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1. INTRODUCTION

Several applications of XML stream processing have emerged recently: content-
based XML routing [Snoeren et al. 2001], selective dissemination of information
(SDI) [Altinel and Franklin 2000; Chan et al. 2002; Diao et al. 2003], continuous
queries [Chen et al. 2000], and processing of scientific data stored in large XML
files [Higgins et al. 1992; Thierry-Mieg and Durbin 1992; Borne ]. They commonly
need to process a large collection of XPath expressions (say 10,000 to 1,000,000),
on a continuous stream of XML data, at a high sustained throughput.

For illustration, consider XML Routing [Snoeren et al. 2001]. Here a network of
XML routers forwards a continuous stream of XML packets from data producers to
consumers. A router forwards each XML packet it receives to a subset of its output
links (other routers or clients). Forwarding decisions are made by evaluating a
large number of XPath filters, corresponding to clients’ subscription queries, on the
stream of XML packets. Data processing is minimal: there is no need for the router
to have an internal representation of the packet, or to buffer the packet after it has
forwarded it. Performance, however, is critical, and [Snoeren et al. 2001] reports
very poor performance with publicly available XPath processing tools.

Our goal is to develop techniques for evaluating a large collection of XPath expres-
sions on a stream of XML packets. First we describe a technique that guarantees a
sustained throughput, which is largely independent of the number of XPath expres-
sions. In contrast, in all other techniques proposed for processing XPath expressions
the throughput decreases as the number of XPath expressions increases. [Altinel
and Franklin 2000; Chan et al. 2002; Diao et al. 2003]. Second, we describe a
lightweight binary data structure, called Stream IndeX (SIX), which can be added
to the XML packets for further speedups.

The first and main contribution is to show that a Deterministic Finite Automaton
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(DFA) can be used effectively to process a large collection of XPath expressions,
at guaranteed throughput. Our approach is to convert all XPath expressions into
a single DFA, then evaluate it on the input XML stream. DFAs are the most
efficient means to process XPath expressions, but they were thought to be useless
for workloads with a large number of XPath expressions, because their size grows
exponentially with size of the workload.

Our solution to the state explosion problem consists of constructing the DFA
lazily. A lazy DFA is one whose states and transitions are computed from the
corresponding NFA at runtime, not at compile time. A new entry in the transition
table or a new state is computed only when the input data requires the DFA to
follow that transition or enter that state. The transitions and states in the lazy
DFA form a subset of those in the standard DFA, which we call eager DFA in this
paper. As a consequence, the lazy DFA can sometimes be much smaller than the
eager DFA.

We show that, for XML processing, the number of states in the lazy DFA is small
and depends only on the structure of the XML data. It is largely independent on
the number of XPath expressions in the workload. More precisely, the size of
the lazy DFA is at most the size of the data guide [Goldman and Widom 1997]
of the XML data, which is typically very small for XML data that has a fairly
regular structure. In hindsight, after we first announced this result in [Green et al.
2003], this fact may sound obvious, but it was far from obvious before. Previous
work in this area [Altinel and Franklin 2000; Chan et al. 2002; Diao et al. 2003]
explicitly avoided using DFAs, and developed alternative processing techniques that
are slower, but have guaranteed space bounds.

To support the claim that the number of states in the lazy DFA is small, we
present here a series of theoretical results characterizing the size of both the eager
and the lazy DFA for XPath expressions. These results are of general interest in
XPath processing, beyond stream applications.

The second contribution in this paper consists of a light-weight technique for
speeding up processing XML documents in a network application. The observation
here is that, in many applications processing streams of XML messages, the main
bottleneck consists of parsing, or tokenizing each message. To address that, some
companies use a proprietary tokenized format instead of the XML text representa-
tion [Florescu et al. 2003], but this suffers from lack of interoperability. We propose
a more lightweight technique, that adds a small amount of binary data to each
XML document, facilitating access into the document. We call this data a Stream
IndeX (SIX). The SIX is computed once, when the XML document is first gener-
ated, and attached somehow to the document (for example using DIME [Corp. ]).
All applications receiving the document that understand the SIX can then access
the XML data much faster. If they don’t understand the SIX, then they can fall
back on the traditional parse/evaluate model. Space-wise, the overhead of a SIX
is very small (typical values are, say, 7% of the data, and can be reduced further),
so there is little or no penalty from using it. We note that the general principle
of adding a small amount of binary data to facilitate access in the XML document
also admits other implementations, see [Gupta et al. 2002; Gupta et al. 2003].

Finally, we illustrate an application of our techniques by describing the XML
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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Toolkit (XMLTK), for highly scalable processing of XML files. Our goal is to
provide to the public domain a collection of stand-alone XML tools, in analogy
with Unix commands for text files. Current tools include sorting, aggregation,
nesting, unnesting, and a converter from a directory hierarchy to an XML file. Each
tool performs one single kind of transformation, but can scale to arbitrarily large
XML documents in, essentially, linear time, and using only a moderate amount of
main memory. By combining tools in complex pipelines users can perform complex
computations on the XML files. There is a need for such tools in user communities
that have traditionally processed data formatted in line-oriented text files, such as
network traffic logs, web server logs, telephone call records, and biological data.
Today, many of these applications are done by combinations of Unix commands,
such as grep, sed, sort, and awk. All these data formats can and should be
translated into XML, but then all the line-oriented Unix commands become useless.
Our goal is to provide tools that can process the data after it has been migrated to
XML.

Discussion This paper focuses only on linear XPath expressions. Applications
rarely have such simple workloads, and are more likely to use XPath expressions
with nested predicates. Scalable techniques for such workloads require a separate
investigation and are out of the scope of this paper. However, the techniques de-
scribed here are relevant to the general XPath processing problem, for two reasons.
First, processing linear expressions is a subproblem in processing more complex
workloads, and needs to be addressed somehow. In fact we describe here a simple
way to evaluate XPath expressions with nested predicates by decomposing them
into linear fragments, and we found this simple technique to work well on small
workloads. Second, at a deeper level, it has been shown in [Gupta and Suciu 2003]
that our results about the DFA extend, although not in a trivial way, to a pushdown
automaton, which can process an arbitrarily complex workload of XPath expres-
sions with nested predicates. Thus, the results and techniques discussed in this
paper can be seen as building blocks for more powerful processors.

Paper Organization We begin with an overview in Sec. 2 of the processing
model and the system’s architecture. We describe in detail processing with a DFA
in Sec. 3, then discuss its construction in Sec. 4 and analyze its size. We describe
the SIX in Sec. 5. We report our experimental results in Sec. 6 and describe the
XML Toolkit in Sec. 7. Sec 8 contains related work, and we conclude in Sec. 9.
The Appendix contains some of the proofs and more details on the XML Toolkit.

