
Processing Radio Access Network Functions in the Cloud:
Critical Issues and Modeling

Navid Nikaein
EURECOM

navid.nikaein@eurecom.fr

ABSTRACT

Commoditization and virtualization of wireless networks are

changing the economics of mobile networks to help network

providers (e.g., MNO, MVNO) move from proprietary and bespoke

hardware and software platforms toward an open, cost-effective,

and flexible cellular ecosystem. Cloud radio access network is a

novel architecture that perform the required base band and proto-

col processing on a centralized computing resources or a cloud in-

frastructure. This replaces traditional base stations with distributed

(passive) radio elements with much smaller footprints than the tra-

ditional base station and a remote pool of base band units allowing

for simpler network densification.

This paper investigates three critical issues for the cloudification

of the current LTE/LTE-A radio access network. Extensive exper-

imentations have been performed based on the OpenAirInterface

simulators to characterise the base band processing time under dif-

ferent conditions. Based on the results, an accurate model is pro-

posed to compute the total uplink and downlink processing load

as a function of bandwidth, modulation and coding scheme, and

virtualization platforms. The results also reveal the feasible virtu-

alization approach towards a cloud-native radio access network.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-

tecture and Design - Wireless Communication System.

Keywords

Cloud-RAN; LTE; BBU; Cloud Computing; Virtualization;

RANaaS; OpenAirInterface.

1. FROM ANALOG TO VIRTUAL RADIO
In the last few decades, radio access networks (RANs) have sig-

nificantly evolved from analog to digital signal processing units

and from dedicated hardware components to reusable and flexible

software-defined functions [1]. In a pure software-defined radio

(SDR) system, the entire radio function runs on a general-propose

processor (GPP) and only requires analog-to-digital and digital-

to-analog conversions, power amplifiers, and antennas, whereas in

typical cases, the system is based upon a programmable dedicated

hardware (e.g. ASIC, ASIP, or DSP) and associated control soft-

ware. Thus, the flexibility offered by a pure SDR improves ser-

vice life-cycle and cross-platform portability at the cost of lower

power and computational efficiency (i.e. ASIC: 1x, DSP: 10x,

GPP: 100x).

Virtual RAN extends this flexibility through abstraction (or virtu-

alization) of the execution environment. Consequently, radio func-

tions become a general-purpose application that operates on top of

a virtualized environment and interacts with physical resources ei-

ther directly or through a full or partial hardware emulation layer.

The resulted virtualized software radio application can be deliv-

ered as a service and managed through a cloud controller [2]. This

changes the economics of mobile networks towards a cheap and

easy to manage software platforms. Furthermore, cloud environ-

ment enables the creation of new services, such as RAN as a service

(RANaaS) [3, 4], and more generally, network as a service (NaaS),

such as LTEaaS, associated with the cloud RAN (C-RAN) [5–8].

C-RAN systems replace traditional base stations with distributed

(passive) radio elements connected to a centralized baseband pro-

cessing pool. Decoupling of the radio elements from the processing

serves two main purposes. Centralized processing has the benefit

of cost reduction due to fewer number of sites, easy software up-

grade, performance improvement with coordinated multi-cell sig-

nal processing. Also, the remote radio heads have a much smaller

footprint than a base station with on site processing, allowing for

simpler and cost-effective network densification.

This paper analyses three critical issues in virtualization of the

current LTE/LTE-A radio access network [9] and provides an accu-

rate model of the LTE baseband processing load. Extensive exper-

imentations have been performed based on the OpenAirInterface

unitary simulators to accurately characterize the maximum pro-

cessing time required to perform the LTE Rel.10 FDD baseband

unit (BBU) functions. In contrast to the existing studies [10, 11],

the impact of CPU architectures, individual BBU functions, SNR

regime, and execution environments are also investigated under a

realistic setting. Based on the results, an accurate model is pro-

posed to compute the total uplink and downlink processing load as

a function of number of physical resources blocks (PRB), modu-

lation and coding scheme (MCS), and virtualization environments

(VE). The results also reveal the feasible C-RAN architectures to

enable a cloud-native radio access network.

The remainder of this paper is organized as follows. Section 2

investigates three critical issues in LTE FDD C-RAN. The evalua-

tion setup and results are presented in Section 3. Section 4 provides

the proposed modelling approach to compute the BBU processing.

New directions and potential C-RAN architectures are elaborated

in Section 5 and 6. Finally, concluding remarks are given in Sec-

tion 7.

2. C-RAN CRITICAL ISSUES
While C-RAN comes with many attractive features and recent

efforts have partially shown its feasibility, three critical issues need

to be thoroughly investigated in order to assess the feasibility of

C-RAN and identify the main design choices.

1. Capacity requirement for fronthaul: Because a typical

BBU pool should support 10 - 1000 base stations, transport

of the I/Q samples from BBU to RRH requires a high fron-

thaul capacity. To meet the BBU timing requirements, fron-

thaul must provide an upperbound for the maximum one-way

latency. Furthermore, clock synchronization across BBUs

and RRH over the fronthaul also imposes a very low jitter.

2. Latency requirements for BBU: FDD LTE HARQ requires

a round trip time (RTT) of 8ms that imposes an upper-bound

for the sum of BBU processing time and the fronthaul trans-

port latency.

3. Real-time requirement for Operating System and vir-

tualization environment: Execution environment of BBU

pool must provide (statistical) guarantee for the BBU pool

successfully meeting their real-time deadlines related to the

frame/subframe timing. It should also provide dynamic re-

source provisioning/sharing and load balancing to deal with

the cell load variations.

In addition to above issues, C-RAN also brings many other chal-

lenges to BBU, RRH, and fronthaul [7]. Front-haul multiplexing

and topology, optimal mapping (clustering) between BBUs and

RRHs, efficient BBU interconnections, cooperative radio resource

management, energy optimization and harvesting techniques, and

channel estimation are just few examples.

The following subsections focus on the critical issues, and

present C-RAN feasible architectures.

2.1 Fronthaul Capacity
Many factors contribute to the data rate of the fronthaul, which

depends on the cell and fronthaul configurations. Equation 1 cal-

culates the required data rate based on such configurations.

Cfronthaul = 2 ·N ·M · F ·W · C
︸ ︷︷ ︸

cell configuration

·

O ·K
︸ ︷︷ ︸

fronthaul configuration

(1)

where N is the number of receiving/transmitting (Tx/Rx) an-

tenna ports, M is the number of sectors, F represents the sampling

rate, W is the bit width of an I/Q symbol, C number of carrier

components, O is the ratio of transport protocol and coding over-

heads, and K is the compression factor. The following table shows

the required data rate for a simple set of configurations. An overall

overhead is assumed to be 1.33, which takes into account the pro-

tocol overhead ratio of 16/15 and the line coding of 10/8 (CIPRI

case). It can be seen that the fronthaul capacity heavily depends

on the cell configuration and rapidly increases with the increase of

sampling rate, number of antennas/sectors and component carriers.

