
 Open access Journal Article DOI:10.1023/A:1024519310975

Processing read-only transactions in hybrid data delivery environments with
consistency and currency guarantees — Source link

André Seifert, Marc H. Scholl

Institutions: University of Konstanz

Published on: 01 Aug 2003 - Mobile Networks and Applications (Springer-Verlag New York, Inc.)

Topics: Serializability, Global serializability, Two-phase locking, Commitment ordering and Schedule (computer science)

Related papers:

 Concurrency control strategies for ordered data broadcast in mobile computing systems

 Index Based Ordered Broadcast with Status (IOBS) Algorithm for Consistent Data Broadcast

 Using Separate Processing for Read-Only Transactions in Mobile Environment

 Efficient optimistic concurrency control for mobile real-time transactions in a wireless data broadcast environment

 Maintaining data consistency using timestamp ordering in real-time broadcast environments

Share this paper:

View more about this paper here: https://typeset.io/papers/processing-read-only-transactions-in-hybrid-data-delivery-
31h62xy8ys

https://typeset.io/
https://www.doi.org/10.1023/A:1024519310975
https://typeset.io/papers/processing-read-only-transactions-in-hybrid-data-delivery-31h62xy8ys
https://typeset.io/authors/andre-seifert-5feq6r3u3o
https://typeset.io/authors/marc-h-scholl-26wg9bu3px
https://typeset.io/institutions/university-of-konstanz-93gdu0df
https://typeset.io/journals/mobile-networks-and-applications-3q7mv2vm
https://typeset.io/topics/serializability-1c2660yu
https://typeset.io/topics/global-serializability-11us3ba5
https://typeset.io/topics/two-phase-locking-3ctjqyjl
https://typeset.io/topics/commitment-ordering-27chucz4
https://typeset.io/topics/schedule-computer-science-2ch6pazo
https://typeset.io/papers/concurrency-control-strategies-for-ordered-data-broadcast-in-5ck7kngl0d
https://typeset.io/papers/index-based-ordered-broadcast-with-status-iobs-algorithm-for-n4kgucakcq
https://typeset.io/papers/using-separate-processing-for-read-only-transactions-in-3hukjfbqh5
https://typeset.io/papers/efficient-optimistic-concurrency-control-for-mobile-real-fsjr5u1n57
https://typeset.io/papers/maintaining-data-consistency-using-timestamp-ordering-in-hldm0rgutp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/processing-read-only-transactions-in-hybrid-data-delivery-31h62xy8ys
https://twitter.com/intent/tweet?text=Processing%20read-only%20transactions%20in%20hybrid%20data%20delivery%20environments%20with%20consistency%20and%20currency%20guarantees&url=https://typeset.io/papers/processing-read-only-transactions-in-hybrid-data-delivery-31h62xy8ys
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/processing-read-only-transactions-in-hybrid-data-delivery-31h62xy8ys
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/processing-read-only-transactions-in-hybrid-data-delivery-31h62xy8ys
https://typeset.io/papers/processing-read-only-transactions-in-hybrid-data-delivery-31h62xy8ys

Processing Read-Only Transactions in Hybrid Data Delivery

Environments with Consistency and Currency Guarantees

ANDRÉ SEIFERT and MARC H. SCHOLL
University of Konstanz, Database Research Group, P.O. Box D188, D-78457 Konstanz, Germany

Abstract. Different isolation levels are required to ensure various degrees of data consistency and currency to read-only transactions.
Current definitions of isolation levels such as Conflict Serializability, Update Serializability or External Consistency/Update Consistency are
not appropriate for processing read-only transactions since they lack any currency guarantees. To resolve this problem, we propose four new
isolation levels which incorporate data consistency and currency guarantees. Further, we present efficient implementations of the proposed
isolation levels. Our concurrency control protocols are envisaged to be used in a hybrid mobile data delivery environment in which broadcast
push technology is utilized to disseminate database objects to a large number of mobile clients and conventional point-to-point technology
is applied to satisfy on-demand requests. The paper also presents the results of a simulation study conducted to evaluate the performance
of our protocols. According to the simulation results the costs imposed by the MVCC-SFBS protocol, which ensures serializability to
read-only transactions are moderate relative to those imposed by the MVCC-SFBUS and MVCC-SFBVC protocols, which provide weaker
consistency guarantees. A comparison study reveals that the MVCC-SFBVC scheme outperforms all other investigated concurrency control
schemes suitable for mobile database systems.

Keywords: read-only transactions, broadcasting, unicasting, data currency, data consistency

1. Introduction and motivation

Consider applications (e.g., road traffic information services,
online auctions, stock market tickers, etc.) that may em-
ploy broadcast technology to deliver data to a large num-
ber of clients. Most of such applications requiring trans-
actional guarantees initiate read-only transactions. Running
such transactions efficiently despite the various limitations of
a mobile broadcasting environment is a challenging research
topic addressed in this paper.

Irrespective of the environment (central or distributed,
wireless or stationary) in which read-only transactions are
processed, they have the potential of being managed more ef-
ficiently than their read–write counterparts especially if spe-
cial concurrency control (CC) protocols are applied. Multi-
version CC schemes [14,24,33] appear to be an ideal candi-
date for read-only transaction processing in broadcasting en-
vironments since they allow read-only transactions to execute
without any interference with concurrent read–write transac-
tions. If multiple object versions are kept in the database
system, read-only transactions can read older object versions
and, thus, never need to wait for a read–write transaction to
commit or to abort in order to resolve the conflict. As with
read–write transactions, read-only transactions may be exe-
cuted with various degrees of consistency. Choosing lower
levels of consistency than serializability for transaction man-
agement is attractive for two reasons. First, the set of correct
multi-version histories that can be produced by a scheduler
can be increased and, hence, higher performance (transaction
throughput) can be achieved. Further, weaker consistency
levels may allow read-only transactions to read more recent

object versions. Thus, weaker consistency levels trade con-
sistency for transactional performance and data currency.

While reading current data is necessary for read–write
transactions to maintain database consistency during updates,
such requirements are not necessary for read-only transac-
tions to be scheduled in a serializable way. That is, read-
only transactions can be executed with serializability guaran-
tees even though observing out-of-date database snapshots.
Read-only transactions may therefore be allowed to specify
various levels of data currency requirements. In order to pro-
vide reliable guarantees for the behavior of the database sys-
tem, we need well-defined isolation levels (ILs) suitable for
read-only transactions which guarantee both data consistency
and data currency. The ANSI/ISO SQL-92 specifications [9]
define four ILs, namely Read Uncommitted, Read Commit-

ted, Repeatable Read, and Serializability. Those levels do
not incorporate any currency guarantees, though, and thus are
unsuitable for managing read-only transactions in distributed
mobile database environments.

Theory and practice have pointed out the inadequacy and
imprecise definition of the SQL ILs [11] and some redefin-
itions have been proposed in [7]. Additionally, a range of
new ILs were proposed that lie between the Read Commit-
ted and Serializability levels. The new intermediate ILs were
designed for the needs of read–write transactions with only
three of them explicitly stating the notion of logical time.
The level called Snapshot Isolation (SI) proposed by Beren-
son et al. [11], ensures data currency to both read-only and
read–write transactions forcing them to read from a data snap-
shot that existed by the time the transaction started. Oracle’s
Read Consistency (RC) level [26] provides stronger currency
guarantees than Snapshot Isolation by guaranteeing that each

Erschien auch in: Mobile Networks and Applications 8,327–342,2003

http://www.kluweronline.com/issn/1383-469X

328 A. SEIFERT AND M.H. SCHOLL

SQL statement in a transaction Ti sees the database state at
least as recent as it existed by the time Ti issued its first read
operation. For subsequent read operations/SQL statements
RC ensures that they observe the database state that is at least
as recent as the snapshot seen by the previous read opera-
tion/SQL statement. Finally, Adya [6] defines an IL named
Forward Consistent View (FCV) that extends SI by allowing
a read-only (read–write) transaction Ti (Tj) to read object ver-
sions created by read–write transactions after Ti’s (Tj ’s) start-
ing point, as long as those reads are consistent in the sense
that Ti (Tj) sees the total effects of all update transactions it
write–read or (write–read/write–write) depends on.

The above mentioned levels are not ideally suitable for
processing read-only transactions for a number of reasons.
First, all of them are weaker consistency levels, i.e., read–
write transactions executed at any of these levels may violate
consistency of the database since none of them requires the
strictness of serializability. Consequently, read-only transac-
tions may observe an inconsistent database state, if they view
the effects of transactions that have modified the database in
an inconsistent manner. Inconsistent or bounded consistent
reads may not be acceptable for some mobile applications,
thus making non-serializability levels that do not ensure data-
base consistency to such transactions inappropriate. Another
problem arises from the fact that mobile database applica-
tions may need various data currency guarantees depending
on the type of application and actual user requirements. The
ILs mentioned above provide only a limited variety of data
currency guarantees to read-only transactions. All levels en-
sure that read-only transactions read from a database state that
existed at a time not later than the transaction’s starting point.
Such firm currency guarantees may be too restrictive for some
mobile applications. Hence, there is a need for definition of
new ILs that incorporate weaker currency guarantees. More-
over, we need to define new ILs that meet the specific require-
ments of (mobile) read-only transactions.

