
Processing Queries Over Generalization Hierarchies
in a llultidatabare System

Umerhwar Dayal

Computer Corporation of America
Four Cambridge Center

Cambridge, Masraaharettc 02142

Abstract

An important task of multidatabase systems
is the integration of existing databases. Data-
base Integration is achieved primarily through
the use of generalization. Hence, it is impor-
tant to develop good tactics for processing
queries over generalization hierarchies. This
paper defines the class of conjunctive generali-
zation queries, and it describes four tactics for
processing those queries that have boon developed
for the MDLTIDASE system. Since query processing
tactics are best describe algebraically, the
paper shows how to model generalization as a
sequence of algebraic operations. Three of the
tactics described here are adapted from convon-
tional distributed query processing techniqaes.
However, it is argued that these tactics are of
limited applicability to processing queries over
generalization hierarchies. A fourth tactic,
semioutorjoin, which is more widely applicable.
is introduced.

This research was jointly supported by the De-
fense Advanced Research Projects Agency of the
Department of Defense and the Naval Electronic
Systems Command and was monitored by the Naval
Electronic Systems Command under Contract No.
NOOO39-82-C-0226. The views and conclusions
contained in this document are those of the au-
thors and should not be interpreted as neces-
sarily representing the official policies, oi-
thor expressed or implied, of the DARPA,
NAVPLEX, or the U.S. Government.

1. Introduction

A multidatabase management system such as
MULTIBASE LSBDG81, JR821 is a system that pro-
vides uniform, integrated access to a hotorogone-
ous distributed collection of databases. It
differs from a conventional distributed database
management system (e.g.. , SDD-1 [RBPGBO I , Sys tern
R* WDBL821, Distributed INGRES [Ston771, DlM
1CDFG831) in two significant respects. First,
the databases are heterogeneous. i.e., stored
under different local database management syr-
teas, each with its own data model and language.
Second. the databases are preexisting, i.e., have
been designed and maintained independently of one
another, and hence may be inconsistent. In
[KG81, DE821 we describe how MDLTIDASE shields
users from these problems of heterogeneity and
inconsistency. The local databases are first
‘homogenized’ by describing their schemas in a
coatmon data model, DAPLEX [Ship 811. Database
integration is then achieved by defining a global
view tailored to the user’s application over
these DAPLFX representations; the view definition
incorporates directives for resolving differences
between the local databases.

A user formulates queries in DAPLEX over his
global view. The processing of a global query
conrists of four tasks:

1. Query modification. The global DAPLEX query
is modified into a DAPLEX query over the
local schemas.

2. Global query optimization. A global oxecu-
tion plan is constructed for the modified
query. The plan is composed of sinale-&g
aueries (each posed against exactly one
local schema), move operations that ship
results of the single-site queries between
sites, and posturocossing gueries that
integrate the results of the single-site
queries. In MULTIBASE, query modification,
global query optimization, and the execution
of postprocessing queries are performed at a
special global a.

3. Local query optimization. The single-cite
queries sent to each local site are sub-

342

jetted to local aooess path optimization.

4. Translation. The optimized queries at each
site are translated into equivalent queries
or programs in the data language of the host
DBB8.

Glory modification has been described in
tKG81, DB821, and local query optimization in
[DGLGSl , DG82 I. Here, we focus on global optiai-
zation.

There are several novel aspects of global
query optimization in a multidatabase system that
are not present in conventional distributed query
optimization [BGWRR81, RY79, SA80, Y079, ESW781.
These are direct consequences of heterogeneity
and database integration. Heterogeneity is mani-
fested in two ways: differences in the relative
processing speeds of the sites, and differences
in the capabilities of the sites. In BBLTIBASE,
the speeds and capabilities of the sites are pro-
vided as parameters to the global optimizer.
When the global optimizer compares various alter-
native global execution plans, it factors the
differences in speeds into its cost evaluation.
Also, it ensures that all queries sent to a site
can be processed there. Thus, if the DBMS at a
site cannot compute joins, process quantifiers,
etc., queries bound for that site must be either
decomposed into subqneries that can be processed
there, or ‘filtered’ to remove parts of the query
that can be processed (in which case appropriate
compensatory postprocessing queries must be added
to the plan).

Database integration has a more profound
impact on global query optimization. The princi-
pal technique that we propose for the integration
of databases that contain data about similar
objects is generalization [SS77, KG81. DH82].
For example , consider two Ship databases. SUP-
pose that different attributes are defined for
the Ship entities in the two databases. (To dis-
tinguish between the Ship entity types in the two
different local schemas, LSl and LS2, we refer to
them as LSl. Ship and LS2.Ship.) In the global
schema, we can define a generalization hierarchy
consisting of LSl.Ship, LS2.Ship. and a generic
entity type, Ship. The attributes of Ship are
the common attributes of the two subtypes. We
now have to efficiently process queries over this
generalization hierarchy. We are not aware of
any previous solutions to this problem. The main
contribution of this paper is that it develops
such a solution.

If the databases are disjoint, the solution
is straightforward. Thus, in our example, the
logical Ship file in the view may be thought of
as the union of the Ship files (appropriately
projected] in the two local databases. Stra-
tegies for processing queries against horizon-
tally partitioned files have been developed
before IBGWRR81, SA80, ESW781. In [DLYSZ] we

show how to adapt and extend these strategies for
our purpose.

