
Processing RIF and OWL2RL within DLVHEX?

Marco Marano1, Philipp Obermeier2, and Axel Polleres2

1 Universita’ della Calabria mmarano@deis.unical.it
2 Digital Enterprise Research Institute, National University of Ireland, Galway

{philipp.obermeier, axel.polleres}@deri.org

Abstract. We present an extension of the DLVHEX system to support RIF-Core,
a dialect of W3C’s Rule Interchange Format (RIF), as well as combinations of
RIF-Core and OWL2RL ontologies. DLVHEX is a plugin system on top of DLV, a
disjunctive Datalog engine which enables higher-order and external atoms, as well
as input rewriting capabilities, which are provided as plugins and enable DLVHEX
to bidirectionally exchange data with external knowledge bases and consuming in-
put in different Semantic Web languages. In fact, there already exist plugins for
languages such as RDF and SPARQL. Our new plugin facilitates consumption and
processing of RIF rule sets, as well as OWL2RL reasoning by a 2-step-reduction to
DLVHEX via embedding in RIF-Core. The current version implements the trans-
lation from OWL2RL to RIF by a static rule set [12] and supports the RIF built-ins
mandatory for this reduction trough external atoms in DLVHEX. For the future
we plan to switch to a dynamic approach for RIF embedding of OWL2RL [2] and
extend the RIF reasoning capabilities to more features of RIF-BLD. We provide a
description of our current system, its current development status as well as an illus-
trative example, and conclude future plans to complete the Semantic Web library
of plugins for DLVHEX.

1 Introduction

The W3C is currently developing RIF (Rule Interchange Format) [6], a universal layer
designed for exchanging rules between different and possibly heterogeneous systems over
the Semantic Web. It is focused on the exchange more than on the development of a single
system to fit all needs of all the already available rule systems, because it appears clear
that a system which fits all needs is very difficult, if not impossible to build, due to the
large syntactic and semantic differences between different systems or even in different
modules of the same system. The RIF working group divided the language into dialects
which are meant to be used in different situations, while maintaining the largest subset
of rules in common. They are called RIF profiles: Core, BLD and PRD. While Core is
formed by the base constructs of the language, BLD (Basic Logic Dialect) is focused on
logic, while PRD (Production Rules Dialect) is based on the concept of production rules.
Among other features, by treating F-Logic like frames equivalently to RDF triples, par-
ticularly the RIF Core and RIF BLD fragments, promise a standard format for publishing
and exchanging rules on top of RDF.

Likewise, ontologies in OWL2RL[10], a rule-based sublanguage of the Web ontology
language OWL2 [7], enables the support of inference over ontologies directly in rule-
based system. This is achieved by giving a partial axiomatisation of the RDF OWL2
semantics in terms of first-order implications that can be encoded as rules.
? This work is partly funded by Science Foundation Ireland (SFI) project Lion-2

(SFI/08/CE/I1380) and an IRCSET postgraduate scholarship.

At the moment few implementations of OWL2RL and RIF-Core exist since both lan-
guages are quite new. Moreover, we are not aware of any implementations – as of yet –
that implement the combinations of RIF and OWL as standardised [2].

To fill this gap we propose and implemented a reduction of those languages to DLVHEX
[4], a powerful disjunctive logic reasoner based on the Answer Set Programming paradigm.
DLVHEX has it roots in DLV, a disjunctive Datalog system, but adds several features to
the base language. The most interesting of them is the possibility to use natively higher
order atoms and external atoms, which are added to the core language by means of a
plug-in architecture. Through external atoms it is possible to inject procedural code in
the otherwise purely declarative semantics of the language. This concept is very simi-
lar to libraries for other reasoners which enable interaction with external data sources,
such as, e.g., the integration of RDF support in SWI-Prolog [13]. There already exist a
rich collection of DLVHEX plugins for Semantic Web languages, such as SPARQL [11],
RDF and OWL DL [5]. Our new plugin for RIF-Core and OWL2RL not only expands the
interoperability of DLVHEX with these two new standards, but also enables the combi-
nation of both with the other data models and extensions, already accessible by plugins,
for an evaluation, experiments and new applications by combining these languages with
the expressive features of Answer Set Programming [1, 3].