Table 1: Fronthaul capacity for different configurations

BW N M F W O C K Rate

1.4MHz 1x1 1 1.92 16 1.33 1 1 81Mb/s

5MHz 1x1 1 7.68 16 1.33 1 1 326Mb/s

5MHz 2x2 1 7.68 16 1.33 1 1 653Mb/s

10MHz 4x4 1 15.36 16 1.33 1 1/2 1.3Gb/s

20MHz 1x1 1 30.72 16 1.33 1 1 1.3Gb/s

20MHz 2x2 3 30.72 16 1.33 1 1 7.85Gb/s

20MHz 4x4 3 30.72 16 1.33 1 1 15.6Gb/s

Further data rate reduction can be obtained by offloading the

BBU functions to RRH. As shown in Figure 1, the function split

can be done by decoupling the L3/L2 from the L1 (labelled 4), or

part of the user processing from the L1 (labelled 3), or all user-

specific from the cell processing (labelled 2), or antenna-specific

from non-antenna processing (labelled 1), which is different for the

Rx and Tx chain.

The trade-off has to be made between the available fronthaul ca-

pacity, complexity, and the resulted spectral efficiency. Regard-

less of different possibilities in BBU function split, the fronthaul

should still maintain the latency requirement to meet the HARQ

deadlines. NGMN adopts fronthaul maximum one-way latency of

250µ [9]. Different protocols have been standardized for the fron-

thaul, namely CPRI (common public radio interface) representing

4/5 of the market, OBSAI (Open Base Station Architecture Initia-

tive) representing 1/5 of the market, and more recently the Open

Radio Interface (ORI) initiated by NGMN and now by ETSI ISG

(Industry Specification Group).

2.2 BBU Functions
Figure 1 illustrates the main RAN functions in both TX and RX

spanning all the layers, which has to be evaluated to characterise

the BBU processing time and assess the feasibility of a full GPP

RAN. Since the main processing bottleneck resides in the physi-

cal layer, the scope of the analysis in this paper is limited to the

BBU functions. From the figure, it can be observed that the over-

all processing is the sum of cell- and user-specific processing. The

former only depends on the channel bandwidth and thus imposes a

constant base processing load on the system, whereas the latter de-

pends on the MCS and resource blocks allocated to users as well as

SNR and channel conditions. The figure also shows the interfaces

where the functional split could happen to offload the processing

either to an accelerator or to a RRH.

To RF

To RRH

P/S
IFFT

CPin

Subcarrier

mapping

To RF

To RRH

S/P
CPout

FFT

Subcarrier

demapping

DL OFDMA (TX)

UL SC-FDMA (RX)

ModulationCoding
RRC/PDCP/

RLC/MAC

S1

termination

Demodulati

on
Decoding

RRC/PDCP/

RLC/MAC

S1

termination

User processing

Time-domainFrequency-domain

L1 (baseband)L2/L3

eICIC

CoMP

CIPRI

OBSAI

ORI

CIPRI

OBSAI

ORI

124 3

Figure 1: Functional block diagram of DL and UL for LTE eNB

To meet the timing and protocol requirements, the BBU process-

ing must finish before the deadlines. One of the most critical pro-

cessing that requires deadline is imposed by the Hybrid Automatic

Repeat Request protocol (HARQ) in that every received MAC

PDU has to be acknowledged (ACK’ed) or non-acknowledged

(NACK’ed) back to the transmitter within the deadline. In FDD

LTE, the HARQ Round Trip Time (RTT) is 8 ms. Each MAC PDU

sent at subframe N is acquired in subframe N + 1, and must be

processed in both RX and TX chains before subframe N + 3 al-

lowing ACK/NACK to be transmitted in subframe N + 4. On the

receiver side, the transmitted ACK or NACK will be acquired in

subframe N + 5, and must be processed before subframe N + 7,

allowing the transmitter to retransmit or clear the MAC PDU sent

in subframe N . Figure 2(a) and 2(b) show an example of tim-

ing deadlines required to process each subframe in downlink and

uplink respectively.

It can be observed that the total processing time is 3ms, out of

which 2ms is available for RX processing and 1ms for TX. Thus

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10

TX processing

for SF N

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10

eNB

UE

N-1

RX processing

for SF N

TX processing

for SF N+4

RX processing

for SF N+4

Transport +

Propagation

 delay

TX processing

for SF N+8

Downlink

N-1

Propagation +

acquisition +

transport delay

Acquisition

delay

offset
ACK/NACK

UE processing eNB processing

(a) DL HARQ timing

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10

TX processing

for SF N

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10

eNB

UE

N-1

RX processing

for SF N

TX processing

+ transport

delay for SF

N+4

RX processing

for SF N+4

TX processing

for SF N+8

Uplink

N-1

Propagation +

acquisition +

transport delay

ACK/NACK
offset

Propagation

 delay

Acquisition

delay

Propagation +

acquisition +

transport delay

eNB processing UE processing

(b) UL HARQ timing

Figure 2: FDD LTE timing

the available processing time for an eNB to perform the recep-

tion and transmission is upper-bounded by HARQ round trip time

(THARQ), propagation time (TProp.), acquisition time (TAcq.), and

fronthaul transport time(TTrans.) as follows:

Trx + Ttx ≤ THARQ/2− (TProp. + TAcq. + TTrans. + TOffset)
(2)

where THARQ = 8, TProp.+TAcq.+TTrans.+TOffset ≤ 1ms,

and Toffset = 0 in DL.

Depending on the implementation, the maximum tolerated trans-

port latency depends on the eNodeB processing time and HARQ

period. As mentioned earlier, NGMN adopted a 250 µs for the

maximum one-way fronthaul transport latency. Hence, the length

of a BBU-RRH link is limited within 20-40 km to avoid too high

round-trip-delays (given that the speed of light in fiber is approxi-

mately 200 m/µs). At maximum distance of 15 km, the remaining

overall processing time will be between 2.3–2.6 ms.