Bowever, the more interesting (and diffi-
cult) problems ooour when the databases overlap.
The definition of the global view must then
specify a ~q~gg condition under which entities in
different databases are to be considered as the
same logical entity. For example, ($1 in
LSl . Ship == s2 in LSZ.Ship when HullNo (81) =
IdNo ($2)) is a merge oondition specifying that
an LSl.Ship entity is ‘the same as’ an LS2. Ship
entity iff the HullNo of the former is equal to
the IWO of the latter. Now the logical Ship
file in the view is no longer the union of the
local Ship files but their ‘outerjoin’.

Further oomplications arise when the data-
bases are inconsistent, i.e., disagree on the
attribute values of some entity. For example,
the first database might reoord the value 50 for
the deadweight of the ship that has BullNo 1234,
while the second database records the value 60
for the deadweight of the ship that has IdNo
1234; but in the view these local entities
represent the same logical Ship entity. The
discrepancy is resolved in the view definition by
an appropriate aaareaate function; for instance,
the deadweight in the view might be specified to
be the average of the deadweights in LSl and LS2.
So the problem of processing queries over gen-
eralization hierarchies in a multidatabase system
is related t0 the problem of processing aggre-
gates.

In this paper we develop tactics for pro-
cessing selection, projection, and join queries
over generalization hierarchies in which some

attributes of a generic entity type are defined
by aggregation from attributes of its subtypes.
In Section 2, we detine this class of queries,
which we call conjunctive generalization queries.

Query processing tactics typically are based
on algebraic properties. Hence, in Section 3, we
def ins generalization algebraically in terms of
outerjoins and aggregates, and construct alge-
braic equivalents of conjunctive generalization
queries.

In Section 4, four tactics for processing
these queries are developed. Two of these tac-
tics are for efficiently processing selections.
The reader might find this surprising, because
processing selections (and projections) in a con-
ventional distributed database system is easy:
they can be processed completely locally at a
single site. Even if some files are horizontally
partitioned, it is easy to process a selection
and projection query: execut 0 the same query
locally at each of the sites containing a hor-
izontal fragment, and then construct the union of
the partial results. (This is why most previous
research on distributed we ry optimization
ignored selections and projections. and focused
on joins (BGWRR81, SA80, RY79, YO79, ESW781.J

343

When aggrrgatrr o&or in view definitions, this
simple approach no longer works. Consider a
query that selects all ships whose deadweight
exceeds 55. In our example, the selection
clearly cannot be done locally at each site
because it is necessary to compute the average of
the two deadweights. However, if instead of the
average, the deadweight in the view was defined
to be the maximum of the looal deadweights, then
local selection is possible. Since ‘localizing’
selections reduces the volume of the data moved.

we develop two tactics for it. One is to analyze
special aggregate functions and to determine for
them whether the selection can be distributed
over the generalization. The othor tactic (which
works for all aggrsgatea) is to perform
‘semiouterjoin reductions’ (called ’ semiunion
reductions’ in [DK821). In our example, the
reduction of LSl.Ship by LS2.Ship requires Ship-
ping IdNo values from tho latter sit0 to the

former. The LSl.Ship entities are then parti-
tioned into two subsets: those contained only in
the first database, (i.e., the subset Is1 G
LSl.Ship1 (fs2 e LS2.Ship) UiullNo(sll +
IdNo(s2))1), and those having corresponding enti-
ties in the second database. For the first sub-
sot, the selection can be performed locally; the
second subset mast be retrieved to perform the
aggregate and selection by postprocessing at the
global site. The other two tactics developed in
Section 4 are for prooosaing joina.

In Section 5, wo describe briefly how to use
those four tactics to construct global execution
plans. For a cost model and further details of
global queiy optimization in MULTIBASE, the
reader is referred to IDLY821.

To suaazarize, the main contribution of this
paper is that it extends traditional relational
query processing techniques, which focus on
soltot-project-join queries, to techniques for
processing queries containing outerjoins and
aggregates.

for each x in X
for each i2 in
.

.
for each x in X

whore ?qualification>
output <targotJist>

endfor

.
ondf or

endf or

The Xi are entity types. The target-liat is a
list of terms f(x), where x ia one of the itera-
tion variabloa xl, x,...,x,andfisa ainglo-
valued function whgae range is a sot of scalars
(e.g., Real, Integer, String, Boolean). The
qualification is a conjunction of atomic formulas
of the following types: one-variable selection
clauses: (f(z) op cl, (fl(z) op f (zll, (c isin
h(r)); value-baaod join clauses: d(z) op g(r));
and linhed join clauses: (w - f(z)), (w iain
h(z)); whore w, z aro variables; o is a constant;
f,f ,f2.g are

4
single-valued functions; h is a

mu1 ivaluod function; and op fs one of the arith-
motic comparison operations (e.g., =, 1. Cl.

The query graph of a oonjunctivo query is an
undirected graph that has one node for oath vari-
l blo occurring in the query, and one edge f”. zl
for each set of join clauses involving variables
w and z in the qualification. Attached to each
node are any one-variable selection clauses
(labeled u) and target-list functions (labeled IT)
defined on the corresponding variable. Each edge
is laboled with the corresponding join clauses.

Examples of a DAPLEX schema, a conjunctive
query and its query graph are given in Figure
2.1.

2.2 Coniunctivo Qonoralization Queries
2. Coniunctivo Generalization Queries

We first define conjanotive DAPLSX queries,
which correspond roughly to the conjunctive rela-
tional queries considered by tBGWKK81, BY79,
SA80, YO70, ESW781. We then extend this class to
conjunctive generalization queries.