Our plugin allows DLVHEX to load and process RIF rule sets as well as OWL2RL
ontologies. These are transformed to DLVHEX programs in a two-step translation: we
first rewrite from OWL2RL to RIF-Core, and then perform a translation into DLVHEX.
To this end there exist two different OWL2RL-to-RIF reduction methods, though, a static
RIF rule set [12, Appendix 8.1] or dynamic a translation function from OWL2RL on-
tologies to RIF documents which yields RIF rules specifically to the input ontology [12,
Appendix 8.2]. In comparison, the former approach bears some limitations in relation to
interoperability with other RIF rule sets, and the combination of RIF with OWL ontolo-
gies as specified in [2] is rather based on the latter. Despite these restrictions, our current
version of the OWL2RL reasoner transforms OWL2RL ontologies into RIF rules by the
static rule set for the sake of a rapid first implementation. We will explain the limitations
of this approach when doing it naively, and approximate the full dynamic combination
of [2] by some extensions of the naive first translation.

In the following we give a description of our system, its current development status
as well as accompanying examples in Section 2, and conclude with a report on our future
plans in Section 3.

2 System Description

Our plugin consists of three parts: the OWL2RL to RIF-Core translation following [12],
a RIF-Core to DLVHEX translator component, and the DLVHEX reasoner. In sequel we
will provide more details to these components while we describe the system’s workflow
partitioned into its three essential stages:
Phase I - Translation from OWL2RL to RIF-Core An OWL2RL ontology, given in
RDF/XML, as input is forwarded to the OW2RL to RIF-Core translator which translates
RDF triples of the input ontology to RIF frames and merges them with the static rule set
from [12] to a RIF-Core document. The application of the static rule set to the RIF frames
gained from the input will be performed during the evaluation of this RIF document later
on.

Phase II - Reduction of RIF-Core to DLVHEX The previously obtained RIF-Core
document is preliminary reduced to a DLVHEX program. For that, the document is first
parsed into an abstract syntax tree that is translated into a HEX program by a tree walk-
ing algorithm which gradually generates, adherent to a predefined set of translation rules,
the corresponding HEX expressions from the visited tree nodes. This transformation in-
cludes reduction of features from RIF not directly expressible in our system to the pro-
cessable input language of DLVHEX, e.g. Lloyd-Topor [8] transformation of rule bodies
with discjunction, static type checking, or unnesting of external predicates, i.e. built-ins.
Eventually, the generated program is forwarded to DLVHEX which returns a collection
of answer sets.
Phase III - Answer Construction from DLVHEX to OWL2RL Eventually, the answer
sets, which are basically sets of ground facts, are simply transformed into a set of RIF
ground atomic formulas.

Example – RIF to DLVHEX
The OW2RL to RIF-Core translation, executed in Phase I is straightforward. We give
here only a small example for the RIF-Core to DLVHEX translation, occurring in Phase
II. We apply it here to a test case from the RIF development group, http://www.w3.
org/2005/rules/wiki/Factorial_Forward_Chaining:
Document(
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(ex <http://example.org/example#>)
Group
(

ex:factorial(0 1)

Forall ?N ?F? ?N1 ?F1 (
ex:factorial(?N ?F) :-

And(External(pred:numeric-greater-than-or-equal(?N1 0))
?N = External(func:numeric-add(?N1 1))

ex:factorial(?N1 ?F1)
?F = External(func:numeric-multiply(?N ?F1)))

)))

This document describes the computation of the factorial for a positive integer n. Our
DLVHEX plugin rewrites the above RIF document into the following two DLVHEX
rules:
"ex:factorial"("0", "1") :- .
"ex:factorial"(VAR_N, VAR_F) :- &pred_numeric_geq[VAR_N1, "0"](),

equal(VAR_N, VAR_extOutput_1),
&func_numeric_add[VAR_N1, "1"](VAR_extOutput_1),
"ex:factorial"(VAR_N1, VAR_F1),
equal(VAR_F,VAR_extOutput_2),
&func_numeric_multiply[VAR_N,VAR_F1](VAR_extOutput_2) .

The translation generates two rules, a fact and a proper rule, corresponding to the two
input RIF rules. The universal quantifier of the second RIF rule is omitted here since
DLVHEX rules are per se universal. RIF constants (CURIes, typed literals, quoted uni-
code strings, etc.), such as ex:factorial or 1, are embraced by double quotes. Prefix
names in curies will generally be expanded, but for better readability we didn’t resolve
them here. RIF built-in predicates and functions, such as pred:numeric-greater-
than-or-equal and func:numeric-add, are rewritten to an corresponding ex-
ternal DLVHEX atoms3. So far we support all RIF built-ins which may appear in a RIF

3 Actually, for this particular example, we could have also exploited the built-in predicates of
DLVHEX, which supports natively simple arithmetic functions such as sum, multiply and com-

document yielded by the OWL2RIF to RIF-Core translation. Beyond that, we also sup-
port all numeric predicates and functions implementable via calls to an XPath/XQuery
Functions&Operators library. Besides, the lack of higher-order atoms in the resulting
HEX program is no coincidence. In fact, those are not needed for a pure RIF-Core imple-
mentation. Our planned support for RIF-BLD as well as future RIF extensions similar to
[5] will potentially demand higher-order features though.