2.3 Real-time Operating System and Virtual-
ization Environment

A typical general purpose operating systems (GPOS) is not de-

signed to support real-time applications with hard deadline. Hard

real-time applications have strict timing requirements to meet dead-

lines or otherwise unexpected behaviours can occur compromis-

ing the performance. For instance Linux is not a hard real-time

operating system as the kernel can suspend a task when its run-

time has completed and it can remain suspended for an arbitrar-

ily long time. Kernel scheduling is the process in the OS that

decides which task to run and allocates certain processing time

to it. Such a scheduler is essential to guarantee the worst case

performance and also to provide a deterministic behaviour (with

short interrupt-response delay of 100 µs) for the real-time appli-

cations. Recently, a new scheduler, named SCHED_DEADLINE,

is introduced in the Linux kernel mainstream that allows each ap-

plication to set a triple (runtime[ns], deadline[ns], period[ns]),
where runtime ≤ deadline ≤ period.1 As a result, the sched-

1
http://en.wikipedia.org/wiki/SCHED_DEADLINE

uler preempts the kernel to meet the deadline and allocates the re-

quired runtime (i.e. CPU time) to each period.

Software-based Radio, is a real-time application that requires a

hard deadlines to maintain the frame and subframe timing. In the

C-RAN setting, the software radio application runs on a virtualized

environment, where the hardware is either fully, partially, or not vir-

tualized. Two main approaches exist to virtualization: virtual ma-

chines (e.g KVM2 and Xen3) or containers (e.g. Linux Container

LXC4 and Docker5) as shown in Figure 3. In a virtual machine

(VM), a complete operating system (guest OS) is used with the as-

sociated overhead due to emulating virtual hardware whereas con-

tainers use and share the OS and device drivers of the host. While

VMs rely on the hypervisor to requests for CPU, memory, hard

disk, network and other hardware resources, containers exploits the

OS-level capabilities. Similar to VMs, containers preserve the ad-

vantage of virtualization in terms of flexibility (containerize a sys-

tem or an application), resource provisioning, decoupling, manage-

ment and scaling. Thus, containers are lightweights as they do not

emulate a hardware layer (share the same kernel and thus applica-

tion is native with respect to the host) and therefore have a smaller

footprint than VMs, start up much faster, and offer near bar metal

runtime performance. This comes at the expense of less isolation

and greater dependency to the host’s kernel.

Hardware

Hypervisor (Type 1)

Applications

Virtual MachineContainer

Kernel

Host OS

GLIBC / FS / Libs / Bins
Virtual Hardware

Kernel

Guest OS

GLIBC / FS / Libs / Bins

Applications

Virtual Hardware

Kernel

Guest OS

GLIBC / FS / Libs / Bins

Applications

Hardware

Kernel

Host OS

GLIBC / FS / Libs / Bins

Container Engine (lxc, libvirt)

GLIBC / FS / Libs / Bins

Applications

Type 1 Type 2Type 1 Type 2

Figure 3: Comparison of a virtual machine and container vir-

tualized environment.

Two other important aspects when targeting RAN virtualization

are:

• I/O Virtualization: I/O access is a key for a fast access to

the fronthaul interface and to the hardware accelerators that

might be shared among BBUs. In hypervisor approach to

virtualization (i.e. VM), IO virtualization is done through

the hardware emulation layer under the control of hypervi-

sor, where as in container this is done through the device

mapping. Thus, direct access to the hardware is easier in

containers than in VMs as they operate at the host OS level.

In VM, additional techniques might be needed (e.g. para-

virtualization or CPU-assisted virtualization) to provide a di-

rect or fast access to the hardware. When it comes to sharing

I/O resources among multiple physical/virtual servers, and in

particular that of radio front-end hardware, new techniques

such as multi root I/O virtualization (MR-IOV) are required.

• Service composition of the software radio application: A

VBS can be defined as a composition of three types of ser-

2
http://www.linux-kvm.org

3
http://www.xenserver.org/

4
http://linuxcontainers.org

5
http://www.docker.com

http://en.wikipedia.org/wiki/SCHED_DEADLINE
http://www.linux-kvm.org
http://www.xenserver.org/
http://linuxcontainers.org
http://www.docker.com

vice [3], atomic service that executes a single business or

technical function and is not subject to further decomposi-

tion, composed service that aggregates and combines atomic

services together with orchestration logic, and support ser-

vice that provides specific (often common) functionalities

available to all types of service. An atomic service in RAN

can be defined on per carrier, per layer, per function basis.

For instance, a VBS could be defined as a composition of

layer 1 and layer2/3 services supported by a monitoring as a

service.

3. EVALUATION
Four set of different experiments are performed. The first ex-

periment analyses the impact of different x86 CPU architecture

on BBU processing time, namely Intel Xeon E5-2690 v2 3Ghz

(same architecture as IvyBridge), Intel SandyBridge i7-3930K at

3.20Ghz, and Intel Haswell i7-4770 3.40GHz. The second exper-

iment shows how the BBU processing time scale with the CPU

frequency. The third experiment benchmarks the BBU process-

ing time in different virtualization environments including LXC,

Docker, and KVM against a physical machine (GPP). The last ex-

periment measures the I/O performance of virtual Ethernet inter-

face through the guest-to-host round-trip time (RTT).

All the experiments are performed using the OpenAirInterface

DLSCH and ULSCH simulators designed to perform all the base-

band functionalities of an eNB for downlink and uplink as in a real

system.All the machines (hosts or guests) operate on Ubuntu 14.04

with the low latency (LL) Linux kernel version 3.17, x86-64 archi-

tecture and GCC 4.7.3. To have a fair comparison, only one core

is used across all the experiments with the CPU frequency scaling

deactivated except for the second experiment.

The benchmarking results are obtained as a function of allocated

physical resource blocks (PRBs), modulation and coding scheme

(MCS), and the minimum SNR for the allocated MCS for 75% re-

liability across 4 rounds of HARQ. Note that the processing time

of the turbo decoder depends on the number of iterations, which

is channel-dependant. The choice of minimum SNR for a MCS

represents the realistic behavior, and may increase number of turbo

iterations and consequently causing high processing variation. Ad-

ditionally, the experiments are performed at full data rate (from

0.6Mbps for MCS 0 to 64Mbps for MCS 28 in both directions) us-

ing a single user with no mobility, SISO mode with AWGN chan-

nel, and 8-bit log-likelihood ratios turbo decoder. Note that if mul-

tiple users are scheduled within the same subframe in downlink

or uplink, the total processing depends on the allocated PRB and

MCS, which is lower than a single user case with all PRBs and

highest MCS. Thus, the single user case represents the worst case

scenario.