2. OVERVIEW

2.1 The Event-Based Processing Model

The architecture of our XML stream processing system is shown in Figure 1. The
user specifies several correlated XPath expressions arranged in a tree, called the
query tree. An input stream of XML packets is first parsed by a SAX parser that
generates a stream of SAX events, or SAX tokens; this is sent to the query processor,
which evaluates the XPath expressions and generates a stream of application events.
The application is notified of these events, and usually takes some action such as
forwarding the packet, notifying a client, or computing some values. An optional
Stream Index (called SIX) may accompany the XML stream to speed up processing

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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Fig. 1. System’s Architecture

(Section 5).
We consider linear XPath expressions, P , given by the following grammar:

P ::= /N | //N | PP

N ::= E | A | ∗ | text() | text() = S (1)

Here E and A are element label and attribute label respectively, / denotes the
child axis, // denotes the descendant axis, ∗ is the wild card, and S is a string
constant. As explained earlier, nested predicates are not discussed here, and have
to be decomposed into linear XPath expressions, as shown below.

A query tree, Q, has nodes labeled with variables and the edges with linear path
expressions. There is a distinguished variable, $R, which is always bound to the
root node of the XML packet. Each node in the tree also carries a boolean flag,
called sax f. When its value is true, then the SAX events under that node are
forwarded to the application; otherwise they are not forwarded to the application.
The sax f can be set on and off at various nodes in the query tree. The sax f flag
is used by the stream index, Sec. 5.

Example 2.1 The following is a query tree (tags taken from the NASA dataset [Borne
]):

$D IN $R/datasets/dataset
$H IN $D/history
$T IN $D/title sax f = true
$TH IN $D/tableHead sax f = true
$N IN $D//tableHead//*
$F IN $TH/field
$V IN $N/text()="Galaxy"

Fig. 2 shows this query tree graphically. Here the application requests the SAX
events under $T, and $TH only. Fig. 3 shows the result of evaluating this query
tree on an XML input stream: the first column shows the XML stream, the second
shows the SAX events generated by the parser, and the last column shows the
events forwarded to the application. Only some of the SAX events are seen by the
application, namely exactly those that occur within a $T or $TH variable event.

Nested Predicates When an XPath expression contains nested predicates, then
the application needs to decompose them into linear XPath expressions. For exam-
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



Processing XML Streams with Deterministic Automata and Stream Indexes · 5

/datasets/dataset

/history /tableHead/title

$F

$D

$T $N $H $TH

$V

$R

/field

//tableHead//*

/text("Galaxy")
sax_f=true

sax_f=true

Fig. 2. A Query Tree

XML Stream Parser Events: Application Events:
SAX Events SAX and variable events

<datasets> startElement(datasets) startVariable($R)
<dataset> startElement(dataset) startVariable($D)
<history> startElement(history) startVariable($H)
<date> startElement(date)
10/10/59 text("10/10/59")
</date> endElement(date)
</history> endElement(history) endVariable($H)
<title> startElement(title) startVariable($T)

startElement(title)
<subtitle> startElement(subtitle) startElement(subtitle)
Study text("Study") text("Study")
</subtitle> endElement(subtitle) endElement(subtitle)
</title> endElement(title) endElement(title)

endVariable($T)
</dataset> endElement(dataset) endVariable($D)
</datasets> endElement(datasets) endVariable($R)

Fig. 3. Events generated by a Query Tree

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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Q: Q’:

$Y IN $R/catalog/product $Y IN $R/catalog/product

$Z IN $Y/@category/text()="tools" $Z IN $R/catalog/product/@category/text()="tools"

$U IN $Y/sales/@price $U IN $R/catalog/product/sales/@price

$X IN $Y/quantity $X IN $R/catalog/product/quantity

Fig. 4. A query tree Q and an equivalent query set Q′ of absolute XPath expressions.

ple, given the expression:

$X IN $R/catalog/product[@category="tools"][sales/@price > 200]/quantity

the application needs to decompose it into four linear XPath expression, which form
the query tree Q shown in Fig. 4. The query processor will notify the application of
five events, $R, $Y, $Z, $U, $X, and the application needs to do extra work to combine
these events, as follows. It uses two boolean variables, b1, b2. On a $Z event, it
sets b1 to true; on a $U event test the following text value and, if it is > 200,
then sets b2 to true. At the end of a $Y event it checks whether b1=b2=true.
Some extra care is needed for the descendant axis, //. This simple method works
well in the case when there are few XPath expressions, like in the XML Toolkit
described in Sec. 7. Workloads with large numbers of XPath expressions and nested
predicates require more complex processing techniques, and this is outside of the
scope of this paper. We note, however, that the DFA-based processing method that
we study in this paper has been incorporated into a highly scalable technique for
XPath expressions with nested predicates [Gupta and Suciu 2003].

The Event-based Processing Problem The problem that we address is: given
a query tree Q, pre-process it, and then evaluate it on an incoming XML stream.
The goal is to maximize the throughput at which we can process the XML stream.

The special case that we will study in Section 4 is that of a query tree in which
every XPath expression is absolute, i.e. starts at the root node. In that case we
call Q a query set, or simply a set, because it just consists of a set of absolute
XPath expressions. For the purpose of application events only, a query tree Q can
be rewritten into an equivalent query set Q′, as illustrated in Fig. 4. Moreover
the DFAs for Q and Q′ are isomorphic, so it suffices to study the size of the DFA
only for absolute path expressions (Sec. 4). However, in practice the DFA for Q
is somewhat more efficient to compute than that for Q′, and for that reason the
query processor works on the query tree Q directly.

3. PROCESSING WITH DFAS

3.1 Generating a DFA from a Query Tree

Our approach is to convert a query tree into a Deterministic Finite Automaton
(DFA). Recall that the query tree may be a very large collection of XPath expres-
sions: we convert all of them into a single DFA. This is done in two steps: convert
the query tree into a Nondeterministic Finite Automaton (NFA), then convert the
NFA to a DFA. We review here briefly the basic techniques for both steps and refer
the reader to a textbook for more details, e.g. [Hopcroft and Ullman 1979]. Our
running example will be the query tree P shown in Fig. 5(a). Fig. 5(b) illustrates
the first step: converting the query tree to an NFA, denoted An. We follow a
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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popular method for converting XPath expression into an NFA, which was used in
Tukwila [Ives et al. 2002], our own work [Green et al. 2003], and in YFilter [Diao
et al. 2003]; for a detailed overview of various methods for converting a regular
expression to an NFA we refer to Watson’s survey [Watson 1993]. In Fig. 5(b), the
transitions labeled ∗ correspond to ∗ or // in P ; there is one initial state; there is one
terminal state for each variable ($X, $Y, . . . ); and there are ε-transitions. The latter
are needed to separate the loops from the previous state. For example if we merge
states 2, 3, and 6 into a single state then the ∗ loop (corresponding to //) would
incorrectly apply to the right branch. This justifies 2 ε→ 3; the other ε-transitions
are introduced by compositional rules, which are straightforward and omitted. No-
tice that, in general, the number of states in the NFA, An, is proportional to the
size of P .

