
Processing Transitive Nearest-Neighbor Queries in
Multi-Channel Access Environments

Xiao Zhang*, Wang-Chien Lee*, Prasenjit Mitra*†, Baihua Zheng‡

*Department of Computer Science and Engineering, †College of Information Sciences and Technology
The Pennsylvania State University

‡School of Information Systems, Singapore Management University

{xiazhang, wlee}@cse.psu.edu, pmitra@ist.psu.edu, bhzheng@smu.edu.sg

ABSTRACT

Wireless broadcast is an efficient way for information dis-
semination due to its good scalability [10]. Existing works
typically assume mobile devices, such as cell phones and
PDAs, can access only one channel at a time. In this pa-
per, we consider a scenario of near future where a mobile
device has the ability to process queries using information
simultaneously received from multiple channels. We focus
on the query processing of the transitive nearest neighbor
(TNN) search [19]. Two TNN algorithms developed for a
single broadcast channel environment are adapted to our
new broadcast enviroment. Based on the obtained insights,
we propose two new algorithms, namely Double-NN-Search
and Hybrid-NN-Search algorithms. Further, we develop an
optimization technique, called approximate-NN (ANN), to
reduce the energy consumption in mobile devices. Finally,
we conduct a comprehensive set of experiments to validate
our proposals. The result shows that our new algorithms
provide a better performance than the existing ones and the
optimization technique efficiently reduces energy consump-
tion.

Keywords

Multi-Channel access, transitive nearest neighbor, query pro-
cessing, query optimization, approximate nearest neighbor

1. INTRODUCTION
Wireless broadcast has been used widely in various appli-

cations (e.g., TV, Radio and GPS). It efficiently uses limited
bandwidth to facilitate information dissemination to an ar-
bitrary number of users simultaneously. This feature has
attracted a lot of interests and effort from the research com-
munity to develop wireless data broadcast techniques, such
as [10], [7] etc., in the past decade.

Most prior research on wireless data broadcast assumes
that a mobile device can only monitor and receive data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

from one channel at a time. Given data broadcast in multi-
ple channels on air, a mobile device has to ”switch” among
channels in order to receive data from other channels. How-
ever, with technological advances, this assumption no longer
holds. In the near future (even today), mobile devices (e.g.,a
portable equipped with multiple wireless radio interfaces or
a dual-mode/dual-standby cell phones) will be able to access
to multiple channels simultaneously 1. In this paper, we as-
sume a mobile device has the ability to process queries using
the information simultaneously received from multiple chan-
nels and focus on the query processing of transitive nearest
neighbor (TNN) search - a new query type that involves
multiple datasets [19]. To the best of our knowledge, this
is the first research on query processing over a simultaneous
access of multiple broadcast channels.

Here, we first define transitive nearest neighbor (TNN)
search:

Given a query point p, and two datasets S and R, TNN re-
turns a pair of objects (s, r)∈S×R such that ∀(s′,r′)∈S×R,
(dis(p, s)+dis(s, r))≤(dis(p, s′)+dis(s′, r′)) where dis(p, s)
represents the Euclidean distance between the two points p
and s. S and R correspond to two types of spatial objects
distributed in a certain area.

Many applications of TNN queries exist in our daily life.
For example, Mr. Smith is new to a city and he wants to
find a post office to send his friends some post cards first
and then go to a restaurant to have dinner. TNN gives
him a post office and a restaurant with minimal total travel
distance.

Two TNN algorithms, namely Approximate-TNN-Search
algorithm and Window-Based-TNN-Search algorithm[19], have
been proposed in the one-channel wireless broadcast envi-
ronment. However, the Approximate-TNN-Search algorithm
may fail to answer TNN queries over real datasets, while the
Window-Based-TNN-Search algorithm was not designed for
simultaneous access to multiple channels. Thus, our research
goal is to devise efficient algorithms for multiple channel
broadcast environments. The TNN algorithms we developed
is based on an estimate-filter query processing paradigm,
which consist of two phases: 1) determine/estimate a search
range that contains all qualified data objects; and 2) fil-
ter unqualified objects from this search range. (see Section
3.1 for more details and example) We propose new algo-
rithms, namely, Double-NN-Search algorithm and Hybrid-

1A dual-mode dual-standby cell phones [3] allows its users
to stay on-line and send/receive signals in both GSM and
CDMA networks simultaneously.

NN-Search algorithm. They use different strategies in phase
1 and introduce more parallelism than Window-Based-TNN-
Search in query processing. These algorithms employ exact
nearest neighbor (eNN) search algorithm to obtain a search
range (during the estimate phase). Our research shows that
instead of eNN search, an approach based on approximate
nearest neighbor (ANN) search may reduce the overall en-
ergy consumption. We propose a new heuristic to perform
approximate nearest neighbor search on R-tree. The heuris-
tic is dynamically optimized based on R-tree heights and
sizes of the two datasets involved in the TNN query. We
also conduct a comprehensive set of experiments to show
the effectiveness of these algorithms and optimization tech-
niques.

The contributions of this study are summarized as follows:

• We propose two algorithms for processing TNN
queries in a wireless broadcast setting where mobile
devices can simultaneously access multiple channels.
These algorithms significantly reduce the access time
of TNN queries.

• We propose two new distance metrics (MinTransDist
and MinMaxTransDist) which allow our new
algorithms to effectively reduce the search range.

• We propose an optimization technique for TNN
query processing which uses approximate-NN search
on R-tree to substitute exact-NN in the original
algorithms. We also propose a dynamic approach to
determine the parameter of the approximation. This
optimization technique effectively reduces the energy
consumption, w.r.t. using eNN.

The rest of the paper is organized as follows. Section 2
discusses the preliminaries and related work. Section 3 dis-
cusses the principles in answering TNN queries and intro-
duces two existing algorithms in details and analyzes their
deficiencies. Section 4 proposes our new algorithms and
gives the definitions of new distance metrics. Section 5 in-
troduces an efficient query optimization technique and pro-
poses several heuristics to reduce the search cost. A compre-
hensive evaluation of these algorithms and the optimization
technique is given in Section 6, and finally, Section 7 con-
cludes the paper and gives a roadmap of future work.

2. PRELIMINARY
In this section, we first describe a system model of multiple

channel wireless broadcast to introduce the system compo-
nents, basic concepts and constraints of wireless broadcast
environments. We then review the R-tree index, a funda-
mental spatial index structure which is closely related to
our work, and some related spatial queries.

2.1 System Model
There are two different information access mechanisms

available in wireless broadcast environments for mobile users:
1) on-demand access and 2) broadcast access. In the on-
demand access scheme, a mobile client sends a query to the
server through a dedicated point-to-point wireless channel.
The server, which is responsible for processing the query, re-
turns the answer directly to the mobile client. On the other
hand, in broadcast access scheme, the server broadcasts the
data in publicly available wireless channels in the unit of

Figure 1: System Model

page (or packet, frame). The mobile client, after receiving a
query from the user, tunes into the broadcast channels and
downloads the interested pages. It then processes the query
locally and finally returns the result to the user. Compared
to the on-demand access mode, broadcast scheme conserves
the limited resource of wireless bandwidth by allowing an
arbitrary number of users to access the same information
simultaneously. This scheme can also address the privacy
issues in location-based services, since the clients can obtain
location-based information without disclosing their own lo-
cations to the server.

