
Abstract
Software source text is the raw material of program

understanding and transformation systems. In order to share
the results of source analyses, both between phases of a
design recovery process, and between tools and systems in
different processes, a source text interchange format is
needed. This paper describes a simple technique, ‘source
factoring’, by which a common structural decomposition of
source text can address the many issues of preprocessing,
macro processing, lexical analysis, design recovery, and
automated transformation. Above all, source factorization
allows the results of design analysis to be attached to source,
and the results of source transformation to be reinstalled
cleanly into the code base. This view of source text underlies
the architecture of a successful software maintenance system
which has processed billions of lines of legacy code in all
major programming languages.

1. Design recovery and transformation

During the last few years increasing attention has been paid
to the question of suitable architectures for development of
software reengineering systems. As observed by Ebert et. al
[16], with the increasing complexity of such systems, and the
need to exchange results between unrelated software
reengineering environments, there arises the need for common
schemata, and consequently common interchange formats.

A number of such schemata and interchange formats have
been described and developed in the literature. By and large they
model recovered data by means of various kinds of graph,
generally representing entity-relationship databases. So, for
example, in the Rigi system [12], the Rigi Standard Format
[13] enables the sharing of semantic graphs derived from
source, very suitable to visualization of architectural or other
design views. Most recently the GXL project [14] is unifying
several model for interchange or source facts at every level:
again the basic paradigm is the representation of source code
data as graphical or E-R data bases.

 At Legasys we developed a software architecture [6,8] for
design recovery and transformation of large legacy code bases.
During this development we discovered the value of a hybrid
approach (as well justified in [15]) in which recovered source
data are partly represented as graphs or database facts, and partly

as marked-up source code. This enabled us to distinguish task-
specific analysis and transformation processes (see Figure 1)
from general source processing activities within the
architecture.

For us, large means having up to around ten million source
lines. The processing which we have carried out on these code
bases has included the following tasks:
• Source analysis: identifying source files by language,

checking completeness and duplication, both of copy-text
(include files) and external symbols, handling lexical problems.
• Design analysis: discovering abstract data types, uncovering

common data structures and common file structures, duplicated

Processing Software Source Text
in Automated Design Recovery and Transformation

Andrew Malton Kevin A. Schneider
James R. Cordy Thomas. R. Dean
Darren Cousineau Jason Reynolds

Legasys Corporation, Kingston, Ontario, Canada
{malton,kas,cordy,dean}@cs.queensu.ca

design
recovery

source code

fact base

design1

task-specific
transformations

task-specific
design analysis

design2 design3

Figure 1

source, and common processing paradigms.
• Formal transformation: dialect migration, millennium bug

renovation, field-size adjustment, technology migration, and
language migration (source-to-source transformation).
• Code-based reporting: technology usage reports, dead code

identification, backward and forward program slicing, abstract
interface identification, “business rule” identification, and the
like.

Figure 1 shows at a high level how the terms “design
recovery”, “base facts”, “design analysis”, and “transformation”
fit together in our architecture. In Figure 1, the source code is
understood as the real code base, “as given” from the maintainer
or code owner. Code bases are imported into our environment
by the most straightforward file-and-directory transfer protocol
from a code owner’s site. In other words, the code is copied
warts and all, and an important aspect of dealing with such a
code base is robust response to the warts.

In Figure 1, the “design recovery” process is understood as
extracting “base recovered design” from the code [3]. We
represent the recovered base design as text files containing
ground facts, as if intended for input to Prolog (although we do
not use Prolog or logic programming techniques at present).
The data model, which these base facts instantiate, is common
to all design recoveries, regardless of source language and
intended analysis and transformation tasks.

