Processing Queries Over Genmeralization Hierarchies
in a Multidatabase System

Umeshwar Dayal

Computer Corporation of America
Four Cambridge Center

Cambridge, Massachusetts

Abstract

An important task of multidatabase systems
the integration of existing databases. Data-
achieved primarily through
the use of generalization, Hence, it is impor-
tant to develop good tactics for processing
queries over generalization hierarchies, This
paper defines the class of conjunctive generali-
zation queries, and it describes four tactics for
processing these queries that have been developed
for the MULTIBASE system. Simce query processing
the

is
base integration is

tactics are best describe algebraically,
paper shows how to model generalization as a
sequence of algebraic operations., Three of the

tactics described here are adapted from conven-
tional distributed query processing techniques.
However, it is argued that these tactics are of
limited applicability to processing queries over
generalization hierarchies, A fourth tactic,
semiouterjoin, which is more widely applicable,
is introduced.

This research was jointly supported by the De-
fense Advanced Research Projects Agency of the
Department of Defense and the Naval Electronic
Systems Command and was monitored by the Naval
Electronic Systems Command under Contract No.
N00039-82-C-0226 . The views and conclusions
contained in this document are those of the au-~

thors and should not be interpreted as neces—
sarily representing the cfficial policies, ei-
ther expressed or implied, of the DARPA,

NAVELEX, or the U.S. Government.

342

02142
1. Introduction
A multidatabase management system such as
MULTIBASE [SBDG81, LR82] is a system that pro-—

vides uniform, integrated access to a heterogeme-—
ous distributed collection of databases. It
differs from a conventional distributed database
management system (e.g., SDD-1 [RBFG80], System
R* [WDHL82], Distributed INGRES [Ston77], DDM
[CDFG83]) in two significant respects. First,
the databases are heterogeneouns, i.e., stored
under different local database management sys—
tems, each with its own data model and language.
Second, the databases are preexisting, i.e., have
been designed and maintained independently of one
another, and hence may be inconsistent. In
[KG81, DHB2] we describe how MULTIBASE shields
users from these problems of heterogeneity and
inconsistency. The 1local databases are first
'homogenized’ by describing their schemas in a
common data model, DAPLEX [Ship 81]. Database
integration is then achieved by defining a global
view tailored to the user’s application over
these DAPLEX representations; the view definition
incorporates directives for resolving differences
between the local databases.

A user formulates queries in DAPLEX over his
global view, The processing of a global query
consists of four tasks:

The global DAPLEX query
DAPLEX query over the

1. Query modification.
is modified into
local schemas.

Global query optimization, A global execu~
tion plan is constructed for the modified
query. The plan is composed of single-site
queries (each posed against exactly one
local schema), move operations that ship
results of the single-site queries between
sites, and postprocessing queries that
integrate the results of the single-site
gueries, In MULTIBASE, query modification,
global query optimization, and the execution
of postprocessing queries are performed at a
special global site.

The single-site
local site are sub-—

Local query optimization.
queries sent to each

jected to local access path optimization.

4, Translation. The optimized gueries at each
site are translated into equivalent queries
or programs in the data language of the host
DBMS.

Query modification has been described in

[KG81, DH82], and 1local query optimizationm in
[DGLO81, DG82]. Here, we focus on global optimi-
zation.

There are several novel aspects of global
query optimization in a multidatabase system that
are not present in conventional distributed query
optimization [BGWRR81, HY79, SA80, Y079, ESW78].
These are direct consequences of heterogeneity
and database integration. Heterogeneity is mani-
fested in two ways: differences in the relative
processing speeds of the sites, and differences
in the capabilities of the sites. In MULTIBASE,
the speeds and capabilities of the sites are pro-
vided as parameters to the global optimizer.
When the global optimizer compares various alter—
native global execution plans, it factors the
differences in speeds into its cost evaluation.
Also, it ensures that all queries sent to a site
can be processed there. Thus, if the DBMS at a
site cannot compute joins, process quantifiers,
etc., queries bound for that site must be either
decomposed into subqueries that can be processed
there, or 'filtered' to remove parts of the query
that can be processed (inm which case appropriate
compensatory postprocessing queries must be added
to the plan).

Database integration has a more profound
impact on global query optimizatiom. The princi-
pal technique that we propose for the integration

of databases that contain data about similar
objects is generalization [SS77, KXG81, DH82].

For example, consider two Ship databases. Sup-
pose that different attributes are defined for
the Ship entities in the two databases. (To dis-
tinguish between the Ship entity types in the two
different local schemas, LS1 and LS2, we refer to
them as LS1.Ship and LS2.Ship.) In the global
schema, we can define a genmeralization hierarchy
consisting of LS1.Ship, LS2,.Ship, and a generic
entity type, Ship. The attributes of Ship are
the common attributes of the two subtypes. We
now have to efficiently process queries over this

generalization hierarchy. We are not aware of
any previous solutions to this problem. The main
contribution of this paper is that it develops
such a solution,

If the databases are disjoint, the solutiomn
is straightforward. Thus, in our example, the
logical Ship file in the view may be thought of

as the wunion of the Ship files (appropriately
projected) in the two local databases. Stra-
tegies for oprocessing queries against horizon—
tally partitioned files have been developed
before [BGWRRS1, SA80, ESW78]. 1In [DLY82] we

343

show how to adapt and extend these strategies for
our purpose.