In this paper, we focus on TNN query processing in the
broadcast scheme. The system model of our study consists
of three major components: 1) the server, 2) the mobile
clients, and 3) the wireless broadcast channels. The server
maintains and disseminates information (in terms of data
objects) of interest to users. It is responsible for scheduling
the broadcast program. The mobile client is location-aware
(e.g., equipped with GPS)2. Upon receiving a TNN query
from its user, a mobile client tunes into the wireless channels
and downloads data from multiple channels simultaneously
to facilitate query processing. Figure 1 gives a high-level
view of our system model.

In broadcast channels without any index information, a
mobile client has to stay active and downloads all the data
objects to process a query. This approach is inefficient as
it consumes a lot of energy. Energy consumption is a ma-
jor concern due to the limited power source of the mobile
clients. Imielinski, Viswanathan, and Badrinath proposed
air indexing to tackle this issue. Air indexing interleaves
index information with data objects in the wireless chan-
nels, which allows a mobile client to first probe the index to
get the arrival time of the interested data objects, and then
turn into doze mode to save energy. When the desired data
is about to be broadcast, the mobile client wakes up and
tunes into the broadcast channel to download the data. (1,
m) is a representative interleaving technique [10], which di-
vides the dataset into m equal-sized fractions and broadcasts
the entire index preceding every one of the m fractions.

We use two performance metrics: access time and tune-in
time [7, 9, 10] to measure the effectiveness of our algorithms.
The former is the time elapsed from the moment a query is

2In this paper, we use these the terms mobile devices and
mobile clients interchangeably.

issued till the moment the query is satisfied. Obviously,
users want the answer as fast as possible; thus the access
time needs to be short. The latter is the time a mobile client
stays active to receive the required data for query processing,
which is used to represent the energy consumption in the
literature. Query processing in broadcast schemes aims at
answering a query within a short time, with small energy
consumption. Since access time and tune-in time are both
proportional to the number of pages accessed, we measure
the two metrics in the number of pages accessed during the
query processing.

2.2 Related Work

(a) Objects and MBRs (b) R-tree Index Structure

Figure 2: NN Search on R-tree

R-tree index, first proposed by Guttman [5], is a well-
known spatial index. It recursively groups nearby objects
into minimal bounding rectangles (MBRs) until the whole
region is covered by one root node. Figure 2(a) depicts the
MBRs of a rectangular region covering 12 objects. Assuming
the fanout of the R-tree node is three, the corresponding
R-tree structure is depicted in Figure 2(b). If the objects
are available a priori, packing algorithms, such as Nearest-X
[16], Hilbert Sort [11] and STR [12], can be applied to build
the R-tree in order to achieve the best performance.

R-tree can support multiple queries efficiently. Take win-
dow queries as an example. The search starts at the root
node, and follows those nodes with MBRs overlapping with
the queried window. Often, NN searches use a branch-and-
bound strategy to traverse the R-tree[4, 6, 15]. Different
heuristics based on some distance metric are proposed to
refine the search range and prune the search space. Among
all the algorithms, Best-First (BF) algorithm [6] is most ef-
ficient. It maintains a priority queue of candidate nodes,
sorted according to ascending order ofmindist, the minimal
distance to a query point.

However, the performance of the Best-First algorithm de-
teriorates severely in terms of access time in the context
of broadcast because we are using a physically linear media
(wireless broadcast channels) to represent a tree structure of
R-trees. In broadcast, data object/index information is only
available when it is on the air. Once the packet containing
the desired information is missed, the mobile client has to

Figure 3: Linear Access in Broadcast Channel

wait until the next time the object is broadcast again. In
other words, random access, which is commonly supported
in resident storage (e.g., disk and memory), is not allowed
in wireless broadcast systems. The performance of the best-
first algorithm, which employs backtracking to guarantee the
effectiveness, deteriorates severely when data are broadcast.
Figure 3 gives one example. It assumes that the R-tree is
broadcast in a preorder traversal in a broadcast cycle. R2,
due to a smaller mindist to q, is visited first. Then, R1 is ac-
cessed. However, it is already broadcast and is not available
until the next time it is broadcast. The access time is pro-
longed significantly. Therefore, the search algorithms must
take into consideration the linear property of broadcasting.

In [19], two algorithms were proposed for answering TNN
queries in dingle-channel broadcast environments, namely,
Window-Based-TNN-Search algorithm and Approximate-TNN-
Search algorithm. The algorithms and their problems will
be discussed in detail in the next section. Researchers have
studied two other general versions of TNN: optimal sequenced
route (OSR) [17] query and trip planning query (TPQ) [13].
Given a set of points P where each point belongs to a specific
category, a starting point p and a destination e, OSR finds a
route of minimum length starting from p passing through at
least one point from each category in a specified order, and
ends at e; while TPQ finds the shortest route regardless of
the order. However, these queries were studied in disk-based
databases, not in the wireless broadcast environments.

Lin et al., [14] introduced several heuristics to perform
ANN search on R-trees. However, the threshold in their
work, which is an important parameter in approximation,
is static. Their algorithms did not take into consideration
several factors, such as R-tree height, that will affect the
performance. Besides, the goal of the previous work was
different from ours. They did not aim to minimize the search
cost.

In the mobile database literature, research on object re-
trieval and object organization in multi-channel broadcast
environments have been reported. Sun, et al., [18] proposed
two algorithms to retrieve objects given the distribution of
desired pages on parallel broadcast channels using a mini-
mum number of passes and switches (in order of priority)
between the channels. Hurson et al. proposed two algo-
rithms to distribute objects of different sizes onto parallel
broadcast channels to achieve the minimum broadcast cycle
length and to preserve the clustering property [8]. How-
ever, they assumed that a mobile client can only access one
channel at any one time. Neither did they deal with query
processing in broadcast environments.

3. PROBLEM ANALYSIS
In this section, we first discuss the basic ideas in answer-

ing TNN queries and the two TNN algorithms proposed
in [19]. A natural question arises is whether these ideas
can be adapted for the multi-channel access environment.
We use an example to show how they work. Then, we adapt
these algorithms into our new multi-channel access environ-
ment and perform an analysis.

3.1 Answering TNN Query
First, we use a running example to illustrate how TNN

is answered in traditional broadcast environment in which
a client can tune into one channel at one time. Given two
datasets S and R, with S={s1, s2, s3, s4} and R={r1, r2,

Notation Description

dis(p,s) Euclidean distance between points p
and s

p.NN(S) The nearest neighbor of point p in
dataset S

circle(p,d) A circle with point p as the center and
a radius of length d

p.TNN (S,R) The answer pair of objects in datasets
S and R of the TNN query with point
p as the query point

Table 1: Terminology Definition

r3, r4}, we assume two broadcast channels co-exist on air,
with one broadcasting dataset S and the other broadcast-
ing dataset R. R-trees are used to index the data points.In
broadcast environment, R-tree pointers refer to the arrival
time of the data pages.We assume that the broadcast pro-
gram is organized according to (1, m) scheme, i.e., an R-tree
for the dataset (e.g., S or R) is broadcast m times inside
one broadcast cycle. In order to facilitate the following de-
scription, Table 1 lists the notations and their definitions.