Let Σ denote the set of all tags, attributes, and text constants occurring in the
query tree P , plus a special symbol ω representing any other symbol that could
be matched by ∗ or //. For w ∈ Σ∗ let An(w) denote the set of states in An

reachable on input w. In our example we have Σ = {a, b, d, ω}, and An(ε) = {1},
An(ab) = {3, 4, 7}, An(aω) = {3, 4}, An(b) = ∅.

The DFA for P , Ad, has the following set of states and the following transitions:

states(Ad) = {An(w) | w ∈ Σ∗} (2)
δ(An(w), a) = An(wa), a ∈ Σ

Our running example Ad is illustrated1 in Fig. 5 (c). Each state has unique tran-
sitions, and one optional [other] transition, denoting any symbol in Σ except the
explicit transitions at that state: this is different from ∗ in An which denotes any
symbol. For example [other] at state {3, 4, 8, 9} denotes either a or ω, while
[other] at state {2, 3, 6} denotes a, d, or ω. Terminal states may be labeled now
with more than one variable, e.g. {3, 4, 5, 8, 9} is labeled $Y and $Z. A sax f flag
is defined for each DFA state as follows: it value is true if at least one of the NFA
states in that DFA state has sax f = true; otherwise it is false.

3.2 The DFA at Run time

One can process an XML stream with a DFA very efficiently. It suffices to maintain
a pointer to the current DFA state, and a stack of DFA states. SAX events are
processed as follows. On a startElement(e) event we push the current state on the
stack, and replace the state with the state reached by following the e transition2;
on an endElement(e) we pop a state from the stack and set it as the current
state. Attributes and text values are handled similarly. At any moment, the states
stored in the stack are exactly those at which the ancestors of the current node
were processed, and at which one may need to come back later when exploring
subsequent children nodes of those ancestors. If the current state has any variables
associated to it, then for each such variable $V we send a startVariable($V) (in
the case of a startElement) or endVariable($V) (in the case of a endElement)

1Technically, the state ∅ is also part of the DFA, and behaves like a “failure” state, collecting all
missing transitions. We do not illustrate it in our examples.
2The state’s transitions are stored in a hash table.

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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$X IN $R/a

$Y IN $X//*/b

$Z IN $X/b/*

$U IN $Z/d

$R

/a

//*/b /b/*

/d

$Y $Z

$U

$X

(a)

ε
ε

* b

$Z

*

ε

d

$U

$Y

b

3

6

7

4 8

95

10

*

a

$R

$X

1

2

(b)

a

$R

$X2,3,6

3,4,73,4

[other]

3,4,5

b

b
[other] [other]

3,4,5,8,9

b

$Y, $Z

3,4,8,9

$Z

3,4,10

d

$U

[other]

[other]

$Y
b

d

[other]

b

b

b

1

[other]

(c)

Fig. 5. (a) A query tree P ; (b) its NFA, An, and (c) its DFA, Ad.
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(a)

b

a

b

a

a

*

5

0

1

2

4

3

$X
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01

012 02

0123 023 013 03

01234 0234 0134 034 .  .  .  .

.  .  .  .

a

a

a

a

a

[other]

[other] [other]

[other] [other]

a

012345

a a a

01345 01245

. . . .

. . . . . .  . . .

$X $X $X $X

$X

a

*

*

*

*

*
0

5

1

2

4

3

b

a

b

a

a

0
[other]

$X

01

02

013

014

025

[other]

[other]

b

[other]

[other] a

[other]

a

(b) (c) (d)

a

0145

a

Fig. 6. The NFA (a) and the DFA (b) for *dfa. The NFA (c) and the DFA (with
back edges removed) (d) for //a/*/*/*/*: here the eager DFA has 25 = 32 states.

event to the application. If either the current state or the new state we enter has
sax f=true, then we forward the SAX event to the application.

No memory management is needed at run time3. Thus, each SAX event is pro-
cessed in O(1) time, since a transition lookup is implemented as a hash table lookup,
and this technique guarantees the throughput at which it can process the stream of
XML packets, independently of the number of XPath expressions. The main issue
is the size of the DFA, which we discuss next.

4. ANALYZING THE SIZE OF THE DFA

For a general regular expression the size of the DFA may be exponential [Hopcroft
and Ullman 1979]. In our setting, however, the expressions are restricted to XPath
expressions defined in Sec. 2.1, and general lower bounds do not apply automat-
ically. We analyze and discuss here the size of the eager and lazy DFAs for such
XPath expressions. We call a DFA eager if it is obtained using the standard power-
set construction, shown in Eq.(2). We call the DFA lazy if its states and transitions
are constructed at runtime, as we describe in detail in Sec. 4.2. We shall assume
first that the XPath expressions have no predicates of the form text()=S, and, as
a consequence, the alphabet Σ is small, then discuss in Sec. 4.3 the impact of such
predicates on the size of the DFA. As explained at the end of Sec.2 we will restrict
our analysis to absolute XPath expressions, i.e. to query sets rather than query
trees.

4.1 The Eager DFA

Single XPath Expression A single linear XPath expression can be written as:

3The stack is a static array, currently set to 1024: this represents the maximum XML depth that

we can handle.

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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P = p0//p1// . . . //pk

where each pi is N1/N2/ . . . /Nni
, i = 0, . . . , k, and each Nj is given by Eq.(1) in

Sec. 2.1. We consider the following parameters:

k = number of //’s
ni = length of pi, i = 0, . . . , k
m = max # of ∗’s in each pi

n = length (or depth) of P , i.e.
∑

i=0,k ni

s = alphabet size =| Σ |

For example if P = //a/∗//a/∗/b/a/∗/a/b, then k = 2 (p0 = ε, p1 = a/∗, p2 =
a/∗/b/a/∗/a/b), s = 3 (Σ = {a, b, ω}), n = 9 (node tests: a, ∗, a, ∗, b, a, ∗, a, b), and
m = 2 (we have 2 ∗’s in p2). The following theorem gives an upper bound on the
number of states in the DFA. The proof is in the Appendix.

Theorem 4.1. Given a linear XPath expression P , define prefix(P ) = n0 and
body(P ) = (k2−1

2k2 (n − n0)2 + 2(n − n0) − nk + 1)sm when k > 0, and body(P ) = 1
when k = 0. Then the eager DFA for P has at most prefix(P ) + body(P ) states. In
particular, if m = 0 and k ≤ 1, then the DFA has at most (n + 1) states.