The processing time of each signal processing module is calcu-

lated using timestamps at the beginning and at the end of each BBU

function. OAI uses the rdtsc instruction implemented on all x86

and x64 processors to get a very precise timestamps, which counts

the number of CPU clocks since reset. Therefore the processing

time is measured as number a number of clocks when a function

starts and ends divided by the CPU frequency.6

To allow a rigorous analysis, total and per function BBU pro-

cessing time are measured.For statistical analysis, a large number

of processing_time samples (10000) are collected for each BBU

function to calculate the average, median, first quantile, third quan-

6c.f. https://svn.eurecom.fr/openair4G/trunk/openair1/PHY/

TOOLS/time_meas.h

tile, minimum and maximum processing time for all the subframes

in uplink and downlink.

3.1 CPU Architecture Analysis
Figure 4 depicts the BBU processing budget in both directions

for the considered Intel x86 CPU architecture. It can be observed

that the processing load increases with the increase of PRB and

MCS for all CPU architectures, and that it is mainly dominated

by the uplink. Furthermore, the ratio and variation of downlink

processing load to that of uplink also increases with the increase

of PRB and MCS. Higher performance (lower processing time)

is achieved by the Haswell architecture followed by SandyBridge

and Xeon. This is primarily due to the respective clock frequency

(c.f. Section 3.2, but also due to a better vector processing and

faster single threaded performance of Haswell architecture.7 For

the Haswell architecture, the performance can be further increased

by approximately a factor of two if AVX2 (256-bit SIMD com-

pared to 128-bit SIMD) instructions are used to optimize the turbo

decoding and FFT processing.

0 4 910 13 1617 22 27
0

500

1000

1500

2000

MCS Index

T
im

in
g

(u
s
)

OAI BBU DL Processing vs MCS (SISO)

DL: PRB 25 Xeon-IvyBridge

DL: PRB 25 SandyBridge

DL: PRB 25 Haswell

DL: PRB 50 Xeon-IvyBridge

DL: PRB 50 SandyBridge

DL: PRB 50 Haswell

DL: PRB 100 Xeon-IvyBridge

DL: PRB 100 SandyBridge

DL: PRB 100 Haswell

0 4 910 13 1617 22 27
0

500

1000

1500

2000

MCS

T
im

in
g

(u
s
)

OAI BBU UL Processing vs MCS (SISO)

UL: PRB 25 Xeon-IvyBridge

UL: PRB 25 SandyBridge

UL: PRB 25 Haswell

UL: PRB 50 Xeon-IvyBridge

UL: PRB 50 SandyBridge

UL: PRB 50 Haswell

UL: PRB 100 Xeon-IvyBridge

UL: PRB 100 SandyBridge

UL: PRB 100 Haswell

Figure 4: BBU processing budget in downlink (left) and up-

link(right) for different CPU architecture.

3.2 CPU Frequency Analysis
Figure 5 illustrates the total BBU processing time as a function

of different CPU frequencies (1.5, 1.9,2.3,2.7,3.0, and 3.4 GHz)

on the Haswell architecture. The most time consuming scenario is

considered with 100 PRBs and downlink and uplink MCS of 27.

In order to perform experiments with different CPU frequencies,

Linux ACPI interface and cpufreq tool are used to limit the CPU

clock.It can be observed that the BBU processing time scales down

with the increasing CPU frequency. The figure also reflects that the

minimum required frequency for 1 CPU core to meet the HARQ

deadline is 2.7GHz.

1.5 1.9 2.3 2.7 3 3.4 4 4.4 4.8
0

1000

2000

3000

4000

5000

6000

CPU Frequency (GHz)

P
ro

c
e

s
s
in

g
 t
im

e
 (

u
s
)

Total RX/Tx processing vs. CPU frequency

GPP-LL Total Tx/Rx processing(DL MCS 27, UL MCS 27)
GPP-LL DL MCS 27

GPP-LL UL MCS 27
fitted curve

Region of Interest

Figure 5: Total processing time as a function of CPU frequency.

Based on the above figure, the total processing time per sub-

frame, Tsubframe, can be modelled as a function of CPU fre-

quency [11]:

7
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)

https://svn.eurecom.fr/openair4G/trunk/openair1/PHY/TOOLS/time_meas.h
https://svn.eurecom.fr/openair4G/trunk/openair1/PHY/TOOLS/time_meas.h
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)

Tsubframe(x) [us] = α/x

, where α = 7810 ± 15 for the MCS of 27 in both directions, and

x is CPU frequency measured in GHz.

3.3 Virtualization Technique Analysis
Figure 6 compares the BBU processing budget of a GPP plat-

form with different virtualized environments, namely Linux Con-

tainers (LXC), Docker, and KVM, on the SandyBridge architec-

ture(3.2GHz). While on average the processing time are very close

for all the considered virtualization environments, it can be ob-

served that GPP and LXC have slightly lower processing time vari-

ations than that of DOCKER and KVM, especially when PRB and

MCS increase.

0 4 910 13 1617 22 27
0

500

1000

1500

2000

MCS Index

T
im

in
g

(u
s
)

OAI BBU DL processing vs MCS (SISO)

DL: PRB 25 GPP-LL

DL: PRB 25 LXC-LL

DL: PRB 25 DOCKER-LL

DL: PRB 25 KVM-LL

DL: PRB 50 GPP-LL

DL: PRB 50 LXC-LL

DL: PRB 50 DOCKER-LL

DL: PRB 50 KVM-LL

DL: PRB 100 GPP-LL

DL: PRB 100 LXC-LL

DL: PRB 100 DOCKER-LL

DL: PRB 100 KVM-LL

0 4 910 13 1617 22 27
0

500

1000

1500

2000

MCS

T
im

in
g

(u
s
)

OAI BBU UL processing vs MCS (SISO)

UL: PRB 25 GPP-LL

UL: PRB 25 LXC-LL

UL: PRB 25 DOCKER-LL

UL: PRB 25 KVM-LL

UL: PRB 50 GPP-LL

UL: PRB 50 LXC-LL

UL: PRB 50 DOCKER-LL

UL: PRB 50 KVM-LL

UL: PRB 100 GPP-LL

UL: PRB 100 LXC-LL

UL: PRB 100 DOCKER-LL

UL: PRB 100 KVM-LL

Figure 6: BBU processing budget in downlink (left) and up-

link(right) for different virtualized environments.

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Processing time(us)

C
o

m
p

le
m

e
n

ta
ry

 C
D

F

CCDF for Downlink PRB100 MCS 27 SISO AWGN

Guest GPP-LL

Guest LXC-LL

Guest DOCKER-LL

Guest KVM-LL

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Processing time(us)

C
o

m
p

le
m

e
n

ta
ry

 C
D

F

CCDF for Uplink PRB100 MCS 16 SISO AWGN

Guest GPP-LL

Guest LXC-LL

Guest DOCKER-LL

Guest KVM-LL

Figure 7: BBU processing time distribution for downlink MCS

27 and uplink MCS 16 with 100 PRB.