Figure 1 shows that analysis and transformation tasks are
understood as specialized to the task or problem at hand: this
may invoke the automated inference of further design
information, and also the some hand-tuning by someone
playing the role of an “analyst”. We have not developed many
general analysis or transformation tasks, because the advantage
in doing so (i.e. reuse of tools) is gained instead by reusing of
the base recovered design, and also by the unified view of
source text which is the subject of this report. In summary,
task-specific analysis and transformation tasks are specified and
developed with the assumption of
• a standard body of available information down to the level of

code facts, and
• a standard view of the source code

2. Processing software source text

Source code must be recognized as an extremely rich and
varied medium in its own right. It is extremely misleading
view it solely as expressions generated by a grammar, or as
graphs, or as text files; and it is similarly misleading to reduce
the semantics of a live program to the semantic function
determined by either a compiler or a formal semantic theory.
Source code contains all these things, but more.

When we consider the source of a large system or
application suite, we recognize a collection of independent
and interrelated texts.

Source code is text. Source has two purposes, both

essential: to represent an artifact which can be realized
mechanical ly (i .e . by compilation), and to record
communication between human beings. It is text by virtue of
its recording and communication role.

Source texts are independent. Source texts are maintained
as themselves, rather than being dependent on some prior data.
They are input to the mechanical realization of the software.

(In practice, we frequently encounter ‘generated code’. We
prefer to obtain and process the (independent) input to the
generator instead, but it is not always possible..The usual
situation is code which was built by a generator and then has
been subject to ongoing maintenance as is.)

Source texts are interrelated because of all the links
between them that arise as a result of abstraction, including
lexical links (e.g. “include” directives) and semantic links
(subroutine calls, global data, class instantiations, etc., etc.)

It is also essential to recognize at least three domains of
discourse in source code, and for each of them, several possible
subjects. The subjects (relative to the application as a whole)
include at least
• design
• implementation
• history
• and the domains of discourse must include at least
• the source domain, regarding the physical organization of the

source code itself
• the architecture domain, regarding the logical structure of the

application(s), and
• the functionality domain, regarding the mechanical details of

functionality.
With these observations, source code is seen to be ‘about’

many different matters simultaneously, and in many ways to be
closer to being natural language than formal language.

Large code bases present peculiar difficulties. Issues
which might be ignored or fixed by hand when processing ten
or a hundred thousand lines can be overwhelming when the
scale is two orders of magnitude greater. Our techniques were
developed for application to such large legacy code bases,
containing software in many languages at once, including
especially COBOL, PL/I, and RPG, and in addition embedded
uses of database and transaction processing software. Some of
the difficulties in practice have included
• Undocumented or obsolete compiler features
• Varying comment and coding conventions
• Bizarre (but documented!) syntax rules
• Varying lexical and syntax conventions within a single

source file.
• Use of macro preprocessor features
• Unparsable text due to the presence of syntax errors
• The requirement to produce results in the presence of errors
• The requirement to produce natural-looking transformed

results
• The requirement to deliver results containing excerpts from

the code base.
We have found that by adopting a unified view of source

text, we are able to address these difficulties more easily. A

characteristic of all the above problems is that they arise when
a formal process (which may be as simple as searching for a
string, or as complex as language transformation) applies to a
“view” of the text, but its results must somehow be integrated
with the text as a whole. This integration problem is
characteristic of transformation systems (how do we incorporate
modified code back into the original code base?) and informs the

whole development.

3. Source factors

Since software source text is similar in richness and
complexity to other kinds of source text [2], our approach is a
generalization and application of source text markup techniques
in the domain of software source code. We use the term
‘factored source’ to refer to the view we take of the source texts
and the manner in which we process them. Figure 2 illustrates
how source factors relate to the design recovery and
transformation processes: the similarity to Figure 1 is not a
coincidence.

In Figure 2, the domains of discourse of a software source
text are identified by lexical analysis.