This paper’s contributions are as follows. First, we de-
fine four new ILs that provide useful consistency and cur-
rency guarantees to mobile read-only transactions. In contrast
to the ANSI/ISO SQL-92 ILs [9] and their modifications by
Berenson et al. [11], our definitions are not stated in terms of
existing concurrency control mechanisms including locking,
timestamp ordering, and optimistic schemes, but are rather
independent of such protocols in their specification. Second,
we have designed a suite of multi-version concurrency con-
trol algorithms that efficiently implement the proposed ILs.
Finally, we present the performance results of our protocols
and compare them. To our knowledge, this is the first sim-
ulation study that validates the performance of concurrency
control protocols providing various levels of consistency and
currency to read-only transactions in a mobile hybrid data de-
livery environment.

The remainder of the paper is organized as follows. In
section 2, we introduce some notations and terminology that
is necessary for the formal definition of new ILs. In section 3,
we define new ILs especially suitable for mobile read-only
transactions by combining both data consistency and currency

guarantees. Implementation issues are discussed in section 4.
Section 5 reports on the simulation study and performance
tradeoffs. Section 6 contains the conclusions of our work and
highlights some direction of our future research activities.

2. Preliminaries

A transaction Ti is a sequence of operations OPi = (opi1,
opi2, . . . , opin) where each data operation opij is either an
atomic read or write action. The j th write operation within Ti
on object X is denoted wij [xi, v], where v is the value writ-
ten into Xi , and the subscript i assigned to object X is a non-
decreasing object version identifier equal to the transaction
identifier of Ti . When transaction Ti reads object version Xj
as its j th operation that had been written by Tj , we denote
this action by rij [xj , v]. Read and write operations on the
same data granules are partially ordered according to <i and
each transaction Ti is associated with three transaction man-
agement operations: begin bi , and commit ci , or abort ai , i.e.,
each transaction either commits or aborts. The set of such
primitives executed by Ti are denoted Pi . All transactional
operations are recorded in a history H in the (real-time) order
in which they are performed. For performance reasons, multi-
ple transactions may be executed concurrently, i.e., operations
of different transactions can be interleaved in H. We assume
that all data items initially stored in the database had been pro-
duced by an initialization transaction T0, and are called zero
versions. Subsequent transactions that modify a zero version
of a data item create a new version and assign their unique
transaction identifier to it. Finally, we define the notion of a
multi-version history by extending the definition of a single-
version history as follows.

Definition 1 (Single-version history). A single-version his-
tory SVH of a set of transactions T = {T0, T1, . . . , Tn} is
a partial order (�T,<SVH) of events such that:

1. �T =
⋃
i=1,...,n OPi ∪

⋃
i=1,...,n Pi .

2. <SVH ⊇
⋃
i=1,...,n <i .

3. If p, q are data operations in SVH and at least one of them
is a write operation, then either p <SVH q or q <SVH p.

Definition 2 (Multi-version history). A multi-version history
MVH of a set of transactions T = {T0, T1, . . . , Tn} is a single-
version history SVH extended by a version function v that
maps each read operation ri to some object version written
by a write action wj that precedes the read operation accord-
ing to <MVH, i.e., like in SVH, an object version may not be
read by a transaction until it has been created. Additionally, a
version order, denoted ≪, is associated with each committed
object in MVH representing a total order among the versions
of each object.

For notational convenience, we assume that the version
order of an object X in a multi-version history MVH corre-
sponds to the order in which write operations of X occur in

PROCESSING READ-ONLY TRANSACTIONS 329

MVH, i.e., whenever write operation wij [xi, v] immediately
precedes write operation wkj [xk, v] in MVH, then xi ≪ xk .
To determine whether a multi-version history MVH satisfies
certain criteria defined by an IL, a subhistory of MVH may
need to be considered. The projection P of a multi-version
history MVH with respect to a single transaction is given be-
low.

Definition 3 (Transactional projection). Let top ∈ {r,w, a,

c, b} denote a transactional operation that is either a data op-
eration or a transaction management operation. A transac-
tional projection of a multi-version history MVH onto Ti , de-
noted P(MVH, Ti), is a subhistory of MVH′ containing trans-
actional operations top(MVH′) := top(Ti), i.e., MVH′ in-
cludes only the operations issued by Ti .

It is important to note that the projection preserves the rel-
ative order of the original operations. To validate the correct-
ness of multi-version histories with respect to ILs defined in
section 3, we need to formalize possible direct and indirect
data dependencies between transactions.

Definition 4 (Direct write–read dependency). A direct write–
read dependency between Ti and Tj exists if there is a write
operation wj which precedes a read operation ri in MVH ac-
cording to <MVH and Ti accesses the object version written
by Tj . In what follows, we denote such a dependency wr.

Definition 5 (Direct write–write dependency). A transac-
tion Ti directly write–write depends on a transaction Tj if
there exists a write operation wj which precedes a write op-
eration wi in MVH according to <MVH, and wj produces
the predecessor object version of some object version written
by wi . We denote write–write dependencies ww.

Definition 6 (Direct read–write dependency). A direct read–
write dependency occurs between two transactions Ti and Tj
if there is a read operation ri and a write operationwj in MVH
in the order ri <MVH wj and wj installs the successor object
version of the object version read by ri . Read–write depen-
dencies are denoted rw.

If the type of dependency between two distinct transac-
tions does not matter, we say that they are in an arbitrary de-
pendency.

Definition 7 (Arbitrary direct dependency). Two transac-
tions Ti and Tj are in an arbitrary direct dependency in MVH,
if there exists a direct read–write, write–write or write–read
dependency between Ti and Tj .

Definition 8 (Arbitrary indirect dependency). A transaction
Ti arbitrary indirectly depends on a transaction Tj in a multi-
version history MVH, if there exists a sequence [Tj δ Tk1 δ Tk2
. . . δTkn δ Ti (n � 1)] in MVH where δ denotes an arbitrary
direct dependency between two transactions.

3. New isolation levels suitable for read-only transactions

3.1. Why serializability may be insufficient

Serializability is the standard criterion for transaction process-
ing in both stationary and mobile computing. Its importance
and popularity is related to the fact that it prevents read–write
transactions from violating database consistency by assur-
ing that they always transform the database from one con-
sistent state into another. With respect to read-only trans-
actions, serializability as defined in [12] guarantees that all
read-only transactions perceive the same serial order of read–
write transactions. Additionally, serializability requires that
read-only transactions serialize with each other. However, the
serializability criterion in itself is not sufficient for preventing
read-only transactions from experiencing anomalies related to
data currency.

Example 1. An example illustrating this pitfall is shown in
the following (non-serial but serializable) multi-version his-
tory:

MVH1: b0 w0[x0, 2:40 pm] b1 r1[z0, cloudy]

w0[y0, 2:50 pm] c0 w1[z1, blizzard] c1 b2

r2[z1, blizzard] r2[x0, 2:40 pm]

w2[x2, 2:50 pm] c2 b3 r3[x0, 2:40 pm] b4

r4[x2, 2:50 pm] b5 r5[z1, blizzard]

r5[y0, 2:50 pm] r3[y0, 2:50 pm] c3

w5[y5, 3:00 pm] c5 r4[y5, 3:00 pm] c4

History MVH1 might be produced by a flight scheduling
system supporting multiple object versions, which is rather
the rule than an exception in mobile distributed database sys-
tems. In MVH1, transaction T0 is a blind write transaction
that initializes the flight status (take-off times) of flightsX and
Y , respectively, and T1 is an event-driven transaction initiated
automatically by the airport weather station since the weather
monitoring system indicates an imminent weather change.
Due to the weather forecast the Air Traffic Control Center
instantly delays both scheduled flights by 10 minutes. At the
same time, two employees of the ground personnel equipped
with PDAs query the airport flight scheduling system in re-
sponse to passengers’ requests to check the actual take-off
times of flights X and Y (T3 and T4). While one of the em-
ployees (who invokes transaction T3) may locate the required
data in his local cache, the other (who invokes transaction T4)

Figure 1. Multi-version serialization graph of MVH1.

330 A. SEIFERT AND M.H. SCHOLL

may have to connect to the central database in order to satisfy
his data requirements. As a consequence, both persons read
from different database snapshots without serializability guar-
antees being violated, which can be easily verified by sketch-
ing the multi-version serialization graph (MVSG) of MVH1.

As the above example clearly illustrates, serializability by
itself may not be a sufficient requirement for avoiding phe-
nomena related to reading from old database snapshots. This
shortage is eliminated in the following subsections.

3.1.1. BOT serializability

Encouraged by example 1, we now define two new ILs that
combine the strictness of serializability with firm data cur-
rency guarantees. Unlike the ANSI definition of serializabil-
ity, our definition ensures well-defined data currency to read-
only transactions. The existing ANSI specification of serial-
izability and its redefinition by Adya et al. [7] do not contain
any data currency guarantees for read-only transactions. Un-
der those levels, read-only transactions are allowed to be exe-
cuted without any restrictions with respect to the currency of
the observed data. We will define our ILs in terms of histo-
ries. We associate a directed graph with each newly defined
isolation level ILi . A multi-version history MVH provides ILi
guarantees, if the corresponding graph is acyclic.