Figure 7 depicts the Complementary Cumulative Distribution

Function (CCDF) of the overall processing time for downlink MCS

27 and uplink MCS 16 with 100 PRB. The CCDF plot for a given

processing time value displays the fraction of subframes with exe-

cution times grater than that value. It can be seen that the execution

time is stable for all the platforms in uplink and downlink. The

processing time for the KVM (hypervisor-based) has a longer tail

and mostly skewed to longer runs due to higher variations in the

non-native execution environments (caused by the host and guest

OS scheduler). Higher processing variability is observed on a pub-

lic cloud with unpredictable behaviors, suggesting that cares have

to be taken when targeting a shared cloud infrastructure [11].

3.4 I/O Performance Analysis
Generally, the one-way-delay of fronthaul depends on the phys-

ical medium, technology, and the deployment scenario. How-

ever in the cloud environment, the guest-to-host interface delay

(usually Ethernet) has to be also considered to minimize the ac-

cess to the RRH interface. To assess such a delay, bidirectional

traffics are generated for different set of packet sizes (64, 768,

2048,4096,8092) and inter-departure time (1, 0.8, 0.4, 0.2) between

the host and LXC, Docker, and KVM guests. It can be seen from

Figure 8 that LXC and Docker are extremely efficient with 4-5

times lower round trip time. KVM has a high variations, and re-

quires optimization to lower the interrupt response delay as well as

host OS scheduling delay. The results validate the benefit of con-

tainerization for high performance networking.

64 768 2048 4096 8192
0

0.1

0.2

0.3

0.4

0.5

Packet Size

R
T

T
(m

s
)

Guest LXC to Host communication delay

IDT 1.0(s)

IDT 0.8(s)

IDT 0.4(s)

IDT 0.2(s)

64 768 2048 4096 8192
0

0.1

0.2

0.3

0.4

0.5

Packet Size

R
T

T
(m

s
)

Guest DOCKER to Host communication delay

IDT 1.0(s)

IDT 0.8(s)

IDT 0.4(s)

IDT 0.2(s)

64 768 2048 4096 8192
0

0.1

0.2

0.3

0.4

0.5

Packet Size

R
T

T
(m

s
)

Guest KVM to Host communication delay

IDT 1.0(s)

IDT 0.8(s)

IDT 0.4(s)

IDT 0.2(s)

Figure 8: Round trip time between the host and LXC, Docker,

and KVM guests.

4. MODELLING BBU PROCESSING TIME
The evaluation results in Section 3 confirm that uplink process-

ing dominates the downlink, and that the total processing increases

with PRB and MCS. However, the contribution of each underly-

ing BBU functions to the total processing time and how they scale

with the increase of PRB and MCS remains to be analysed so that

an accurate model could be build. To this end, three main BBU

functions that contribute the most to the total processing are con-

sidered including iFFT/FFT, (de)modulation, and (de)coding. For

each function, the required processing time is measured on the Intel

SandyBridge architecture with CPU frequency of 3.2GHz for dif-

ferent PRB, MCS, and virtualization environment (c.f. Figure 9).

The figures reveals that iFFT and FFT increase only with the

PRB, while (de)modulation are (de)coding are increasing as a func-

tion of PRB and MCS. Each platform also adds a processing offset

to each function. It can be seen that decoding and coding func-

tions represent the most time consuming functions in uplink and

downlink, and that the decoding is the dominant factor. Note that

MCS 9, 16, and 27 corresponds to QPSK, 16QAM, and 64QAM

with the highest coding rate. In OAI, decoding and encoding are

based on the highly optimized SIMD integer DSP instructions (i.e.

64-bit MMX, 128-bit SSE2/3/4) used to speed up the processing.

In a hypervisor-based virtualization, such instructions could add an

extra delay if not supported by the hardware emulation layer (c.f.

Figure 3).

From Figure 9, it can be observed that the uplink and down-

link processing has two components: base processing and dynamic

processing load. The base includes cell-processing (iFFT/FFT) for

each PRB and the platform-specific processing relative to the ref-

erence GPP platform. The dynamic processing load includes user

processing, i.e. (de)modulation and (de)coding, which is a linear

function of allocated PRBs and MCS.8 The reminder of user pro-

cessing, namely scrambling, DCI coding, and PDCCH coding, is

modelled as the root mean square error (RMSE) for each platform.

Figure 10(a) shows the fitted curve for the total processing time for

GPP and Figure 10(b) the RMSE for all platforms.

Based on the above results, a model is proposed to compute the

total BBU uplink and downlink processing time for different PRB,

MCS, and platform, and expressed by the following formula.

Tsubframe(x, y, w)[us] = c[x] + p[w]
︸ ︷︷ ︸

base processing

+ ur[x]
︸ ︷︷ ︸

RMSE

+ us(x, y)
︸ ︷︷ ︸

dynamic processing

where the triple (x, y, w) represents PRB, MCS, and platform.

The c[x] and p[w] are the base offsets for the cell and platform

8Note that the dynamic processing load also depends on the SNR and the channel

quality.

0 4 910 13 1617 22 27
0

100

200

300

400

500

MCS Index

T
im

in
g

(u
s
)

PRB 25 DL BBU functions vs MCS

GPP-LL DL: PRB 25 IFFT

GPP-LL DL: PRB 25 Mod

GPP-LL DL: PRB 25 Enc

LXC-LL DL: PRB 25 IFFT

LXC-LL DL: PRB 25 Mod

LXC-LL DL: PRB 25 Enc

DOCKER-LL DL: PRB 25 IFFT

DOCKER-LL DL: PRB 25 Mod

DOCKER-LL DL: PRB 25 Enc

KVM-LL DL: PRB 25 IFFT

KVM-LL DL: PRB 25 Mod

KVM-LL DL: PRB 25 Enc

0 4 910 13 1617 22 27
0

100

200

300

400

500

MCS Index

T
im

in
g

(u
s
)

PRB 50 DL BBU functions vs MCS

GPP-LL DL: PRB 50 IFFT

GPP-LL DL: PRB 50 Mod

GPP-LL DL: PRB 50 Enc

LXC-LL DL: PRB 50 IFFT

LXC-LL DL: PRB 50 Mod

LXC-LL DL: PRB 50 Enc

DOCKER-LL DL: PRB 50 IFFT

DOCKER-LL DL: PRB 50 Mod

DOCKER-LL DL: PRB 50 Enc

KVM-LL DL: PRB 50 IFFT

KVM-LL DL: PRB 50 Mod

KVM-LL DL: PRB 50 Enc

0 4 910 13 1617 22 27
0

100

200

300

400

500

MCS Index

T
im

in
g

(u
s
)