However, the more interesting (and diffi-
cult) problems occur when the databases overlap.
The definition of the global view must then
specify a merge conditior under which entities in

different databases are to be considered as the
same logical entity. For example, (sl in
LS1.Ship == 2 in LS2.Ship when HullNo (s1) =

IdNo (s2)) is a merge condition specifying that
an LS1.Ship entity is 'the same as’ an LS2.Ship
entity iff the HullNo of the former is equal to
the IdNo of the latter. Now the 1logical Ship
file in the view is no longer the union of the
local Ship files but their 'outerjoin’.

Further complications arise when the data-
bases are inconsistent, i.e., disagree on the
attribute values of some entity. For example,
the first database might record the value 50 for
the deadweight of the ship that has HullNo 1234,
while the second database records the valume 60
for the deadweight of the ship that has IdNo
1234; but in the view these local entities
represent the same logical Ship entity. The
discrepancy is resolved in the view definition by
an appropriate aggregate function; for instance,
the deadweight in the view might be specified to
be the average of the deadweights in LS1 and LS2.
So the problem of processing queries over gen—
eralization hierarchies in a multidatabase system
is related to the problem of processing aggre-—
gates.

In this paper we develop tactics for pro—
cessing selection, projection, and join gueries
over generalization hierarchies in which some
attributes of a generic entity type are defined
by aggregation from attributes of its subtypes.
In Section 2, -we define this class of queries,
which we call conjunctive generalization queries.

Query processing tactics typically are based
on algebraic properties. Hence, in Section 3, we
define generalization algebraically in terms of
outerjoins and aggregates, and construct alge—
braic equivalents of conjunctive generalization
queries.

In Section 4, four tactics for processing
these queries are developed. Two of these tac-
tics are for efficiently processing selectionms.
The reader might find this surprising, because
processing selections (and projections) in a con—
ventional distributed database system is easy:
they can be processed completely 1locally at a
single site. Even if some files are horizontally

partitioned, it is easy to process a selection
and projection query: execute the same query
locally at each of the sites containing a hor-

izontal fragment, and then construct the union of
the partial results, (This is why most previous
research on distributed query optimization
ignored selections and projections, and focused
on joins [BGWRRS1, SA80, HY79, Y079, ESW78l.)

When aggregates occur in view definitions, this
simple approach no longer works. Consider a
query that selects all ships whose deadweight
exceeds 55. In our example, the selection
clearly camnot be dome 1locally at each site
because it is necessary to compute the average of
the two deadweights. However, if instead of the
average, the deadweight in the view was defined
to be the maximum of the local deadweights, then
local selection is possible. Since ’'localizing’
selections reduces the volume of the data moved,
wo develop two tactics for it., One is to analyze
special aggregate functions and to determine for
them whether the selection can be distributed
over the generalization. The other tactic (which
works for all aggregates) is to perform
'semiouterjoin reductions’ (called 'semiunion
reductions’ in [DR82])., In our example, the
reduction of LS1.Ship by LS2.Ship requires ship-
ping IdNo values from the latter site to the
former. The LS1.Ship entities are then parti-
tioned into two subsets: those contained only in
the first database, (i.e., the subset {s1 €
LSi.Shipl (¥s2 € 'LS2.Ship) (HullNo(sl) #
IdNo(s2))}), and those having corresponding enti-
ties in the second database. For the first sub-
set, the selection can be performed locally; the
second subset must be retrieved to perform the
aggregate and selection by postprocessing at the
global site. The other two tactics developed in
Section 4 are for processing joins.

In Section 5, we describe briefly how to use

four tactics to construct global execution
plans. For a cost model and further details of
global query optimization in MULTIBASE, the
reader is referred to [DLYS82].

these

To summarize, the main contribution of this
paper is that it extends traditional relatiomal
query processing techniques, which foous on

select-project-join queries, to techniques for
processing queries containing outerjoins and
aggregates.

2. Conjunctive Generalization Queries

We first define conjunctive DAPLEX queries,
which correspond roughly to the conjunctive rela-
tional gqueries comsidered by [BGWRR81, HY79,
SA80, Y070, ESW78]. VWe then extend this class to
conjunctive genmeralization queries.

2.1 Conjunctive DAPLEX Queries and Query Graphs
A database schema in the DAPLEX Model is a

directed multigraph, whose nodes are entity

types, and whose edges are single-valued or

multi-valued functions. For our purpose, a con—
junctive DAPLEX guery is in the following canoni-
cal form:

344

for each x_ in X
for each x2 in iz

for each x_ in X
where ?qunli?ication)
output (target_list)

endfor
endfor
endfor
The X. are entity types. The target_list is a
list "of terms f(x), where x is one of the itera-

tion variables x., x,,...,x_, and f is a single-
valued function™ whose range is a set of scalars
(e.g., Real, Integer, String, Booleean). The
qualification is a conjunction of atomic formulas
of the following types: one-variable selection
clauses: (£(z) op ¢), (£f,(z) op £,(z2)), (c isin
h(z)); value-based join clauses: (%(z) op g(w));
and linked join clauses: (w = f(z)), (w isin
h(z)); where w, z are variables; ¢ is a constant;
f.f .fz,g are single—valued functions; h is a
mul%ivnlued function; and op is ome of the arith-
metic comparison operations (e.g., =, {, #).

The query graph of a conjunctive query is an
undirected graph that has ome node for each vari-
able occurring in the query, and ome edge {w,z}

for each set of join clauses involving variables
w and z in the qualification. Attached to each
node are any one—variable selection clauses

(labeled o) and target—list functions (labeled =)

defined on the corresponding variable. Each edge

is labeled with the corresponding join clauses.
Examples of a DAPLEX schema,

a conjunctive

query and its query graph are given in Figure
2.1,
2.2 Conjunctive Generalization Queries

A conjunctive generalization guery is a con-
junctive query, some of whose variables may range

over generalization hierarchies. A conjunctive
generalization query is produced by modifying a
conjunctive query containming a variable that
ranges over &a generic entity type in a view,
where the generic entity type’'s functions are

defined in terms of its subtypes’ functions. The
details of view definition and query modification
in DAPLEX are irrelevant to our discussion here
(see [EG 81, DH 82, DLY 82)).