We first illustrate the theorem in the case where there are no wild-cards (m = 0)
and k = 1. Then n = n0 +n1 and there are at most n0 +2(n−n0)−n1 +1 = n+1
states in the DFA. For example, if p = //a/b/a/a/b, then k = 1, n = 5: the NFA
and DFA are shown in Fig. 6 (a) and (b) respectively, and indeed the latter has 6
states. This generalizes to //N1/N2/ . . . /Nn: the DFA has only n + 1 states, and
is an isomorphic copy of the NFA plus some back transitions: this corresponds to
Knuth-Morris-Pratt’s string matching algorithm [Cormen et al. 1990].

When there are wild cards (m > 0), the theorem gives an exponential upper
bound because of the factor sm. There is a corresponding exponential lower bound,
illustrated in Fig. 6 (c), (d), showing that the DFA for p = //a/∗/∗/∗/∗, has 25

states. It is easy to generalize this example and see that the DFA for //a/∗/ . . . /∗
has 2m+1 states, where m is the number of ∗’s. While a simple hack enables us to
//a/∗/ . . . /∗ on an XML document using constant space without converting it into
a DFA, this is no longer possible if we modify the expression to //a/∗/ . . . /∗/b.

Thus, the theorem shows that the only thing that can lead to an exponen-
tial growth of the DFA is the maximum number of ∗’s between any two con-
secutive //’s. One expects this number to be small in most practical applica-
tions; arguably users write expressions like /catalog//product//color rather
than /catalog//product/*/*/*/*/*/*/*/*/*/color. Some implementations of
XQuery already translate a single linear XPath expression into DFAs [Ives et al.
2002].

Multiple XPath Expressions For sets of XPath expressions, the DFA also
grows exponentially with the number of expressions containing //. We illustrate
this first, then state the lower and upper bounds.

Example 4.2 Consider four XPath expressions:
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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$X1 IN $R//book//figure
$X2 IN $R//table//figure
$X3 IN $R//chapter//figure
$X4 IN $R//note//figure

The eager DFA needs to remember what subset of tags of {book, table, chapter, note}
it has seen, resulting in at least 24 states. We generalize this below.

Proposition 4.3. Consider p XPath expressions:
$X1 IN $R//a1//b

...
$Xp IN $R//ap//b

where a1, . . . , ap, b are distinct tags. Then the DFA has at least 2p states.4

For all practical purposes, this means that the size of the DFA for a set of XPath
expressions is exponential. The theorem below refines the exponential upper bound,
and its proof is in the Appendix.

Theorem 4.4. Let Q be a set of XPath expressions. Then the number of states
in the eager DFA for Q is at most:

∑
P∈Q(prefix(P )) +

∏
P∈Q(1 + body(P )). In

particular, if A,B are constants s.t. ∀P ∈ Q, prefix(P ) ≤ A and body(P ) ≤ B,
then the number of states in the eager DFA is ≤ p · A + (1 + B)p′ , where p is the
number of XPath expressions in Q and p′ is the number of such expressions that
contain //.

Recall that body(P ) already contains an exponent, which we argued is small in
practice. The theorem shows that the extra exponent added by having multiple
XPath expressions is precisely the number of expressions with //’s. This result
should be compared with Aho and Corasick’s dictionary matching problem [Aho
and Corasick 1975; Rozenberg and Salomaa 1997]. There we are given a dictionary
consisting of p words, {w1, . . . , wp}, and have to compute the DFA for the set Q =
{//w1, . . . , //wp}. Hence, this is a special case where each XPath expression has a
single, leading //, and has no ∗. The main result in the dictionary matching problem
is that the number of DFA states is linear in the total size of Q. Theorem 4.4 is
weaker in this special case, since it counts each expression with a // toward the
exponent. The theorem could be strengthened to include in the exponent only
XPath expressions with at least two //’s, thus technically generalizing Aho and
Corasick’s result. However, XPath expressions with two or more occurrences of
// must be added to the exponent, as Proposition 4.3 shows. We chose not to
strengthen Theorem 4.4 since it would complicate both the statement and proof,
with little practical significance.

Sets of XPath expressions like the ones we saw in Example 4.2 are common in
practice, and rule out the eager DFA, except in trivial cases. The solution is to
construct the DFA lazily, which we discuss next.

4Although this requires p distinct tags, the result can be shown with only 2 distinct tags, and

XPath expressions of depths n = O(log p), using binary encoding of tags.

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



12 · Todd J. Green et al.

4.2 The Lazy DFA

The lazy DFA is constructed at run-time, on demand. Initially it has a single state
(the initial state), and whenever we attempt to make a transition into a missing
state we compute it, and update the transition. The hope is that only a small set
of the DFA states needs to be computed.

This idea has been used before in text processing [Laurikari 2000], but it has
never been applied to large numbers of expressions as required in our applications.
A careful analysis of the size of the lazy DFA is needed to justify its feasibility. We
prove two results, giving upper bounds on the number of states in the lazy DFA,
that are specific to XML data, and that exploit either the schema, or the data
guide. We stress, however, that neither the schema nor the data guide need to be
known to the query processor in order to use the lazy DFA, and only serve for the
theoretical results.

Formally, let Al be the lazy DFA. Its states and transitions are described by the
following equations, which should be compared to Eq.(2) in Sec. 3.1:

states(Al) = {An(w) | w ∈ Ldata} (3)
δ(An(w), a) = An(wa), wa ∈ Ldata (4)

Here Ldata is the set of all root-to-leaf sequences of tags in the input XML streams.
Thus, the size of the lazy DFA is determined by two factors: (1) the number of
states, i.e. | states(Al) |, and (2) the size of each state, i.e. | An(w) |, for w ∈ Ldata.
Recall that each state in the lazy DFA is represented by a set of states from the
NFA, which we call an NFA table. In the eager DFA the NFA tables can be dropped
after the DFA has been computed, but in the lazy DFA they need to be kept, since
we never really complete the construction of the DFA (they are technically needed
to apply Equation (4) at runtime). Therefore the NFA tables also contribute to the
size of the lazy DFA. We analyze in this section both factors.

4.2.1 The number of states in the lazy DFA. The first size factor, the number
of states in the lazy DFA may be, in theory, exponentially large, and hence is our
first concern. Assuming that the XML stream conforms to a schema (or DTD),
denote Lschema all root-to-leaf sequences allowed by the schema: we have Ldata ⊆
Lschema ⊆ Σ∗.

We use graph schema [Abiteboul et al. 1999; Buneman et al. 1997] to formalize
our notion of schema, where nodes are labeled with tags and edges denote inclusion
relationships. A graph schema S is a graph with a designated root node, and with
nodes labeled with symbols from Σ. Each path from the root defines a word w ∈ Σ∗,
and the set of all such words forms a regular language denoted Lschema. Define
a simple cycle, c, in a graph schema to be a set of nodes c = {x0, x1, . . . , xn−1}
which can be ordered s.t. for every i = 0, . . . , n − 1, there exists an edge from xi

to x(i+1) mod n. We say that a graph schema is simple, if for any two simple cycles
c 6= c′, we have c ∩ c′ = ∅.