PRB 100 DL BBU functions vs MCS

GPP-LL DL: PRB 100 IFFT

GPP-LL DL: PRB 100 Mod

GPP-LL DL: PRB 100 Enc

LXC-LL DL: PRB 100 IFFT

LXC-LL DL: PRB 100 Mod

LXC-LL DL: PRB 100 Enc

DOCKER-LL DL: PRB 100 IFFT

DOCKER-LL DL: PRB 100 Mod

DOCKER-LL DL: PRB 100 Enc

KVM-LL DL: PRB 100 IFFT

KVM-LL DL: PRB 100 Mod

KVM-LL DL: PRB 100 Enc

0 4 910 13 1617 22 27
0

500

1000

1500

MCS

T
im

in
g

(u
s
)

PRB 25 UL BBU functions vs MCS

GPP-LL UL: PRB 25 FFT

GPP-LL UL: PRB 25 Demod

GPP-LL UL: PRB 25 Dec

LXC-LL UL: PRB 25 FFT

LXC-LL UL: PRB 25 Demod

LXC-LL UL: PRB 25 Dec

DOCKER-LL UL: PRB 25 FFT

DOCKER-LL UL: PRB 25 Demod

DOCKER-LL UL: PRB 25 Dec

KVM-LL UL: PRB 25 FFT

KVM-LL UL: PRB 25 Demod

KVM-LL UL: PRB 25 Dec

0 4 910 13 1617 22 27
0

500

1000

1500

MCS

T
im

in
g

(u
s
)

PRB 50 UL BBU functions vs MCS

GPP-LL UL: PRB 50 FFT

GPP-LL UL: PRB 50 Demod

GPP-LL UL: PRB 50 Dec

LXC-LL UL: PRB 50 FFT

LXC-LL UL: PRB 50 Demod

LXC-LL UL: PRB 50 Dec

DOCKER-LL UL: PRB 50 FFT

DOCKER-LL UL: PRB 50 Demod

DOCKER-LL UL: PRB 50 Dec

KVM-LL UL: PRB 50 FFT

KVM-LL UL: PRB 50 Demod

KVM-LL UL: PRB 50 Dec

0 4 910 13 1617 22 27
0

500

1000

1500

MCS

T
im

in
g

(u
s
)

PRB 100 UL BBU functions vs MCS

GPP-LL UL: PRB 100 FFT

GPP-LL UL: PRB 100 Demod

GPP-LL UL: PRB 100 Dec

LXC-LL UL: PRB 100 FFT

LXC-LL UL: PRB 100 Demod

LXC-LL UL: PRB 100 Dec

DOCKER-LL UL: PRB 100 FFT

DOCKER-LL UL: PRB 100 Demod

DOCKER-LL UL: PRB 100 Dec

KVM-LL UL: PRB 100 FFT

KVM-LL UL: PRB 100 Demod

KVM-LL UL: PRB 100 Dec

Figure 9: Contribution of (i)FFT, (de)modulation, and (de)coding to the total BBU processing for different PRB, MCS, and platforms.

0 4 910 13 1617 22 27
0

500

1000

1500

2000

MCS

T
im

in
g

(u
s
)

OAI downlink processing model

GPP-LL Total DL Tx: PRB 25

GPP-LL Modeled DL Tx: PRB 25 RMSE 41.7 us

GPP-LL Total DL Tx: PRB 50

GPP-LL Modeled DL Tx: PRB 50 RMSE 79.2 us

GPP-LL Total DL Tx: PRB 100

GPP-LL Modeled DL Tx: PRB 100 RMSE 145.7 us

0 4 910 13 1617 22 27
0

500

1000

1500

2000

MCS

T
im

in
g

(u
s
)

OAI uplink processing model

GPP-LL Total UL Rx: PRB 25

GPP-LL Modeled UL Rx: PRB 25 RMSE 18.0 us

GPP-LL Total UL Rx: PRB 50

GPP-LL Modeled UL Rx: PRB 50 RMSE 39.7 us

GPP-LL Total UL Rx: PRB 100

GPP-LL Modeled UL Rx: PRB 100 RMSE 77.1 us

(a) Fitted curves for GPP-LL platform

GPP-LL
LXC-LL

DOCKER-LL
KVM-LL

25
50

100

0

50

100

150

200

145.6949133.6943

PRB

79.1506

140.5205

80.0144

41.6588

Downlink RMSE vs. PRB vs. Platform

153.0617

89.3001

57.6543

79.6863

55.6276

Platform

59.3985R
M

S
E

 (
µs

)

GPP-LL
LXC-LL

DOCKER-LL
KVM-LL

25
50

100

0

50

100

150

200

77.1315
73.2241

PRB

39.6545

93.8267

55.6216

18.0139

Uplink RMSE vs. PRB vs. Platform

80.0514

59.7996

25.6457

42.9904

30.6591

Platform

32.0933

R
M

S
E

 (
µs

)

(b) RMSE for all platforms

Figure 10: Modeling BBU processing time.

processing, ur[x] is the reminder of user processing, and us(x, y)
is the specific user processing that depends on the allocated PRB

and MCS. The us(x, y) is linearly fitted to a(x)y + b(x), where

a, b are the coefficients, and y is the MCS. Table 2 and 3 provide

the downlink and uplink model parameters of the equation 3 for

an Intel-based SandyBridge architecture with the CPU frequency

set to 3.2GHz. Note that the values have to be adjusted when tar-

geting different BBU configuration (e.g. MIMO, Carrier aggre-

gation), CPU architecture and frequency (c.f. Figure 4 and 5).

For the considered setup, the accuracy of the model can be shown

through an example. Let PRB to be 100, DL MCS 27, UL MCS 16,

and platform LXC, the estimated total processing time is 723.5us

(111.4+ 7.4+ 12*27+ 147+ 133.7) against 755.9us in downlink, and

1062.4us (108.8+ 13.2+ 41.9*16+ 196.8+ 73.2) against 984.9us in

uplink.