The query graph of a conjunctive generaliza-
tion gquery is very similar to that of a conjunc-
tive query, except that variables ranging over
generalization hierarchies are represented by

Schema:

Ship weapons Weapon

o - O
ID / Name Deadweight\ Location vIiD Type \ Range
O O U O) O)

String String Integer String

String String Integer

Type(wl) = Type(w2) AND Range(w2))>Range{wl)

s2

uery:
for each sl in Ship
for each s2 in Ship
for each wl in Weapon
for each w2 in Weapon
where wl isin weapons(sl) AND Deadweight(sl)>55 AND
Location(sl) = Location(s2) AND
w2 isin weapons(s2) AND
output ID(sl), Name(sl), WID(wl)
endfor
endfor
endfor
endfor
Query Graph:
s1 Location(sl) = Location(s2)
o: Deadweight>55
n: ID, NameTAi

wl isin weapons(sl)l

T

w2 isin weapons(s2)

wl
n: WID

w2

Type(wl) = Type(w2)
AND Range(w2))>Range(wl)

Figure 2.1 A Conjunctive DAPLEX Query and its Query Graph

generalization nodes. A generalization node is
labeled with the corresponding generalization
hierarchy, a merge condition on the subtypes, and
a8 SubRange Table(SRT) that encapsulates the
definition of the functions on the gemeric entity
terms of the functions on its subtypes.

type in

The SRT in Figure 2.2, for example, shows that
(a) for each entity in LS1.Ship that has no
corresponding entity in LS2.Ship, the Deadweight

the view is equal to its Deadweightl value in

-in

the LS1 database; (b) symmetrically, for each
entity im LS2.Ship that has no matching LS1.Ship
entity, the Deadweight is equal to its Dead-

weight2 value in LS2; and (c) for each ship that
is represented in both LS1.Ship and LS2,Ship, the

345

Deadweight is the maximum of its two deadweight
values in LS1 and LS2.

3. Algebraic Equivalents of Conjunctive

Generalization Queries

3.1 Modeling a DAPLEX Schema

We model a DAPLEX schema by a relational
schema as follows, For each entity type there is
one relation whose attributes are exactly the
functions defined on that entity type. (We shall

Suppose that in the example of Figure 2.1, Ship is a gemeric entity type defined over subtypes
LS1.8hip and LS2.Ship. Assume that for each function f on Ship, the corrxesponding functions in
LS1.Ship and LS2.Ship are named f1 and f2, respectively. Then the query of Figure 2.1 becomes a con—

junctive generalization query after modificationm,

Query graph:

s1 [/ S,p S,p \ 82
SRT(s1) SRT(s2)

wl w2

Node and edge labels are identical to those in Figure 2.1. S is the generalization hierarchy

Ship

LS1.8hip LS2,8hip

p is the merge condition: (x1 in LS1.Ship == x2 in LS2.Ship when HullNo(xl) = IdNo(x2))

SRI(si) for i = 1,2:

1d Deadweight Name
LS1.Ship - LS2,Ship Hul 1No Deadweightl Namel
LS2.8hip — LS1.Ship IdNo Deadweight2 Name2
LS1.Ship N LS2.Ship HulilNo|IdNo max(Deadweightl, Namel|Name2

Deadweight2)

Location ¥Yeapons
LS1.Ship - LS2.Ship Locationl weaponsl
LS2.Ship - LS1,Ship Location2 weapons2

LS1.Ship N LS2.Ship avg(Locationl,Location2) weaponslUweapons2

Note:

1. LS1.Ship - LS2.Ship denotes {s € Shipl(3s1 € LS1.Ship) (ID(s) = HullNo(s1)
(¥s2 € LS2.Ship) (HullNo(sl) # IDNo(s2))}

2. LS1,.Ship N LS2.Ship denotes {s € Ship l(3s1 € LS1.Ship)(¥s2 € LS2.Ship)
(ID(s) = HullNo(sl) = IDNo(s2))}

3. Namel|Name2 denotes ’either Namel or Name2'

Figure 2.2 Query Graph of a Conjunctive Generalization Query

use X.A to demote attribute A of relation X.) Note that because of multivalued functions,
Assume that each entity type X has a unique iden— resulting relations are not in First Normal Form
tifier function X.ID. The relations are popu- (1NF) .

lated by one tuple per entity: if f is a function
from X to a scalar range, then for entity x € X,
the corresponding tuple x has X[X.f] = f(x); if £ 3.2 Modeling & Conjunctive DAPLEX Query
is a function from X to emtity set Y, thea for

entity x € X, the corresponding tuple x has A conjunctive DAPLEX gquery can be modeled
x{X.f] = ID(f(x)) when f is single—valued, and algebraically using the relational operations of
x[X.f] = {ID(y)ly € £(x)} when f is multivalued. Cartesian product (or join), selection, and pro-

