
Abstract
Software source text is the raw material of program 

understanding and transformation systems.  In order to share 
the results of  source analyses, both  between phases of a 
design recovery process, and between tools and systems in 
different processes, a source text interchange format is 
needed.  This paper describes a simple technique, ‘source 
factoring’, by which a common structural decomposition of  
source text can address the many issues of preprocessing, 
macro processing, lexical analysis, design recovery, and 
automated transformation.  Above all, source factorization 
allows the results of  design analysis to be attached to source, 
and the results of source transformation to be reinstalled 
cleanly into the code base.   This view of source text underlies 
the architecture of a successful software maintenance system 
which has processed billions of lines of legacy code in all 
major programming languages.

1. Design recovery and transformation

During the last few years increasing attention has been paid 
to the question of suitable architectures for development of 
software reengineering systems.  As observed by Ebert et. al 
[16], with the increasing complexity of such systems, and the 
need to exchange results between unrelated software 
reengineering environments, there arises the need for common 
schemata, and consequently common interchange formats.

A number of such schemata and interchange formats have 
been described and developed in the literature.  By and large they 
model recovered data by means of various kinds of graph, 
generally representing entity-relationship databases.  So, for 
example, in the Rigi system [12], the Rigi Standard Format 
[13] enables the sharing of semantic graphs derived from 
source, very suitable to visualization of architectural or other 
design views. Most recently the GXL project [14] is unifying 
several  model for interchange or source facts at every level: 
again the basic paradigm is the representation of source code 
data as graphical or E-R data bases.

  At Legasys we developed a software architecture [6,8] for 
design recovery and transformation of large legacy code bases.    
During this development we discovered the value of a hybrid 
approach (as well justified in [15]) in which recovered source 
data are partly represented as graphs or database facts, and partly 

as marked-up source code.  This enabled us to distinguish task-
specific analysis and transformation processes (see Figure 1) 
from general source processing activities within the 
architecture.

For us, large means having up to around ten million source 
lines. The processing which we have carried out on these code 
bases  has included the following tasks:
• Source analysis: identifying source files by language, 

checking completeness and duplication, both of copy-text 
(include files) and external symbols, handling lexical problems.
• Design analysis: discovering abstract data types, uncovering 

common data structures and common file structures, duplicated 
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source, and common processing paradigms. 
• Formal transformation: dialect migration, millennium bug 

renovation, field-size adjustment, technology migration, and 
language migration (source-to-source transformation).
• Code-based reporting: technology usage reports, dead code 

identification, backward and forward program slicing, abstract 
interface identification, “business rule” identification, and the 
like.

Figure 1 shows at a high level how the terms “design 
recovery”, “base facts”, “design analysis”, and “transformation” 
fit together in our architecture. In Figure 1, the source code is 
understood as the real code base, “as given” from the maintainer 
or code owner. Code bases are imported into our environment 
by the most straightforward file-and-directory transfer protocol 
from a code owner’s site.  In other words, the code is copied 
warts and all, and an important aspect of dealing with such a 
code base is robust response to the warts.

In Figure 1, the “design recovery” process is understood as 
extracting  “base recovered design” from the code [3].  We 
represent the recovered base design as text files containing 
ground facts, as if intended for input to Prolog (although we do 
not use Prolog or logic programming techniques at present).  
The data model, which these base facts instantiate, is common 
to all design recoveries, regardless of source language and 
intended analysis and transformation tasks.

Figure 1 shows that analysis and transformation tasks are 
understood as specialized to the task or problem at hand: this 
may invoke the automated inference of further design 
information, and also the some hand-tuning by someone 
playing the role of an “analyst”.   We have not developed many 
general analysis or transformation tasks, because the advantage 
in doing so (i.e. reuse of tools) is gained instead by reusing of 
the base recovered design, and also by the unified view of 
source text which is the subject of this report.  In summary, 
task-specific analysis and transformation tasks are  specified and 
developed with the assumption of
• a standard body of available information down to the level of 

code facts, and
• a standard view of the source code

2. Processing software source text

Source code must be recognized as an extremely rich and 
varied medium in its own right. It is extremely misleading 
view it solely as expressions generated by a grammar, or as 
graphs, or as text files; and it is similarly misleading to reduce 
the semantics of a live program to the semantic function 
determined by either a compiler or a formal semantic theory.  
Source code contains all these things, but more.