Handling RIF-OWL2RL Combinations

The choice of a translation via the static rule set, applied in Phase I, seemed more
convenient to implement at first view. since it supports a fast implementation. How-
ever, several limitations arise when translating OWL2RL into RIF via the static rules.
Firstly, this method is rather inefficient compared to Reynolds’s dynamic, pattern based
approach [12, Appendix8.2], which creates more efficient RIF rules containing fewer
free variables thus smaller grounding. Further and more problematic, the static rules as
such are not suitable for RIF-OWL2RL combinations [2], i.e, a blend of OWL2RL rules
with arbitrary RIF-Core rules. As pointed out in [2] the static rules create problems w.r.t.
equality if applied to a RIF-OWL2RL combination, even if the RIF component is of
RIF-Core. The reason lies in the possible introduction of equality through OWL2RL (via
[Object|Data]MaxCardinality and {Universe}FunctionalObjectPro-
perty) that can also affect the predicates existing in the RIF-Core component. In RIF-
Core equality is only allowed in rule bodies and, thus, implications of equalities are not
natively expressible. Likewise, our base system, DLVHEX, does not support equality na-
tively, so we represent equality (which may only appear in rule bodies in RIF-Core) using
owl:sameAs. This works out perfectly for the equality resembled by owl:sameAs
on the level of RDF triples in the OWL2RL component [10, rules eq-ref, eq-sym,

eq-trans, eq-rep-s, eq-rep-p, eq-rep-o], by axiomatisation in the OWL2RL
rule set, but it is not comprehensively applicable in an analogous way to terms in RIF-
Core, since arbitrary predicates or deeply nested external functions might occur in RIF
rule sets which are unaffected by this axiomatisation.

Since we use the static rule set for the OWL2RL to RIF translation, at least for the
time being, we developed a approximative rewriting for RIF rule sets for RIF-OWL2RL
combination that allows us to catch these effects of equality. For a given RIF-OWL2RL
combination < R, G >, where R is a RIF rule set and G is an RDF Graph, potentially en-
coding an OWL2RL ontology, our algorithm runs through the following steps and outputs
a rewritten RIF-Core program S:

1. Initialise S with R. Flatten all nestings of external predicates and functions in S by
recursive substitution of nested terms with variables. For that, we need to express
various equalities between arbitrary function terms. However, owl:sameAs is only
applicable to express equality between simple terms. Thus, we need to introduce a
new equality symbol ‘ .=’ which expresses equality between arbitrary terms. Since
the value of each function term, by definition, belongs to an XML datatype we can
think of .= as equality as evaluated by XPath.4

parisons between variables. For the sake of the example, though, we decided to show how the
systems can handle such external predicates and functions, in a simple way

4 In fact, on the stage of DLVHEX ‘ .
=’ is evaluated by an external equality predicate implemented

through XPath equality checks.

2. Add the static RIF-Core rule set of Reynolds to S.
3. Add G in form of frame facts to S.
4. For any constant c that appears in R but not in G add the fact

c[owl:sameAs->c] . to S.
5. For each rule of R in S rewrite any occurring atom p(t1, ..., tn) where p is a constant

and ti is a simple RIF term (1 ≤ i ≤ n) to an atom p(X1, ..., Xn) where Xi = ti if
ti is a variable, else (i.e., ti is a constant) Xi is a fresh variable.

6. Apply Lloyd-Topr rewriting for non-conjunctive rule bodies in S.
7. Optimisation by removing unnecessary owl:sameAs and .= statements from the

rule bodies in S.

Let us illustrate the effects of this algorithm by an example. Say R5 contains
p(?x) :- Or(q(?x) r(?x,b)) .
r(c(2 * 2 + 2)).
q(a).
q(d) :- s(1.3 + 0.7).
s(1+1).

and G = {(a,owl:sameAs,b)}. Then we get the following intermediate results for S:

After step 1:
p(?x) :- Or (q(?x) r(?x,b)) .
r(c,?Y1) :- And((?Y2

.
= 2 * 2) (?Y1

.
= ?Y2 + 2)).

q(a).
q(d) :- And(s(?Y1) (?Y1

.
= 1.3 + 0.7)).

s(?Y1) :- (?Y1
.
= 1 + 1).