We illustrate with the DTD in Fig. 7, which also shows its graph schema. This
DTD is simple, because the only cycles in its graph schema (shown in Fig. 7 (a)) are
self-loops. All non-recursive DTDs are simple. Recall that a simple path in a graph
is a path where each node occurs at most once. For a simple graph schema we denote
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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d the maximum number of simple cycles that a simple path can intersect (hence
d = 0 for non-recursive schemes), and D the total number of nonempty, simple paths
starting at the root: D can be thought of as the number of nodes in the unfolding5.
In our example d = 2, D = 13, since the path book/chapter/section/table/note
intersects two simple cycles, {table} and {note}, and there are 13 different simple
paths that start at the root: they correspond to the nodes in the unfolded graph
schema shown in Fig. 7 (b). For a query set Q, denote n its depth, i.e. the maximum
number of symbols in any P ∈ Q (i.e. the maximum n, as in Sec. 4.1). We prove
the following result in the Appendix:

Theorem 4.5. Consider a simple graph schema with d, D, defined as above, and
let Q be a set of XPath expressions of maximum depth n. Then, on any XML input
satisfying the schema, the lazy DFA has at most 1 + D × (1 + n)d states.

The result is surprising, because the number of states does not depend on the
number of XPath expressions, only on their depths. In Example 4.2 the depth is
n = 2: for the DTD above, the theorem guarantees at most 1 + 13 × 32 = 118
states in the lazy DFA. In practice, the depth is larger: for n = 10, the theorem
guarantees ≤ 1574 states, even if the number of XPath expressions increases to,
say, 100,000. By contrast, the eager DFA may have ≥ 2100000 states (see Prop. 4.3).
Fig. 6 (d) shows another example: of the 25 states in the eager DFA only 9 are
expanded in the lazy DFA.

Theorem 4.5 has many applications. First for non-recursive DTDs (d = 0) the
lazy DFA has at most 1 + D states6. Second, in data-oriented XML instances,
recursion is often restricted to hierarchies, e.g. departments within departments,
parts within parts. Hence, their DTD is simple, and d is usually small. Finally, the
theorem also covers applications that handle documents from multiple DTDs (e.g.
in XML routing): here D is the sum over all DTDs, while d is the maximum over
all DTDs.

The theorem does not apply, however, to document-oriented XML data. These
have non-simple DTDs : for example a table may contain a table or a footnote,
and a footnote may also contain a table or a footnote. Hence, both {table}
and {table, footnote} are cycles, and they share a node. This is illustrated in
Fig. 8 (a). For such cases we give an upper bound on the size of the lazy DFA in
terms of data guides [Goldman and Widom 1997]. Given an XML data instance,
the data guide G is that schema which is (a) deterministic7 (b) it captures exactly
the sequence of labels in the data, Lschema = Ldata, and (c) G is unfolded, i.e. it is
a tree. The latter property is possible to enforce since Ldata is finite, hence the data
guide has no cycles. Figure 8 illustrates the connection between graph schemas,
XML data, and data guides. The graph schema in (a) is non-simple, and shows
all possible nestings that are allowed in the data. An actual XML instance in (b)

5The constant D may, in theory, be exponential in the size of the schema because of the unfolding,
but in practice the shared tags typically occur at the bottom of the DTD structure (see [Sahuguet
2000]), hence D is only modestly larger than the number of tags in the DTD.
6This also follows directly from (3) since in this case Lschema is finite and has 1 + D elements:
one for w = ε, and one for each non-empty, simple path.
7For each label a ∈ Σ, a node can have at most one child labeled with a.
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<!ELEMENT book (chapter*)>
<!ELEMENT chapter (section*)>
<!ELEMENT section ((para|table|note|figure)*)>
<!ELEMENT table ((table|text|note|figure)*)>
<!ELEMENT note ((note|text)*)>

table

note

tablepara

text text text

note note

text

chapter

book

section

chapter

book

rowfigure rowfigure

figure
section

para

(a) (b)

Fig. 7. A simple graph schema for a DTD (a) and its unfolding (b). Here D = 13
(since the unfolding has 13 nodes) and d = 2 (since two recursive elements may be
nested: a table may contain a note).

footnote

(c)(b)(a)

doc

table

footnote

doc

table table table

table footnote

table

table

table

doc

table

table

footnote

footnote

Fig. 8. A non-simple graph schema (a), an XML instance (b) and its data guide
(c).
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uses only some of these nestings. The data guide in (c) captures precisely these
nestings.

Since data guides are graph schemas with d = 0, Theorem 4.5 applies and gives
us:

Corollary 4.6. Let G be the number of nodes in the data guide of an XML
stream. Then, for any set Q of XPath expressions the lazy DFA for Q on that XML
stream has at most 1 + G states.

An empirical observation is that real XML data tends to have small data guides,
regardless of its DTD. To understand why, consider the case of XML documents
representing structured text, with elements such as footnote, table, figure,
abstract, section, where the DTD allows these elements to be nested arbi-
trarily. Typical documents will have paths like section/table, section/figure,
section/figure/footnote, and, hence the dataguide for large enough collection
of such documents is quite likely to contain all these paths. However, many
other paths are quite unlikely to occur in practice, e.g. table/figure/footnote,
figure/section/abstract, and therefore they are unlikely to occur in the dataguide,
even though they are technically permitted by the DTD. Thus, the number of nodes
in the dataguide is typically much smaller than the theoretical upper bound. This
is a general observation, which tends to hold on most practical XML data found in
most domains. In order to find a counterexample, one has to go to the domain of
Natural Language Processing: Treebank [Marcus et al. 1993] is a large collection
of parsed English sentences and its data guide has G = 340, 000 nodes, as reported
in [Liefke and Suciu 2000].

4.2.2 Size of NFA tables. The following proposition ensures that the NFA tables
do not increase exponentially:

Proposition 4.7. Let Q be a set of p XPath expressions, of maximum depth n.
Then the size of each NFA table in the DFA for Q is at most 2np.

The proof follows immediately from the observation that the NFA for one XPath
expression has n + k ≤ 2n states; hence each NFA table may contain at most 2np.
Despite the apparent positive result, the sets of NFA states are responsible for most
of the space in the lazy DFA, and we discuss them in Sec. 6.

4.3 Predicates

We now lift the restriction on predicates, and discuss their impact on the number
of states in the DFA. Each linear XPath expression can now end in a predicate
text()=S, see Eq.(1) in Sec. 2.1. The only difference is that now we can no longer
assume that the alphabet Σ is small, since the number of distinct strings S in the
query workload can be very large. As a matter of notation, we follow the W3C
standards and use a rather confusing syntax for the symbol text(). An XPath
expression may end in a predicate denoted text()=S; this matches a SAX event
of the form text(S); hence, the predicate becomes a transition labeled text(S) in
the NFA and the DFA.