Due to space restrictions, we define only such ILs that are
especially attractive for the mobile broadcasting environment
where clients run data-dissemination applications forced to
read (nearly) up-to-date database objects and are expected to
be rarely disconnected from the server. Based on some re-
search done on real-time transactions [1,18], we divide data
currency requirements into three categories: transactions with
strong, firm, and weak requirements. We say that a read-only
transaction Ti has strong currency requirements, if it is forced
to read data that is (still) up-to-date by Ti ’s commit time.
Since all read operations of Ti must be valid at the end of
the transaction’s execution, we also specify that Ti runs with
End of Transaction (EOT) data currency guarantees. Note
that the EOT data currency property requires only that writes
of committed read–write transactions must not interfere with
operations of read-only transactions, i.e., object updates of
uncommitted transactions are not considered by that property.

The firm concurrency requirement, in turn, provides slight-
ly weaker currency guarantees. It requires that any data item
read by a read-only transaction Ti must be at least as recent as
by the time Ti started its execution. Similarly to the strong
data currency requirement, the firm criterion is concerned
only with objects installed by committed read-only transac-
tions when checking transaction’s validity. Firm currency
requirements are attractive for the processing of read-only
transactions in mobile broadcasting environments for mainly
two reasons: first, and most importantly from the data cur-
rency perspective, they guarantee that read-only transactions
observe up-to-date or nearly up-to-date data objects, which
is an important criterion for data-dissemination applications
such as news and sports tickers, stock market monitors, traf-
fic and parking information systems, etc. Second, contrary to

the strong currency requirements, they can easily and instan-
taneously be validated at the client site without any commu-
nication with the server.

For some mobile database applications, however, weak

data currency requirements may suffice. These requirements
can be declared in at least two ways. A read-only transaction
can be forced to observe a database state the way it existed at a
certain point in time ti before its actual starting point. That is,
all object versions read by a transaction must have been up-to-
date by the time ti . A user may also want to observe a trans-
action consistent state of the database that existed at some
point within the time interval [i, j]. Despite unquestionable
attractiveness of weaker currency requirements especially for
applications running on clients with frequent disconnections,
we believe that the majority of data-dissemination applica-
tions require firm currency guarantees. Thus, in this paper we
focus on firm currency guarantees and leave out the extension
of known ILs by strong and weak data currency requirements
for future study. Prior to specifying a new IL that provides
serializability along with firm data currency guarantees, some
additional concepts are to be introduced.

As defined so far, a multi-version history MVH consists of
two components: (a) a partial order of database events (�T),
and (b) a total order of object versions (≪). Now, we extend
the definition of a multi-version history by specifying for each
committed read-only transaction a start time order that relates
its starting point to the commit time of previously terminated
read–write transactions. The association of a start time or-
der with a multi-version history was first introduced in the
context of the Snapshot Isolation (SI) level definition [11] to
provide more flexibility for implementations of this degree.
According to the SI concept, the database system is free to
choose a starting point for a transaction as long as the selected
starting point is some (logical) time before its first read op-
eration. Allowing the system to choose a transaction’s start-
ing point without any restrictions is inappropriate in situations
where the user expects to read from a database state that ex-
isted at some time close to the transaction’s actual starting
point. Thus, for applications/transactions to work correctly,
the database system needs to select a transaction’s starting
point somehow in accordance with the order of events in
MVH. We now formally define the concept of start time order.

Definition 9 (Start time order). A start time order of a multi-
version history MVH over a set of committed transactions
T = {T0, T1, . . . , Tn} is a partial order (ST,→MVH) of events
such that:

1. ST =
⋃
i=1,...,n{ci, bi}.

2. ∀Ti ∈ T , bi →MVH ci .

3. If Ti , Tj ∈ T , then either bi →MVH cj or cj →MVH bi or
(bi →MVH cj and bj →MVH ci).

4. If wi , wj ∈ MVH, wi ≪ wj , cj →MVH bk, then
ci →MVH bk.

According to statement 1 the start time order relates begin
and commit operations of committed transactions in MVH.

PROCESSING READ-ONLY TRANSACTIONS 331

Point 2 states that a transaction’s starting point always pre-
cedes its commit point. Condition 3 states that a scheduler S
has three possibilities in ordering the start and commit points
of any committed transactions Ti and Tj in MVH. A sched-
uler S may choose Ti’s starting point before Tj ’s commit
point or vice versa or, if both transactions are concurrent, nei-
ther starts its execution after the other transaction has commit-
ted. Condition 4 means that if S chooses Tk’s starting point
after Tj ’s commit point and Tj overwrites the object installed
by Ti then Ti’s commit point must precede Tk’s starting point
in any start time order.

For notational convenience, in what follows, we do not
specify a start time order for all committed transactions in
MVH. Instead, we only associate with each MVH the start
time order between read-only and read–write transactions.
Now we can define a data currency property required for the
definition of the BOT serializability IL.

Definition 10 (BOT data currency). A transaction Ti pos-
sesses BOT data currency guarantees if for all read operations
invoked by Ti the following invariant holds:

1. If the pair wj [xj] and ri [xj] is in MVH, then cj →MVH bi .

2. If there is another write operation wk[xk] of a committed
transaction Tk in MVH, then either

(a) ck →MVH bi , xk ≪ xj , or

(b) bi →MVH ck.

Note that we ignore transaction aborts in our definition of
BOT data currency since subsequent definitions that incorpo-
rate this criterion only consider MVHs of committed transac-
tions. On the basis of the BOT data currency property, the
serializability IL can be extended as follows.

Definition 11 (BOT serializability). A multi-version history
MVH over a set of read-only and read–write transactions is
BOT serializable, if MVH is serializable in the sense that
the projection of MVH onto all committed transactions in
MVH is equivalent to some serial history MVHserial and the
BOT data currency property holds for all read-only transac-
tions in MVH. (Note that we do not explicitly define data
currency guarantees for read operations of read–write trans-
actions since we believe that the data currency requirements
implicitly enforced for those reads by the serializability crite-
rion are sufficiently strict for most applications.)

To determine if a given multi-version history MVH satis-
fies the requirements of the BOT serializability level, we use
a variation of the MVSG called start time multi-version seri-
alization graph (ST-MVSG). In this paper, we assume that the
reader is familiar with the notion of MVSG, and for details
we refer to [12].

Definition 12 (Start time multi-version serialization graph).
Let MVH denote a history over a set of read-only and read–
write transactions T = {T1, . . . , Tn} and commit(MVH) rep-
resents a function that returns the committed transactions of

MVH. A start time multi-version serialization graph for his-
tory MVH, denoted ST-MVSG(MVH), is a directed graph
with nodes N := commit(MVH) and edges E such that:

1. There is an edge Ti → Tj (Ti �= Tj) if Tj arbitrary directly
depends on Ti .

2. There is an edge Ti → Tj (Ti �= Tj) whenever there exists
a set of operations {ri[xj], wj [xj], wk[xk]} such that either
wj ≪ wk and ck →MVH bi or bi →MVH cj .

Theorem 1. Let MVH be a multi-version history over a set
of committed transactions T = {T1, . . . , Tn}. Then MVH is
BOT serializable, if ST-MVSG(MVH) is acyclic.

Proof. See [30]. �

3.1.2. Strict forward BOT serializability

The currency requirements of BOT serializability may not be
ideally suited for processing read-only transactions in mo-
bile broadcasting environments for at least two reasons. First,
mobile read-only transactions are mostly long running in na-
ture due to such factors as interactive data usage, intentional
or accidental disconnections, and/or high communication de-
lays. Therefore, disallowing a long-lived read-only transac-
tion to see object versions that were created by committed
read–write transactions after its starting point might be too
restrictive. Another reason for allowing “forward” reads is
related to version management. Reading from a snapshot of
the database that existed at the time when a read-only transac-
tion started its execution can be expensive in terms of storage
costs. If database objects are frequently updated, which is a
reasonable assumption for data-dissemination environments,
multiple previous object versions have to be retained in var-
ious parts of the database system. Allowing read-only trans-
actions to view more recent data than permitted by the BOT
data currency property is efficient, since it enables purging
out-of-date objects sooner, thus allowing to keep more recent
objects in the database system. An IL that provides such cur-
rency guarantees while still enforcing degree 3 consistency
is called strict forward BOT serializability. Prior to defining
this IL, we formulate a rule that is sufficient and practicable
for determining whether a read-only transaction Ti may be al-
lowed to see the (total) effects of an update transaction that
committed after Ti’s starting point without violating serializ-
ability requirements.

Read Rule 1 (Serializable forward reads). Let Ti denote a
read-only transaction that needs to observe the effects of
an update transaction Tj that committed after Ti’s start-
ing point as long as the serializability requirement holds.
Further, let Tupdate represents a set of read–write transac-
tions that committed after Ti’s starting point but before the
commit point of Tj and whose effects have not been seen
by Ti ; i.e., ∀Tk ∈ Tupdate (bi →MVH ck ∧ ck →MVH cj ∧ if
wk[xk] occurs in P(MVH, [bi, cj]), then there is no ri [xk] in
P(MVH, [bi, cj])). Ti is allowed to read forward and see
the effects of Tj whenever the invariant ReadSet(MVH′, Ti)∩

332 A. SEIFERT AND M.H. SCHOLL

WriteSet(MVH′, (Tupdate ∪Tj)) = ∅ is true for the subhistory
MVH′ := P(MVH, [bi, cj]), i.e., the intersection of the actual
read set of Ti and the write set of all read–write transactions
that committed between Ti’s starting point and Tj ’s commit
point (including Tj itself) must be an empty set. Otherwise,
Ti is forced to observe the database state that was valid as of
the time Ti started.