346

jection.®* The mapping is essentially the same as
for Relational Calculus [Codd72], QUEL [HS¥75],
or SQL [CAEG76]. Thus, the canonical conjunctive
DAPLEX query of Section 2.1 is equivalent to the
slgebraic expression n , where n,.. denotes pro-
jection on the target Iist and E, is an algebraic
. expression constructed from the qualification Q@
by first forming the Cartesian product P of all
entity sets referenced by the gquery, and then
restricting P by selections corresponding to the
clauses in Q. (Note that the operations of rela—
tional algebra apply equally well to non-INF
relations [JS82]. For non-INF relations, the fol-
lowing selection and join conditions are applica-
ble in addition to those listed im [Codd70]:
aaeAR’ which corresponds to the selection clause
a 1sin A(r); and S[S.ID € R.fIR, which
corresponds to the linked join clause s isin
f(r).) Applying this procedure to the guery in
Figure 2.1 yields:

"sl.ID,sl.Name,wl.'ID %w1.ID € sl1.weapons

%s1.Deadweight>55 ®si.Location = s2.Location

w2.ID € s2.Weapons le.Type
(s1 X w1 X s2 X w2)

w2 .Type

dw2.Range>w1.Range

where sl, s2 are copies of the Ship relation, and
wl, w2 are copies of the Weapon relation.

3.3 Modeling Gemeralization

We define generalization algebraically in
two steps. First, construct the outerjoin of the
subtype relations on the merge condition,
(Informally, the outerjoin of R and S on condi-
tion p, denoted R(p)S, is the union of the join
R{xlS together with tuples constructed from the
unjoined tuples of R and the unjoined tuples of S
by padding them out witk NULL values [Codd79].)

The second step is to define the attributes
of the generic relation by aggregation over the
attributes of its subtypes. Informally, we
proceed as follows. Consider the outerjoin of
LS1.Ship and LS2.Ship. Add a column (an attri-
bute) Deadweight to this relation; the value of
Deadweight in each tuple is the maximum of the
Deadweightl and Deadweight2 values of the tuple.
Delete the Deadweightl and Deadweight2 columns,
Once this is done for all genmeric attributes, the

*This is only partly true, since DAPLEX queries

do not wusually remove duplicates. (saL
[CAEG76) has similar semantics.) To be accu—
rate, therefore, we must use a multiset rela-
tional algebra to model DAPLEX [DGK82]. Howev-—

er, for simplicity, we describe our query pro-
cessing tactics in terms of relational algebra.
They apply equally well to multiset relational

algebra.

347

resultant relation is Ship. Proceeding formally,
we introduce an aggregate operation as follows.
Let R be a relation over attributes R. Let X =
{Ay,o.c AL} R. Denote domain (A,) x ... x
donain(Anf by domain(X). Let A be an “attribute

name not in R, and agg,[X] be a function:
domain(X) ——> domain(A). en, we extend nggA[x]
to apply to the relation R in the obvious way;
i,e., agg,[X] is a relation over (R - X)U{A}
defined by: for each tuple r € R, there is a
tuple t in agg,[X]1(R), such that t[R - X] = r[R -
X] and t[A] "= nsgA(r[X]). We call agg,[X] an
aggregate function over R. (Often we shalé drop

X from the name of the function, if it is clear
from the context.) Some aggregate functions that
will be of interest to us are listed in Figure
3.1,

Thus, generalization can be expressed as a
sequence of outerjoin and aggregate operations.
(If the subtypes being genmeralized are disjoint,
then the outerjoin reduces to the outerunion
[Codd79], and aggregation is unnecessary.) For
the example of Figure 2.2, we can write:

Ship := choosennyId [HullNo, IdNol]

chooseanyName m‘xdeadweight

average chooseall

Location Weapons

(LS1.Ship (HullNo = IdNo) LS2.Ship)

3.4 Modeling Conjunctive Generalization Queries

A conjunctive generalization query is simi-
lar to the canonical conjunctive DAPLEX query of
Section 2.1, except that some of the X.’'s may be
the result of generalization, In the algebraic
expression corresponding to the query, replace X.

by the outerjoin—aggregation expression defining
Xi.

Applying this procedure to the query in Fig-
ure 2.2 yields the same expression as in Section

3.2, except that now sl and s2 are copies of Ship
as defined in Section 3.3.

4, Tactics for Processing Conjunctive

Generalization Queries

In Section 3 we showed how to construct an
algebraic expression equivalent to a conjunctive
(generalization) query. A straightforward
approach to oprocessing a query would be to
retrieve all the relations appearing in this
expression to & result site (the global site in
MULTIBASE) and then to directly evaluate the
expression there. However, this direct approach
would be extremely inefficient in general.

are used
equivalent

In practice, algebraic identities

to transform the expression into

the aggregate function defined by:

max, [A1,A2](2) =

max, min, sum, count, average: Let R be a relation over R, and A1, A2 € R. Then nle[Al.AZ] is

r{A1), if r[Al] # null, r{A2) = null
r[A2], if r[Al] = null, r[A2] # null

max (r[A1ll, r£[A2]), otherwise

The other aggregate functions are defined similarly.

choosel: Let R, R, Al, A2 be as before.

choosel [A1;A2](x) = z

choose2 is defined symmetrically.

Then,

r[A1], if r[Al] # null
r{A2), if rlA1] null

Then,

r[A1], if rl{Al1l) # null, r[A2] = null
r[A2), if r{A1l] = null, r[A2] ¥ null
r[A1] (or rfA2]), if r[A1]

r[A2]

null otherwise

3. chooseany: Let R, R, Al, A2 be as before.
chooseanyA [A1,A2](x) =
4. chooseall: Let R, R, Al, A2 be as before.

chooseullA [A1,A2])(r) =

Then,

r[A1], if r[A1] # null, r[A2)] = null
r{A2], if r[A1) = null, r[A2] # null

{r[A1], r[A2]} otherwise

If A1, A2 are multivalued then chooseallA [A1,A2](x)

I[Al] U r{“] .