A brute force approach can simply retrieve all the ob-
jects from datasets S and R and evaluate each pair of ob-
jects (s, r) ∈ S × R. The pair giving the minimum tran-
sitive distance is returned as the result. However, this ap-
proach obviously is inefficient. It requires the mobile client
to download all the data objects, thus results in a large
storage requirement in the client as well as a large tune-
in time. Since a TNN query only cares about one pair of
objects with the minimal transitive distance, efficient algo-
rithms should avoid the retrieval of any unnecessary objects.
Zhen, Lee and Lee suggested an estimate-filter query pro-
cessing paradigm [19]:

Estimate: find a search range from the query point p by
searching the index;

Filter: filter unqualified data objects in the search
range determined earlier to find the pair of
objects with the minimum transitive distance.

After determining the final answer, the mobile client may
later retrieve the desired data object and its associated at-
tributes. An important goal for the design of TNN algo-
rithms is to obtain a small search range in the estimate phase
in order to reduce the tune-in time in the filter phase. Mean-
while, we devise optimization techniques (see Section 5) to
reduce the tune-in time in the estimation phase without in-
creasing the tune-in time in the filtering phase.

In the estimate phase, the proposed algorithms differ most
significantly in how they determine the search range. In the
filter phase, two range queries are issued to retrieve all ob-
jects in S and R in the search range. After the locations of
these objects are obtained, a join is computed to find the
minimum transitive distance and the corresponding pair of
objects. Finally, the mobile client turns into sleep mode and
wakes up when the pair of answer objects are on air to re-
trieves the attributes associated with the objects. Because
the size of the search range has a direct impact on the num-
ber of objects retrieved, the search range should be small to
reduce the tune-in time. However, it also should be large
enough so that it includes the answer pair. Zheng, Lee and
Lee [19] have provided the following theorem that can be
used to help prune the search range.

Figure 4: Search Range Determination

Theorem 1. Given a query point p and a pair of objects
(s, r) ∈ S×R, let d = dis(p, s) + dis(s, r). If s′ /∈ circle(p, d)
with s′ ∈ S, it is guaranteed that s′ /∈ p.TNN(S,R). Similarly,
if r′ /∈ circle(p, d) with r′ ∈ R, it is guaranteed that r′ /∈
p.TNN(S,R).

The Window-Based-TNN-Search algorithm determines
the search range by issuing two nearest neighbor queries.
The first NN query finds p’s nearest neighbor s in S, i.e.
s = p.NN(S). Then it issues the second nearest neighbor
query to find s’s nearest neighbor r in R, i.e. r = s.NN(R).
The transitive distance d = dis(p, s) + dis(s, r) is used as
the search radius. Then two window queries are issued at p
to retrieve objects from S and R. Finally, a join is applied
to find the minimum transitive distance and the correspond-
ing pair of objects. The following example shows how this
approach works.

Suppose a TNN query is issued at point p as shown in
Figure 4. The Window-Based-TNN-Search algorithm first
issues an NN query to retrieve the nearest neighbor s1 of
p in S. Then it issues the second NN query to retrieve the
nearest neighbor r1 of s1 in R. The search range is there-
fore determined to be circle(p, d), where d = dis(p, s1) +
dis(s1, r1) (the inner circle in Figure 4). Then two window
queries are issued and objects (s1, s2, s3, s4) and (r1, r2,
r3) are scheduled to be retrieved. The transitive distances
between p and different combinations of object pair (s, r)
are calculated and compared. The final answer (s2, r3) with
the minimum transitive distance is then output.

The Approximate-TNN-Search algorithm performs an
approximate estimate of search range at the estimate phase.
This algorithm is very efficient but does not guaranteed to
produce the correct answer. The window-based TNN algo-
rithm needs two index traversals to determine the search
range. However, the approximate-TNN-Search algorithm
saves the two NN queries by determining the search range
using the following equation [19]:

rk(S) = ln(n) ×

√

k

(π × n)
, where n = |S|. (1)

Given a dataset S in which the points are uniformly dis-
tributed in a unit square region, a circle with radius rk(S)
encloses at least k objects. Therefore, the radius of the
search range in a TNN query can be derived by d = rk(S)
+ rk(R), where k = 1. The radius can be easily scaled to a
square of other size. This approach saves two index traver-
sals to allow the algorithm to go directly into the filter phase
and only introduces a small computational overhead. How-

ever, it does not guarantee to contain the answer in the
approximated search range.

3.2 Deficiencies of Existing Algorithms
The algorithms mentioned above are sequential in nature

and do not utilize the fact that the two datasets may be
broadcast on two channels simultaneously. Since a mobile
device may monitor and download pages from both chan-
nels simultaneously, the two NN queries can be processed in
parallel. The two range queries in the filter phase can be
processed in a similar fashion.

The deficiency of the two algorithms mentioned above are
as follows. For the Window-Based-TNN-Search algorithm,
the second NN query takes the output of the first NN query
as its query point. As a result, it must wait until the first
NN query is finished. For the approximate-TNN-Search al-
gorithm, the equation mentioned above only suits datasets
where the data points are uniformly distributed. For skewed
datasets, this approach fails to determine a search range
that guarantees to contain the final answer pair of objects
(see Section 6.3). Besides, even with uniformly distributed
datasets, the search range provided by the equation is unnec-
essarily large. More objects are enclosed in this range and
more pages have to be downloaded from the broadcast chan-
nels, compared to other TNN algorithms. As a result, the
tune-in time of the approximate-TNN-Search algorithm is
very large even if it avoids the two NN queries in the estimate
phase. In next section, we propose new algorithms, namely,
Double-NN-Search algorithm and Hybrid-NN-Search algo-
rithm, which not only guarantee correct answers but also
fully exploit the parallel access ability of the mobile device.

4. NEW ALGORITHMS FOR TNN
In this section, we introduce two new algorithms, namely

the Double-NN algorithm and the Hybrid-NN algorithm.
Both algorithms allow parallel access of broadcast data in
both phases to save access-time. Our algorithms find a pair
of objects (s, r) and use the transitive distance determined
by p and (s, r) as the search range.

4.1 Double-NN-Search Algorithm
The algorithm executes two nearest neighbor queries from

the query point p on the two channels at the earliest oppor-
tunity, i.e., as soon as the index roots appear in the two
channels. After both NN queries are completed, it then uses
d = dis(p, s) + dis(s, r) as the radius of the search range,
where s = p.NN(S) and r = p.NN(R).

In the running example shown in Figure 4, Double-NN-
Search algorithm retrieves s1 (i.e. p.NN((S))) and r2 (i.e.
p.NN((R))). Thereafter, the search range is fixed to circle(p,
d), where d = dis(p, s1) + dis(s1, r2) (the outer circle).
Then two range queries are issued to access data in both
channels in this range. Objects (s1, s2, s3, s4) and (r1, r2,
r3) are retrieved and the final answer pair (s2, r3) is obtained
by calculating and comparing the transitive distances. The
pseudo code of the Double-NN-Search algorithm is given in
Algorithm 1.