2.1 Coniunctivo DAPLKX Queries and Query Grauha

A databaso schema in the DAPLEX Model is a
directed multigraph, whore nodes aro entity
tYDes, and whose edges aro sinnlo-valued or
multi-valued functions. For our purpose, a QOIl--
junctive DAPLEX auerv is in the following canoni-
cal form:

A conjunctive zonoralization auerv is a oon-
junotivo query, somo of whose variables may range
over gonoralization hierarchies. A conjunctive
gonoralization query is produced by modifying a
oonjunctivo query containing a variable that
tangos over a generic entity type in a view,
where the generic ontity typo’s functions are
defined in terma of its subtypes’ functions. The
details of view definition and query modification
in DAPLEX are irrelevant to our discussion hero
(roe [KG 81, DE 82. DLY 821).

The query graph of a conjunctive gonoraliza-
tion query is very similar to that of a conjunc-
tive query, except that variables ranging over
generalization hierarchies aro represented by

344

Schema :

Ship weapons Weapon

*cation fi*e

q 0 q q 0 q q
String String Integer String String String Integer

for each sl in Ship
for each s2 in Ship

for each rl in Weapon
for each w2 in Weapon

where rl isin weapont(s1) AND Deadweight(AND
Locationf 81) = Locationf 82) AND
w2 isin weapona(s2) AND
Type(w1) = Type(w2) AND Range(wZ))Range(wl)

output ID(sl), Nametall, WID(w1)
endfor

endfor
endfor

endfor

Graoh: Query

o: De:Yiithkiip Location = Location(s2; s2

wl isin weapoas(s1) .,k wi isin weapons(s2)

n: WID w2
Type(w1) = Type(w2)

AND Range(wZ)>Range(wl)

Figure 2.1 A Conjunctive DAPLRX Query and its Query Graph

generalization nodes A generalization node is
labeled with thecorresponding generalization
hierarchy, a merge condition on the subtypes, and
a SobRange Table(SRT) that encapsulates the
definition of the functions on the generic entity
type in terms of the functions on its subtypes.
The SRT in Figure 2.2, for example, shows that
(a) for each entity in LSl.Ship that has no
corresponding entity in LS2.Ship. the Deadweight

-in the view is equal to its Deadweight1 value in
the LSl database; (b) symmetrically, for each
entity in LSZ.Ship that has no matching LSl.Ship
entity, the Deadweight is equal to its Dead-
weight2 value in LS2; and (cl for each ship that
is represented in both LSl.Ship and LSZ.Ship, the

Deadweight is the maximum of its two deadweight
values in LSl and LS2.

3. Alaebraic Eauivalents a Conjunctive
Generalization Queries

3.1 Modeling a DAPLRX Schema

We model a DAPLEX sohema by a relational
schema as follows. For each entity type there is
one relation whose attributes are exactly the
functions defined on that entity type. (We shall

345

Suppose that in the example of Figure 2.1, Ship is a generic entity type defined over subtypes
LSl.Ship and LSf.Ship. ASSUW that for each function f on Ship, the corresponding functions in
LSl.Ship and LSZ.Ship are named fl and f2, respectively. Then the query of Figure 2.1 becomes a con-
junctive generalization query after modification.

Node and edge labels are identical to those in Figure 2.1. S is the generalization hierarchy

Sh P

A
LSl . Ship LS2. Ship

g is the merge condition: (xl in LSl.Ship == x2 in LSZ.Ship when llullNo(x1) = IdNo(x2))

SRT(si) for i = 1~2:

LSl.Ship - LSZ.Ship
LS2 .Ship - LSl.Ship
LSl.Ship n LSZ.Ship

LSl.Ship - LSZ.Ship
LSIL.Ship - LSl.Ship
LSl . Ship fl LS2. Ship

rd
HullNo
IdNo
Ed 1No t IdNo

Location
Loca tionl
Location2

Deadwsinht &gg
Deadueightl Name1
Deadveightt Name2
max(Deadveight1, Name1 l+meZ

Deadweightl)

Weapons
weapons1
neapons2

avg(Looationl,Looation2) neaponslUweapons2

1. LSl.Ship - LSZ.Ship denotes Is G Shipl(3sl G LSl.Ship)(ID(s) = BullNo
Ws2 8 LS2.Ship) (HullNo # IDNo(

2. LSl.Ship n LSZ.Ship denotes {s 8 Ship I(3sl G LSl.Shipl(3sZ 8 LSZ.Ship)
(ID(s) = HullNo = IDNo(s2))l

3. NamellName2 denotes ‘either Name1 or Name2’

Figure 2.2 Query Graph of a Conjunctive Generalization Query

use X.A to demote attribute A of relation X.1 Note that because of multivalued functions, the
Assume that each entity type X has a unique iden- resulting relations are not in First Normal Form
tifier function X.ID. The relations are popu- (1NF).
lated by one tuple per entity: if f is a function
from X to a scalar range, then for entity x G X,
the corresponding tuple x has X[X.fl = f(x); if f 3.2 Modeling 5 Conjunctipe DAPLEX Query
is a function from X to entity set Y, then for
entity x 8 X. the corresponding tuple x has A conjunctive DAPLEX query can be modeled
x[X.fl = ID(f(x)l when f is single-valued, and algebraically using the relational operations of
x[X.fl = {ID(y) Iy G f(x)] when f is multivalued. Cartesian product (or join), selection, and pro-

346

jectfon.* The mapping is essentially the same as
for Relational Calculus [Codd72]. QIJBL [HSW75],
or SQL [CAEG76]. Thus, the canonical conjunctive
DAPLEX query of Section 2.1 is equivalent to the
algebraic expression n where n denotes pro-
jection on the target T” i% and E Q T s an algrbraio