When we consider the source of a large system or 
application suite, we recognize a collection of independent 
and interrelated texts.

Source code is text.  Source has two purposes, both 

essential: to represent an artifact which can be realized 
mechanical ly (i .e . by compilation), and to record 
communication between human beings.  It is text by virtue of 
its recording and communication role.

Source texts are independent.  Source texts are maintained 
as themselves, rather than being dependent on some prior data.  
They are input to the mechanical realization of the software.

(In practice, we frequently encounter ‘generated code’. We 
prefer to obtain and process the (independent) input to the 
generator instead, but it is not always possible..The usual 
situation is code which was built by a generator and then has 
been subject to ongoing maintenance as is.)

Source texts are interrelated  because of all the links 
between them that arise as a result of abstraction, including 
lexical links (e.g. “include” directives) and semantic links 
(subroutine calls, global data, class instantiations, etc., etc.)

It is also essential to recognize at least three domains of 
discourse in source code, and for each of them, several possible 
subjects.  The subjects (relative to the application as a whole) 
include at least
• design
• implementation
• history
• and the domains of discourse must include at least
• the source domain, regarding the physical organization of the 

source code itself
• the architecture domain, regarding the logical structure of the 

application(s), and
• the functionality domain, regarding the mechanical details of 

functionality.
With these observations, source code is seen to be ‘about’ 

many different matters simultaneously, and in many ways to be 
closer to being natural language than formal language.

Large code bases present peculiar difficulties.  Issues 
which might be ignored or fixed by hand when processing ten 
or a hundred thousand lines can be overwhelming when the 
scale is two orders of magnitude greater.  Our techniques were 
developed for application to such large legacy code bases, 
containing software in many languages at once, including 
especially COBOL, PL/I, and RPG, and in addition embedded 
uses of database and transaction processing software.  Some of 
the difficulties in practice have included
• Undocumented or obsolete compiler features
• Varying comment and coding conventions
• Bizarre (but documented!) syntax rules
• Varying lexical and syntax conventions within a single 

source file.
• Use of macro preprocessor features
• Unparsable text due to the presence of syntax errors
• The requirement to produce results in the presence of errors
• The requirement to produce natural-looking transformed 

results
• The requirement to deliver results containing excerpts from 



the code base.
We have found that by adopting a unified view of source 

text, we are able to address these difficulties more easily.  A 

characteristic of all the above problems is that they arise when 
a formal process (which may be as simple as searching for a 
string, or as complex as language transformation) applies to a 
“view” of the text, but its results must somehow be integrated 
with the text as a whole.  This integration problem is 
characteristic of transformation systems (how do we incorporate 
modified code back into the original code base?) and informs the 

whole development.

3. Source factors

Since software source text is similar in richness and 
complexity to other kinds of source text [2], our approach is a 
generalization and application of source text markup techniques 
in the domain of software source code. We use the term 
‘factored source’ to refer to the view we take of the source texts 
and the manner in which we process them.  Figure 2 illustrates 
how source factors relate to the design recovery and 
transformation processes: the similarity to Figure 1 is not a 
coincidence.

In Figure 2, the domains of discourse of a software source 
text are identified by lexical analysis.

3.1 Kinds of source factors

A source factor is a distinguished subsequence of a text, 
where by ‘subsequence’ we mean a subset of the character 
positions in the text, in order.  Factors are typically 
characterized by what is suppressed to produce them, and so 
they are “views” of the source, suitable for processing in one 
way or another.  A factored source file is a file of software 
source text typically compounded of at least the following 
factors:
• The ‘code factor’ contains the text of the program itself, 

minus comments, continuation markers, directives, etc.
• The ‘directive factor’ contains compiler directives.
• The ‘copy prefactor’ contains copy directives.
• The ‘copy postfactor’ contains text copied from include files.
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         1         2         3         4         5         6         7         8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
SAMPLE.COB
…
000050 DATA DIVISION.
000060 WORKING-STORAGE SECTION
       EJECT
000070 01  REC1.
000080     05 FLD1      PIC ZZZZ9.                                      99/01/03
000090 01  MY-REC2 COPY REC2.
000095* THIS FIELD ADDED 00/01/02.
000100 77  FLD-B        PIC Z9.                                         JAN2AJM  
…
REC2.CPY
      * REC2 RECORD STRUCTURE
      01  REC.
          10 FLD1      PIC ZZ9.
…