Note that in Read Rule 1 the projection onto MVH with
regard to the time interval [bi, cj] refers to the start time or-
der of transactions in MVH and is independent of the (real-
time) order of those events in MVH. Further note that in
Read Rule 1 the read set and the write set refer to data ob-
jects and not to their dedicated versions. This will be the case
throughout the paper if not otherwise specified. In what fol-
lows, we denote the fact that Ti is permitted to read forward
on the object versions produced by Tj , by Ti →sfr Tj .

It can be shown that Read Rule 1 produces only correct
read-only transactions in the sense that they are serializable
with respect to all committed update transactions and all other
committed read-only transactions in a multi-version history
MVH.

Theorem 2. In a multi-version history MVH that contains a
set of read–write transactions Tupdate such that all read–write
transactions in Tupdate, are serializable, each read-only trans-
action Ti satisfying Read Rule 1 is serializable as well.

Proof. Omitted due to space restrictions. �

The following new IL incorporates the serializable forward
read property, and is defined as follows.

Definition 13 (Strict forward BOT serializability). A multi-
version history MVH over a set of read-only and read–write
transactions is a strict forward BOT serializable history, if all
of the following conditions hold: MVH is serializable, and if
the pair ri [xj] and wj [xj] of a read-only transaction Ti and a
read–write transaction Tj is in MVH, then either

(a) bi →MVH cj , wj [xj]<MVH ri[xj], Ti →sfr Tj and there is
no write operation wk[xk] of a committed transaction Tk
in MVH such that xj ≪ xk, ck <MVH ri [xj], Ti →sfr Tk;
or

(b) cj <MVH bi and there is no write operation wk[xk] of a
committed transaction Tk in MVH such that ck <MVH bi ,
xj ≪ xk.

To check whether a given history MVH is strict forward
BOT serializable, we use a variant of the MVSG.

Definition 14 (Strict forward read multi-version serializa-
tion graph). A strict forward read multi-version serialization
graph for a multi-version history MVH, denoted
SFR-MVSG(MVH), is a directed graph with nodes N :=

commit(MVH) and edges E such that:

1. There is an edge Ti → Tj (Ti �= Tj), if Tj arbitrary di-
rectly depends on Ti .

2. There is an edge Ti → Tj (Ti �= Tj), whenever there
exists a pair of operations ri[xj] andwj [xj] of a read-only
transaction Ti and a read–write transaction Tj such that
wj ≪ wk and ck →MVH bi .

3. There is an edge Ti → Tj (Ti �= Tj), whenever there
exists a pair of operations ri[xj] andwj [xj] of a read-only
transaction Ti and a read–write transaction Tj such that
bi →MVH cj , cj [xj]<MVH ri [xj], ¬Ti →sfr Tj .

4. There is an edge Ti → Tj (Ti �= Tj), whenever there
exists a pair of operations ri[xj] andwj [xj] of a read-only
transaction Ti and a read–write transaction Tj such that
bi →MVH cj , cj [xj]<MVH ri [xj], Ti →sfr Tj and there is
a write operation wk[xk] of a committed transaction Tk in
MVH such that xj ≪ xk , ck <MVH ri [xj], Ti →sfr Tk .

Theorem 3. A history MVH is strict forward BOT serializ-
able, if SFR-MVSG(MVH) is acyclic.

Proof. See [30]. �

3.2. Update serializability

While the strictness of serializability may be necessary for
some read-only transactions, often, however, the use of such
strong criteria is overly restrictive and may negatively affect
the overall system performance. Even worse, serializabil-
ity does not only trade consistency for performance, but it
also has an impact on data currency. Such drawbacks can
be eliminated or at least diminished by allowing read-only
transactions to be executed at weaker ILs. Various correct-
ness criteria have been proposed in the literature to achieve
performance benefits by allowing non-serializable execution
of read-only transactions. While some forms of consistency
such as update serializability/weak consistency [13,14,17] or
external consistency/update consistency [13,33] require that
read-only transactions observe consistent database state, oth-
ers such as epsilon serializability [34] allow them to view
transaction inconsistent data. We believe that the majority
of read-only transactions need to see a transaction consistent
database state and therefore we focus solely on ILs that pro-
vide such guarantees. An IL that is strictly weaker than serial-
izability and allows read-only transactions to see a transaction
consistent state is the Update Serializability (US) level which
can be formally defined as follows.

Definition 15 (Update serializability). Let us denote the set
of committed read–write transactions by Tupdate = {T1, . . . ,

Tn} and the projection of MVH onto Tupdate by P(MVH,
Tupdate). A multi-version history MVH over a set of read-only
and read–write transactions is an update serializable history,
if for each read-only transaction Ti in MVH the subhistory
MVH′ := P(MVH, Tupdate) ∪ P(MVH, Ti) is serializable. If
there are no read-only transactions in MVH, then only the
subhistory MVH′ := P(MVH, Tupdate) has to be serializable.

PROCESSING READ-ONLY TRANSACTIONS 333

Update serializability differs from the serializability IL
by allowing read-only transactions to serialize individually
with the set of committed read–write transactions in a multi-
version history MVH, i.e., it relaxes the strictness of the se-
rializability criterion by requiring that read-only transactions
are serializable with respect to committed read–write transac-
tions, but not with respect to other committed read-only trans-
actions.

3.2.1. Strict forward BOT update serializability

Update serializability as defined above allows different read-
only transactions to view different transaction consistent data-
base states that result from different serialization orders of
read–write transactions. By not requiring that all read-only
transactions have to see the same consistent state, more con-
currency between read-only and read–write transactions is
made possible. However, higher transaction throughput by re-
laxing the consistency requirement may not be achieved at the
cost of providing no or unacceptable data currency guarantees
to users. It is obvious, that update serializability lacks any
currency requirements, thus we need to extent the update se-
rializability IL by incorporating such guarantees. As data cur-
rency and consistency are orthogonal concepts, it is possible
to combine update serializability with various types of cur-
rency. As before, we concentrate on the BOT data currency
type, since we believe that it is frequently required in the mo-
bile environment. Actually there is no need to define a new
IL that provides BOT data currency guarantees in combina-
tion with update serializability correctness since such a level
would be equivalent to the already defined BOT serializability
degree. Nevertheless, extending update serializability by the
requirement that a read-only transaction Ti must perceive the
most recent version of committed objects that existed by Ti’s
starting point or thereafter seems to be a valuable property in
terms of currency and performance. However, forward reads
beyond Ti’s start point should only be allowed, if the update
serializability criterion is not violated. In order to determine
whether a read-only transaction Ti can safely read forward
on some version of object X it wants to read, the following
property can be used.

Read Rule 2 (Update serializable forward reads). Let Ti de-
note a read-only transaction in MVH that requires to ob-
serve the effects of a read–write transaction Tj that com-
mitted after Ti’s starting point as long as the update serial-
izability requirements are not violated. Further, let Tupdate

represent a set of read–write transactions that committed af-
ter Ti’s starting point but before the commit point of Tj ,
i.e., ∀Tk ∈ Tupdate (bi →MVH ck ∧ ck →MVH cj). Ti is al-
lowed to read forward and see the effects of Tj , if the invari-
ant ReadSet(MVH, Ti , [bi, cj]) ∩ WriteSet(MVH, Tj]) = ∅

holds and there is no read–write transaction Tk in MVH (j �=

k, i �= k) such that bi →MVH ck , ck →MVH cj , ¬Ti →usfr Tk
and Tj arbitrary depends on Tk . Otherwise, Ti is forced to see
the database state that was valid at its starting point bi . We
denote the fact that Ti is allowed to read forward to observe
the effects of Tj by Ti →usfr Tj .

As before, it can be shown that Read Rule 2 produces only
correct histories in the sense that each read-only transaction
sees a serial order of all committed read–write transactions in
a multi-version history MVH.

Theorem 4. In a multi-version history MVH that contains a
set of read–write transactions Tupdate such that all read–write
transactions in Tupdate are serializable, each read-only trans-
action Ti satisfying Read Rule 2 is update serializable with
respect to Tupdate.

Proof. Omitted due to space restrictions. �

We can now define a new IL that ensures update serializ-
ability correctness along with firm data currency guarantees.

Definition 16 (Strict forward BOT update serializability).
A multi-version history MVH over a set of read-only and
read–write transactions is strict forward BOT update serial-
izable, if the following condition holds:

1. MVH is update serializable, and if the pair ri [xj] and
wj [xj] of a read-only transaction Ti and a read–write
transaction Tj are in MVH, then either

(a) bi →MVH cj , cj [xj] <MVH ri[xj], Ti →usfr Tj and
there is no write operation wk[xk] of a committed
transaction Tk in MVH such that xj ≪ xk, ck <MVH

ri [xj], Ti →usfr Tk or

(b) Requirement 2(b) of definition 13 is true.

Again, we determine whether a given history MVH is strict
forward BOT update serializable by using a directed MVSG.