.exprerrion constructed from the qualification Q
by first forming the Cartesian product P of all
entity sets referenced by the query, and then
restricting P by selections corresponding to the
clauses in Q. (Note that the operations of rela-
tional algebra apply equally well to non-U@
relations [JS821. For non-1NF relations, the fol-
lowing selection and join. conditions are applioa-
ble in addition to those listed in [Codd’lOl:

%ARe which corresponds to the selection clause
a irin A(r); and S[S.ID G R.f]R, which
corresponds to the linked join clause s isin
f(r).) Applying this procedure to the query in
Figure 2.1 yields:

n
sl.ID,sl.Name,wl.WID uwl.ID G rl.weapons

Q
sl.Deadweight>SS ‘sl.Location = s2.Location

Q
w2.ID G s2.Weapons uwl.Type = w2.Type

0
w2.Range)wl.Range (rl x wl x 92 x w2)

where sl, 32 are copies of the Ship relation, and
Wl. w2 are copies of the Weapon relation.

3.3 Modelins Generalization

We define generalization algebraically in
two steps. First, construct the outerjoin of the
subtype relations on the merge condition.
(Informally, the G-terioin of R and S on condi-
tion p, denoted R(g)S, is the union of the join
R[ulS together with taples constructed from the
unjoined taples of R and the unjoined tuples of S
by padding them out with NULL values [Codd79] .)

The second step is to define the attributes
of the generic relation by aggregation over the
attributes of its subtypes. Informally, we
proceed as follows. Consider the outerjoin of
LSl.Ship and LS2.Ship. Add a column (an attri-
bute) Deadweight to this relation; the value of
Deadweight in each tuple is the maximum of the
Deadweight1 and Deadweight2 values of the tuple.
Delete the Deadweight1 and Deadweight2 columns.
Once this is done for all generic attributes, the

Vhis is only partly true, since DAPLEX queries
do not usually remove duplicates. (SQL
[CAEG76] has similar semantics.) To be accu-
rate, therefore, we must use a multiset rela-
tional algebra to model DAPLEX ZDGK821. Howev-
er, for simplicity, we describe our query pro-
cessing tactics in terms of relational algebra.
They apply equally well to multiset relational
algebra.

resultant relation is Ship. Proceeding formally,
wo introduce an .8ggrorate operation as follows.
Lot P be a relation ovor attributes a. Lot X =
r+.., Al 2 a. Denoto domain (Al) x . . . x
domain(A 7 by domain(X). Lot A be an attribute
mm0 no! in lt, and agg [XI be a function:
domain(X) --> domain(A). TkOSl. wo extend aggA[X]
to apply to the relation R in the obvious way;
i.o., *gg [Xl
dof ined 6

is a relation over (1 - X)UUl
Y: for each tuple r 8 R, there is a

tuple t in aggAIXl (R), such that t[a - Xl = r@ -
Xl and tlA1 = aggA(r[Xl). We call agg [Xl an
anrronato function over _a. (Often wo shal 6 drop
X from the name of the function, if it is clear
from the context.) Some aggregate functions that
will be of interest to us aro listed in Figure
3.1.

Thus, goneralixation can be expressed as a
roquence of outerjoin and aggregate operations.
(If tho subtypor being gonoralized are disjoint,
then the outerjoin reduces to the outerunion
[Codd791, and aggregation is unnecessary.) For
the example of Figure 2.2, wo can write:

Ship := chooreanyId [HullNo, IdNol

chooseany
Name maxdoadweight

averageLocation chooseallWeapons

(LSl.Ship (HullNo = IdNo) LSZ.Ship)

3.4 Rodelina Conjunctive Generalization Queries

A conjunctive generalization query is simi-
lar to the canonical conjunctive DAPLEX query of
Section 2.1, except that some of the Xi’s may be
the result of generalization. In the algebraic
expression corresponding to the query, replace X.
by the outerjoin-aggrogation expression definini
X . .

1

Applying this procedure to the query in Fig-
aro 2.2 yields the same expression as in Section
3.2, except that now sl and 92 are copies of Ship
as defined in Section 3.3.

4. Tactics for Processing Conjunctive
Generalization Queries

In Section 3 we showed how to construct an
algebraic expression equivalent to a conjunctive
(generalization) query. A straightforward
approach to processing a query would be to
retrieve all the relations appoaring in this
expression to a result site (the global site in
MULTIBASE) and then to directly evaluate the
expression there. However, this direct approach
would be extremely inefficient in general.

In practice, algebraic identities are used
to transform the expression into equivalent

347

1. max. rin, sum, count, average: Let B be a relation over a, and Al. A2 4l R. Then raxAlAl.A21 is
the aggregate function defined by:

marA IAl,A2l(r) -

I

r[Al]. if rMl1 # null, rIA21 = null
r[A21, if rtAl1 = null, rU21 C null
max (r[All, rM21). otherwise

The other aggregate funotiona are defined similarly.

2. chooaal: Let B, B. Al, A2 be as before. Then,

choose1 [Al;A2](r] =
I

rfAl1, if r[All C null
rU21, if r[All = null

choose2 is defined aymme trical ly.

3. chooseany: Let B, lk, Al, A2 be as before. Then,

chooseanyA [Al&l(r) =

i

rUl1. if r[All # null, rtA21 = null
r[A2], if .r[All = null, rtA21 # null
rtAl1 (or rfA2]). if r[All = rtA21
null otherwise

4. chooaeall: Let B, R, Al, A2 be as before. Then,

chooseallA [Al&!1 (r) =

1

rkl], if rfAl1 # null, rU21 = null
rlA21, if r[AlI - null, r[A2] # null
(rlAl1, r[A2]] otherwise

If Al, A2 are multivalued then chooseallA [Al&?](r) = r[Al] U r(A21.