Figure 3 – Raw Source



• The ‘comment factor’ contains the commentary text in the 
source file.
• The ‘macro prefactor’ contains text rewritten during macro 

preprocessing.
• The ‘macro postfactor’ contains the result of rewriting the 

macro prefactor during macro preprocessing.
We allow factors to be nested, even improperly nested.  This 

corresponds to the fact that the same piece of text may be 
ambiguously ‘about’ more than one domain of discourse.   A 
factor which it not itself further factored, that is, which 
properly containing no factors within it, may be called a ‘prime 
factor’.  We see the relationship of the whole text to its prime 
and compound factors as analogous to the relationship between  
prime and compound members of an algebraic domain – hence 
the term ‘factor’.

3.2 Prefactors and postfactors.

Formal transformation processes apply to particular factors 
of a source.  Below the merge and integrate steps are described 
which ‘multiply’ the transformed factor back into the whole.  
But it is frequently desirable to record both the input and the 
output of such transformations within the same factored source 
file.  This typically arises when textual transformation 
directives have to be processed in order for the code factor to be 
valid according to the language’s grammar.  If the results of 
transformation or other processes are then to be reflected back 
in the original source (that is, back through source inlining or 
macro expansion) that original source is still needed.

To deal with this situation some factors are pairs, 
distinguishing the “prefactor” and “postfactor”.  The “pre” is 
“prior to transformation” and the “post” is “after 
transformation.” The original is available by suppressing the 
postfactor; the transformed is available by suppressing the 
prefactor.

Figure 3 contains a snippet of COBOL raw source, which 
illustrates several of the issues involved in processing ‘live’ 
legacy code.  In card-image COBOL, the code factor generally 
appears in columns 6 through 72, and material outside these 
columns includes sequence numbers and maintenance history 
information.  There are listing directives, source inclusion 
directives, comments, and ‘code’ all jumbled together.

3.3 Input processing

During input, the system accepts raw source, recognizes it, 
and prepares it for the later phases. Source files which pass this 
phase are in a normal form and ready for input to design 
recovery tools.  The input phase must perform at least the 
following tasks:
• Lexical normalization is reducing unnecessary lexical 

variations.  This includes especially the handling of 
continuation lines, for which there are about eight different 
rules between the three principal languages we process! (In 
PL/I, a statement or even a literal can be broken across lines 
without special indication; in COBOL a statement can be 
broken across lines but a broken literal must be marked with a 
combination of hyphens and extra quotation marks; in RPG, 
plus signs and minus signs in various columns, and somtimes 
other letters, indicate continuation of literals across cards.  The 
complexity of continuation rules is generally in inverse 
propoertion to the dependence of the lexical design on fixed-
format card images.)  Continuation lines are used to construct a 
whole line, but the construction process must be undoable 
when integrating transformed results.
• Source inlining is inserting the contents of copy (include) 

files.  This is generally done so that all downstream tools 
(design recovery, analysis, transformation) can operate on a 
single text. The inlining directive is treated as a ‘rewriting’ 
directive, replacing the directive with the contents of the file.  

{code …
{seqn 000050 }seqn  DATA DIVISION.
{seqn 000060 }seqn  WORKING-STORAGE SECTION{mdot\ . }mdot
{seqn       }seqn  {drct  EJECT }drct  
{seqn 000070 }seqn  01  REC1.
{seqn 000080 }seqn      05 FLD1      PIC ZZZZ9.                      {init 99/01/03 }init
{seqn 000090 }seqn  {copy 01  MY-REC2 COPY REC2. \
{seqn       }seqn{cmnt * REC2 RECORD STRUCTURE}cmnt
{seqn       }seqn  01  {repl REC\ MY-REC2}repl .
{seqn       }seqn      10 FLD1      PIC ZZ9.
…
}copy
{seqn 000095 }seqn{cmnt * THIS FIELD ADDED 00/01/02. }cmnt
{seqn 000100 }seqn  77  FLD-B        PIC Z9.                         {init JAN2AJM }init
…
}code

Figure 4 – Factored Source



Again, it must be ‘undoable’ when integrating results (because 
transformations must be propagated back into the copy file.)