4.2 Hybrid-NN-Search algorithm
In Hybrid-NN-Search algorithm, when the NN search in

one of the two channels is completed before the other, we can
use the result to guide the search in the unfinished channel
in order to find a smaller search range. Before describing the

Algorithm 1 Double-NN-Search Algorithm

Input: query point p, R-tree index S for dataset S, R-tree
index R for dataset R
Output: transitive nearest neighbor (s, r) to the query
point p
Procedure:

1: candidate set S ← ∅;
2: candidate set R ← ∅;
3: s ← p.NN(S); r ← p.NN(R); {these two nearest neigh-

bor queries are processed in parallel}
4: d ← dis(p, s) + dis(s, r);
5: let circle w center at p with radius length d;
6: candidate set S ← p.range query(S, w);

candidate set R ← p.range query(R, w);
{these two range queries are processed in parallel}

7: for each object si in candidate set S do

8: if dis(p, si) < d then

9: for each object rj in candidate set R do

10: if dis(p, si) + dis(si, rj) < d then

11: d ← dis(p, si) + dis(si, rj);
12: s ← si;
13: r ← rj ;
14: end if

15: end for

16: end if

17: end for

18: return (s, r);

algorithm, first, we define some distance metrics that will be
used in our new algorithm and then discuss the Hybrid-NN
algorithm in detail.

4.2.1 Useful Distance Metrics

The two metrics, introduced in this sub-section, act on
two points (p and r) and a MBR (MS) of an R-tree node.
Both metrics find some transitive distance from point p, to
a point on the MBR MS , then to point r.

Definition 1 (MinTransDist). Given a starting point
p, a MBR MS, an ending point r, MinTransDist(p, MS, r)
finds a point s on MBR MS and returns dis(p, s)+dis(s, r),
such that for any point s′ on MBR MS other than s, dis(p,
s′)+dis(s′, r)≥MinTransDist(p, MS, r).

MinTransDist gives the minimum possible transitive dis-
tance from a point to an MBR then to another point, which
can be used as the lower bound of the transitive distance
if a point from the MBR is chose. We derive a method to
calculate MinTransDist as follows. There can be three cases:

1. If line segment pr (line between p and r) intersects
with MBR MS , MinTransDist(p, MS, r)=dis(p, r).

2. If not in 1, let ℓi (1 ≤ i ≤ 4) be the four sides of
MBR MS , if p and r are on the same side of ℓi, find
r′i which is the symmetric point of r w.r.t. ℓi. If line
segment pr′i intersects with ℓi, then MinTransDist(p,
MS, r)=mini{dis(p, r′i)}.

3. If not in 1 or 2, let vi (1 ≤ i ≤ 4) be the four vertices
of MBR MS , MinTransDist(p, MS,
r)=min1≤i≤4{dis(p, vi) + dis(vi, r)}.

Figure 5: Distance Metrics

Lemma 1. The above method gives the correct MinTrans-
Dist from p to MS to r.

Proof. The completeness and the soundness of Case 1
and Case 2 are obvious. In Case 3, an ellipse is determined
which uses p and r as two foci and the transitive distance
as the major axis. Suppose v1 gives the minimum transi-
tive distance. v2, v3, v4 are outside of the ellipse. Since
Case 1 and Case 2 does not hold, any points on the four
sides of MS other than v1 are outside of the ellipse. Then
any points inside of MS are outside of the ellipse. Thus,
dis(p, v1)+dis(v1, r) < dis(p, u)+dis(u, r)(u ∈ MS , u 6= v1).
Since v1 ∈ MS , this method gives a tight lower bound.

Figure 5 gives an example of three minimum transitive
distances in each of the three cases.

Definition 2 (MaxDist). Given a starting point p, a
line segment ℓ, an ending point r, MaxDist(p, ℓ, r) is defined
as:

MaxDist(p, ℓ, r) = max
i=1,2

{dis(p, vi) + dis(vi, r)} (2)

where vi (i = 1, 2) are the two end points of line segment ℓ.

Lemma 2. given a starting point p, a line segment ℓ and
an ending point r, MaxDist(p, ℓ, r) gives a tight upper bound
for all the transitive distances from p to any points on ℓ, to
r.

Proof. An ellipse is determine, which uses p and r as
the foci and MaxDist(p, ℓ, r) as the length of the major
axis. One end point of ℓ is on the ellipse and the other is
either on or inside of it. Therefore all other points v ∈ ℓ are
inside of this ellipse, and thus making dis(p, v)+ dis(v, r) <
MaxDist(p, ℓ, r). Since one of the two endpoints provides
the transitive distance equal to MaxDist(p, ℓ, r), this upper
bound is tight.

Definition 3 (MinMaxTransDist). Given a starting
point p, an MBR MS, an ending point r, MinMaxTrans-
Dist(p, MS, r) is defined as:

MinMaxTransDist(p, MS , r) = min
1≤i≤4

{MaxDist(p, ℓi, r)}

(3)
where ℓi(1 ≤ i ≤ 4) are the four sides of MBR MS.

Lemma 3. given a starting point p, an MBR MS enclos-
ing a point dataset S, an ending point r, ∃s ∈ S, dis(p, s) +
dis(s, r) ≤ MinMaxTransDist(p, MS , r)

Proof. The definition of MinMaxTransDist(p, MS, r)
uses the MBR face property [15]. This property means that
every face of MBR of an R-tree node contains at least one
point in the point dataset. ∀v ∈ ℓ (ℓ is a side of MBR MS),
the transitive distance dis(p, v) + dis(v, , r) is bounded by
MaxDist(p, ℓ, r), according to Lemma 2. Since MinMax-
TransDist chooses the smallest one among the four sides, it
provides a tight upper bound.

From the previous definitions and lemma, we can deduce
that given a starting point p, a rectangle MS , an ending
point r, MinTransDist(p, MS, r) and MinMaxTransDist(p,
MS, r) serve as lower and upper bounds, respectively, of
transitive distance from p to MS to r.

4.2.2 Algorithm Description

Since datasets of different sizes may be involved in the
TNN query, the lengthes of the indices for them are differ-
ent. It is very likely that the two NN search in the estimate
phase will finish at different time. When the NN search
in one channel generates the final result before the other
one, hybrid algorithm uses this result to guide the unfin-
ished search in the other channel to get a result that can
minimize the transitive distance between the three points,
in order to get a smaller search range for the next phase.
Hybrid-NN algorithm achieves this goal by either switching
the query point of the NN search in channel 2 or changing
the distance metrics in the search in channel 1.(note that the
transitive distance measure is not symmetric with respect to
the two channels). In Figure 4 if the NN search on dataset
R finishes before the NN on dataset S, and r2 is returned
as the NN to p, Hybrid-NN returns s3, which can minimize
the transitive distance from p to s3 to r2, instead of s1.
Three cases exist and the behavior of Hybrid-NN algorithm
is described below:

1. If NN searches in both channels are not finished.
Follow the algorithm as Double-NN algorithm.

2. If the NN search in Channel 1 finishes before the NN
search in Channel 2, let s be the result of NN search
in Channel 1, i.e. s = p.NN(S). Use s to replace p to
be the new query point of the NN search in Channel
2 and find r ∈ R, which is the nearest neighbor to s
on the remaining portion of the R-tree for dataset R.