3.1 Kinds of source factors

A source factor is a distinguished subsequence of a text,
where by ‘subsequence’ we mean a subset of the character
positions in the text, in order. Factors are typically
characterized by what is suppressed to produce them, and so
they are “views” of the source, suitable for processing in one
way or another. A factored source file is a file of software
source text typically compounded of at least the following
factors:
• The ‘code factor’ contains the text of the program itself,

minus comments, continuation markers, directives, etc.
• The ‘directive factor’ contains compiler directives.
• The ‘copy prefactor’ contains copy directives.
• The ‘copy postfactor’ contains text copied from include files.

factor
analysis

domain1

factor extraction

domain3

transformed3

Figure 2

source code

factored
source

domain2

version integration

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
SAMPLE.COB
…
000050 DATA DIVISION.
000060 WORKING-STORAGE SECTION
 EJECT
000070 01 REC1.
000080 05 FLD1 PIC ZZZZ9. 99/01/03
000090 01 MY-REC2 COPY REC2.
000095* THIS FIELD ADDED 00/01/02.
000100 77 FLD-B PIC Z9. JAN2AJM
…
REC2.CPY
 * REC2 RECORD STRUCTURE
 01 REC.
 10 FLD1 PIC ZZ9.
…

Figure 3 – Raw Source

• The ‘comment factor’ contains the commentary text in the
source file.
• The ‘macro prefactor’ contains text rewritten during macro

preprocessing.
• The ‘macro postfactor’ contains the result of rewriting the

macro prefactor during macro preprocessing.
We allow factors to be nested, even improperly nested. This

corresponds to the fact that the same piece of text may be
ambiguously ‘about’ more than one domain of discourse. A
factor which it not itself further factored, that is, which
properly containing no factors within it, may be called a ‘prime
factor’. We see the relationship of the whole text to its prime
and compound factors as analogous to the relationship between
prime and compound members of an algebraic domain – hence
the term ‘factor’.

3.2 Prefactors and postfactors.

Formal transformation processes apply to particular factors
of a source. Below the merge and integrate steps are described
which ‘multiply’ the transformed factor back into the whole.
But it is frequently desirable to record both the input and the
output of such transformations within the same factored source
file. This typically arises when textual transformation
directives have to be processed in order for the code factor to be
valid according to the language’s grammar. If the results of
transformation or other processes are then to be reflected back
in the original source (that is, back through source inlining or
macro expansion) that original source is still needed.

To deal with this situation some factors are pairs,
distinguishing the “prefactor” and “postfactor”. The “pre” is
“prior to transformation” and the “post” is “after
transformation.” The original is available by suppressing the
postfactor; the transformed is available by suppressing the
prefactor.

Figure 3 contains a snippet of COBOL raw source, which
illustrates several of the issues involved in processing ‘live’
legacy code. In card-image COBOL, the code factor generally
appears in columns 6 through 72, and material outside these
columns includes sequence numbers and maintenance history
information. There are listing directives, source inclusion
directives, comments, and ‘code’ all jumbled together.

3.3 Input processing

During input, the system accepts raw source, recognizes it,
and prepares it for the later phases. Source files which pass this
phase are in a normal form and ready for input to design
recovery tools. The input phase must perform at least the
following tasks:
• Lexical normalization is reducing unnecessary lexical

variations. This includes especially the handling of
continuation lines, for which there are about eight different
rules between the three principal languages we process! (In
PL/I, a statement or even a literal can be broken across lines
without special indication; in COBOL a statement can be
broken across lines but a broken literal must be marked with a
combination of hyphens and extra quotation marks; in RPG,
plus signs and minus signs in various columns, and somtimes
other letters, indicate continuation of literals across cards. The
complexity of continuation rules is generally in inverse
propoertion to the dependence of the lexical design on fixed-
format card images.) Continuation lines are used to construct a
whole line, but the construction process must be undoable
when integrating transformed results.
• Source inlining is inserting the contents of copy (include)

files. This is generally done so that all downstream tools
(design recovery, analysis, transformation) can operate on a
single text. The inlining directive is treated as a ‘rewriting’
directive, replacing the directive with the contents of the file.