(The subject of a source inclusion directive is named in 
different ways in the jargon of different programmers.  
Generally speaking the Unix jargon refers to “include files” and 
marks this fact by storing some of the common ones in 
/usr/include .  However, the mainframe world calls them 
“copy files” because of the directive COPY which causes 
inlining in COBOL.)
• Macro preprocessing is analogous to source inlining, 

because it analogously replaces directive text (macro 
invocations) by the source code it macro-replaces to.  In our 

system, the mother of all macro preprocessors (PL/I) is handled 
by interpreting the macro definitions directly and inserting the 
replacement text.  But again, source transformations which 
affect the results of macro preprocessing then have to be 
somehow integrated with the original macro invocations. In C, 
for example, the macro call putc(c,f)  is factored like this 

(spacing supplied by gcc -E ):
{macro putc(c,f) \ _IO_putc ( c ,  f ) }macro ;

Figure 4 shows the example source program after factoring.  
It illustrates several things. The various factors are explicitly 
indicated.  The copy factor is shown to have a prefactor and 
postfactor form, and the peculiar meaning in COBOL for this 
kind of source inclusion is illustrated by the macro replacement 

factor.  (This implicit replacement meaning for the COPY 
statement is an typical legacy-code wrinkle. It is no longer 
documented in the languages manuals but still implemented by 
the compilers for compatibility [1].  The given raw source also 
lacks a dot required by the COBOL syntax: this happens 
surprisingly often and is tolerated by many compilers.  The 
factored code shows how the dot can be supplied during lexical 
normalization.)

3.4 Design recovery processing

During design recovery, that is, when extracting ‘facts’ from 
the code base which are to be reusable common input to 
analysis and transformation, the key is to be able to present to 
the tools only that part of the source which is required and 
relevant.  Three kinds of design recovery task in our architecture 
illustrate this:
• Code facts, which is the largest and historically most 

important part of the recovered design, are extracted from the 
code proper.  This kind of design recovery is quite like the 
semantic analysis phase of a compiler, and has similar input, 
namely, the code viewed as a term in a (context-free) grammar.  
Figure 5 shows the code/copy postfactor, which is the usual 
input.
• Source structure facts, which contributed especially to the 

success of our design analysis for millennium bug renovation, 

…
 DATA DIVISION.
 WORKING-STORAGE SECTION.
  
 01  REC1.
     05 FLD1      PIC ZZZZ9.
 

 01  MY-REC2.
     10 FLD1      PIC ZZ9.
…

 77  FLD-B        PIC Z9.
…

Figure 5 – Code with Copy Postfactor

…
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 
 01  REC1.
     05 FLD1      PIC ZZZZ9.
 {copy 01  MY-REC2 COPY REC2. \

 01  {repl REC\MY-REC2}repl .
     10 FLD1      PIC ZZ9.
…
}copy
 77  FLD-B        PIC Z9.
…

Figure 6 – Code/Copy Factor with Markup

99/01/03
* REC2 RECORD STRUCTURE
* THIS FIELD ADDED 00/01/02.
JAN2AJM  

Figure 7 – Documentation Factors

…
DATA DIVISION.
WORKING-STORAGE SECTION.
01 REC1.
   05 FLD1 PIC 9(5).
01 MY-REC2.
   10 FLD1 PIC 9(3).
…
77 FLD-B PIC 9(2).
…

Figure 8 – Transformed Code Factor



are recovered from the code as well, but annotated or extended to 
indicate the source structure, especially the boundaries of copy 
files.  Figure 6 shows the copy/copy  factor with markup 
showing the copy file boundaries, which we use to extract the 
important “copy identifier” facts linking variables instantiated 
from the same copy file.
• Maintenance history facts have been a useful sideline: we 

have shown [10] that a large code base can be viewed in terms 
of the history of its development as recorded in the source.  
This kind of design recovery applies only to the comments!  
Figure 7 shows the documentation factor, input to this 
maintenance fact extraction.