Definition 17 (Strict forward read single query multi-version
serialization graph). A strict forward read single query multi-
version serialization graph for MVH with respect to a read-
only transaction Ti , denoted SFR-SQ-MVSG(MVH, Ti), is a
directed graph with nodesN := Tupdate∪Ti and edgesE such
that:

1. An edge of type 1 and 2 in SFR-MVSG(MVH) is an edge
in SFR-SQ-MVSG(MVH, Ti).

2. There is an edge Ti → Tj (Ti �= Tj) whenever there ex-
ists a pair of operations wj [xj] and ri [xj] of a read-only
transaction Ti and a read–write transaction Tj such that
bi →MVH cj , cj [xj]<MVH ri [xj], Ti →usfr Tj and there is
a write operation wk[xk] of a committed transaction Tk in
MVH such that xj ≪ xk , ck <MVH ri [xj], Tt →usfr Tk .

Theorem 5. A history MVH is strict forward BOT serializ-
able, if for each read-only transaction Ti the corresponding
SFR-SQ-MVSG(MVH, Ti) is acyclic.

Proof. See [30]. �

334 A. SEIFERT AND M.H. SCHOLL

3.3. View consistency

View consistency (VC) is the weakest IL that ensures trans-
action consistency to read-only transactions provided that all
read–write transactions modifying the database state are se-
rializable. It was first informally defined in the literature by
Weihl [33] under the name external consistency. Due to its
valuable guarantees provided to read-only transactions, it ap-
pears to be an ideal candidate for use in all forms of envi-
ronments including broadcasting systems. However, as no-
ticed for the conflict serializability and update serializability
degree, the definition of view consistency lacks the notion of
data currency. We formally define the view consistency level
as follows.

Definition 18 (View consistency). Let T dep
i denote a set of

committed read–write transactions in MVH that Ti directly
and indirectly depends on. A multi-version history MVH
over a set of read-only and read–write transactions is view
consistent, if all read–write transactions are serializable and
for each read-only transaction Ti in MVH the subhistory
MVH′ := P(MVH, T dep

i) ∪ P(MVH, Ti) is serializable.

This IL’s attractiveness relates to the fact that all read–
write transactions produce a consistent database state and
read-only transactions view a transaction consistent database
state. However, as with update serializability, there might be
a concern that two read-only (or read-only and read–write)
transactions executed at the same client can see different ser-
ial orders of read–write transactions. Another issue is related
to the currency of the data observed by read-only transactions.
While the first potential problem can only be resolved by
running read-only transactions with serializability guarantees,
the latter issue can be compensated by extending the view
consistency level by appropriate currency guarantees. As for
the update serializability level, there is no need to define a new
IL that ensures view consistency correctness in combination
with BOT data currency since such an IL would be equivalent
to the defined BOT serializability level. However, extend-
ing BOT serializability with a forward read obligation that
allows read-only transactions to see the effects of read–write
transactions as long as the view consistency requirements are
not violated appears to be a worthwhile approach. Before we
formally define this new IL, we need to formalize a condi-
tion that allows us to determine whether a read-only transac-
tion Ti can observe the effects of a read–write transaction Tj
that committed its execution after Ti ’s starting time.

Read Rule 3 (View consistent forward reads). Again, let
Tupdate represent a set of read–write transactions that commit-
ted after Ti’s starting point but before the commit point of Tj .
Ti is allowed to read forward and see the (total) effects of Tj
(Ti →vcfr Tj), if the invariant ReadSet(MVH, Ti, [bi, cj]) ∩

WriteSet(MVH, Tj]) = ∅ holds and there is no read–write
transaction Tk in MVH (j �= k, i �= k) such that bi →MVH ck ,
ck →MVH cj , ¬Ti →vcfr Tk and Tj write–read or write–write

depends on Tk. Otherwise, Ti is forced to see the database
state as it existed by its starting point.

Again, it can be shown that Read Rule 3 produces only
syntactically correct histories in the sense that read-only
transactions see a transaction consistent database state.

Theorem 6. In a multi-version history MVH containing a
set of read–write transactions Tupdate such that all read–write
transactions in Tupdate are serializable, each read-only trans-
action Ti satisfying Read Rule 3 is serializable with respect to
all transactions in Tupdate whose effects Ti has either directly
or indirectly seen.

Proof. Omitted due to space restrictions. �

We can now define our new IL that ensures update serial-
izability correctness together with firm data currency guaran-
tees.

Definition 19 (Strict forward BOT view consistency).
A multi-version history MVH over a set of read-only and
read–write transactions is strict forward BOT view consistent,
if the following condition holds:

1. MVH is view consistent, and if the pair ri [xj] and wj [xj]
of a read-only transaction Ti and a read–write transaction
Tj is in MVH, then either

(a) bi →MVH cj , cj [xj] <MVH ri [xj], Ti →vcfr Tj and
there is no write operation wk[xk] of a committed
transaction Tk in MVH such that xj ≪ xk, ck <MVH

ri [xj], Ti →vcfr xk or

(b) requirement 2(b) of definition 13 is true.

To show that a multi-version history MVH provides strict

forward BOT view consistency guarantees, we associate a cor-
responding graph with MVH.

Definition 20 (Causal dependency strict forward read single
query multi-version serialization graph). A causal depen-
dency strict forward read single query multi-version se-
rialization graph for a multi-version history MVH with
respect to a read-only transaction Ti , denoted CD-SFR-SQ-
MVSG(MVH, Ti), is a directed graph with nodes N :=

T
dep
i ∪ Ti , and edges E such that:

1. An edge of type 1 and 2 in SFR-MVSG(MVH) is an edge
in CD-SFR-SQ-MVSG(MVH, Ti).

2. There is an edge Ti → Tj (Ti �= Tj) whenever there
exists a pair of operations wj [xj] and ri[xj] of a read–
write transaction Tj and a read-only transaction Ti such
that bi→MVHcj , cj [xj]<MVHri [xj], Ti→vcfrTj and there
is a write operation wk[xk] of a committed transaction Tk
in MVH such that xj ≪ xk , ck <MVH ri [xj], Ti →vcfr Tk.

PROCESSING READ-ONLY TRANSACTIONS 335

Table 1
Newly defined ILs and their core characteristics.

Newly defined iso-
lation level

Base isolation level Consistency guarantees Currency guarantees

BOT serializability Serializability Each read-only transaction in MVH is
required to serialize with all commit-
ted read–write and all other read-only
transactions in MVH.

Read-only transactions are required
to observe a snapshot of committed
data objects that existed by their start-
ing points.

Strict forward BOT
serializability

Serializability Each read-only transaction in MVH is
required to serialize with all commit-
ted read–write and all other read-only
transactions in MVH.

Read-only transactions are required
to read from a database snapshot valid
as of the time when they started.
However, read-only transactions are
forced to read “forward” and observe
the updates from read–write transac-
tions that committed after their start-
ing points as long as the serializability
requirement is not violated by those
reads.

Strict forward BOT
update serializabil-
ity

Update serializability [14,17]/
Weak consistency [13]

Each read-only transaction in MVH
is required to serialize with all com-
mitted update transactions in MVH,
but does not need to be serializable
with other committed read-only trans-
actions.

Enforces the same currency require-
ments as the strict forward BOT
serializability level with the differ-
ence that read-only transactions are
obliged to issue forward reads as long
as the update serializability require-
ments are not violated by those reads.

Strict forward BOT
view consistency

View consistency/
Update consistency [13]/
External consistency [33]

Each committed read-only transac-
tion in MVH is required to serialize
with all committed update transac-
tions in MVH that had written values
which have either directly or indi-
rectly been seen by the read-only
transaction.

Enforces the same currency require-
ments as the strict forward BOT se-
rializability level with the difference
that forward reads of read-only trans-
actions are enforced whenever the
view consistency criterion is not vio-
lated by those reads.

Theorem 7. A history MVH is strict forward BOT serializ-
able, if for each read-only transaction Ti the corresponding
CD-SFR-SQ-MVSG(MVH, Ti) is acyclic.

Proof. See [30]. �

To conclude this section, table 1 summarizes the main
characteristics of the newly defined ILs.

4. Implementation issues

We now propose protocols that implement the newly defined
ILs in an efficient manner. First, we illustrate the key char-
acteristics of our envisaged broadcasting environment and
present some general design assumptions that underlie the im-
plementation of the ILs.

Data dissemination by using broadcast disks is likely to
become the prevailing mode of data exchange in mobile wire-
less environments. The characteristics of a broadcast disk
environment are well known in the literature and therefore
we only present some key properties that are relevant for our
protocols. For simplicity, we assume a flat broadcast disk
that consists of three types of segments: (a) index segment,
(b) data segment, and (c) control information segment. To
make the data disseminated self-descriptive, we incorporate
an index into the broadcast program. We choose (1,m) in-

dexing [22] as the underlying index organization method and
broadcast the complete index once within each minor broad-
cast cycle. To provide cache consistency in spite of server up-
dates, each minor cycle is preceded with a concurrency con-
trol report or CCR that contains the read and write sets along
with the values of newly created objects of read–write trans-
actions that committed in the last minor broadcast cycle. An
entry in a CCR is a 3-tuple 〈TID,ReadSet,WriteSet〉 where
TID denotes a globally unique transaction identifier. Trans-
actions stored in CCR are ordered by their commit time. The
data segment contains hot-spot data objects that are of interest
to a large number of clients. The rest of the database can be
accessed on-demand. To allow clients to communicate with
the server, we assume the availability of a back channel.