3. If NN search in Channel 2 finishes before the NN
search in Channel 1, let r be the result of NN search
in Channel 2, i.e. r = p.NN(R).Change the distance
metrics in the NN search in Channel 1. Use
MinTransDist and MinMaxTransDist to perform
branch-and-bound search on the remaining part of
the R-tree for dataset S. Find s ∈ S which gives the
minimum transitive distance from p to s to r on the
remaining portion of R-tree.

4.2.3 Updating and Pruning Strategy

Like traditional NN algorithms, Hybrid-NN algorithm keeps
two upper bounds for the NN queries on each channel and
updates them during the traversal of R-trees. These up-
per bounds are used to prune the R-tree nodes that do not
contain the answer. Hybrid-NN algorithm uses two priority
queues to keep track of the R-tree nodes that should be vis-
ited in the two channels. R-tree nodes are pushed into the

Figure 6: Updating and Pruning

queues and sorted in ascending order based on their arriv-
ing time in the two broadcast channels. Initially, Hybrid-NN
algorithm pushes the two R-tree roots into the queues when-
ever they are available on air.

In Case 2, although the Hybrid-NN algorithm switches the
target (the query point) of the NN search, the updating and
pruning strategy are the same as traditional NN algorithms.
The difference between traditional NN algorithms and Case
2 of Hybrid-NN algorithm lies in how to obtain the initial
upper bound. When the NN search in Channel 1 finishes
before the NN search in Channel 2, Hybrid-NN algorithm
switches the query point of the second NN search to the
point returned by the first NN search. If a temporary result
is generated in channel 2, the upper bound is set to be the
transitive distance from query point p to its nearest neighbor
in the first channel, then to this temporary result. After
that, for each node in the priority queue MBR queue for
Channel 2, Hybrid-NN computes the MinDist between the
new query point and the children MBRs of this node. The
smallest MinDist is used to update the upper bound if the
upper bound is larger than this MinDist.

The upper bound updating strategy for Case 3 uses tran-
sitive distance, MinMaxTransDist and Lemma 3. Initially,
it pushes the root of R-tree for dataset S into MBR queue.
When it is detected for the first time that Hybrid-NN al-
gorithm is in Case 3, an initial upper bound update is per-
formed. If there is a temporary point s′ given as a potential
NN to query point p in dataset S, Hybrid-NN algorithm uses
dis(p, s′) + dis(s′, r) to update the old upper bound. Then,
since all the MBRs that will be visited are contained in a
queue MBR queue, for all MBRs Mi in MBR queue, Hybrid-
NN algorithm computes MinMaxTransDist and finds the
minimum one:

z = min
Mi∈MBR queue

{MinMaxTransDist(p, Mi, r)}

If z is less than the current upper bound, then update the
upper bound.

After the initial upper bound update, Hybrid-NN algo-
rithm proceeds with query processing. When an MBR MS

of an intermediate node Ninter of the R-tree for dataset S
is being visited, for all the children MBRs enclosed by MS

{MSi : 1 ≤ i ≤ |Ninter|} (|Ninter| denotes the number of
children of node Ninter), Hybrid-NN algorithm computes
the MinMaxTransDist and finds the minimum one:

z = min
1≤i≤|Ninter|

{MinMaxTransDist(p, MSi, r)}

The upper bound is updated if and only if z is smaller than

the current upper bound.
When an MBR MS of a leaf node Nleaf is being visited,

for all points {Oi : 1 ≤ i ≤ |Nleaf |} (|Nleaf | denotes the
number of points in it) it encloses, Hybrid-NN algorithm
computes the transitive distances and finds the minimum
one:

z = min
1≤i≤|Nleaf |

{dis(p, Oi) + dis(Oi, r)}

and update upper bound if and only if z is smaller than the
current upper bound.

Pruning strategy uses MinTransDist. If an MBR MS has
MinTransDist(p, MS , r) > upperbound, then this MBR is
discarded and will not be downloaded from the broadcast
channel. Figure 6 gives an example of updating and pruning.
MBR MS3 has a MinMaxTransDist smaller than the old
upper bound, then upper bound is updated with its value.
MBR MS1 and MS2 has MinTransDist larger than the new
upper bound. It is guaranteed that they do not contain the
final answer, therefore they are pruned.

Algorithm 2 Hybrid-NN-Search Algorithm (Case 3)

Procedure:

1: initial upperbound update();
2: while MBR queue is not empty do

3: M ← MBR queue.pop();
4: if MinTransDist(p, M, r) > upperbound then

5: continue;
6: else

7: wait until M is on air;
8: if M is an intermediate node then

9: for each child MBR Mi of M do

10: z = min{MinMaxTransDist(p, Mi, r)};
11: if upperbound > z then

12: upperbound ← z
13: end if ;
14: end for

15: prune children Mi using MinTransDist
16: sort Mi in ascending order based on arrival time;
17: MBR queue.push(Mi);
18: else

19: for each point si in M do

20: z = min{dis(p, si) + dis(si, r)}
21: if upperbound > z then

22: upperbound ← z;
23: s ← si

24: end if

25: end for

26: end if

27: end if

28: end while

29: return (s, r);

Algorithm 2 shows the updating and pruning of Hybrid-
NN algorithm when Case 3 occurs, given r as the nearest
neighbor of query point q generated in Channel 2.

4.2.4 Adjustments in Implementation

When Hybrid-NN algorithm starts with Case 1, it pro-
cesses two NN queries in parallel. When an intermediate
R-tree node is encountered, traditional NN algorithms first
prune the children of this node and then push the remain-

Figure 7: Updating and Pruning

ing children into a priority queue (MBR queue). One prob-
lem with this approach is that when Hybrid-NN algorithm
changes the query point or distance metrics to form a new
query, the MBR which contains the answer to that new
query may have been pruned. Figure 7 gives an exam-
ple. MBR M2 is pruned during the NN query processing
which takes p as the query point. However, M2 may contain
the NN to the new query point r. In order to remedy this
problem, the algorithm delays the pruning process of the
NN search. When Hybrid-NN algorithm visits a non-leaf R-
tree node, it pushes all the children nodes into MBR queue.
When an node is popped out of the queue, either MinDist
(for Case 1 & 2) or MinTransDist(for Case 3) is computed
and compared with the upper bound. The node is pruned
if its distance metric is larger than the upper bound; other-
wise, it is visited.

Note that this adjustment does not affect the correctness
of the answer if no query point switching or distance metrics
changing is made. One concern of this adjustment is that
since Hybrid-NN algorithm is pushing more MBRs into the
queue than typical NN algorithms, the size of the queue
will become larger. However, the increase in queue size is
not significant. Let M be the maximum fanout value, and
H be the height of the R-tree, the worst-case queue size is
(H − 1) × (M − 1). In our experiment, the R-tree for the
dataset containing nearly 100,000 points has H = 10 and
M = 3. Therefore, the mobile device only has to allocate
memory space for 9 × 2 = 18 MBRs in its queue. This
memory consumption is affordable.

5. OPTIMIZATION OF TNN ALGORITHMS
While our algorithms use exact search to provide a precise

search range in order to reduce tune-in time in the filter
phase, here we explore an optimization technique by using
approximate NN search on R-tree to reduce tune-in time in
the estimate phase (while not introducing much increase in
tune-in time in the filter phase). The goal is to reduce the
overall tune-in time in two phases.