{code …
{seqn 000050 }seqn DATA DIVISION.
{seqn 000060 }seqn WORKING-STORAGE SECTION{mdot\ . }mdot
{seqn }seqn {drct EJECT }drct
{seqn 000070 }seqn 01 REC1.
{seqn 000080 }seqn 05 FLD1 PIC ZZZZ9. {init 99/01/03 }init
{seqn 000090 }seqn {copy 01 MY-REC2 COPY REC2. \
{seqn }seqn{cmnt * REC2 RECORD STRUCTURE}cmnt
{seqn }seqn 01 {repl REC\ MY-REC2}repl .
{seqn }seqn 10 FLD1 PIC ZZ9.
…
}copy
{seqn 000095 }seqn{cmnt * THIS FIELD ADDED 00/01/02. }cmnt
{seqn 000100 }seqn 77 FLD-B PIC Z9. {init JAN2AJM }init
…
}code

Figure 4 – Factored Source

Again, it must be ‘undoable’ when integrating results (because
transformations must be propagated back into the copy file.)

(The subject of a source inclusion directive is named in
different ways in the jargon of different programmers.
Generally speaking the Unix jargon refers to “include files” and
marks this fact by storing some of the common ones in
/usr/include . However, the mainframe world calls them
“copy files” because of the directive COPY which causes
inlining in COBOL.)
• Macro preprocessing is analogous to source inlining,

because it analogously replaces directive text (macro
invocations) by the source code it macro-replaces to. In our

system, the mother of all macro preprocessors (PL/I) is handled
by interpreting the macro definitions directly and inserting the
replacement text. But again, source transformations which
affect the results of macro preprocessing then have to be
somehow integrated with the original macro invocations. In C,
for example, the macro call putc(c,f) is factored like this

(spacing supplied by gcc -E):
{macro putc(c,f) \ _IO_putc (c , f) }macro ;

Figure 4 shows the example source program after factoring.
It illustrates several things. The various factors are explicitly
indicated. The copy factor is shown to have a prefactor and
postfactor form, and the peculiar meaning in COBOL for this
kind of source inclusion is illustrated by the macro replacement

factor. (This implicit replacement meaning for the COPY
statement is an typical legacy-code wrinkle. It is no longer
documented in the languages manuals but still implemented by
the compilers for compatibility [1]. The given raw source also
lacks a dot required by the COBOL syntax: this happens
surprisingly often and is tolerated by many compilers. The
factored code shows how the dot can be supplied during lexical
normalization.)

3.4 Design recovery processing

During design recovery, that is, when extracting ‘facts’ from
the code base which are to be reusable common input to
analysis and transformation, the key is to be able to present to
the tools only that part of the source which is required and
relevant. Three kinds of design recovery task in our architecture
illustrate this:
• Code facts, which is the largest and historically most

important part of the recovered design, are extracted from the
code proper. This kind of design recovery is quite like the
semantic analysis phase of a compiler, and has similar input,
namely, the code viewed as a term in a (context-free) grammar.
Figure 5 shows the code/copy postfactor, which is the usual
input.
• Source structure facts, which contributed especially to the

success of our design analysis for millennium bug renovation,

…
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 REC1.
 05 FLD1 PIC ZZZZ9.

 01 MY-REC2.
 10 FLD1 PIC ZZ9.
…

 77 FLD-B PIC Z9.
…

Figure 5 – Code with Copy Postfactor

…
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 REC1.
 05 FLD1 PIC ZZZZ9.
 {copy 01 MY-REC2 COPY REC2. \

 01 {repl REC\MY-REC2}repl .
 10 FLD1 PIC ZZ9.
…
}copy
 77 FLD-B PIC Z9.
…

Figure 6 – Code/Copy Factor with Markup

99/01/03
* REC2 RECORD STRUCTURE
* THIS FIELD ADDED 00/01/02.
JAN2AJM

Figure 7 – Documentation Factors

…
DATA DIVISION.
WORKING-STORAGE SECTION.
01 REC1.
 05 FLD1 PIC 9(5).
01 MY-REC2.
 10 FLD1 PIC 9(3).
…
77 FLD-B PIC 9(2).
…