These definitions can be easily extended to more than two attributes Al, A2, AS

Figure 3.1 Some Common Aggregate Funotions
.

expressions that potentially are cheaper to pro-
cess. First, the product-selection expression EQ
is replaced by an equivalent expression involving
joins and selections as follows. Consider any
spanning tree of the query graph. For each edge
e of the spanning tree, replace the product IU X
R2 and the selection by by the join Rl[J]aZ,
where Rl,R2 are the endpoints of e and J is the
join condition labeling e.

Other transformations are based on various
tactics for reducing the volume of data moved
between sites. (Our cost function is a weighted
sum of data movement costs and local processing
costs.) The tactics usually entail a tradeoff
between reduced data movement and increated looal
processing. ho commonly used tactics for pro-
cessing conjunotive queries in oonventional dis-
tributed systems are: (1) performing selections
(and projections) locally at individual sites
before performing any inter-site join; and (2)
semijoin reductions [BGWRRSll. There tactics are
applicable even when some of the relations are
horizontally partitioned. The usual approach is
to transform the query into the union of a ool-
lection of conjunctive subqueries. For example,

if Rl is partitioned into Rl,R2, and S is parti-
tioned into Sl,S2, then the query

“T U&A = a u&B = b (R[Jls)
is transformed into

i,j S ‘(1.21 “T oRi.A = a uSj.B = b tRi[J1sj)’

Each subquery is then separately optimized using
the two tactics listed above. Thia approach
works because selection, projection, and join
distribute over union.

However, these tactics are not always appli-
cable to conjunctive generalization queries that
involve selection, projection, or join over
aggregated attributes. Below, we investigate the
distribution of selection and join over generali-
zation. Then we deaoribe conditions under which
semij oin reductions can be used. Finally,
observing that these three ‘conventional’ tactics
can be used only in rather special cases, we
introduce a fourth tactic, semiouterjoin reduc-
tion, which plays an important role in processing
generalization queries.

348

Tactic 1: Distributinz Selection m
Generalization

Lot Rl,lU be subtypes of B. Consider the
solootion query u* We remarked in Section
3.3 that gonoraliza?!o~lt*ovor disjoint subtypes
can be modollod as the outeranion operation. In
this case, selection can, indeed, be distributed
over the generalization, since a(Rl(+)R2) =
uRl(+)uBz, whore (+I denotes outerunion. This
PO8llS that we can perform the selection locally
at Rl’s site and at R2’s site, and then merge tho
results.

Eowovor, when the subtypes overlap and the
soleation clause is on an aggregated attribute.
the following equality holds sometimes, but does
not hold in general:
aggA fuA1
merge con8
holds, it is possible to perform solootion
locally, and then generalize the results.

For the example in Section 1, equality holds
for the mar aggregate function and the given
query, which selects on deadweight > 55. However
it does not hold if we replace the max aggregate
function in the definition of deadweight by the
*vg aggregate function, or if we change the
selection clause in the query to deadweight = 55.

In some cases, through strict distributivity
does not hold, it is possible to perform a modi-
fied selection at each site, and then perform a
postselection after generalization (in practice,
the postselection and aggregation can be implo-
monted together in one pass through the outerjoin
file); i.e., it is possible to find opl, op2 such
that:

uA op 8 aggA(R1(p)R2) =

uA op a aggA’uAl opl a Rl(p) uA2 op2 a R2)*

For example, if the max aggregate is used to
define deadweight and the selection query is
deadweight = 55, then we can perform local soloc-
tions on the modified condition deadweight 155,
and the postselection on deadweight = 55. For
the average aggregate function, oven this
approach is not applicnblo. Figure 4.1 lists
scuao cases in which this tactic can be used.

The benefit of this tactic is the reduction
in the volamo of data moved: u
orally is smaller than Ri.

Ai opi a Ri Vn-

Tactic 2: Distributing Joins over Generalization

In conventional distributed systems that
support horizontal partitioning, joins are always
distributed over unions [BGWRRIl, SA801. Thus,
if Rl, R2 are horizontal fragments of R, and if
Sl, S2 are horizontal fragments of S, then the
query R[JIS is always replaced by the union of

four suti&eiios Ei[J]S), l<i, ji2. Aotually. IS
SOIO instances this might not be the cheapest
strategy. It is sometimes cheaper to first oon-
struot R or S (or both) using unions, and than
perform the join. We treat distribution of joins
as a tactic to be used only if it is beneficial.
In a multidatabases system, whore RI. R2 8ro sub-
types of R, and Sl, S2 are subtypes of S, distri-
buting joins over gonoraliztion ray not oven bo
possible. Hence, we first have to consider
whether the tactic is applicable before wo assess
its benefit.

Let Rl,R2 be subtypes of R, and lot Sl,S2 be
subtypes of s. Consider the join RtA op BIS.
When the subtypes of R are disjoint, the join can
be loft-distributed over the outerunion, thus:
Rl[Al op BIS (+) R2[A2 op BIS. This moans that
it is possible to join S separately with Rl and
82, and then merge the results. (Symmetric, for
right-distribution.)

However, when the subtypes overlap and the
join condition is on aggregated attributes, one
or the other (or both) typos of distributivity
may not hold. Given the results of Figaro 4.1,
it is not surprising that loft distributivity
holds when aggA is ohoosoany or chooseallA (sym-
metric for right distribu ivity). e For other
aggregate functions, we could analyze the combi-
nation of agg,. agg , and op, to find a modified
op for each join RlkAi op BjlSj, and to determine .B
the postprocessing required to produce the
correct result. To keep the query processing
strategies simple, however, we decided not to do
thin. Instead of distributing joins over gon-
eralization, we distribute only semijoins [BC811.