In an exact nearest neighbor (eNN) search, traditional
algorithms prune an R-tree node only when it is guaranteed
that this node does not cover the answer of an NN query.
When the MBR of an R-tree node is obtained, the minimum
distance between this MBR and the query point is computed
and compared with the current upper bound. If the former is
larger, then it is guaranteed that this node does not contain
the answer and thus can be pruned. Otherwise this node
has to be visited and pushed into the queue. Approximate
nearest neighbor search, on the other hand, aims to find
a point that is not too far away from the query point. It
relaxes the pruning condition so that more R-tree nodes can
be pruned, compared with eNN. An R-tree node satisfying

the ANN pruning condition (as will be discussed in the next
subsection) is pruned, even if it is possible to contain the
exact nearest neighbor to the query point.

When an ANN is used in the estimate phase of TNN query
processing, the tune-in time in this phase is reduced since it
visits less R-tree nodes compare to eNN. Since ANN does not
guarantee to find the best/exact NN to the query point, the
point ANN finds is farther to the query point than the exact
NN. Thus, the search range determined may be larger than
using the eNN and the tune-in time in the filtering Phase
is increased. However, the ANN approach represents a new
tradeoff between two phases from the previous approach.
Our goal is to strive a good balance in this tradeoff in order
to reduce the overall tune-in time. Also note that ANN
optimization technique does not affect the final answer to
the TNN query. Even though an ANN search may produce
a larger search range, our algorithm assure that the TNN
answer is included in this range (see Theorem 1).

5.1 ANN Pruning Condition
ANN estimates the probability that an R-tree node con-

tains the real nearest neighbor to the query point p. During
the R-tree traversal of the ANN search, the upper bound
is obtained and updated in the same way as in the exact
NN search: upper bound is set to be infinity at the be-
ginning of ANN query processing and updated using the
value of either the smallest MinDist between p and an
MBR or the smallest distance between p and any real point
objects. ANN uses a new heuristic to estimate the proba-
bility that a node contains a point q such that dis(q, p) ≤
current upper bound, where current upper bound is the lat-
est upper bound of ANN obtained during R-tree traversal.
If this probability is smaller than a threshold α, it is pruned;
otherwise it is preserved in the queue and waits to be visited.

(a) Circle-Rectangle (b) Ellipse-Rectangle

Figure 8: Overlap Area

The distribution of the children or real objects of an MBR
of an R-tree node cannot be obtained unless this node is vis-
ited. Since the pruning decision has to be made before vis-
iting a node, our heuristic assumes that the children or real
objects are uniformly distributed in the MBR of this node
and uses the following method to estimate the probability
and do the pruning. An example is given in Figure 8(a).

Heuristic 1 (circle-rectangle overlap). Given a
query point p, an MBR M of an R-tree node, the upper
bound upper bound of an ANN query, let Soverlap denotes
the overlap area between M and a circle which takes p as
the center and upper bound as the radius; SMBR denotes the
area of M . The R-tree node is pruned if Soverlap/SMBR ≤ α,
where α is a pre-defined pruning threshold.

Similarly, approximate search can also be applied to Case

3 of Hybrid-NN algorithm. ANN estimates the probability
that an MBR contains a point that gives a transitive distance
to p and r smaller than the current upper bound. For Case 3
of Hybrid-NN algorithm, we use the following heuristic to do
the pruning and Figure 8(b) gives a corresponding example.

Heuristic 2 (ellipse-rectangle overlap). Given a
starting point p, an ending point r, an MBR M of an R-
tree node, the upper bound upper bound of an TNN query
in Case 3 of Hybrid-NN algorithm, let Soverlap denotes the
overlap area between M and an ellipse which takes p and r
as two foci and upper bound as the length of the major axis;
SMBR denotes the area of M . The R-tree node is pruned
if Soverlap/SMBR ≤ α, where α is a pre-defined pruning
threshold.

Note that the MBR which gives the latest upper bound
has to be preserved and visited even if its ratio between
overlap area and area of MBR is smaller than α. Otherwise
the ANN algorithm will have a probability that it does not
reach any leaf nodes of R-tree and no actual points will be
retrieved. Also note that the value of threshold α varies
between 0 and 1. When α is 0, ANN becomes eNN. A smaller
α introduces limited approximation and may not be helpful
to reduce the tune-in time. As α gets closer to 1, more R-
tree nodes satisfy the pruning condition and ANN prunes out
more R-tree nodes and the result of ANN becomes further
to the query point p; thus results in a large search range
and the penalty of tune-in time increase in the filter phase
will be dramatic. The value of α should be chosen carefully.
Different factors affecting the decision in choosing an α is
discussed in the following subsection.

5.2 Factors Affecting Approximation Quality
The depth of an R-tree node and the height of the R-

tree have an impact on the approximation quality. R-tree
nodes with a smaller depth(near the root) covers a larger
area and contains more data points than nodes with a large
depth(near the leaves). Therefore if a node near the root is
pruned, the penalty for finding a point close to the query
point may be large. If a node near the leaves is pruned, the
penalty is small and affordable. A fixed value for α may not
be suitable for all R-tree nodes(as shown in our experiment).
In our ANN algorithm, the value of α is determined dynam-
ically during the traversal of the R-tree. When visiting a
node near the root, ANN sets α close to 0 so that the search
is close to eNN; while visiting a node close to leaves, ANN
sets α close to 1 so that it prunes out a large number of
nodes to reduce the tune-in time in the estimate phase and
not introducing a large increase in the search range. We use
the following equation to determine α:

α =
Node depth

Rtree height
× factor (4)

where Node depth is the number of level a node resides
from the root and Rtree height is the total number of levels
an R-tree has. factor is used to adjust the value of α to
get the optimal optimization quality. It is determined by
whether Double-NN, Window-Based-TNN or Hybrid-NN is
used. As shown later in our experiments, for Double-NN
and Window-Based-TNN algorithms, factor = 1, while for
Hybrid-NN algorithm, factor = 1/150 or 1/200.

Different densities of the two datasets involved in TNN
query also have an impact on the value of α. E.g. the

density of dataset S is larger than that of dataset R. Since
S and R are covering the same region, points in S are closer
to each other, while points in R are sparse. Therefore, given
the same α, ANN on R contributes more to the increase in
search range than the ANN on S. More points in S will
be enclosed in this search range than those in R. These
points in S will have to be retrieved in the range query
in the filter phase. The tune-in time penalty in the range
query on S will counteract the reduction in tune-in time in
query processing on dataset R(as shown in our experiment).
Taking into consideration the difference in densities, we set
the value of α to be close or equal to 0 for the dataset with a
smaller density of the two to reduce the tune-in time penalty
in the dataset with a larger density.