With respect to the client and server architecture, we as-
sume a hybrid caching system for both system components
to improve the performance of our protocols. In a hybrid
caching system the cache memory available is divided into a
page-based segment and an object-based segment. The server
uses its page cache to handle fetch requests from the server
and to fill the broadcast disk with pages containing hot-spot
objects. The server object cache is utilized to save installation
disk reads for writing modified objects onto disk. The latter is
organized similar to the modified object buffer (MOB) in [15].
With respect to concurrency control, the server object cache
can be used to answer object requests in case a transaction

336 A. SEIFERT AND M.H. SCHOLL

consistent page is not available from the client’s perspective.
The client also maintains a hybrid cache scheme to get full ad-
vantage of both types. The client page cache is used to keep
requested and prefetched database pages in volatile memory.
We assume a single version page cache that maintains up-to-
date server pages. The client object cache, on the other hand,
is allowed to store multiple versions of an object X. To sim-
plify the description of our protocols, we assume that an ob-
ject X can be either stored in a page P or in the object cache
of the client. To judge about the correctness of a client read
operation, each page P is assigned a timestamp TS(P) that
reflects the (logical) time when an objectX resident in P was
last updated. Analogous to the page cache, each version of
an object maintained in the client object cache is associated
with a commit timestamp reflecting the point in time when
the version was installed.

4.1. Multi-Version Concurrency Control protocol with BOT

Serializability guarantees (MVCC-BS)

In this section, we present an algorithm that provides BOT
serializability to read-only transactions. To enforce database
consistency, we assume that the state of the mobile database
is exclusively modified by transactions that run with serial-
izability requirements. We also assume that clients can only
execute a single read-only transaction at a time. The subse-
quently described algorithm will build the fundamental basis
for subsequent protocols that ensure weaker semantic guar-
antees than serializability. For space considerations, we only
cover the case where mobile clients do not suffer from inter-
mittent connectivity and can actively observe the broadcast
channel.

Our implementation of the BOT serializability level al-
lows concurrency control with nearly no overhead. For each
read-only transaction Ti , the client keeps the following data
structures and information for concurrency control purposes:
(a) Ti ’s startup timestamp, (b) Ti’s read set, and (c) an ob-
ject invalidation list. The latter contains the identifiers and
commit timestamps of objects that were created during the
current major broadcast cycle (MBC). Note that all underly-
ing data structures of our CC schemes are chosen for clarity
of exposition rather than for efficient implementation.

The server data structures include the hybrid server cache
and CCR as described before and the temporary object cache
(TOB). The TOB is used to record the modified or newly cre-
ated object values of transactions that committed during the
current minor broadcast cycle. Additionally, the TOB is uti-
lized to store “shadow” versions of transactions that are not
yet committed. Whenever an minor broadcast cycle is fin-
ished, all versions of committed transactions are merged from
the TOB into the MOB and the updated or newly created ob-
ject versions will be available for the next minor and major
broadcast cycle.

Now we describe the protocol scheme by differentiating
between client and server operations.

4.1.1. Client operations

1. Read object X by transaction Ti on client C.

(a) Ti issues its first read operation. Assign the number of
the current minor broadcast cycle to STS(Ti). Add X to Ti’s
read set (RS).

(b) Requested objectX is cache-resident in the page or object

cache. If the requested object is stored in page P , it can be
read by Ti whenever P ’s update timestamp TS(P) is smaller
than STS(Ti) or if Ti started its operations in the current MBC
and there is no entry ofX with timestamp TSOIL(X) in the ob-
ject invalidation list (OIL) such that STS(Ti) � TSOIL(X).
Otherwise, Ti looks for the entry of object X in the ob-
ject cache. If some version j of object X is in the object
cache, Ti can read Xj if the invariant TS(Xj) < STS(Ti)
holds. (Note that there is no need to check whether there
is an other version k of object X in the client cache such
that TS(Xj) < TS(Xk) and TS(Xk) < STS(Ti) since by
assuming that clients run not more than a single read-only
transaction at any time only one version of object X with
a commit timestamp smaller than the starting timestamp of
the read-only transaction may be useful for it and is therefore
maintained in the client object cache. The other object ver-
sions would only waste scarce memory space and are there-
fore garbage-collected as mentioned below.) If Ti reads some
version of X, add X to RS(Ti).

(c) Requested object X is scheduled for broadcasting. Read
index of the broadcast to determine the position of the ob-
ject on the broadcast. The client is allowed to download
the desired object X if the update timestamp of the page P
in which X resides is smaller than Ti’s starting point, i.e.,
TS(P) < STS(Ti) and there is no object version of X in OIL
such that TS(P) < TSOIL(X) and TSOIL(X) < STS(Ti). If
a consistent object of X cannot be located in the air-cache
the client proceeds with (d). Otherwise, it reads the installed
version of object X and adds X to RS(Ti).

(d) Requested version of objectX is neither in the local cache

nor in the air-cache. Send fetch request for object X along
with STS(Ti) and Ti’s OIL to the server. The server processes
the client request as described below. As a reply the client ei-
ther receives a transaction consistent copy (with respect to Ti)
of a page P which contains the requested object X or oth-
erwise a transaction consistent version of X. If the request
cannot be satisfied, the server notifies the client and Ti must
be aborted.

2. Concurrency control report processing on clientC. CCRs
are disseminated at the beginning of each minor broadcast cy-
cle. The client processes the CCR as follows. For each ob-
ject X included in the write set of a read–write transaction Tj
that committed in the last minor broadcast cycle, an entry is
added into OIL containing the identifier of object X along
with its commit timestamp. Additionally, the contents of the
page and object cache is refreshed. If objectX kept in page P
at client C was updated during the last minor broadcast cycle,

PROCESSING READ-ONLY TRANSACTIONS 337

the old version of X is overwritten by the newly created ver-
sion. Otherwise, the updated version of X is installed into the
object cache, if X belongs to C’s hot-spot objects. If a prior
version of objectX becomes useless for Ti it is discarded from
the object cache.

3. Transaction commit. Transaction Ti is allowed to com-
mit, if all read requests were satisfied and no abort notification
was sent by the server.

4.1.2. Server operations

1. Fetch request for objectX from client C. If the server re-
ceives a fetch request for object X from transaction Ti , the
server first checks if the page P in which X resides is in the
server cache. If P is cache-resident and the startup timestamp
of Ti is equal to the number of the current minor broadcast
cycle, the server will send page P to C after applying to P
all pending server object cache entries. Otherwise, if any of
the aforementioned conditions is violated, the server searches
for X in the MOB. If it finds an entry for object X such that
TS(X) < STS(Ti), the server will send objectX to the client.
Otherwise, if STS(Ti) equals the number of the current mi-
nor broadcast cycle, the server reads P from disk and applies
all outstanding modifications recorded in the MOB of objects
that reside in P to the page. If a fetch request cannot be sat-
isfied due to consistency reasons, an abort message will be
transmitted to the client.

2. Integration of the TOB into the MOB. At the end of each
minor broadcast cycle, the newly created and updated ver-
sions of objects are merged into the MOB. If objects ex-
ist in the MOB, their object values will be overwritten and
timestamp numbers will be updated.

3. Filling the broadcast disk server. The server fills the data
and index segment of the broadcast disk server at the begin-
ning of each MBC. Thereby, the server proceeds as follows.
If the desired page containing hot-spot objects is not in the
page cache of the server, it is read into the cache from the
disk and thereafter it is updated to reflect all the modifica-
tions of its objects recorded in the MOB. At the end of this
process, all pages stored in the broadcast disk server are com-
pletely up-to-date, i.e., they contain the most current versions
of their objects. Further, the server creates an (1,m)-index
containing entries for objects scheduled for broadcasting and
stores it into the index segment of the broadcast disk. The
concurrency control segment of the broadcast disk is updated
at the beginning of each minor broadcast cycle. This segment
is filled with the CCR as described above.

4.2. Multi-Version Concurrency Control protocol with Strict

Forward BOT Serializability guarantees (MVCC-SFBS)

Having described a MVCC scheme that ensures BOT Serial-
izability consistency, we extend this scheme to provide Strict
Forward BOT Serializability. Recall that the Strict Forward
BOT Serializability level differs from the BOT Serializabil-
ity degree by requiring that read-only transactions observe

the updates of transactions that committed after their starting
point provided that Read Rule 1 is satisfied. To implement the
latter requirement, we adopt a technique used by the multi-
versioning with invalidation scheme in [28] and associate a
read forward flag, or RFF, with each read-only transaction Ti
in MVH that indicates whether Ti has read a version of an ob-
ject that was later modified by a read–write transaction Tj . If
such an event occurs, RFF of Ti is set to false and Tj ’s commit
timestamp is recorded in a variable called read forward stop
or RFS. Equipped with the latter information, the scheduler
can efficiently determine which versions of requested objects
a mobile transaction needs to observe by applying the follow-
ing read rule.

Read Rule 4. Whenever a read-only transaction Ti wants to
read an object X and RFF is set to false, Ti has to read the
latest committed object version of X with a timestamp TS
that is smaller than RFS(Ti). Otherwise, Ti has to read the
most recent object version of X.