The somijoin R<A op B!S is the sot of R-
tuplos that will join with at least one S-tuplo.
and is equivalent to a union of selections

be; S”A op bR’
B

Thus, to determine if the somijoin can be loft-
distributed, we can use the tables in Figaro 4.1
(for each b).

Distribution is advantageous in two cases.
The first occurs when the subtypes of both R and
S are disjoint, sito(Ri) = sito(Si) for all i,
and the ‘cross-terms’ Ri[Ai op BjlSj = 0 for all
i # j. Now, the join of R and S reduces to the
completely local joins of Ri and Si (for all i),
followed by the outerunion of their results. The
second case occurs when the somijoin reduction
tactic is beneficial. We discuss this tactic
next.

Taotic 3: Somiioin Reduction --

The somijoin R<A op BIS is executed by
retrieving nBS at S’s site, shipping it to R’s
site, and then restricting R. This tactic was

349

agg case 1. = chooseany [Al,A21 or chooseall U.I,AZI: True dirtribotivity holds

opl = op2 = op

Care 2a. agg = maxMl,A21:
OP > P <

OPl . OP2 > 1 True

2b. Case agg = rinlAl,A21:
OP < = >

OPl, OP2 < I True

Case 3 - -* am = count[Al,A21, rum[Al,A21, or avvrrageMlJ21:

for any op, opl = 0p2 = True

Case 4 - -. am = choose1 Ml,A21:
for any op. opl = True

op2 = op

Note: op = True indicates no reduction is possible.
opl = op2 - op implies that portselection is unnecessary.

Figure 4.1 Distribution of Selection Over Generalization

proposed in [BCSll, and it is used by both SDD-1
and System Be. The utility of the semijoin as a
tactic for distributed query processing is based
on the following properties:

1. B<A op BIS 2 B

2. (RCA op BIS) [A op BIS = R[A op BIS

Proper.tp 1 says that the semijoin oan reduce
the size of R before R is shipped to the global
site for tinal processing. Property 2 says that
after the redaction, R retains all the tupler
that could possibly participate in the join.
Hence the remijoin reduction will be beneficial
if the total cost of retrieving and shipping the
joining field of S, and performing the semijoin
at R’s site, is offset by the reduction in the
size of R.

When R and S are the results of generaliza-
tion, the applicability of this taotic is lim-
ited. If the join is not distributable over the
generalization, both R and S have to be material-
ized before they are joined. Rowever, in RDLTI-
BASE, this materialization occurs at the global
site. But then, since R and S are already at the
result site, the remijoin reduction of R by S (or
vice versa) is useless. Hence, the remijoin tac-
tic should be considered only when Taatic 2 is
applicable.

Tactic 4: Semiouterioin Reduction

We have seen that the first three tactics
are seldom applicable when overlapping subtypes
are generalized. Thus, there is the need for a
tactic that can be widely used and that has the
potential to reduce query processing cost.

Consider a selection query uA o a R, where
R - wA (RI(~)IU). If we can ‘demarcate the
boundary’ between the ‘private’ and ‘overlap’
parts of Rl (resp. R21, then we can perform the
releotion over the private part of Rl (resp. R2);
only the overlap part will then have to be
retrieved for aggregation. The pverlan Dart of
Rl is the set of Rl-tuples that have matching
R2-tupler, i.e., the semijoin of Rl by R2 on the
merge condition g. Then the private Dart is
Rl - Rl<plIu. We call this the antiioin of Rl by
R2 on p. The remiouterioin of Rl by R2 on p is
an operation that partitions Rl into the semijoin
and the antijoin, i.e., Rl<P)S = iRl<plR2, Rl -

R.l<rlazl.

The utility of the semiouterjoin is based on
the following identity: agg (Rl(g)aZ) = (Rl-
Rl<plR2) (+) agg ((RlWR2) C&U).

6
(Similarly,

we can reduce 82 p Rl, or both Rl and R2 by each
other.) The selection u can now
formed against the privh5tgPp&t.

be per-
For the overlap

part, we must use the tables of Figure 4.1 to
datemine if a modified selection can be per-

350

formed before the generalization. For example,
consider the query
Deadweight is defined %e6$w%ttt ;vi5

Ship, where

we can-
aggregate.

reduce LSl .Ship, then perform the sslec-
tion Deadweight = 55 on the private part of
LSl.Ship. Figure 4.1 shows that no modified
selection is possible for the overlap part. which
must be retrieved in toto. Let these results be
Tll and T12. At the global site, T12 is general-
ized with the result of the query executed at
LS2, and postselection is performed on the result
of generalization. Finally, Tll is merged with
the result of postselection.

The semiouterjoin can be implemented in much
the same way as the semijoin, since the semijoin
and antijoin can be computed simnltansoasly.
Observe that by itself the semiouterjoin is use-
less. Its utility as a tactic is that it can
reduce the cost of a subsequent selection (or
join). Thus, a semiouterjoin Rl<g)R2 is benefi-
cial if the cost of performing it is offset by
the reduction in the size of Rl produced by a
selection (or semijoin) that can now be performed
locally on the private part of Rl.