These definitions can be easily extended to more than two attributes Al, A2, A3

Figure 3.1 Some Common Aggregate Functions

expressions that potentially are cheaper to pro-
cess, First, the product—selection expression E
is replaced by an equivalent expression involving
joins and selections as follows., Consider any
spanning tree of the query graph. For each edge

e of the spanning tree, replace the product R1 X
R2 and the selection o, by the join RI[JIR2,
where R1,R2 are the endpoints of e and J is the

join condition labeling e.

Other transformations are based on various
tactics for reducing the volume of data moved
between sites., (Our cost function is a weighted
sum of data movement costs and local processing
costs,) The tactics wusually entail a tradeoff
between reduced data movement and increased local
processing. Two commonly used tactics for pro-
cessing conjunctive queries in conventional dis-
tributed systems are: (1) performing selections
(and projections) 1locally at individual sites
before performing any inter—site join; and (2)
semijoin reductions [BGWRR81]. These tactics are
applicable even when some of the relations are
horizontally partitioned. The usual approach is
to transform the query into the union of a col-
lection of conjunctive subqueries. For example,

348

if R1 is partitioned into R1,R2, and S is
tioned into S1,82, then the query

parti-

"r °R,A = & °5.B = p (RUIIS)
is transformed into

i,j € U1,2) ™ “Ri.A = 2 9sj.B = p (RILFISH).
Each subquery is them separately optimized using
the two tactics 1listed above. This approach
works because selection, projection, and join
distribute over union.

However, these tactics are not always appli-
cable to conjunctive gemeralization queries that
involve selection, projectiom, or join over
aggregated attributes, Below, we investigate the
distribution of selection and join over gemerali-
zation, Then we describe conditions under which
semijoin reductions can be used. Finally,
observing that these three ‘conventional’ tactics
can be used only in rather special cases, we
introduce a fourth tactic, semiouterjoin reduc-
tion, which plays an important role in processing
generalization gqueries.

Tactic 1: Distributing Selection over
Generalization

Let R1,R2 be subtypes of R, Consider the
selection query o, .R. ¥o remarked in Section
3.3 that generalizngfon over disjoint subtypes
can be modelled as the outerunion operation. In
this case, selection can, indeed, be distributed
over the generalization, since o(R1(+)R2)
oR1(+)oR2, where (+) denotes outerunion. This
means that we can perform the selection locally
at R1's site and at R2’'s site, and then merge the
results,

However, when the subtypes overlap and the
selection clause is on an aggregated attribute,
the following equality holds sometimes, but does
not hold in gemeral: o agg, (R1(p)R2) =
888, (aAl . Rl({p)o o A °ﬁz? wheée p is the
merge conaftxon on sznns ﬂz. ¥Whenever equality
holds, it 1is possible to perform selection
locally, and then generalize the results.

For the example in Section 1, equality holds
for the max aggregate function and the given
query, which selects on deadweight > 55. However
it does not hold if we replace the max aggregate
function in the definition of deadweight by the
avg aggregate function, or if we change the
selection clause in the query to deadweight = 55,

In some cases, through strict distributivity
does mnot hold, it is possible to perform a modi-
fied selection at each site, and then perform a
postselection after generalization (in practice,
the postselection and aggregation can be imple-—
mented together in one pass through the outerjoinm
file); i.e., it is possible to find opl, op2 such
that:

aSBA(RI(M)RZ) =
op a aggA(UAl opl a R1(p) A2 op2 a

For example, if the max aggregate is used to
define deadweight and the selection query is
deadweight 55, then we can perform local selec-
tions on the modified condition deadweight > 55,
and the postselection on deadweight 55. For
the average aggregate function, even this
approach is not sapplicable. Figure 4.1 1lists
some cases in which this tactic can be used.

%A op &

%A R2).

reduction
Ri gen—

The benefit of this tactic is the
in the volume of data moved: o

erally is smaller than Ri. Al opi a

Tactic 2: Distributing Joins over Generalization

In conventional distributed systems that
support horizontal partitioning, joins are always
distributed over unions [BGWRRS81, SA80]. Thus,
if R1, R2 are horizontal fragments of R, and if
81, S2 are horizontal fragments of S, then the
query RI[J]S is always replaced by the union of

349

four subqueries RifJ18j, 1<i, j<2. Actually, in
some instanaces this might not be the cheapest
strategy. It is sometimes cheaper to first con

struot R or S (or both) using unions, and then
perform the join. We treat distribution of joins
as a tactic to be used only if it is bemeficial,
In a multidatabases system, where R1, R2 are sub-
types of R, and S1, S2 are subtypes of S, distri-
buting joins over gemeraliztion may not even be
possible. Hence, we first have to consider
whether the tactic is applicable before we assess
its benefit.

Let R1,R2 be subtypes of R, and let 51,82 be
subtypes of S. Consider the join R[A op BIS.
When the subtypes of R are disjoint, the join can
be left-distributed over the outerunion, thus:
R1[Al op B]S (+) R2[A2 op B]S, This means that

it is possible to join S separately with Rl and
R2, and then merge the results. (Symmetric, for
right-distribution.)