4.3. Multi-Version Concurrency Control protocol with Strict

Forward BOT Update Serializability guarantees

(MVCC-SFBUS)

Recall that the Update Serializability level is less restrictive
than the serializability level by allowing different read-only
transaction to see different serialization orders of read–write
transactions. This weaker requirement affects the forward
read behavior of read-only transactions running under Strict
Forward BOT Update Serializability. As with the MVCC-
SFBS, the mobile client has to determine for each active read-
only transaction Ti as to whether it needs to observe the ef-
fects of a read–write transaction Tj that committed during
Ti’s execution time. To this end, each read-only transac-
tion maintains two additional data structures. First, an ob-
ject version write prohibition list, or OVWPL, is associated
with each read-only transaction Ti . An OVWPL is a set of
pairs 〈OID,CTS〉 where OID denotes the identifiers of ob-
jects whose values Ti is not allowed to see and CTS represents
the logical time when the transactions that modified or cre-
ated the objects committed. The OVWPL of an active read-
only transaction Ti is updated whenever a new CCR appears
on the broadcast channel. Further, for each active read-only
transaction Ti the client maintains an object version read pro-
hibition list OVRPL that keeps track of the objects read by
read–write transactions that committed during Ti’s execution
time and whose effects may not be seen by Ti . The identi-
fiers of objects created by a read–write transaction Tj along
with the corresponding timestamp (in case of the OVWPL)
have to be added to the Ti’s OVWPL and OVRPL if any of
the following conditions holds:

C1. ReadSet(Ti) ∩ WriteSet(Tj) �= ∅.

C2. ReadSet(Tj) ∩ OVWPL(Ti) �= ∅.

C3. OVRPL(Ti) ∩ WriteSet(Tj) �= ∅.

Condition C1 implies that in order for Ti to read forward on
objects written by Tj , the intersection between Ti’s read set

338 A. SEIFERT AND M.H. SCHOLL

and Tj ’s write set must be empty. Otherwise, the read set
and write set of Tj must be registered in Ti ’s OVRPL and
OVWPL, respectively. If Tj has updated object X that is al-
ready listed in Ti’s OVWPL, the entry of X is not modified
and the protocol proceeds with the next object written by Tj
(if there is any). Condition C2 states that Tj may not see any
objects contained in Ti’s OVWPL. It ensures that Ti will only
see the effects of Tj if there is no write–read dependency be-
tween any transaction Tk whose updates are registered in Ti’s
OVWPL and Tj . If C2 is violated, Tj ’s updates and read ob-
jects have to be placed into Ti’s OVWPL and OVRPL, respec-
tively. Condition C3 states that Tj must not have overwritten
an object that is included in Ti’s OVRPL. This condition guar-
antees that Ti will only see the updates of Tj if there exists no
read–write dependency between any transaction Tk (that con-
flicts with Ti and those read operations are included in Ti’s
OVRPL) and Tj . Again, if C3 is not satisfied, Ti’s OVRPL
and OVWPL must be updated.

A read-only transaction running under Strict Forward BOT
Update Serializability sees a correct state of the database if the
mobile client obeys the following read rule:

Read Rule 5. Whenever a read-only transaction Ti wants to
read object X that is registered in its OVWPL, Ti has to read
the latest committed object version of X with a timestamp
TS that is smaller than the one of the entry of object X in
OVWPL. Otherwise, Ti has to read the most recent object
version of X.

Note that Read Rule 5 is applicable to the MVCC-SFBVC
protocol as well.

4.4. Multi-Version Concurrency Control protocol with Strict

Forward BOT View Consistency guarantees

(MVCC-SFBVC)

View Consistency is the weakest IL that provides transaction
consistency to read-only transactions and has the potential to
maximize the number of forward reads of read-only transac-
tions without violating transaction correctness. To determine
whether an active read-only transaction Ti is required to see
the updates of a read–write transaction Tj that successfully
finished its execution during Ti’s lifetime, the applicability of
rule C1 and C2 has to be tested. If both conditions are satis-
fied and Ti wants to read an object written by Tj , it needs to
read the version installed by Tj , if there exists no later ver-
sion of the respective object that Ti is allowed to observe as
well. As the rules given above are a proper subset of those
formulated for the MVCC-SFBUS scheme, it is obvious that
the MVCC-SFBVC protocol provides strictly stronger cur-
rency guarantees than MVCC-SFBUS. Further, it is easy to
see that MVCC-SFBVC has lower time and space overheads
than MVCC-SFBUS since the former does not need to main-
tain the OVRPL. Hence, we expect that the MVCC-SFBVC
scheme outperforms the MVCC-SFBUS protocol in our per-
formance study.

5. Performance results

The performance study is aimed at measuring the absolute
and relative performance of our proposed multi-version con-
currency control protocols in a wireless broadcast disk envi-
ronment. Additionally, we compare our protocols with the
previously devised concurrency control schemes [28,32] to
detect performance trade-offs between the schemes and their
underlying consistency and currency guarantees. We analyze
the performance of the new ILs implementations and other
protocols using two key metrics, namely transaction com-

mit and transaction abort rate. We restricted the subsequent
analysis to those two metrics due to space restrictions. For an
extended version of the performance analysis as well as for
the experimental setup of the simulator we refer the interested
reader to [30].

5.1. Experimental results of the protocols proposed

All performance results presented are derived from execut-
ing 10000 read-only transactions after the system reached
its steady state. The results come from artificially generated
traces, i.e., they give only an intuition about the performance
of our ILs implementations, but may not represent a real ap-
plication’s behavior. Due to space restrictions, we give only
a brief interpretation of the experimentally measured results
with respect to the aforementioned metrics.

As figure 2(a) shows, the transaction throughput of all pro-
tocols decreases along the x-axis as the number of objects
accessed by read-only transactions rises. Increasing the trans-
action length results in longer transaction execution times and
hence fewer transaction commits per second. Furthermore,
longer read-only transactions might abort at a later point of
their execution which results in higher abort costs, thus also
reducing the transaction throughput. Additionally, as trans-
action execution time progresses, the likelihood that object
read requests can be satisfied by some component of the data-
base system (client cache, air-cache or server memory) de-
creases. Thus, apart from increased abort costs, higher abort
rates are another consequence of longer transaction execution
times. As the tabular results show, the performance difference
between the MVCC-SFBVC and the other protocols widens
slightly with respect to the MVCC-SFBUS and MVCC-SFBS
scheme and significantly with respect to the MVCC-BS proto-
col with increase in read-only transaction length. The grow-
ing performance penalty is caused by a disproportionate in-
crease in the number of messages sent per committed read-
only transaction since fewer client cache and air-cache hits
occur.

The increase in the transaction abort rate as a function of
the transaction length is depicted in figure 2(b). In terms of
the abort rate, the relative difference between the protocols
decreases when growing the transaction size from 10 to 50
read operations. The reason for the narrowing gap between
the protocols is related to a decline in the relative difference
in the number of PLEs (defined as the number of data objects
that a read-only transaction is forbidden to read forward by its
commit point) with increasing transaction length.

PROCESSING READ-ONLY TRANSACTIONS 339

(a)

(b)

Figure 2. Performance results of the four new ILs’ implementations for the baseline settings of the simulator. While graphs show absolute simulation values,
tables present the performance penalty of three ILs relative to the best performing CC protocol, namely MVCC-SFBVC.

340 A. SEIFERT AND M.H. SCHOLL

Figure 3. Protocols studied with their respective data consistency and currency guarantees.

5.2. Comparison to existing CC Protocols

Here we present the results of experiments comparing the
throughput and abort rate of the best and worst performing
protocol, namely MVCC-SFBVC and MVCC-BS, with CC
schemes previously proposed in the literature, which are suit-
able for mobile database systems [27,28,32]. A suite of pro-
tocols, namely the multi-versioning method, multi-versioning

with invalidation method, and invalidation-only scheme, all
providing serializability along with varying currency guaran-
tees to read-only transactions were devised in [27,28]. Out
of those protocols, we selected the Invalidation-Only (IO)
scheme for the comparison analysis. The other two proto-
cols were left out due to their similarity to the MVCC-BS
and MVCC-SFBS schemes, namely, the MVCC-BS protocol
ensures the same consistency and currency guarantees as the
multi-versioning scheme and the same is valid for the rela-
tionship between the MVCC-SFBS and the multi-versioning
with invalidation method. Additionally, we compare our
protocols with the APPROX algorithm [32], which provides
View Consistency along with strong currency guarantees to
read-only transactions. In [32], two implementations, namely
F-Matrix and R-Matrix, were developed for the APPROX al-
gorithm. We have selected a variant of the F-Matrix, called
F-Matrix-No, for the comparison analysis, since it showed
the best performance results among the four protocols (Dat-
acycle [20], R-Matrix, F-Matrix, and F-Matrix-No) experi-
mentally compared in [32]. F-Matrix-No differs from the
F-Matrix protocol by ignoring the cost of broadcasting con-
currency control information for each database object, and
therefore can be used a baseline for measuring the best possi-
ble performance of the protocol’s underlying guarantees.

Figure 3 shows the relationship between our proposed pro-
tocols (printed in bold and italics) and the ones published
in literature. As the figure indicates, both the IO scheme
and F-Matrix-No protocol ensure EOT data currency. There-
fore, they are not expected to perform well especially under
the 0.95 workload where the clients’ access pattern is highly
skewed, thus resulting in frequent conflicts.