For example, suppose the sizes of LSl . Ship
and LSP.Ship are IO0 units each, and the size of
the IWO projection of LSZ.Ship is 10 units.
Also, suppose that ??m of the LSl.Ship entities
are in its private Tart (and, hence, only 20% in
the overlap part), and that the selectivity of
the selection clause Deadwetght = 55 is 1oJb. Let
us assume that the cost of moving data is propor-
tional to the voLume of datu moved, and that
local processieE costs are negligible compared to
data movemer.: costs. (ws we,:cr these assumptions
here only .t’or simplicity. Our actual cost model
is quite genera!. !DLYX?.) Then, if the
semionterjoio reductior. tactic is not used, all
of LX .Ship will hnve to he moved to the global
site at a cost of 100 uqies. If the tactic is
used, n LS2 .Ship has to ‘>e moved from LS2’s
site t2dNESl’s site at a cost of 10 units; then,
the overlap part ol: LF.‘..ShLp (29 units) and the
private part 05 LS 1.Slip .rsstr?cted on the selec-
tion clause !O.lO x PO = 8 u.n!.ts) have to be
moved to the global site. Thus, the reduction
tactic has an immediate belefft of 100 - 38 = 62
units. Additional benefit can be obtained by
using the overlap par? OE !X . Ship to reduce
LS2 .Ship. IC we make similar assumptions about
sizes and selectivities, then the addLtiona1
benefit is give2 by: Cost of moving LS2 .Ship to
the global site - (Cost of moving the RullNo pro-
jection of LSl.Ship’s overlap part to LS2’s site
+ Cost of moving the overlap part of LSZ.Ship to
the global site 4 Cost of moving the restricted
private part of LSZ.Ship to the global site) =
100 - (2 + 20 + 0.10 x 80) = 70 units.

5. Conclusion

management system. The main reason that this
problem is more difficult than the distributed

wry optimization problems studied earlier
arises from the need to integrate existing data-
bases. Database integration is accomplished Pri-
marily through generalization; hence, i$ is
important to develop good techniques for Process-
ing queries over generalization hierarchies.

We defined the class of conjunctive general-
ization queries by extending the class of con-
junctive queries, which formed the basis of most
previous research on query optimization. We
adapted three commonly-used tactics for distri-
buted query processing, and argued that their
applicability to our problem is rather limited.
We introduced a fourth tactic, semiouterjoin
reduction, which can be more generally used. (For
a theoretical treatment of semiouterjoin reduc-
tion, see Mwang821.1

In [DLY821, we show how to construct global
execution plans using these tactics, how to esti-
mate. the costs of alternative plans, and how to
optimize !i.e., choose an inexpensive plan).
Briefly, for each generalized entity type, we
apply Tactic 1 whenever possible. Then we use
dynamic programming to enumerate join orders.
For each join in a join order, we consider using
Tactics 2, 3, and 4 if they are applicable and
immediately bcneflcial. In IDLY821, we also
enhance this technique to process a wider variety
of queries than the conjunctive generalization
queries considered here.

&kpoaledaement

The author wishes to thank Nat Goodman,
Terry Landers, Dan Ries, and Laura Yedwab for
their iova:uable comments. The tecbnioues
presented in this paper are being implemented in
a prototype of RDLTtEASE.

6. References

tPC81?
Bernsteir, P.A., and D.M. Chiu, ‘Using Semi-
joins to Solve Relational Queries,’ JACM,
Vol. 29, No. 1. Jannary lOPI, pp. 25-40.

[BG79!
Bernstein, P.A., and N. Goodman, ‘Inequality
Semi: o!.r.s. ’ Technicnl Report CCA-79-28, Com-
9ut er Corporation of America, Cambridge,
Yass., December 1979.

[BGWRRtU:
Fernstein, P.A., N. Goodman, E. Wang. C.
Reeve, and J.B. Rothnie. ‘Query Processing
in a System for Distributed Databases (SDD-
I),’ gJ :T_r_lll . p.. !&~~~_b_~tq Systems. Vol. 6,
No. 4. December 1982, pp. 602-625.

This paper studied the problem of global
query optimization in .MULTLRASE, a multidatabase

351

[CARG761
Chamber1 in, D.D. , B.R. Astrahsn, K.P.
Eswsrsn, P.P. Griffiths, B.A. Lorie, J.W.
Yehl, P. Reisner, snd B.W. Wsde, ‘SRQUEL 2:
A Uniform Approach to Data Definition, Mani-
pulation, and Control,’ IBM J Bes and Dev - -* -* - -’
Vol. 20, No. 6, November 1976, pp. 560-575.

1CDFR83 I
Chan, A., U. Dsysl, S.A. Pox, N. Goodman, D.
Ries, snd D. SkOOll, ‘Overview of an Ads-
Compatible Distributed Database Manager
(DDM),’ m. ACR-SIGROD Conference, Juno
1983.

[Codd’lOl
Codd, E.F., 'A Relational Model of Dsts for
Large Shared Data Banks,’ M, Vol. 13, NO.
6, Juno 1970, pp. 377-387.

[Codd72 I
Codd, E.F. , ‘Relational Completeness of
Database Sublsngaagos’ in Dstabsso Svstoms,
Coarsnt Computer Science SvmR. 6 (R. Rnstin,
cd.), Prentice-Hall, Englewood Cliffs, N.J.,
1972.

ICodd791
Codd, E.F., ‘Extending the Database Rels-
t ions1 Model to Capture More Msaning,’ fl
-. 9~ Database Svstoms, Vol. 4. No. 4. Trans
December 1979, pp. 397-434.

iDGIG 1
Dayal, 0.. N. Goodman, T.A. Landers, K.
Olson, J.M. Smith, and L. Yodwab, ‘Local
Query Optimization in -MULTIBASE -- A System
for Heterogeneous Distributed Databases, ’
Technical Report CCA-81-11, Computer Cor-
poration of America, Cambridge, Mass.. Sop-
tember 1981.