However, when the subtypes overlap and the

condition is on aggregated attributes, one
types of distributivity
may not hold. Given the results of Figure 4.1,
it is not surprising that 1left distributivity
holds when agg, is chooseany, or chooseall, (sym—
metric for right distribuéivity). For other
aggregate functions, we could analyze the combi-
nation of 8g8,., aggv, and op, to find a modified
op for each join Ri{Ai op BjlSj, and to determine
the postprocessing required to produce the
correct result, To keep the gquery processing
strategies simple, however, we decided not to do
this, Instead of distributing joins over gen—
eralization, we distribute only semijoins [BC81].

join
or the other (or both)

The semijoin RCA op B]S is the set of R-
tuples that will join with at least one S-tuple,
and is equivalent to a union of selections

U o
benBS

A op T

Thus, to determine if the semijoin can be left-
distributed, we can use the tables in Figure 4.1
(for each b).

Distribution is advantageous in two cases.
The first occurs when the subtypes of both R and
S are disjoint, site(Ri) site(Si) for all |,
and the 'cross—terms’ Ri[Ai op BjlSj = @ for all
i # j. Now, the join of R and S reduces to the
completely local joins of Ri and Si (for all i),
followed by the outerunion of their results. The

second case occurs when the semijoin reduction
tactic is bemeficial. We discuss this tactic
next.

Tactic 3: Semijoin Reducticn

The semijoin R<A op B]S is executed by
retrieving ﬂBS at S’s site, shipping it to R's
site, and then restricting R. This tactic was

%A op a 188, (R1(p)R2) = % op a "5A(6A1 opl nnl(“) A2 op2 aRZ)

Case 1. agg = chooseany [A1,A2] or chooseall {A1,A2]: True distributivity holds
opl = op2 = op
Case 2a. agg = max[A1,A2]:
op > = 4
opl,op2 > 2 True
Case 2b. agg = min[A1,A2]:
op 4 = b
opl,op2 4 < True
Case 3. agg = count[Al,A2], sum[Al,A2), or average[Al,A2]:
for any op, opl = op2 = True
Case 4. agg = choosel [A1,A2]):
for any op, opl = True
op2 = op
Note op = True indicates no reduction is possibdble.

opl = op2 = op implies that postselection is unnecessary.

Figure 4.1 Distribution of Selection Over Generalization

proposed in [BC81], and it is used by both SDD-1
and System R*, The utility of the semijoin as a
tactic for distributed query processing is based
on the following properties:

1, RA op BIS ¢c R

2. (R<A op BIS) [A op B]S = R{A op B]S

can reduce
the global

says that
the tuples

Property 1 says that the semijoin
the size of R before R is shipped to
site tor tinal processing. Property 2
after the reduction, R retains all
that could possibly participate in the joinm.
Hence the semijoin reduction will be beneficial
if the total cost of retrieving and shipping the
joining field of S, and performing the semijoin
at R's site, is offset by the reduction in the
size of R,

VWhen R and S are the results of generaliza-
tion, the applicability of this tactic is lim—
ited. If the join is not distributable over the
goneralization, both R and S have to be material-
ized before they are joined, However, in MULTI-
BASE, this materialization occurs at the global
site. But then, since R and S are already at the
result site, the semijoin reduction of R by S (or
vice versa) is useless., Hence, the semijoin tac-
tic should be considered only when Tactic 2 is
applicable.

350

Tactic 4: Semiouterjoin Reduction

We have seen that the first three tactics
are seldom applicable when overlapping subtypes
are generalized. Thus, there is the need for a
tactic that can be widely used and that has the
potential to reduce query processing cost.

Consider a selection query %y op a R+ where
R = agg, (RI(pR2). If we can P8emarcate the
boundary’ between the 'private’ and ‘overlap’

parts of Rl (resp. R2), then we can perform the
selection over the private part of Rl (resp. R2);
only the overlap part will then have to be
retrieved for aggregation. The overlap part of
Rl is the set of Rl-tuples that have matching
R2-tuples, i.e., the semijoin of R1 by R2 on the

merge condition . Then the private part is
Rl - R1<p]R2., VWe call this the antijoin of Rl by

R2 on p, The semiouterjoin of R1 by R2 on p is
an operation that partitions Rl into the semijoin
and the antijoin, i.e., R1(u)S = {R1<(u]R2, Rl -
R1<u)R2}.

The utility of the semiouterjoin is based on
following identity: agg,(R1(p)R2) (R1-
R1<plR2) (+) agg ((Rl(p]RZ)(uéRZ). (Similarly,
we can reduce R2 éy Rl, or both Rl and R2 by each
other.) The selection o o ©an mnow be per-
formed against the privateppart. For the overlap
part, we must use the tables of Figure 4.1 to
determine if a modified selection can be per—

the

For example,
- 5_,)Shi.p. where
avg™ aggregate.

formed before the gemeralization.

consider the query o
Deadweight is defimed tachav°ifbt

¥e can reduce LS1.Ship, then perform the selec—
tion Deadweight = 55 on the private part of
LS1.Ship. Figure 4.1 shows that no modified

selection is possible for the overlap part, which

must be retrieved in toto. Let these results be
T11 and T12. At the global site, T12 is general-
ized with the result of the query executed at

LS2, and postselection is performed on the result
of generalization. Finally, T11 is merged with
the result of postselection.