Figure 8 – Transformed Code Factor

are recovered from the code as well, but annotated or extended to
indicate the source structure, especially the boundaries of copy
files. Figure 6 shows the copy/copy factor with markup
showing the copy file boundaries, which we use to extract the
important “copy identifier” facts linking variables instantiated
from the same copy file.
• Maintenance history facts have been a useful sideline: we

have shown [10] that a large code base can be viewed in terms
of the history of its development as recorded in the source.
This kind of design recovery applies only to the comments!
Figure 7 shows the documentation factor, input to this
maintenance fact extraction.

3.5 Transformation processing

Our transformation tools are almost all written in TXL
[7]. TXL is a special purpose programming language for
expressing high-level source transformations. The (context-
free) grammar of the input is an essential part of a TXL
program; but well-designed grammar exploit TXL’s features in
such a way as to allow operations to abstract from irrelevant
grammatical details. This is done, in part, by writing
grammars which reflect the expected semantics of the input.
Our transformation phases are applied to the code factor, parsed
according to such a semantic grammar, and usually with side
input from design recovery and analysis processes. (Side inputs
are also provided as facts in a context-free interchange language.
This combination of facts and factored source together
represent our interchange format properly speaking.) Two
general classes of transformation, replacement and markup,
show the need for flexible handling of source text:
• Replacement is as in TXL: a whole compilation unit is

input and processed as a ‘program’ in the official grammar of
the source language, and nonterminal structures in the parse tree
are replaced according to the requirements of the transformation.
Figure 8 shows the result of a “remove zero suppression”
transformation, which changed some of the leading-zero-
suppressed-on-output variables to leading-zero-displayed-on-
output. The formal description of this (omitted) is a simple
TXL program which operates within the COBOL reference
grammar: it need no be concerned with formatting details,
comments, card layout, etc., etc., because of the factoring.
Note that even the spacing no longer needs to follow the
‘original’.
• Markup is factor refinement, generally of the code factor, to

indicate regions of the code (“hot spots”) of interest for a
maintenance task: declarations, decision points, key subroutine
calls, etc. Markup tools are specified in HSML, and a fuller
discussion of appears elsewhere [5].

3.6 Output processing

On output, that is, when results of the foregoing are to be
delivered to a user, the principal problem is to display them or
print them in the context of the original code. Without
exception, code-owners in our experience required reports and
transformed results (even when the task was as simple as
pretty-printing) to minimally different from the original. Two
general kinds of output have been especially important for us:
• Transformed original source is the characteristic output of

design recovery and transformation. The ideal result is
formatted in the same way as the original (“warts and all”) and
constitutes a minimal line-by-line difference from the given
source file. Even one character of needless difference is
unacceptable in a large code base, where one measure of quality
may be the rate at which source files are left ‘unchanged’ (and
hence don’t need to be examined during quality control). We
provided this kind of output using “version integration and
merging”, described in more detail below. The transformation
illustrated in Figure 8 is shown again, recompounded into the
original source, by Figure 11.
• “Hot-spot reports” [5, 6] are the characteristic output of

design analysis. A ‘maintenance hot spot’ may be defined as
“a region of code requiring attention during maintenance”. The
success of a large maintenance task, done by hand or partly or
wholly automated, depends in large part on finding its hot

spots: if there are few, and they’re identified accurately,
maintenance can be efficient. A Hot-Spot report for a source
file is, essentially, excerpted from the original source to show
the hot spots of a required maintenance task. The excerpts
must be relative to the true original warty source, but annotated
with reasons and remarks generated during design analysis.

4. Factor operations

There are four operations on factored text which are used
systematically to present the appropriate factors to task-specific
tools, and to recombine them properly into the required results.

…
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 REC1.
 05 FLD1 PIC {diff ZZZZ9\ 9(5) }diff .