3.5 Transformation processing

Our transformation  tools are almost all written in TXL 
[7].  TXL is a special purpose programming language for 
expressing high-level source transformations.  The (context-
free) grammar of the input is an essential part of a TXL 
program; but well-designed grammar exploit TXL’s features in 
such a way as to allow operations to abstract from irrelevant 
grammatical details.  This is done, in part, by writing 
grammars which reflect the expected semantics of the input.  
Our transformation phases are applied to the code factor, parsed 
according to such a semantic grammar, and usually with side 
input from design recovery and analysis processes.  (Side inputs 
are also provided as facts in a context-free interchange language.  
This combination of facts and factored source together 
represent our interchange format properly speaking.)  Two 
general classes of transformation, replacement and markup, 
show the need for flexible handling of source text:
• Replacement is as in TXL: a whole compilation unit is 

input and processed as a ‘program’ in the official grammar of 
the source language, and nonterminal structures in the parse tree 
are replaced according to the requirements of the transformation.  
Figure 8 shows the result of a “remove zero suppression” 
transformation, which changed some of the leading-zero-
suppressed-on-output variables to leading-zero-displayed-on-
output.  The formal description of this (omitted) is a simple 
TXL program which operates within the COBOL reference 
grammar: it need no be concerned with formatting details, 
comments, card layout, etc., etc., because of the factoring.  
Note that even the spacing no longer needs to follow the 
‘original’.
• Markup is factor refinement, generally of the code factor, to 

indicate regions of the code (“hot spots”) of interest for a 
maintenance task: declarations, decision points, key subroutine 
calls, etc.  Markup tools are specified in HSML, and a fuller 
discussion of  appears elsewhere [5].

3.6 Output processing

On output, that is, when results of the foregoing are to be 
delivered to a user, the principal problem is to display them or 
print them in the context of the original code.  Without 
exception, code-owners in our experience required reports and 
transformed results (even when the task was as simple as 
pretty-printing) to minimally different from the original.  Two 
general kinds of output have been especially important for us:
• Transformed original source is the characteristic output of 

design recovery and transformation.  The ideal result is 
formatted in the same way as the original (“warts and all”) and 
constitutes a minimal line-by-line difference from the given 
source file.  Even one character of needless difference is 
unacceptable in a large code base, where one measure of quality 
may be the rate at which source files are left ‘unchanged’ (and 
hence don’t need to be examined during quality control).   We 
provided this kind of output using “version integration and 
merging”, described in more detail below.  The transformation 
illustrated in Figure 8 is shown again, recompounded into the 
original source, by Figure 11.
• “Hot-spot reports” [5, 6] are the characteristic output of 

design analysis.   A ‘maintenance hot spot’ may be defined as 
“a region of code requiring attention during maintenance”.  The 
success of a large maintenance task, done by hand or partly or 
wholly automated, depends in large part on finding its hot 

spots: if there are few, and they’re identified accurately, 
maintenance can be efficient.  A Hot-Spot report for a source 
file is, essentially, excerpted from the original source to show 
the hot spots of a required maintenance task.  The excerpts 
must be relative to the true original warty source, but annotated 
with reasons and remarks generated during design analysis.

4. Factor operations

There are four operations on factored text which are used 
systematically to present the appropriate factors to task-specific 
tools, and to recombine them properly into the required results.  

…
 DATA DIVISION.
 WORKING-STORAGE SECTION.
  
 01  REC1.
     05 FLD1   PIC {diff ZZZZ9\ 9(5) }diff .
 

 01  MY-REC2.
     10 FLD1   PIC {diff ZZ9\ 9(3) }diff .
…

 77  FLD-B     PIC {diff Z9\ 9(2) }diff .
…

Figure 9 – Factored Differences



The three basic ones are ‘factor projection’, ‘factor difference’, 
and ‘factor merge’.  The latter two are combined into a fourth, 
‘factor integration’, the characteristic postprocessing step after a 
transformation.    In conjunction with language-independent 
markup specifications these allows the same formal design 
analysis and reporting to be applied to code bases in any 
language, subject only to the language-specific support for 
initial factorization.

4.1 Factor projection

Factor projection, also known as ‘factoring out’, produces a 
factored text which is a projection of a given text: it suppresses 
some factors and leaves the rest.  It comes in two flavours, 
with markup (as in Figure 6) and without markup (as in Figure 
5). 

4.2 Factor integration

After transformation, we have two ‘versions’ of the same 
factor: the old one from the original text (as in Figure 5) and 
the new one resulting from the transformation (as in  Figure 8). 
In order to produce a transformed version of the original source, 
it’s necessary to ‘install’ the transformed factor back into the 
original factored source.  This is done in two stages: factor 
difference and factor merge, as described below.