Table 2: Downlink processing model parameters in us
x c p us(x, y) uc

GPP LCX DOCKER KVM a b GPP LCX DOCKER KVM

25 23.81 0 5.2 2.6 3.5 4.9 24.4 41.6 57.6 55.6 59.4
50 41.98 0 5.7 9.7 13 6.3 70 79.2 80 89.3 79.7
100 111.4 0 7.4 13 21.6 12 147 145.7 133.7 140.5 153

Table 3: Uplink processing model parameters in us
x c p us(x, y) uc

GPP LCX DOCKER KVM a b GPP LCX DOCKER KVM

25 20.3 0 5.4 4.8 8.8 11.9 39.6 18 25.6 30.6 32
50 40.1 0 6 9.2 15.8 23.5 75.7 39.6 55.6 59.8 42.9
100 108.8 0 13.2 31.6 26.6 41.9 196.8 77.1 73.2 93.8 80

5. DISCUSSIONS
This paper is an attempt to analyze three critical issues in

processing radio access network functions in the cloud through

modelling and measurements. The results reveal new directions to

enable a cloud-native radio access network that are outlined below.

New functional split between BBU and RRH: To reduce the

fornthaul data rate requirements, optimal functional split is re-

quired between BBU and RRH. In TX chain, full PHY layer can

be moved from BBU to RRH (c.f. label 4 in Figure 1) in order to

minimize the fronthaul capacity requirements as the operation of

PHY layer remain deterministic as long as the L2/MAC layer pro-

vides transport blocks for all channels with the required pre-coding

information. When it comes to RX chain, moving cell processing

to RRH seems promising as it halves the fronthaul capacity require-

ments. Additional fronthaul capacity reduction can be obtained if

part of user processing can be dynamically assigned to RRH (c.f.

label 3 in Figure 1) depending on the number of UEs scheduled per

resource elements and per RRH.

Number of CPU cores per BBU: In LTE-FDD, the total RX

(UL) + TX (DL) processing should take less than 3 ms to comply

with HARQ RTT, leaving 2 ms for RX and 1 ms for TX. Becasue

TX requires the output of RX to proceed, the number of concurrent

threads/cores per eNB subframe is limited to 3 even if each sub-

frame is processed in parallel. By analyzing processing time for a

1ms LTE sub-frame, 2 cores at 3 GHz are needed to handle the to-

tal BBU processing of an eNB. One processor core for the receiver,

assuming 16-QAM on the uplink, and approximately 1 core for the

transmitter processing with 64-QAM on the downlink, are required

to meet the HARQ deadlines for a fully loaded system. Process-

ing load is mainly dominated by uplink and increases with growing

PRBs and MCSs [10, 11]. Furthermore, the ratio and variation of

downlink processing load to that of uplink also grows with the in-

crease of PRB and MCS. With the AVX2/AVX3 optimizations, the

computational efficiency is expected to double and thus a full soft-

ware solution would fit with an average of 1 x86 core per eNB.

Additional processing gain is achievable if certain time consuming

functions are offloaed to a dedicated hardware accelerator.

Virtualization environment for BBU: When comparing results

for different virtualization environments, the average processing

times are very close making both container and hypervisor ap-

proach to RAN virtualization a feasible approach. However, the

bare metal and LXC virtualization execution environments have

slightly lower variations than that of DOCKER and KVM, espe-

cially with the increase of PRB and MCS increase. In addition, the

I/O performance of container approach to virtualization proved to

be very efficient. This suggests that fast packet processing (e.g.

through DPDK) is required in hypervisor approach to minimize

the packet switching time, especially for the fronthaul transport

network. Due to the fact that containers are built upon modern

kernel features such as cgroups,namespace,chroot, they

share the host kernel and can benefit from the host scheduler, which

is a key to meet real-time deadlines. This makes containers a cost-

effective solution without compromising the performance.

6. POTENTIAL ARCHITECTURES
While the concept of C-RAN has been clearly defined, more re-

search is needed to find an optimal architecture that maximizes the

benefits behind C-RAN [7], and based on which a true proof-of-

concept could be built [6].From the perspective of the operator such

an architecture has to meet the scalability, reliability/resiliency,

cost-effective requirements. However, from the perspective of the

software radio application, two main requirements have to be met:

(1) strict hard deadline to maintain the frame and subframe tim-

ing, and (2) efficient/elastic computational resources (e.g. CPU,

memory) to perform intensive digital signal processing required for

different transmission modes (beamforming, CoMP, and Massive

MIMO).

Broadly, three main choices are possible to design a C-RAN,

each of which provide a different cost, power, performance, and

flexibility trade-offs.

• Full GPP: where all the processing (L1/L2/L3) is performed

on the host/guest systems. According to China Mobile, the

power consumption of the OpenAirInterface full GPP LTE

softmodem is around 70w per carrier [6].

• Accelerated: where only certain functions, such as

FFT/IFFT, are offloaded to a dedicated hardware such as an

FPGA, GPU, and/or DSP, and the remaining functions oper-

ate on the host/guest OS. In this case, the power consumption

can be reduced to around 13 18w per carrier.

• System-on-Chip: where the entire L1 is performed on a SoC

and the reminder of the protocol stack runs on the host/guest

OS. This can reduce the power consumption to around 8w

per carrier.

As shown in Figure 11, the hardware platform can either be a full

GPP or a hybrid. In the later case, all or part of the L1 functions

might be offloaded to dedicated accelerators, which can be placed

locally at the cloud infrastructure to meet the real-time deadline

and provide a better power-performance trade-off or remotely at

RRH to also reduce the data rate of fronthaul. It can be seen that

a pool of base station (BS) is virtualized inside the same (or differ-

ent) cloud infrastructure and shared among the cell sites. VBS can

communicate with core networks (CN) through a dedicated inter-

face (e.g. S1 in LTE), and with each other directly through another

RRH

X86-based Cloud Infrastructure

(Virtual and Physical Resources)

(RT-)Hypervisor (Type 1)

Container Hypervisor

(RT-)Hypervisor (Type 2)

RTOS (Host)

RF InterfaceRF InterfaceRF Interface

RF InterfaceRF InterfaceSwitch &

Fronthaul I/F

RTOS (Host)

RF InterfaceRF InterfaceSwitch &

Fronthaul I/F

Virtual BS

APII/F

Guest RTOS

Virtual Hardware

Virtual BS

APII/F

Guest RTOS

Virtual Hardware
Virtual PHY

APII/F

AcceleratorAcceleratorL1* (cell-processing)

Virtulized Environments

Resource

Provisioning

Controller

APII/F

Orchestrator

Access Control

Virtual Switching/

Routing

Physical/Virtualized Env.

RF InterfaceRF InterfaceRF Interface

BS Application

Carrier 1
BS Application

Carrier 2

BS Application

Carrier 3
Service Manager

Fiber, microwave, cable

AcceleratorAcceleratorL1* (cell-processing)

L1*(user-processing)

L1*/L2/L3

L1/L2/L3Virtual L2

APII/F

L2/L3

Figure 11: Potential C-RAN architectures.

interface (e.g. X2 in LTE). In addition, VBS can rely on the same

cloud infrastructure to provide localized edge service such as con-

tent caching and positioning, and network APIs to interact with the

access and core networks [15]. Different service compositions can

be considered, ranging from all-in-one software radio application

virtualization to per carrier, per layer or per function virtualization.