 01 MY-REC2.
 10 FLD1 PIC {diff ZZ9\ 9(3) }diff .
…

 77 FLD-B PIC {diff Z9\ 9(2) }diff .
…

Figure 9 – Factored Differences

The three basic ones are ‘factor projection’, ‘factor difference’,
and ‘factor merge’. The latter two are combined into a fourth,
‘factor integration’, the characteristic postprocessing step after a
transformation. In conjunction with language-independent
markup specifications these allows the same formal design
analysis and reporting to be applied to code bases in any
language, subject only to the language-specific support for
initial factorization.

4.1 Factor projection

Factor projection, also known as ‘factoring out’, produces a
factored text which is a projection of a given text: it suppresses
some factors and leaves the rest. It comes in two flavours,
with markup (as in Figure 6) and without markup (as in Figure
5).

4.2 Factor integration

After transformation, we have two ‘versions’ of the same
factor: the old one from the original text (as in Figure 5) and
the new one resulting from the transformation (as in Figure 8).
In order to produce a transformed version of the original source,
it’s necessary to ‘install’ the transformed factor back into the
original factored source. This is done in two stages: factor
difference and factor merge, as described below.

Factor integration process is usually called by us ‘version
integration’ because it is the integration of a new version of the
code into the old matrix of comments, directives, layout, and so
forth. It is also affectionately known as ‘backpatch’, having
been originally conceived as a method of ‘patching’ the raw
source under control of the transformed code.

4.3 Factor difference

The first stage of factor integration (see above) is to factor
the differences between the new and the old versions. A
standard difference algorithm [9,11] can provide the basis of this
stage. Figure 9 shows the factored differences resulting from
the example transformation.

This stage works well, in our experience, when the changes
are relatively small. For millennium bug renovations, typical
changes were the local insertion of a few lines of code. When
the changes are large, or involve code movement, difference
algorithms don’t work very well, and then transform tools
themselves have to produce the factored differences explicitly.

4.4 Factor merge

The second stage of factor integration is the merging of two
factored texts into one. Factor merge requires one factor
identically in common between the two texts, in order to
synchronize the merging of the factors which are not in
common. Figure 10 shows the result of merging Figure 9’s
difference factors into the original factored text (see Figure 4).
Note that in this case the replacement prefactor is, indeed,
identical to the code/copy factor which was input to the
transformation; and the replacement postfactor is merged with
all the factors (comments, sequence numbers, directives, etc.)
which were suppressed to produce that input in the first place.

4.5 Factor markup

The factors in a text are represented in practice by a various
markup conventions. The markup is also character data, and so
when markup is part of the factor-output (as in Figure 6) it can
be parsed along with the source code using ‘base grammar
overrides’ [7]. The notation used in this paper is similar to that

{code …
{seqn 000050 }seqn DATA DIVISION.
{seqn 000060 }seqn WORKING-STORAGE SECTION{mdot\ . }mdot
{seqn }seqn {drct EJECT }drct
{seqn 000070 }seqn 01 REC1.
{seqn 000080 }seqn 05 FLD1 PIC {diff ZZZZ9\ 9(5) }diff . {init 99/01/03 }init
{seqn 000090 }seqn {copy 01 MY-REC2 COPY REC2. \
{seqn }seqn{cmnt * REC2 RECORD STRUCTURE}cmnt
{seqn }seqn 01 {repl REC\ MY-REC2}repl .
{seqn }seqn 10 FLD1 PIC {diff ZZ9\ 9(3) }diff .
…
}copy
{seqn 000095 }seqn{cmnt * THIS FIELD ADDED 00/01/02. }cmnt
{seqn 000100 }seqn 77 FLD-B PIC {diff Z9\ 9(2) }diff . {init JAN2AJM }init
…
}code

Figure 10 – Merged Differences

used in practice, except that lexical conventions are assumed
instead of boldface. In fact a variety of conventions are used
in order to distinguish factor markup from code. So far, the
convention curly-brace, factor-name, one space, has served well,
but that is because our target languages were originally
EBCDIC-encoded, and hence lack the curly-brace. These syntax
details can vary while preserving the concepts. The use of
syntax extensions to indicate factorization has the advantage of
allowing the processing of factored text using ordinary tools
(like grep and sed) and preserving the readability.