For a given set of XPath expressions, Q, let Σ denote the set of all symbols in
the NFA for Q, including those of the form text(S). Let Σ = Σt ∪ Σs, where Σt
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contains all element and attribute labels and ω, while Σs contains all symbols of
the form text(S). The NFA for Q has a special, 2-tier structure: first an NFA
over Σt, followed by some Σs-transitions into sink states, i.e. with no outgoing
transitions. The corresponding DFA also has a two-tier structure: first the DFA
for the Σt part, denote it At, followed by Σs transitions into sink states. All
our previous upper bounds on the size of the lazy DFA apply to At. We now
have to count the additional sink states reached by text(S) transitions. For that,
let Σs = {text(S1), . . . , text(Sq)}, and let Qi, i = 1, . . . , q, be the set of XPath
expressions in Q that end in text() = Si; we assume w.l.o.g. that every XPath
expression in Q ends in some predicate in Σs, hence Q = Q1 ∪ . . . ∪ Qq. Denote
Ai the DFA for Qi, and At

i its Σt-part. Let si be the number of states in At
i,

i = 1, . . . , q. All the previous upper bounds, in Theorem 4.1, Theorem 4.5, and
Corollary 4.6 apply to each si. We prove the following in the Appendix.

Theorem 4.8. Given a set of XPath expressions Q, containing q distinct pred-
icates of the form text()=S, the additional number of sink states in the lazy DFA
due to the constant values is at most

∑
i=1,q si.

5. THE STREAM INDEX (SIX)

Parsing and tokenizing the XML document is generally accepted to be a major bot-
tleneck in XML processing. An obvious solution is to represent an XML document
in binary, as a string of binary tokens. In an XML message system, the messages
are now binary representations of XML, rather than real XML, or they are con-
verted into binary when they enter the system. Some commercial implementations
adopt this approach in order to increase performance [Florescu et al. 2003]. The
disadvantage is that all servers in the network must understand that binary for-
mat. This defeats the purpose of the XML standard, which is supposed to address
precisely the lack of interoperability that is associated with a binary format.

We favor an alternative approach: keep the XML packets in their native text
format, and add a small amount of binary data that allows fast access to the
document. We describe here one such technique: a different technique based on the
same philosophy is described in [Gupta et al. 2003].

5.1 Definition

Given an XML document, a Stream IndeX (SIX) for that document is an ordered
set of byte offsets pairs:

(beginOffset, endOffset)

where beginOffset is the byte offset of some begin tag, and endOffset of the
corresponding end tag (relative to the begin tag). Both numbers are represented
in binary, to keep the SIX small. The SIX is computed only once, by the producer
of the XML stream, attached to the XML packet somehow (e.g. using the DIME
standard [Corp. ]), then sent along with the XML stream and used by every
consumer of that stream (e.g. by every router, in XML routing). A server that
does not understand the SIX can simply ignore it.

The SIX is sorted by beginOffset. The query processor starts parsing the XML
document and matches SIX entries with XML tags. Depending on the queries
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



Processing XML Streams with Deterministic Automata and Stream Indexes · 17

that need to be evaluated, the query processor may decide to skip over elements
in the XML document, using endOffset. Thus, a simple addition of two integers
replaces parsing an entire subelement, generating all SAX events, and looking for
the matching end tag. This is a significant savings.

The SIX module (see Fig. 1 in Sec. 2.1) offers a single interface: skip(k), where
k ≥ 0 denotes the number of open XML elements that need to be skipped. Thus
skip(0) means “skip to the end of the most recently opened XML element”. The
example below illustrates the effect of a skip(0) call, issued after reading <c>:

XML stream:
<a> <b> <c> <d> </d> </c> <e> </e> </b> <f> . . .

|
skip(0)

parser:
<a> <b> <c> <e> </e> </b> <f> . . .

while the following shows the effect of a skip(1) call:

XML stream:
<a> <b> <c> <d> </d> </c> <e> </e> </b> <f> . . .

|
skip(1)

parser:
<a> <b> <c> <f> . . .

5.2 Using the SIX

A SIX can be used by any application that processes XML documents using a SAX
parser.

Example 5.1 Consider a very simple application counting how many products in
a stream of messages have more than 10 complaints:

count(/message/product[count(complaint) >= 10])

While looking for product, if some other tag is encountered then the application
issues a skip(0). Inside a product, the application listens for complaint: if some
other tag is read, then issue a skip(0). If a complaint is read then increment the
count. If the count is >=10 then issue skip(1), otherwise skip(0).

A DFA can use a SIX effectively. From the transition table of a DFA state it can
see what transitions it expects. If a begin tag does not correspond to any transition
and its sax f flag is set to false, then it issues a skip(0). As we show in Sec. 6
this results in dramatic speed-ups.

5.3 Implementation

The SIX is very robust: arbitrary entries may be removed without compromising
consistency. Entries for very short elements are candidates for removal because they
provide little benefit. Very large elements may need to be removed (as we explain
next), and skipping over them can be achieved by skipping over their children,
yielding largely the same benefit.
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The SIX works on arbitrarily large XML documents. After exceeding 232 bytes
in the input stream, beginOffset wraps around; the only constraint is that each
window of 232-bytes in the data has at least one entry in the SIX8. The endOffset
cannot wrap around: elements longer than 232 bytes cannot be represented in the
SIX and must be removed.

The SIX is just a piece of binary data that needs to travel with the XML doc-
ument. Some application decides to compute it and attaches it to the XML docu-
ment. Later consumers of that document can then benefit from it. In our imple-
mentation the SIX is a binary file, with the same name as the XML file and with
extension .six. In an application like XML packet routing, the SIX needs to be
attached somehow to the XML document, e.g. by using the DIME format [Corp.
], and identified with a special tag. In both cases, applications that understand the
SIX format may use it, while those that don’t understand it will simply ignore it.

The SIX for an XML document is constructed while the XML text output is
generated, as follows. The application maintains a circular buffer containing a tail
of the SIX, and a stack of pointers into the buffer. The application also maintains a
counter representing the total number of bytes written so far into the XML output.
Whenever the application writes a startElement to the XML output, it adds a
(beginOffset, endOffset) entry to the SIX buffer, with beginOffset set to the
current byte count, and endOffset set to NULL. Then it pushes a pointer to this
entry on the stack. Whenever the application writes a endElement to the XML
output, it pops the top pointer from the stack, and updates the endOffset value
of the corresponding SIX entry to the current byte offset. In most cases the size
of the entire SIX is sufficiently small for the application to keep it in the buffer.
However, if the buffer overflows, then application fetches the bottom pointer on the
stack and deletes the corresponding SIX entry from the buffer, then flushes from
the buffer all subsequent SIX entries that have their endOffset value completed.
This, in effect, deletes a SIX entry for a large XML element.