The semiouterjoin can be implemented in much
same way as the semijoin, since the semijoin
antijoin can be computed simultaneously.

that by itself the semiouterjoin is use-—
Its utility as a tactic is that it can
the cost of a subsequent selection (or
join)., Thus, a semiounterjoin R1I{(u)R2 is bemefi-
cial if the cost of performing it is offset by
the reduction in the size of Rl produced by a
selection (or semijoin) that can now be performed
locally on the private part of Rl.

the
and
Observe
less.
reduce

For example, suppose the sizes of LS1.Ship
and LS2,Ship are 300 units each, and the size of
the IdNo projection of LS2.8hip is 10 units.
Also, suppose that 20% of the LS1,Ship entities
are in its private »art (and, hence, only 20% in
the overlap part), and *hat the selectivity of
the selection clause Deadweight 55 is 10%. Let
us assume that the cost of moving data is propor-—
tional to the volume of data moved, and that
local processing costs are megligible compared to
data movemen* costs, (W¥e maXe these assumptions
here only Yor simplicity. ©Our actual cost model
is quite general hrysz1.? Then, if the
semiouterjoin reduction tfactic is not used, all
of LSX.Ship will have to be moved to the global

site at a cost of 100 uni*s. If the tactic is
used, ... LS2.Ship has to Ye moved from LS2's
site to S1's site at a cost of 10 units; then,
the overlap part of LS1.Ship (20 units) and the

private part of LS2.Ship restrcicted on the selec~
tion clause (0.10 x 20 8 wunits}) have to Dbe
moved to the global site. Thus, the reduction
tactic has an immecdiaste hYenefit of 100 - 38 = 62
units. Additional benefit can be obtained by
using the overlap part of LS1.Ship to reduce
LS2.Ship. Tf we make similar assumptions about
sizes and selectivities, then the additional
benefit is given by: Cost of moving LS2.Ship to
the global site — (Cost of moving the HEullNo pro-
jection of LS1.Ship's overlap part to LS2's site
+ Cost of moving the overlap »art of LS2.Ship to

the global site + Cost of moving the restricted
private part of LS2.Ship to the global site) =
100 - (2 + 20 - 0,20 x 80) = 70 units,
5. Conclusion
This paper studied the problem of glcbal

query optimization in MULTYBASE, a multidatabase

The main reason that this
difficult than the distributed
studied earlier

management system,
problem is more
query optimization problems

arises from the need to integrate existing data-
bases. Database integration is accomplished pri-
marily through gemeralization; hence, ig is

important to develop good techmiques for process—
ing queries over gemeralization hierarchies.

We defined the class of conjunctive general-
ization queries by extending the class of com~
junctive queries, which formed the basis of most
previous research on (query optimization. We
adapted three commonly-used tactics for distri-
buted query processing, and argued that their
applicability to our problem is rather limited.
We introduced a fourth tactic, semiouterjoin
reduction, which can be more generally used. (For
a theoretical treatmemt of semiouterjoin reduc-
tion, see [Bwang82].)

In [DLY82), we show how to coastruct global
execution plans using these tactics, how to esti-
mate the costs of alternative plans, and bhow to
optimize (i.e., choose an inexpensive plan).
Briefly, for each gemeralized entity type, we
apply Tactic 1 whenever possible, Then we use
dynamic programming to enumerate join orders.

For each join in a ioin order, we comsider using
Tactics 2, 3, and 4 if they are applicable and
immediately beneficial. Imn [DLY82], we also

enhance this technique to process a wider variety
of queries than the conjunctive genmeralization
queries considered here.

Acknowledgement

thank Nat Goodman,
Terry Landers, Dan Ries, and Lanra Yedwab for
their invaluabie corments, The techniques
presented in this paper ere being implemented in
a prototype of MULTIRASF.

The anthor wishes to

6. References
[RC81!
Bernsteir, P.A,, and DM, Chiu, 'Using Semi-
joins to Solve Relational Queries,' JACM,
Vol. 28, No. !, Jannary 1981, pp. 25-40.
[BG79!

Bernstein, P.A,, and N. Goodman, 'Inequality
Semiiocirs,' Technical Report CCA-79-28, Com-
nuter Corperation of America, Cambridge,
Mass., December 1979.

[BGWRRS1]
Rernstein, P.A., N. Gooédman, E. VWong, C.
Reeve, and J.B. Rothnie, 'Query Processing
in & System for Distributed Databases (SDD-
1),' ACM Trans. or Database Systems, Vol. 6,
No. 4, December 198%, op. 602-625.

[CAEGT76]
Chamberlin, D.D., MM, Astrahan, K.P.
Eswaran, P.P, Griffiths, R.A. Lorie, J.VW.
Mehl, P. Reisner, and B.W. Wade, 'SPQUEL 2:
A Uniform Approach to Data Definition, Mani-
pulation, and Control,’ IBM J. Res. and Dev.
Vol. 20, No. 6, November 1976, pp. 560-575.

[CDFR83}
Chan, A., U. Dayal, S.A. Fox, N. Goodman, D.

Ries, and D. Skeen, ’‘Overview of an Ada-
Compatible Distributed Database Manager
(DDM),’ Proc. ACM-SIGMOD Conference, June
1983.

[Codd70]

Codd, E.F., 'A Relational Model of Data for
Large Shared Data Banks,’' CACM, Vol. 13, No.
6, June 1970, pp. 377-387.

[Codd72]
Codd, E.F., 'Relational Completeness of
Database Sublanguages’ in Database Systeis,

Courant Computer Science Symp. § (R. Rustin,
ed.), Prentice-Hall, Englewood Cliffs, N.J.,
1972.

[Codd79]
Codd, E.F., 'Extending the Database Rela-
tional Model to Capture More Meaning,' ACM

Trans. on Database Systems, Vol. 4, No. 4,
December 1979, pp. 397-434,

[DGLO81]
Dayal, U., N. Goodman, T.A, Landers, K.
Olson, J.M. Smith, and L. Yedwab, ’'Local

Query Optimization ir MULTIBASE -- A System
for Heterogenmeous Distributed Databeses,’
Technical Report CCA-81-11, Computer Cor-
poration of America, Cambridge, Mass., Sep-
tember 1981.