The virtualization is performed either by a container engine or a

hypervisor, under the control of a cloud OS, which is in charge of

life-cycle management of a composite software radio application

(orchestrator) and dynamic resource provisioning.

Nevertheless, a full GPP approach to RAN brings the cloud and

virtualization even closer to the wireless world allowing to build

a cloud-native RAN as a service along with the following princi-

ples [2, 12, 13]: 9

• Mircoservice Architecture and NFV: breaks down the net-

work into a set of horizontal functions that can be com-

bined together, assigned with target performance parameters,

mapped onto the infrastructure resources (physical or vir-

tual), and finally delivered as a service. This implies that

micro network functions are loosely coupled, reusable, com-

posable, stateless, and discoverable.10

• Scalability: monitors the RAN events (e.g. workload vari-

ations, optimization, relocation, or upgrade) and automati-

cally provision resources without any degradations in the re-

quired/agreed network performance (scale out/in).

• Reliability: shares the RAN contexts across multiple repli-

cated RAN services to keep the required redundancy, and

distributes the loads among them.

• Placement: optimizes the cost and/or performance by locat-

ing the RAN services at the specific geographic area sub-

jected to performance, cost, and availability of the RF front-

end and cloud resources.

• Real-time Service: offers a direct access to real-time radio

information (e.g. radio status, statistics) for low-latency and

high-bandwidth service deployed at the network edge [15].

9Two software implementations of a fully functional LTE/LTE-A already exist,

namely by Amarisoft delivered as a commercial product and by OpenAirInterface de-

livered as an open-source software.
10Microservice architecture is in opposition to the so-called “monolithic” archi-

tecture where all functionality is offered by a single logical executable, see

http://martinfowler.com/articles/microservices.html. It has to be noted that the mi-

corservice architecture supports the ETSI NFV architecture [14], where each VNF can

be seen as a service.

7. CONCLUSION
This paper investigates three critical issues towards the cloudifi-

cation of the current LTE/LTE-A radio access network. Extensive

set of experiments have been carried out to analyse the BBU pro-

cessing load under different configurations and environments for

Intel-based CPU architecture. The results have shown that the to-

tal processing scales up with PRB and MCS and that the uplink

is the dominant processing load that might require to be splitted

and/or accelerated. Coding and decoding functions represent the

most time consuming BBU functions with high variability. It is

found that container approach to virtualization provides slightly

better performance than hypervisor approach.

Based on the results, a model is presented that accurately esti-

mates the required uplink and down baseband processing as a func-

tion of PRB, MCS, and virtualization environment. The proposed

model can be used for different optimization algorithms, namely

(proactive) runtime resource prediction and allocation algorithms

exploiting processing load variations to fewer resources in terms of

computing, networking and storage for a given statistical realtime

guarantee.

Acknowledgement
The research and development leading to these results has received fund-
ing from the European Framework Programme under FP7 grant agreement
318109 for MCN project and 318306 for NEWCOM# project. The author
would also like to thank I. Alyafawi and Prof. R. Knopp for their useful
discussions.

8. REFERENCES
[1] MITOLA, J. The software radio architecture. IEEE Communication

Magazine (1995).

[2] WILDER, B. Cloud Architecture Patterns. O’Reilly, 2012.

[3] Mobile Cloud Networking project (FP7-ICT-318109).
http://www.mobile-cloud-networking.eu.

[4] iJOIN: an FP7 STREP project co-funded by the European
Commission under the ICT theme.

[5] LIN, Y., SHAO, L., ZHU, Z., WANG, Q., AND SABHIKHI, R. K.
Wireless network cloud: Architecture and system requirements. IBM

Journal of Research and Development (2010).

[6] CHINA MOBILE RESEARCH INSTITUTE. C-RAN The Road
Towards Green RAN, 2013. White paper, v3.0.

[7] CHECKO, A., CHRISTIANSEN, H. L., YAN, Y., SCOLARI, L.,
KARDARAS, G., BERGER, M. S., AND DITTMANN, L. Cloud ran
for mobile networks - a technology overview. Communications

Surveys Tutorials, IEEE (2014).

[8] WUBBEN, D., ROST, P., BARTELT, J. S., LALAM, M., SAVIN, V.,
GORGOGLIONE, M., DEKORSY, A., AND FETTWEIS, G.
Computing on 5g signal processing: Flexible centralization through
cloud-ran. IEEE Signal Processing Magazine (2014).

[9] NGMN. Further Study on Critical C-RAN Technologies (v0.6).
Tech. rep., The Next Generation Mobile Networks (NGMN)
Alliance, 2013.

[10] BHAUMIK, S., ET AL. Cloudiq: A framework for processing base
stations in a data center. In Proc. ACM MobiCom (2012).

[11] ALYAFAWI, I., SCHILLER, E., BRAUN, T., DIMITROVA, D.,
GOMES, A., AND NIKAEIN, N. Critical issues of centralized and
cloudified lte fdd radio access networks. In ICC (2015).

[12] PATEL, M., JOUBERT, J., RAMOS, J. R., SPRECHER, N., ABETA,
S., AND NEAL, A. Mobile-Edge Computing. Tech. rep., ETSI, white
paper, 2014.

[13] NIKAEIN, N., KNOPP, R., GAUTHIER, L., SCHILLER, E., BRAUN,
T., PICHON, D., BONNET, C., KALTENBERGER, F., AND

NUSSBAUM, D. Demo – Closer to Cloud-RAN: RAN as a Service.
Proceedings of ACM MOBICOM Demonstrations (2015).

[14] MCN D2.5. Final Overall Architecture Definition. Tech. rep., 2015.

[15] ETSI. Network Functions Virtualisation (NFV), White paper. Tech.
rep., 2014.

http://www.mobile-cloud-networking.eu

	1 From Analog to Virtual Radio
	2 C-RAN Critical Issues
	2.1 Fronthaul Capacity
	2.2 BBU Functions
	2.3 Real-time Operating System and Virtualization Environment

	3 Evaluation
	3.1 CPU Architecture Analysis
	3.2 CPU Frequency Analysis
	3.3 Virtualization Technique Analysis
	3.4 I/O Performance Analysis

	4 Modelling BBU Processing Time
	5 Discussions
	6 Potential Architectures
	7 Conclusion
	8 References