We now briefly present the results of the comparison study.
As shown in figure 4 MVCC-SFBVC turns out to be supe-
rior over the other compared protocols. On average, MVCC-
SFBVC outperforms the F-Matrix-No by 90.9% for the 0.95
workload and by 85.7% for the 0.80 workload. The aver-
age performance degradation of the IO scheme relative to the
MVCC-SFBVC protocols is 95.5% for the 0.95 workload and
93% for the 0.80 workload. The reason for the relatively
poor performance of F-Matrix-No and IO scheme is related
to strong data currency requirements these two protocols im-
pose. The F-Matrix-No performs moderately better than the
IO scheme since the former processes read-only transactions
with weaker consistency guarantees than the later. While
the IO scheme forces read-only transactions to abort when-
ever they had read some object version that was later updated
by a read–write transaction Tj , the constraints imposed by
the F-Matrix-No protocol are less severe. Here, only those
read-only transactions need to be aborted which had observed
an object version than was later updated by some read–write
transaction Tj , and Tj belongs to the set of transactions whose
effects have been either directly or indirectly seen by the re-
spective read-only transaction. Thus, the number of transac-
tions potentially aborted by the F-Matrix-No protocol forms
a proper subset of the ones aborted by the IO scheme.

6. Conclusion

In this paper, we have presented four new ILs suitable for
managing read-only transactions in the broadcasting environ-
ment. Further, we have described a suite of MVCC proto-
cols that implement the defined ILs in a hybrid data deliv-
ery environment. Finally, the implementations of our de-
fined levels are compared by means of a performance study
which experimentally confirmed the hypothesis that protocols
with weaker correctness requirements outperform implemen-
tations of stronger ILs as long as they enforce the same data
currency guarantees. A comparison study has shown that
the MVCC-SFBVC scheme is the best concurrency control
mechanism for cacheable transactions in mobile broadcasting

PROCESSING READ-ONLY TRANSACTIONS 341

(a)

(b)

Figure 4. Performance results of the comparison study under the baseline settings of the simulator. While graphs show absolute simulation values, tables
present the performance penalty of the MVCC-BS, F-Matrix-No, and IO scheme relative to the MVCC-SFBVC protocol.

342 A. SEIFERT AND M.H. SCHOLL

environments. Thus, MVCC-SFBVC should always be the
first choice for processing read-only transactions in mobile
dissemination-based environments whenever read-only trans-
actions are not required to serialize with the complete set of
committed transactions in the system. Otherwise, the MVCC-
SFBS protocol is to be preferred.

References

[1] R. Abbott and H. Garcia-Molina, Scheduling real-time transactions:
A performance evaluation, in: VLDB (1988) pp. 1–12.

[2] S. Acharya, R. Alonso, M.J. Franklin and S.B. Zdonik, Broadcast
disks: Data management for asymmetric communications environ-
ments, in: SIGMOD Conference (1995) pp. 199–210.

[3] S. Acharya, M.J. Franklin and S.B. Zdonik, Dissemination-based data
delivery using broadcast disks, IEEE PCM 2(6) (1995).

[4] S. Acharya, M. Franklin and S. Zdonik, Prefetching from a broadcast
disk, in: ICDE (February 1996) pp. 276–285.

[5] S. Acharya, M. Franklin and S. Zdonik, Balancing push and pull for
data broadcast, in: SIGMOD Conference (1997) pp. 183–194.

[6] A. Adya, Weak consistency: A generalized theory and optimistic
implementations for distributed transactions, Technical Report MIT/
LCS/TR-786, Cambridge, MA (March 1999).

[7] A. Adya, B. Liskov and P. O’Neil, Generalized isolation level defini-
tions, in: ICDE, San Diego, CA (2000) pp. 67–78.

[8] Anonymous, CPU information guide, http://www.

pocketpccity.com/articles/2001/4/2001-4-l-Palm-

size-PC.html (April 1, 2001).
[9] ANSI X3.135-1992, American National Standard for Information Sys-

tems – Database Language – SQL (November 1992).
[10] D. Barbara, Certification reports: supporting transactions in wireless

systems, in: ICDCS (1997) pp. 466–473.
[11] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil and P. O’Neil,

A critique of ANSI SQL isolation levels, in: SIGMOD Conference

(June 1995) pp. 1–10.
[12] P.A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control

and Recovery in Database Systems (Addison-Wesley, Reading, MA,
1987).

[13] P.M. Bober and M.J. Carey, Multiversion query locking, in: VLDB,
Vancouver (August 1992) pp. 497–510.

[14] H. Garcia-Molina and G. Wiederhold, Read-only transactions in a dis-
tributed database, ACM TODS 7(2) (June 1982) 209–234.

[15] S. Ghemawat, The modified object buffer: a storage management tech-
nique for object-oriented databases, Technical Report MIT/LCS/TR-
666, MIT Laboratory for Computer Science (September 1995).

[16] R. Gruber, Optimism vs. locking: a study of concurrency control for
client–server object-oriented databases, Ph.D. thesis, MIT (1990).

[17] R.C. Hansdah and L.M. Patnaik, Update serializability in locking,
in: International Conference on Database Theory, Rome, Italy (Sep-
tember 1986) pp. 171–185.

[18] J.R. Haritsa, M.J. Carey and M. Livny, On being optimistic about real-
time constraints, in: ACM PODS (1990) pp. 331–343.

[19] T. Henderson, Networking over next-generation satellite systems,
Ph.D. thesis, University of California, Berkeley (1999).

[20] G. Herman, G. Gopal, K. Lee and A. Weinrib, The datacycle architec-
ture for very high throughput database systems, in: SIGMOD Confer-

ence, San Francisco, CA (May 1987) pp. 97–103.
[21] Hughes Network Systems, DirecPC home page (January 2001),

http://www.direcpc.com

[22] T. Imielinski, S. Viswanathan and B.R. Badrinanth, Data on air: orga-
nization and access, IEEE TKDE 9(3) (May/June 1997) 353–372.

[23] A. Kemper and D. Kossmann, Dual-buffer strategies in object bases,
in: VLDB, Santiago, Chile (1994) pp. 427–438.

[24] C. Mohan, H. Pirahesh and R. Lorte, Efficient and flexible methods for
transient versioning of records to avoid locking by read-only transac-
tions, in: SIGMOD Conference, San Diego, CA (June 1992) pp. 124–
133.

[25] E. Mok, H.V. Leong and A. Si, Transaction processing in an asymmet-
ric mobile environment, in: MDA, Hong Kong, China (December 1999)
pp. 71–81.

[26] Oracle Corporation, Oracle8i Concepts, Release 8.1.6, chapter 24, Data
currency and consistency (1999).

[27] E. Pitoura and P. Chrysanthis, Scalable processing of read-only trans-
actions in broadcast push, in: ICDCS, Austin, TX (1999) pp. 432–439.

[28] E. Pitoura and P. Chrysanthis, Exploiting versions for handling updates
in broadcasting disks, in: VLDB (1999) pp. 114–125.

[29] H. Schwetman, CSIM users guide (January 2001), http://www.
mesquite.com/userguidespage.htm

[30] A. Seifert and M.H. Scholl, Processing read-only transactions in hybrid
data delivery environments with consistency and currency guarantees,
Technical Report, No. 163, University of Konstanz (December 2001).

[31] J. Shanmugasundaram, A. Nithrakasyap, J. Padhye, R. Sivasankaran,
M. Xiong and K. Ramamritham, Transaction processing in broadcast
disk environments, in: Advanced Transaction Models and Architec-

tures, eds. S. Jajodia and L. Kerschberg (Kluwer, Dordrecht, 1997).
[32] J. Shanmugasundaram, A. Nithrakasyap, R. Sivasankaran and K. Ra-

mamritham, Efficient concurrency control for broadcast environments,
in: SIGMOD Conference (1999) pp. 85–96.

[33] W.E. Weihl, Distributed version management for read-only actions,
TSE, SE-13(1) (January 1987) 55–64.

[34] K.L. Wu, P.S. Yu and C. Pu, Divergence control for epsilon serializabil-
ity, in: ICDCS, Phoenix, AZ (February 1992) pp. 506–515.

André Seifert is currently Ph.D. student in the De-
partment of Computer Science of the University of
Konstanz. He received the Bachelor degree in eco-
nomic science from the University of Applied Sci-
ence, Mittweida, Germany, in 1997 and the Master
degree in information science from the University of
Konstanz, Germany, in 1999. His research interests
include replication and transaction management in
distributed stationary and mobile environments, load
balancing in high performance systems, and consis-

tency management and data integration in intermittently connected systems.
E-mail: Andre.Seifert@uni-konstanz.de

Marc H. Scholl is Full Professor of Computer Sci-
ence in the Department of Computer and Infor-
mation Science, University of Konstanz, Germany.
Earlier, he has held positions at the University of
Ulm, Germany (Associate Professor, 1992–1994)
and at ETH Zurich, Switzerland (Assistant Profes-
sor, 1989–1992). He received his Diploma (Masters,
1982 and Ph.D. degrees, 1988), both in computer
science, from the Technical University of Darm-
stadt, Germany. His current research interests cover

DBMS design and architecture, query processing and optimization, database
models and languages, XML databases, and mobile database applications.
Dr. Scholl has been serving on PCs and organizations of major international
database conferences, he is a member of editorial board of the VLDB Jour-
nal, and is a member of a number of professional organizations (ACM, IEEE,
GI). Currently, he is also Vice-President of the University of Konstanz.
E-mail: Marc.Scholl@uni-konstanz.de