[DLY82]
Dayal, U., T.A. Landers, and L. Yedwad,
'Global Query Optimization in MULTIBASE: A

System for Heterogeneous Distributed Data-
bases,' Technical Report CCA-82-05, Computer

Corporation of America, Cambridge, Mass.,
1982,

[DG82]
Dayal, U., and N. Goodman, ’'Query Optimiza-
tion for CODASYL Database Systems,’' Proc.
ACM-SIGMOD Conferemce, June 1982, pp. 138-
150.

{DGK82]
Dayal, U., N. Goodman, and R. Katz, 'An
Extended Relational Algebra with Control

over Duplicate Elimination,’ Proc. ACM Sym—

posium on Principles of Database Systems,
March 1982, pp. 117-123.

fDH82]
Dayal, U., and H.Y. Bwang, 'View Definition
and Generalization for Database Integration

352

in MULTIBASE: A System for Heterogeneous
Distributed Databases,’ Proc. Sixth Bexkeley
Yorkshop on Distributed Database Management

and Computer Networks, February 1982, pp.
203-238; to appear in JIEEE TIrans. on
Software Engineering.

[{DR82]
Dayal, U., and D. Ries, ’'Research on Query
Optimization at Computer Corporation of
America,’ Database Enginmeering, Vol. 5, No.
3, September 1982, pp. 33-37.

[ESW7 8]
Epstein, R., M. Stonebraker, and E. Wong,
'Distributed Query Processing in a Rela-
tional Database System,’ Proc. ACM-SIGMOD
Conference, May 1978.

[GD81]
Gouda, M., and U, Dayal, 'Optimal Semijoin

Schedules for Query Processing in Local Dis-
tributed Database Systems,’ Proc. ACM-SIGMOD
Conference, April 1981, pp. 164-175,

[HY79]

Hevner, A.R., and S.B. Yao, 'Query Process-

ing in Distributed Database Systems,’ IEEE
Trans. on Software Engineering, Vol. SE-5,
No. 3, May 1979, pp. 177-187.

[{HSW75]
Held, G.D., M.R. Stonebraker, and E, VWong,
* INGRES : A Relstional Database System,’

Proc. AFIPS NCC 1975. pp. 409-416.

[Ewang82]
Hwang, B.Y., 'Database Integration and Query
Optimization in Multi-database Systems,’
Ph.D. Diss., Dept. of Computer Sciences,
University of Texas at Austin, Aunstin, Texas
(in preparation).

[KG81]
Katz, R,, and N. Goodman, 'View Processing
in MULTIBASE A Heterogeneous Database
System,’' in Entity-Relationship Approach to
Information Modeling and Analysis, (P.P.
Chen, ed.), ER Institute, Saugus, Calif.,
1981,

[Js82]

Jaeschke, G. and H.-J. Schek, 'Remarks on
the Algebra of Non First Normal Form Rela-
tions,’ Proc. ACM Symposium on Principles of
Database Systems, March 1982, pp. 124-138.

[LR82]
Landers, T.A., and R.L. Rosenberg,
in Distributed Data-—

'An Over—

view of MULTIBASE,'
bases, (H.J. Schneider, ed.), North Holland

Publishing Company, 1982, pp. 153-184.

[RBFG80]
Rothnie, P.A., P.A., Bernstein, S. Fox, N,
Goodman, M. Hammer, T. Landers, C. Reeve,

D.¥. Shipman, and E. VWong, 'Introduction to
a System for Distributed Databases (SDD-1),’

ACMN Trans. op Database Systems Vol. 5, No.
1, March 1980, pp. 1-17.

[SA80]
Selinger, P.G., and M. Adidba, 'Access Path
Selection in Distributed Database Management
Systems,’' Proc. Intermational Conference on
Databases, University of Aberdeen, Aberdeen,
Scotland, July 1980.

[Ship81]
Shipman, D.¥., 'The Functional Data Model
and the Data Language DAPLEX,’ ACM Trans. on
Database Systems Vol. 6, No. 1, March 1981,
pp. 140-173,

[SBDGS1]
Smith, J.M.,, P.A, Bernstein, U. Dayal, N.
Goodman, T.A. Landers, W.-T.K. Lin, and E.
Wong, 'MULTIBASE —- Integrating Heterogene—
ous Distributed Database Systems,’ Proc.
AFIPS National Computer Conference, Vol. 50,
1981, pp. 487-499,

[SS77]
Smith, J.M., and D.C.P Smith, ‘Data Base
Abstractions: Aggregation and Generaliza-
tion,’ ACM Trans. on Database Systems, Vol.
2, No. 2, June 1977, pp. 105-133.

[Ston77]
Stonebraker, M., 'A Distributed Database
Version of INGRES,’' Proc. Berkeley Workshop,
May 1977.

[WDHLS82]
Williams, R.,, D. Daniels, L. Haas, G. Lapis,
B. Lindsay, P. Ng, R, Obermarck, P, Sel-
inger, A, Walker, P. Wilms, R. Yost, 'R*: An
Overview of the Architecture, Proc. Second
Int’'l. Conf. on Databases —— Improving Usa-

bility and Responsiveness, Jerusalem,
Israel, June 1982.

[Y079]
Yu, C.T., and M.Z. Oszoyoglu, 'An Algorithm
for Tree—-Query Membership of a Distributed
Query,’ Proc. IEEE COMPSAC 79, November
1979, pp. 306-312,

353

