is benefi- 
cial if the cost of performing it is offset by 
the reduction in the size of Rl produced by a 
selection (or semijoin) that can now be performed 
locally on the private part of Rl. 

For example, suppose the sizes of LSl . Ship 
and LSP.Ship are IO0 units each, and the size of 
the IWO projection of LSZ.Ship is 10 units. 
Also, suppose that ??m of the LSl.Ship entities 
are in its private Tart (and, hence, only 20% in 
the overlap part), and that the selectivity of 
the selection clause Deadwetght = 55 is 1oJb. Let 
us assume that the cost of moving data is propor- 
tional to the voLume of datu moved, and that 
local processieE costs are negligible compared to 
data movemer.: costs. (ws we,:cr these assumptions 
here only .t’or simplicity. Our actual cost model 
is quite genera!. !DLYX?. ) Then, if the 
semionterjoio reductior. tactic is not used, all 
of LX .Ship will hnve to he moved to the global 
site at a cost of 100 uqies. If the tactic is 
used, n LS2 .Ship has to ‘>e moved from LS2’s 
site t2dNESl’s site at a cost of 10 units; then, 
the overlap part ol: LF.‘..ShLp (29 units) and the 
private part 05 LS 1.Slip .rsstr?cted on the selec- 
tion clause !O.lO x PO = 8 u.n!.ts) have to be 
moved to the global site. Thus, the reduction 
tactic has an immediate belefft of 100 - 38 = 62 
units. Additional benefit can be obtained by 
using the overlap par? OE !X . Ship to reduce 
LS2 .Ship. IC we make similar assumptions about 
sizes and selectivities, then the addLtiona1 
benefit is give2 by: Cost of moving LS2 .Ship to 
the global site - (Cost of moving the RullNo pro- 
jection of LSl.Ship’s overlap part to LS2’s site 
+ Cost of moving the overlap part of LSZ.Ship to 
the global site 4 Cost of moving the restricted 
private part of LSZ.Ship to the global site) = 
100 - (2 + 20 + 0.10 x 80) = 70 units. 

5. Conclusion 

management system. The main reason that this 
problem is more difficult than the distributed 

wry optimization problems studied earlier 
arises from the need to integrate existing data- 
bases. Database integration is accomplished Pri- 
marily through generalization; hence, i$ is 
important to develop good techniques for Process- 
ing queries over generalization hierarchies. 

We defined the class of conjunctive general- 
ization queries by extending the class of con- 
junctive queries, which formed the basis of most 
previous research on query optimization. We 
adapted three commonly-used tactics for distri- 
buted query processing, and argued that their 
applicability to our problem is rather limited. 
We introduced a fourth tactic, semiouterjoin 
reduction, which can be more generally used. (For 
a theoretical treatment of semiouterjoin reduc- 
tion, see Mwang821.1 

In [DLY821, we show how to construct global 
execution plans using these tactics, how to esti- 
mate. the costs of alternative plans, and how to 
optimize !i.e., choose an inexpensive plan). 
Briefly, for each generalized entity type, we 
apply Tactic 1 whenever possible. Then we use 
dynamic programming to enumerate join orders. 
For each join in a join order, we consider using 
Tactics 2, 3, and 4 if they are applicable and 
immediately bcneflcial. In IDLY821, we also 
enhance this technique to process a wider variety 
of queries than the conjunctive generalization 
queries considered here. 
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