5.4 Speedup of a SIX

The effectiveness of the SIX depends on the selectivity. Given a query tree P and
an XML stream let n be the total number of XML nodes, and let n0 be the number
of selected nodes, i.e. that match at least one variable in P . Define the selectivity
as θ = n0/n. Examples: the selectivity of the XPath expression //* is 1; the
selectivity of /a/b/no-such-tag is 0 (assuming no-such-tag does not occur in the
data); referring to Fig. 3, we have n = 8 (one has to count only the startElement()
and text() SAX events), n0 = 4, hence θ = 0.5. The maximum speed-up from
a SIX is 1/θ. At one extreme, the expression /no-such-tag has θ = 0, and may
result in arbitrary large speed-ups, since every XML packet is skipped entirely. At
the other extreme the SIX is ineffective when θ ≈ 1.

The presence of ∗’s and, especially, //’s may reduce the effectiveness of the SIX
considerably, even when θ is small. For example the XPath expression //no-such-tag
has θ = 0, but the SIX is ineffective since the system needs to inspect every single
tag while searching for no-such-tag. In order to increase the SIX’ effectiveness,

8The only XML document for which the SIX cannot be computed is one that has a text value

longer than 232 bytes. In that case the SIX is not computed, and replaced with an error code.
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the ∗’s and //’s should be eliminated, or at least reduced in number, by specializing
the XPath expressions with respect to the DTD, using query pruning. This is a
method, described in [Fernandez and Suciu 1998], by which an XPath expression
is specialized to a certain DTD. For example the XPath expression //a may be
specialized to (/b/c/d/a) | (/b/e/a) by inspecting how a DTD allows elements
to be nested. Query pruning eliminates all ∗’s from the DFA, and therefore increase
the effectiveness of the SIX.

6. EXPERIMENTS

We evaluated our techniques in a series of experiments addressing the following
questions. How much memory does the lazy DFA require in practice ? How efficient
is the lazy DFA in processing large workloads of XPath expressions ? And how
effective is the SIX ?

We used a variety of DTDs summarized in Fig. 9. All DTDs were downloaded
from the Web, except simple, which is a synthetic DTD created by us. We gener-
ated synthetic XML data for each DTD using the generator from
http://www.alphaworks.ibm.com/tech/xmlgenerator. For three of the DTDs
we also found large, real XML data instances on the Web, which are shown as three
separate rows in the table: protein(real), nasa(real), treebank(real). For ex-
ample the row for protein represents the synthetic XML data while protein(real)
the real XML data, and both have the same DTD.

We generated several synthetic workloads of XPath expressions for each DTD,
using the generator described in [Diao et al. 2003]. It allowed us to tune the prob-
ability of ∗ and //, denoted Prob(∗) and Prob(//) respectively, and the maximum
depth of the XPath expressions, denoted n. In all our experiments below the depths
was n = 10.

Our system was a Dell Dual P-III 700Mhz, 2GB RAM running RedHat 7.1. We
compiled the Lazy DFA with the gcc compiler version 2.96 without any optimization
options. We also run a different system, YFilter, which was written in Java: here
we used Java version 1.4.2 04.

6.1 Validation of the Size of the Lazy DFA

The goal of the first set of experiments was to evaluate empirically the amount
of memory required by the lazy DFA. This is as a complement to the theoretical
evaluation in Sec. 4. For each of the datasets we generated workloads of 1k, 10k,
and 100k XPath expressions, with Prob(∗) = Prob(//) = 5% and depth n = 10.

We first counted the number of states generated in the lazy DFA. Recall that, for
simple DTDs, Theroem 4.5 gives the upper bound 1+D×(1+n)d on the number of
states in the lazy DFA, where D is the number of elements in the unfolded DTD, d
is the maximum nesting depths of recursive elements, and n is the maximum depth
of any XPath expression. For real XML data, Corollary 4.6 offers the additional
upper bound 1 + G, where G is the size of the dataguide of the real data instance,
which, we claimed, is in general small for a real data instance. By contrast, a
synthetic data instance may have a very large dataguide, perhaps as large as the
data itself, and therefore the upper bound in Corollary 4.6 is of no practical use.

Fig. 10(a) shows the number of states in the lazy DFA on synthetic XML data.
The first four DTDs are simple, and the number of states was indeed smaller than
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file size max avg # of elems. # of elems. recursive? simple?
(KB) depth depth (DTD) (XML)

simple 27432 22 19.9 12 350338 yes yes

prov 25888 22 19.9 3 234531 no yes
www.wapforum.org

ebBPSS 25624 25 10.0 29 356907 yes yes
www.ebxml.org

protein 22952 7 4.6 66 700270 no yes

pir.georgetown.edu

protein(real) 700408 7 5.1 21305818

nitf 51964 17 8.5 133 439871 yes no

nasa 8000 13 6.6 109 145146 yes no
xml.gsfc.nasa.gov

nasa(real) 24488 8 5.5 476646

treebank 39664 12 11.1 250 830769 yes no

treebank(real) 57248 36 7.8 2437666

Fig. 9. Sources of data used in experiments. Only three real data sets were available.

the bound in Theorem 4.5, sometimes significantly smaller. For example ebBPSS
has 1479 states for 100k XPath expressions, while the theoretical upper bound,
taking9 D = 29, d = 2, n = 10, is 3510. The last three DTDs were not simple,
and Theorem 4.5 does not apply. In two cases (nitf and treebank, for 100,000
expressions) we ran out of memory.

Fig. 10(b) shows the number of states in the lazy DFA for real data. Here
the number of states is significantly smaller than in the previous graph. This is
explained by the fact that real XML instances have a small dataguide, which limits
the number of states in the lazy DFA. For example, for the real nasa data instance
the number of states was 103, 107, and 108 respectively: contrast that to 1470,
2619, 2874 for the synthetic nasa data instance. The only data instance with a
large data guide was treebank, where G is about 340,000 and the lazy DFA had
43,438 states on the largest workload (100,000 XPath expressions).

The huge difference between the synthetic and the real data set is striking, and
makes one reflect on the limitations of current XML data generators. The lesson
for our purposes is that the size of the lazy DFA is small or medium on real data
sets, but can be prohibitively large on synthetic data sets.

Next, we measured experimentally the average size of the NFA tables in each
DFA state, i.e. the average number of NFA states per DFA state. Fig. 10 (c) shows
the experimental results. The average size of the NFA tables grows linearly with
p. This is consistent with the theoretical analysis: Proposition 4.7 gives an upper
bound of 2np, hence 20p in our case, where p is the number of XPath expressions.
The experiments show that bound to be overly pessimistic and the real value to be
closer to p/10, however. Even so, the total size of the NFA tables is large, since
this number needs to be multiplied with the number of states in the lazy DFA.