6. PERFORMANCE EVALUATION
In this section, we present the result of experiments eval-

uating the performance of the Double-NN, Hybrid-NN algo-
rithms and the two algorithms adapted from [19]. Two met-
rics are used in these experiments - access time and tune-in
time, both measured by the number of pages accessed. The
access time is the larger of the access times in both channels
and the tune-in time is the sum of two tune-in times in both
channels. The datasets used in these experiments include
synthetic and real datasets. The points in one set of the syn-
thetic datasets are uniformly distributed in a 39, 000×39, 000
square region. Eight datasets are generated for the first
dataset involved in TNN query with densities 10−7.0, 10−6.6,
10−6.2, 10−5.8, 10−5.4, 10−5.0, 10−4.6 and 10−4.2, each hav-
ing 152, 382, 960, 2, 411, 6, 055, 15, 210, 38, 206 and 95, 969
points. Another set of eight uniform datasets are gener-
ated as the second dataset, with the same density range and
area, but different points from the first set. For the second
set of synthetic datasets, 16 datasets having sizes ranging
from 2,000 to 30,000 with 2,000 increment. For simplic-
ity, we use UNIF(E) to denote the first synthetic datasets,
where E represents a power of ten; and we use the number
of points to denote the second synthetic datasets. The real
datasets include CITY and POST datasets, both extracted
from [1]. The former contains nearly 6, 000 cities and vil-
lages of Greece in a 39, 000 × 39, 000 square region, while
the latter contains more than 100, 000 post offices in the
northeast of the United States in a 1, 000, 000 × 1, 000, 000
square region. When datasets with different areas are used,
they are scaled to the same area.

In the experiments, R-tree is used as the air index. We
arrange the R-tree in a depth-first order in the broadcast
channels. The reason is stated in section 2.1. Due to the
limited memory size of the mobile client, such a queue may
not be possible to maintain. As discussed in Section 2.2,
previous R-tree algorithms introduce backtracking in NN
query, which deteriorates the performance severely in terms
of access time in the broadcast environment due to its linear
delivery property. Therefore, we maintain the priority queue
of the candidate R-tree nodes according to their arrival time,
so that backtracking is avoided. Because the location of the
points in all the datasets are known a priori, and no insertion
and deletion are involved, we use STR packing algorithm to
build the R-tree in order to achieve the best performance
[12]. (1, m) interleaving technique [10] is applied to arrange
the index and data on both channels.

For each set of experiments, 1, 000 query points are gen-
erated randomly in the same region as the datasets. We

Parameter Size

size of an index pointer 2 bytes
size of a coordinate 4 bytes
size of a data content 1k bytes
page capacity 64 - 512 bytes

Table 2: Parameter Setting

assume that when the mobile client first tune-in to the two
broadcast channels, the roots of the two R-tree indices may
not be available immediately and the mobile client has to
wait to different time periods to get the two roots. There-
fore, two random numbers are generated to simulate the
waiting time to get the two roots. Also we assume that
the computational overheads, including the computing time
for the search range determination of Approximate-TNN-
Search algorithm, the join step of all the algorithms to find
the answer and ANN pruning condition checking are small
and thus can be neglected. Other parameters in our experi-
ments are the same as in [19] and listed in Table 2.

6.1 Algorithms with Exact Search
We evaluate the performance of our proposed algorithms

and two existing ones with exact search. For the first set of
synthetic datasets, we did experiments for each combination
of two datasets with different densities (8 × 8 = 64 sets of
experiments). Different pruning strategies are tried out and
different values for α are examined. Only part of the results
are shown below as representatives due to the space limit.
Please see [2] for full sets of experiments and evaluations.
The page capacity is set to be 64 bytes.

6.1.1 Access Time

The access time of the four algorithms is only affected by
the sizes of datasets and visiting orders of TNN queries. Fig-
ure 9 gives the results of access time of the four algorithms.
Among these algorithms, the Approximate-TNN-Search al-
ways gives the best performance in terms of access time be-
cause it computationally estimates the search range. There-
fore, it avoids the two index searches in the first phase and
allows the algorithm to go directly into the second phase;
whereas the other algorithms have to search on the indices
to determine the search range. Note that the Double-NN
and Hybrid-NN algorithms always have the same access time
because they start receiving and end processing at exactly
the same time. Double-NN and Hybrid-NN give a better
access time than Window-Based-TNN-Search. Figure 9(a)
and Figure 9(b) show the experiment results in which the
size of either S or R is fixed to 10,000 points and the sizes
of the other datasets varies from 2,000 to 30,000; while Fig-
ure 9(c) and Figure 9(d) show the variation of access times
in a large range of densities of the two datasets.

Our experiments show that when size(S) ≥ size(R)/40
and size(S) ≤ 1.8 × size(R), Double-NN and Hybrid-NN
give a better performance than Window-Based-TNN in terms
of access time. The largest improvement in access time oc-
curs when both datasets have similar sizes and Double-NN
and Hybrid-NN reduce the access time by 7% to 15%. When
the difference between the sizes of S and R becomes larger
than the above range, access times of the three algorithms
become similar.

When size(S)>1.8size(R), Window-Based-TNN has a high

(a) size(S)>1.8size(R)

(b) size(S)<size(R)/40

Figure 10: Access Time Analysis

probability to finish the NN search on Channel 2 before the
next root on Channel 1 arrives (on time point b in Fig-
ure 10(a)). Then it starts and ends the filter phase at the
same time as Double-NN and Hybrid-NN. When size(S) <
size(R)/40, Double-NN and Hybrid-NN give a shorter access
time than Window-Based-TNN only when the starting time
point of query processing falls in range c in Figure 13(b).
As the difference between sizes of R and S increases, this
probability reduces. Thus in the above two cases, all three
algorithms give similar access time.

Also note that the access time is dominated by the pro-
cessing time of the larger dataset of the two. This is because
access time is the longer of the access times in the two chan-
nels and larger dataset usually result in a larger processing
time.

6.1.2 Tune-in Time

Figure 12 gives the tune-in time of Window-Based-TNN,
Double-NN and Hybrid-NN algorithms. In each of the four
sets of experiments, we fix the size of dataset S and changes
the size of R.

When 0.01size(R) ≤ size(S) ≤ 0.4size(R), Hybrid-NN gives
the best tune-in time among the three algorithms, as shown
in Figure 11(a) and 11(b). In this case, Hybrid-NN al-
gorithm finds a shorter search range than Double-NN and
Window-Based-TNN, while taking similar tune-in time in
the first phase to estimate the search range, and thus pro-
vides the smallest tune-in time.

When size(S)≥ 0.4size(R), the decrease in tune-in time
in filter phase of Hybrid-NN algorithm is countervailed by
the increase in tune-in time in the estimate phase to find a
short search range, thus rendering the overall tune-in time
to be larger than the other two algorithms. Also, in this
case, Double-NN and Window-Based-TNN algorithms have
similar tune-in times, as shown in Figure 11(a) and 11(b).

When size(S)< 0.01size(R), Window-Based-TNN gives the
best tune-in time because the search range determined by
Window-Based-TNN is smaller than those of the other two
algorithms, while they uses similar tune-in times to deter-
mine the search range. Also note that as size(S) keeps in-
creasing, the tune-in time of Hybrid-NN gets closer to that
of Window-Based-TNN. This is because the NN search in
Channel 1 has a high probability to finish before the NN
search in Channel 2. Hybrid-NN, in this case, acts similarly
to Window-Based-TNN algorithm.

For Approximate-TNN algorithm, although it never fails

(a) S = 10, 000 (b) R = 10, 000 (c) S = UNIF (−5.8) (d) S = UNIF (−5.0)

Figure 9: Access Times

(a) S = UNIF (−4.2) (b) S = UNIF (−5.0) (c) S = UNIF (−7.0) (d) S = UNIF (−5.0)

Figure 11: Tune-in Time VS. Density

to generate the correct answer for TNN queries in our exper-
iments, the tune-in time is significantly larger than all the
other algorithms. One example is shown in Figure 11(d).
Approximate-TNN algorithm generates an unnecessarily large
search range by the equation and thus results in a dramatic
increase in the tune-in time in the filter phase. This is es-
pecially severe when one of the two datasets is very sparse.
A large amount of points on the dense dataset have to be
retrieved and the penalty in tune-in time is large.