After step 2: S := S ∪ "Static Rule Set"

After step 3: S := S ∪ {a[owl:sameAs->b]}

After step 4: S := S ∪ {c[owl:sameAs->c], 2[owl:sameAs->2]}

After step 5:
p(?x) :- And (Or (q(?x) r(?x,?X1)) ?X1[owl:sameAs->b]) .
r(?X1,?Y1) :- And(?X1[owl:samAs->c] (?Y2

.
= 2 * 2) (?Y1

.
= ?Y2 + 2)).

q(a).
q(?X1) :- And(?X1[owl:samAs->d] s(?Y1) (?Y1

.
= 1.3 + 0.7)).

s(?Y1) :- (?Y1
.
= 1 + 1).

After step 7:
p(?x) :- q(?x) .
p(?x) :- And (r(?x,?X1) ?X1[owl:sameAs->b]) .
r(?X1,?Y1) :- And(?X1[owl:samAs->c] (?Y2

.
= 2 * 2) (?Y1

.
= ?Y2 + 2)).

q(a).
q(?X1) :- And(?X1[owl:samAs->d] s(?Y1) (?Y1

.
= 1.3 + 0.7)).

s(?Y1) :- (?Y1
.
= 1 + 1).

Our translation is realised as a plugin6 to the DLVHEX system7. Furthermore, RIF-
Core contains many built-ins in form of external predicates and functions. These external

5 Please note, that R deviates from the formal RIF syntax as we use here ‘+’ and ‘∗’ for the
built-in functions func:numeric-add and func:numeric-multiply in infix-notation
for better readability

6 For the source code and installation/usage instructions, please refer to http:
//sourceforge.net/projects/dlvhex-semweb/ as well as http:
//dlvhex-semweb.svn.sourceforge.net/viewvc/dlvhex-semweb/
dlvhex-rifplugin/.

7 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

functions are computed by use of a standard XML Library that implements most of the
common XPath/XQuery Functions& Operators [9]. At present, we support a subset of
those, as we focused our attention on the built-ins which are mandatory for the reduction
of OWL2RL reasoning to DLVHEX via RIF.

3 Conclusion and Future Work

We presented a DLVHEX plugin for OWL2RL and RIF-Core reasoning. The former
is based on a 2-step reduction to DLVHEX via RIF-Core. This is, to our knowledge,
the first attempt to implement RIF-OWL combinations a la [2], At our current stage of
development we facilitate the translation to RIF by the static rule set of [12] which, as we
have explained earlier, imposes restrictions on reasoning in combination with other RIF-
Core documents. For the future we, therefore, will consider to modify the implementation
of the first phase, switching from the static rule set to the dynamic rewriting by [12,
Appendix8.2] similarly used in [2] which is based on RIF-BLD. Consequently, we will
also try to extend the RIF-Core to DLVHEX translation in Phase II to more features of
RIF-BLD. Moreover we plan to implement the remaining RIF built-ins to have a more
complete translation from RIF-BLD to DLVHEX.

References
1. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2002.
2. J. De Bruijn. RIF rdf and OWL compatibility. Proposed recommendation, W3C, October

2009. http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/.
3. T. Eiter, G. Ianni, A. Polleres, and R. Schindlauer. Answer set programming for the semantic

web, June 2006. Tutorial at ESWC2006.
4. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective integration of declarative rules

with external evaluations for semantic-web reasoning. In ESWC, pages 273–287, 2006.
5. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming

with description logics for the semantic web. In KR, 2004.
6. M. Kifer and H. Boley. RIF basic logic dialect. Proposed recommendation, W3C, October

2009. http://www.w3.org/TR/2010/PR-rif-bld-20100511/.
7. M. Krötzsch, P. F. Patel-Schneider, S. Rudolph, P. Hitzler, and B. Parsia. OWL 2 web ontology

language primer. Technical report, W3C, October 2009. http://www.w3.org/TR/2009/REC-
owl2-primer-20091027/.

8. J. W. Lloyd and R. W. Topor. Making prolog more expressive. Journal of Logic Programming,
1(3):225–240, 1984.

9. A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 functions and operators.
Recommendation, W3C, January 2007. http://www.w3.org/TR/xpath-functions/.

10. B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, and B. Cuenca Grau. OWL
2 web ontology language profiles. W3C recommendation, W3C, October 2009.
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/.

11. A. Polleres and R. Schindlauer. dlvhex-sparql: A sparql-compliant query engine based on
dlvhex. In 2nd Int. Workshop on Applications of Logic Programming to the Web, Semantic
Web and Web Services (ALPSWS2007, pages 332–347. Springer, 2007.

12. D. Reynolds. OWL 2 RL in RIF. W3C working draft, W3C, October 2009.
http://www.w3.org/TR/2009/WD-rif-owl-rl-20091001/.

13. J. Wielemaker, M. Hildebrand, and J. van Ossenbruggen. Prolog as the fundament for appli-
cations on the semantic web. In ALPSWS, 2007.