IDLY82 I
Dayal, Il., T.A. Landers, and L. Yedwab,
‘Global Query Optimization in RULTIBASE: A
System for Heterogeneous Distributed Data-
bases, ’ Technical Report 0X-82-05, Computer
Corporation of America, Cambridge, Mass.,
1982.

IDG82 1
Dsyal, U.,
tion for
ACM-SIGMOD
150.

[DGK~~ 1
Dayal, U.,

and N. Goodman, ‘Query Optimixa-
CODASYL Database Systems,’ h.
Conference, June 1982, pp. 138-

N. Goodman, and R. Katz. ‘An
Extended Relational Algebra with Control
over Duplicate Elimination.’ Proc. m Spar
posium 9~ Principles of DsGse Svstoms,
Watch 1982, pp. 117-123.

[DE82 1
Dayal, ‘0.. and BP. Hwang, ‘View Definition
and Generalization for Database Integration

in RULTIBASB: A System for Eetsrogoneous
Distributed Databases,’ m. Sixth BemIrelaY
Workshop 9~ Distributed Database RsnaSement
JJ& ComDoter Networks, Pobrusry 1982. pp.
203-238; to appear in IEEE
Software Rnrinooring. -

m. on

Wa21
Dsysl, U., and D. Ries, ‘Research on Query
Optimization at Computer Corporation of
America, ’ Database Enainoering. Vol. 5, No.
3, September 1982, pp. 33-37.

Em781
Epstein, R., M. Stonebraker. and E. Wang ,
‘Distributed Query Processing in a Rela-
tional Database System, ’ w. ACM-SIGMOD
Conference. May 1978.

[GD811
Gouds. M. , snd U. Dayal, ‘Optimal Somijoin
Schedules for Query Processing in Local Dis-
tributed Database Systems,’ m. ACR-SIGMOD
Conference, April 1981, pp. 164-175.

[BY791
Hovner, A.R., and S.B. Yao, ‘Query Process-
ing in Distributed Database Systems.’ m
Trans 9p Software Enaineering. Vol. SE-S. -*
No. 3. May 1979, pp. 171-187.

IHSW751
Beld, G.D., M.R. Stonebrakor, and E. Wang,
’ INGRES : A Relational Database System,’
Proc. AFIPS NCC 19_71. pp. 409-416.

Dlwang82 1
Bwang, H.Y., ‘Database Sntegration and Query
Optimization in Multi-database Systems, ’
Ph.D. Diss., Dept. of Computer Sciences.
University of Texas at Austin, Austin. Terms
(in preparation).

[KG81 1
Katz. R., and N. Goodman. ‘View Processing
in MULTIBASE -- A Heterogeneous Database
System,’ in Entity-Relatlonshio Aooroach G
Information Modeling and Analysis, (P.P.
Chon, od.), ER Institute, Seugus, Calif.,
1981.

tJS821
Jaeschke, G. and E.-J. Schek, ‘Remarks on
the Algebra of Non First Normal Form Rola-
tions,’ Proc. ACM Swnosium B Princivlos Ilf
Database Svstems, March 1982, pp. 124-138.

[La82 1
Landers, T.A., and R.L. Rosenberg, ‘An Over-
view of RULTIBASE. ’ in Distributed Data-
bases (H.J. Schneider, od.), North Eolland -B
Publishing Company, 1982, pp. 153-184.

[RBFGaO I
Rothnie, P.A.. P.A. Bernstein, S. Fox, N.
Goodman. M. Bsmmer, T. Landers, C. Reeve,

352

D.T. Shipman, and B. Tong, 'Introduction to
A System for Distributed Databases (SD&l),'
ACJf Trans. m Database Svstear Vol. 5. No.
1, Yarah 1980, pp. 1-17.

[SMOI
Selinger, P.G., and Y. Adiba, 'Access Path
Selection in Distributed Database Management
System, ' m. International Conferenoe z
Databases, University of Aberdeen, Aberdeen,
Scotland, July 1980.

[Ship811
Shipman, D.W., 'The Functional Data Model
snd the Data Language DAPLRK,' ACM Trans. 9~
Database Svrtems Vol. 6, No. 1, March 1981,
pp. 140-173.

[SBDGSll
Smith, J.M., P.A. Bernstein, U. Dayal, N.
Goodman, T.A. Landers, W.-T.K. Lin, and R.
wong. 'MIJLTIBASE -- Integrating Reterogrns-
ous Distributed Database Systems,' u.
AFIps National Comuatsr Conference, Vol. 50.
1981, pp. 487-499.

rss771
Smith, J.M., and D.C.P Smith, 'Data Bars
Abstractions: Aggregation and Generaliza-
tion,' Vol. ACM Trans. 9~ Database Svrtemr.
2. No. 2, June 1977, pp. 105-133.

tSton771
Stonebraker, M., 'A Distributed Database
Version of INGRES,' a. Berkeley Workshou,
Way 1977.

[WDBLSZI
Williams, R., D. Daniels, L. Baas, G. Lapis,
B. Lindsay, P. Ng, R. Obermarck, P. Sel-
inger, A. Walker, P. Wilms, R. Yost, 'R+: An
Overview of the Architecture, Proc. Second
Int'l. Conf. pp Databases -- Imoroving &
u and Resuonsiveness, Jerusalem,
Israel, June 1982.

ryo791
Yu, C.T., and M.Z. Oszoyoglu, 'An Algorithm
for Tree-Query Membership of a Distributed
Query,' m. IEEE CGRPSAC z, November
1979. pp. 306-312.

353