5. Conclusion

We have shown how a unified view of source text in which
subsequences of text, called factors can be the subject of
automated design recovery and transformation. By separating
the source code into lexically standard substreams, indicated by
markup, it is possible to design and build source processing
tools for design recovery which have simply stated
requirements.

References

1 . IBM, IBM VS COBOL II Migration Guide for MVS and CMS ,
Order no. GC26-3151-00, 1993

2 . ISO SGML 86. Information processing – text and office
systems – Standard Generalized Markup Language (SGML),
ISO 8879-1986, Internat ional Organizat ion for
Standardization (1986).

3 . J. R. Cordy, C. D. Halpern, E. Promislow. “TXL: a rapid
prototyping system for programming language dialects”,
Computer Languages 16,1 (Jan. 1991), pp 97-107.

4 . J.R. Cordy, K.A. Schneider. Architectural design recovery
using source transformations. In CASE'95: Workshop on
Software Architecture, Toronto, Canada, July 1995.

5 . J. R. Cordy et al. “HSML: design directed source code hot

spots”, Ninth IEEE International Workshop on Program
Comprehension, Toronto, May 2001

6 . J. R. Cordy. The DRI Legasys Group LS/2000 Technical Guide
to the Year 2000, TR. ED5-97, Legasys Corp. (Kingston) and
IBM Canada (Toronto), 1997.

7 . J. R. Cordy et al. The TXL Programming Language / Version 10,
TXL Software Research Inc., www.txl.ca/txldocs.html

8 . T. R. Dean et al. “A scalable design recovery and migration
system”, in preparation.

9 . J. W. Hunt and M. D. McIlroy. An algorithm for differential
file comparison. Technical Report Computing Science TR
#41, Bell Laboratories, Murray Hill, N.J., 1975.

10. A. Malton et al. “Exploring the maintenance history of source
code bases”, in preparation.

11. E. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(2):251--266, 1986

12. H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A
Reverse Engineering Approach To Subsystem Structure
Identification. Journal of Software Maintenance: Research
and Practice, 5(4):181–204, Dec. 1993. pages 33–43, Los
Alamitos, 1997. IEEE Computer Society Press.

13. K. Wong. RIGI User’s Manual, Version 5.4.4.
http://www.rigi.csc.uvic .ca/rigi/rigiframe1.sht
ml?Download , June 1998.

14. Richard C. Holt, Andreas Winter, Andy Schurr. GXL: Toward A
Standard Exchange Format, May 2000, WCRE 2000: Working
Conference on Reverse Engineering, Brisbane, Australia, Nov
6, 2000.

15. R. Kazman, S. J. Carriere, Playing Detective: Reconstructing
Software Architecture from Available Evidence, Journal of
Automated Software Engineering, 6:2, April, 1999, 107-138.

16. J. Ebert, B. Kullbach, A. Winter. GraX – An Interchange
Format for Reengineering Tools. In Sixth Working Confer-
ence on Reverse Engineering. IEEE Computer Society, Los
Alamitos, 89–98. 1999.

SAMPLE.COB
…
000050 DATA DIVISION.
000060 WORKING-STORAGE SECTION
 EJECT
000070 01 REC1.
000080 05 FLD1 PIC 9(5). 99/01/03
000090 01 MY-REC2 COPY REC2.
000095* THIS FIELD ADDED 00/01/02.
000100 77 FLD-B PIC 9(2). JAN2AJM
…
REC2.CPY
 * REC2 RECORD STRUCTURE
 01 REC.
 10 FLD1 PIC 9(3).
…

Figure 11 – Reconstructed Source