Factor integration process is usually called by us ‘version 
integration’ because it is the integration of a new version of the 
code into the old matrix of comments, directives, layout, and so 
forth.  It is also affectionately known as ‘backpatch’, having 
been originally conceived as a method of ‘patching’ the raw 
source under control of the transformed code.

4.3 Factor difference

The first stage of factor integration (see above) is to factor 
the differences between the new and the old versions.  A 
standard difference algorithm [9,11] can provide the basis of this 
stage.   Figure 9 shows the factored differences resulting from 
the example transformation.  

This stage works well, in our experience, when the changes 
are relatively small.  For millennium bug renovations, typical 
changes were the local insertion of a few lines of code.  When 
the changes are large, or involve code movement, difference 
algorithms don’t work very well, and then transform tools 
themselves have to produce the factored differences explicitly.

4.4 Factor merge

The second stage of factor integration is the merging of two 
factored texts into one.  Factor merge requires one factor 
identically in common between the two texts, in order to 
synchronize the merging of the factors which are not in 
common.  Figure 10 shows the result of merging Figure 9’s 
difference factors into the original factored text (see Figure 4).  
Note that in this case the replacement prefactor is, indeed, 
identical to the code/copy factor which was input to the 
transformation; and the replacement postfactor is merged with 
all the factors (comments, sequence numbers, directives, etc.) 
which were suppressed to produce that input in the first place.

4.5 Factor markup

The factors in a text are represented in practice by a various 
markup conventions.  The markup is also character data, and so 
when markup is part of the factor-output (as in Figure 6) it can 
be parsed along with the source code using ‘base grammar 
overrides’ [7].  The notation used in this paper is similar to that 

{code …
{seqn 000050 }seqn  DATA DIVISION.
{seqn 000060 }seqn  WORKING-STORAGE SECTION{mdot\ . }mdot
{seqn       }seqn  {drct  EJECT }drct  
{seqn 000070 }seqn  01  REC1.
{seqn 000080 }seqn      05 FLD1      PIC {diff ZZZZ9\ 9(5) }diff .     {init 99/01/03 }init
{seqn 000090 }seqn  {copy 01  MY-REC2 COPY REC2. \
{seqn       }seqn{cmnt * REC2 RECORD STRUCTURE}cmnt
{seqn       }seqn  01  {repl REC\ MY-REC2}repl .
{seqn       }seqn      10 FLD1      PIC {diff ZZ9\ 9(3) }diff .
…
}copy
{seqn 000095 }seqn{cmnt * THIS FIELD ADDED 00/01/02. }cmnt
{seqn 000100 }seqn  77  FLD-B        PIC {diff Z9\ 9(2) }diff .       {init JAN2AJM  }init
…
}code

Figure 10 – Merged Differences



used in practice, except that lexical conventions are assumed 
instead of boldface. In fact a variety of conventions are used 
in order to distinguish factor markup from code.  So far, the 
convention curly-brace, factor-name, one space, has served well, 
but that is because our target languages were originally 
EBCDIC-encoded, and hence lack the curly-brace.  These syntax 
details can vary while preserving the concepts.  The use of 
syntax extensions to indicate factorization has the advantage of 
allowing the processing of factored text using ordinary tools 
(like grep and sed) and preserving the readability.

5. Conclusion

We have shown how a unified view of source text in which 
subsequences of text, called factors can be the subject of 
automated design recovery and transformation. By separating 
the source code into lexically standard substreams, indicated by 
markup, it is possible to design and build source processing 
tools for design recovery which have simply stated 
requirements.
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SAMPLE.COB
…
000050 DATA DIVISION.
000060 WORKING-STORAGE SECTION
       EJECT
000070 01  REC1.
000080     05 FLD1      PIC 9(5).                                      99/01/03
000090 01  MY-REC2 COPY REC2.
000095* THIS FIELD ADDED 00/01/02.
000100 77  FLD-B        PIC 9(2).                                         JAN2AJM  
…
REC2.CPY
      * REC2 RECORD STRUCTURE
      01  REC.
          10 FLD1      PIC 9(3).
…

Figure 11 – Reconstructed Source