6.2 Optimization

6.2.1 ANN vs. eNN

Our optimization technique with approximate-NN search
reduces the tune-in time of all the three algorithms. Fig-
ure 12(a) gives the result of tune-in time improvement of
Window-Based-TNN and Double-NN algorithms, with ap-
proximation factor factor equals to 1. ANN reduces tune-in
time in all the four page capacity settings. Due to the space
limit, only page capacity of 64 bytes is given in Figure 12(a).
Improvement in tune-in time ranges from 11% to 20%. The
two datasets involved have the same size. The impact of
difference between sizes are discussed in the following sub-
section, as well as the Hybrid-NN algorithm, which mainly
works on datasets of different sizes.

6.2.2 Impact of Sizes of Datasets

If two datasets with different densities use the same strat-
egy (using equation 4 with factor = 1) to determine the
value of threshold α, the penalty on the denser dataset of the
two will countervail the reduced tune-in time in the estimate
phase and thus increases the total tune-in time. For datasets
with different densities, we set α of the sparse dataset to be 0
(meaning to do exact NN search) and α of the denser dataset
using equation 4 with factor = 1. Figure 12(b) and 12(c)

give the performance of using this strategy to determine
the values of α. The tune-in time of both Window-Based-
TNN and Double-NN algorithms are reduced, no matter
which visiting order is taken. Figure 12(d) shows that this
strategy also reduces the tune-in time of TNN queries over
real datasets. In this set of experiments, S = CITY and
R = POST , all the four page capacity settings are checked.

For Hybrid-NN algorithm, our experiments show that when
factor = 1/150 or 1/200, ANN optimization reduces the
tune-in time. Figure 13 gives the results.

(a) S=UNIF(-5.0) (b) S=UNIF(-5.4)

Figure 13: Hybrid-NN with ANN

6.3 Distribution
The distribution has an important impact on the perfor-

mance of the existing Approximate-TNN-Search algorithm.
Approximate-TNN-Search estimates a correct search range
only for uniformly distributed datasets. However, as skewed
datasets are involved, the Approximate-NN-Search algorithm
does not guarantee to provide an effective search range and
therefore fails the TNN query. Table 3 gives the combination
of distributions of datasets and the average fail rate. In uni-

(a) ANN vs. eNN (b) density(S)>density(R) (c) density(R)>density(S) (d) ANN on Real Dataset

Figure 12: Applying ANN Optimization Technique

Density Combination Average Fail Rate

uni-uni 0%
uni-real 9.08%
real-uni 9.08%
real-real 43.2%

Table 3: Fail Rate

real and real-uni combinations, we use CITY dataset and
change the eight uniform ones. For real-real combination, we
use CITY and POST. We also uses three page capacities -
64 bytes, 128 bytes 256 bytes and 512 bytes, and average fail
rates are calculated. Note that Double-NN and Hybrid-NN
never fails to provide the correct answer to TNN queries.

7. CONCLUSION AND FUTURE WORK
In this paper, we visit a scenario of near future where a

mobile device can access multiple channels simultaneously
and study the query processing of Transitive Nearest Neigh-
bor Search. We adapt two existing algorithms to the new
environment, analyze their deficiencies and propose our new
algorithms. A comprehensive simulation has been conducted
and results show that our new algorithms effectively reduces
the access time and cases in which our algorithms reduces
tune-in time is stated and analyzed. We also propose a novel
optimization technique - using ANN to substitute eNN to
save tune-in time. Factors affecting the optimization qual-
ity are discussed. Experiments show that our optimization
method effectively reduces tune-in time of all algorithms.

This work starts new research of query processing in a
broadcast environment where clients may access to multiple
channels simultaneously. We plan to study the processing of
generalized TNN queries, including 1) more than 2 datasets
are involved, and allocated on multiple wireless channels, 2)
the visiting order of the types of objects of interest is not
specified, and 3) a complete travel route, which includes the
route to return to the source point after visiting all interested
types of objects, is queried. Besides these variants of TNN,
we will also study the query processing of other types of
queries in this new environment. We will continue the effort
in this direction and work out new solutions.

8. ACKNOWLEDGEMENT
Wang-Chien Lee was supported in part by the National

Science Foundation under Grant no. IIS-0328881, IIS-0534343
and CNS-0626709.

9. REFERENCES
[1] Spatial datasets.

http://dias.cti.gr/ ytheod/research/datasets/spatial.html.
[2] Technical report of tnn.

http://www.cse.psu.edu/∼xiazhang/technicalreport.html.
[3] Utstarcom unveils t66 cdma/gsm dual-mode phone.

http://www.slashphone.com/111/4690.html.
[4] K. Cheung and W.-C. Fu. Enhanced nearest neighbour

search on the r-tree. SIGMOD Record, 1998.
[5] A. Guttman. R-trees: a dynamic index structure for

spatial searching. In SIGMOD, 1984.
[6] G. Hjaltason and H. Samet. Distance browsing in

spatial databases. TODS, 1999.
[7] Q. Hu, W.-C. Lee, and D. L. Lee. Power conservative

multi-attribute queries on data broadcast. In
Proceedings of ICDE, pages 157–166, 2000.

[8] A. R. Hurson, Y. Chehadeh, and J. Hannan. Object
organization on parallel broadcast channels in a global
information sharing environment. In IPCCC, 2000.

[9] T. Imielinski, S. Viswanathan, and B. Badrinath.
Power efficiency filtering of data on air. In EDBT,
1994.

[10] T. Imielinski, S. Viswanathan, and B. Badrinath.
Data on air: organization and access. TKDE, 1997.

[11] I. Kamel and C. Faloutsos. On packing r-trees. In
Proceedings of CIKM, pages 490–499, 1993.

[12] S. Leutenegger, M. Lopez, and J. Edgington. Str: a
simple and efficient algorithm for r-tree packing. In
Proceedings of ICDE, pages 497–506, 1997.

[13] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S.-H. Teng. On trip planning queries in spatial
databases. In Proceedings of SSTD, 2005.

[14] K.-I. Lin, M. Nolen, and K. Kommeneni. Utilizing
indexes for qpproximate and on-line nearest neighbor
queries. In Proceedings of IDEAS, 2005.

[15] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proceedings of SIGMOD, 1995.

[16] N. roussopoulos and D. Leifker. Direct spatial search
on pictorial databases using packed r-trees. In
Proceedings of SIGMOD, pages 17–31, 1985.

[17] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The
optimal sequenced route query. VLDB Journal, 2007.

[18] B. Sun, A. R. Hurson, and J. Hannan. Energy-efficient
schedualing algorithms of object retrieval on indexed
parallel broadcast channels. In ICPP, 2004.

[19] B. Zheng, K. C. Lee, and W.-C. Lee. Transitive
nearest neighbor search in mobile environments. In
Proceedings of SUTC, pages 14–21, 2006.