We also measured the average number of transitions per DFA state. These tran-
sitions are stored in a hash table at each state in the lazy DFA, hence they also

9We took here D to be the number of elements in the DTD. The real value of D may be larger,
due to the unfolding.
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Fig. 10. Size of the lazy DFA for synthetic data (a), and real data (b); average size
of an NFA table (c), and of a transition table (d); total memory used by a lazy
DFA (e). 1k XPEs means 1000 XPath expressions.
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contribute to the total size. Notice that the number of transitions at a state is
bounded by the number of elements in the DTD. Our experimental results in Fig. 10
(d) confirm that. The transition tables are much smaller than the NFA tables.

Next we measured the total amount of memory used by the lazy DFA, expressed
in MB’s.: this is shown in Fig. 10 (e). The most important observation is that
the total amount of memory used by the lazy DFA grows largely linearly with the
number of XPath expressions. This is explained by the fact that the number of
states is largely invariant, while the average size of an NFA table at each state
grows linearly with the workload. We also measured the amount of memory used
by a naive NFA, without any of the state sharing optimization implemented in
YFilter. The graph shows that this is comparable to the size of the lazy DFA.
On one hand the total size of the NFA tables in the lazy DFA is larger than the
number of states in the NFA, on the other hand the DFA makes up by having fewer
transition tables.

None of the experiments above included any predicates on data values. To con-
clude our evaluation of the memory usage of the lazy DFA, we measured the impact
of predicates. Recall that the theoretical analysis for this case was done in Sec.4.3,
and we refer to the notations in that section. We generated a workload of 200000
XPath expressions with constant values. We used a subset of size 9.12MB of the
protein data set, and selected randomly constants that actually occur in this data.
In order to select values randomly from this data instance we had to store the en-
tire data in main memory. For that reason, we used only a subset of the protein
data set. The number of distinct constants used was q = 29740. The first tier of
the automaton had 80 states (slightly less than Fig. 10 (b) because we used only
a fragment of the protein data), while the number of additional states was 63412
states. That is, each distinct constant occurring in the predicates contributed to
approximatively two new states in the second tier of the automaton. The average
size of the NFA tables at these states is at most as large as the average number
of XPath expressions containing each distinct constant, i.e. 200000/29740 ≈ 6.7.
Since these states have no transition tables, each distinct value occurring in any of
the predicates used about 13.4∗4 ≈ 54 bytes of main memory. While non-negligible,
this amount is of the same order of magnitude as the predicate itself.

6.2 Throughput

In our second sets of experiments we measured the speed at which the lazy DFA
processes the real XML data instances nasa and protein. Our first goal here was
to evaluate the speed of the lazy DFA during the stable phase, when most or all of
its states have been computed, and the lazy DFA reaches its maximum speed. Our
second goal was to measure the length of the warmup phase, when most time is
spent constructing new DFA states. To separate the warmup phase from the stable
phase, we measured the instantaneous throughput, as a function of the amount of
XML data processed: we measured at 5MB intervals for nasa and 100MB intervals
for protein, or more often when necessary.

We compared the lazy DFA to YFilter [Diao et al. 2003], a system that uses a
highly optimized NFA to evaluate large workloads of XPath expressions. There
are many factors that make a direct comparison of the two systems difficult: the
implementation language (C++ for the lazy DFA v.s. Java for YFilter), the XML
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parser (a custom parser v.s. the Xerces Java parser), and different coding styles.
While a perfect calibration is not possible, in order to get a meaningful comparison
we measured the throughput of the Xerces C++ SAX and SAX2 parsers, the Xerces
Java SAX and SAX2 parsers, and the parser of the lazy DFA. The results are shown
in Fig. 11. Contrary to our expectations, the Xerces C++ SAX parser was slightly
slower than the Java SAX Parser, while the C++ SAX2 parser was even slower.
Assuming that the Java and C++ versions used identical algorithms, this suggests
that a Java program should run slightly faster than a C++ program on our platform.
On the other hand the lazy DFA parser was faster on average than the Xerces Java
SAX2 parser (used by YFilter), hence, all things being equal, the lazy DFA should
run slightly faster than YFilter (at least on nasa). While these numbers underly
the difficulty of a direct comparison, they also suggest that any difference in the
throughput of the two systems that are attributable to the implementation language
and the parser are relatively small. Therefore we report below absolute values of
the throughput and do not attempt to normalize them.

nasa protein

Xerces C++ SAX Parser 5.449 MB/s 4.238 MB/s
Xerces Java SAX Parser 6.678 MB/s 6.518 MB/s

Xerces C++ SAX2 Parser 2.581 MB/s 1.902 MB/s

Xerces Java SAX2 Parser 6.663 MB/s 6.503 MB/s

Lazy DFA C++ Parser 8.476 MB/s 6.429 MB/s

Fig. 11. The throughput of various XML parsers.

In Fig. 12 (a) and (b) we show the results for workloads of varying sizes (500
to 500,000 XPath expressions for nasa, 1,000 to 1,000,000 for protein). In all
workloads the maximum depth was n = 10, and Prob(∗) = Prob(//) = 0.1. The
most important observation is that in both graphs the lazy DFA reached indeed
a stable phase, after processing about 5-10MB of nasa data or 50MB of protein
data, where the throughput was constant, i.e. independent on the size of the
workload. The throughput in the stable state was about 3.3-3.4Mb/s for nasa and
about 2.4Mb/s for protein.

By contrast, the throughput of YFilter decreases with the number of XPath
expressions: as the workload increases by factors of 10, the throughput of YFilter
decreases by an average factor of 2. In general, however, the throughput of the lazy
DFA is consistently higher than that of YFilter, by factors ranging from 4.6 to 48.
The throughput was especially higher for large workloads.

The high throughput of the lazy DFA should be balanced by two effects: the
amount of memory used and the speed of the warmup phase. To get a sense of the
first effect, notice that the lazy DFA used almost the entire 2GB of main memory on
our platform in some of the tests. In one case, when we tried to run it on the nasa
dataset with 1,000,000 XPath expressions, we ran out of memory10. By contrast,

10The same test, however, runs fine on a Solaris platform, since the Solaris operating system has

a better memory management module. The overall throughput of the lazy DFA was also higher
on the Solaris platform. In a preliminary version of this work [Green et al. 2003] we reported

experiments on a Solaris platform.

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



24 · Todd J. Green et al.

YFilter never used more than 60MB of main memory on any workload.
To see the second effect, we report the total running time of the entire data

instance in Fig. 13 (a). The gains of the lazy DFA over YFilter are now smaller,
between factors of 1.6 and 8.3. In one case, YFilter was faster than the lazy DFA
by a factor of 2. Notice that protein is much larger, allowing the lazy DFA more
time to recover from the high warmup cost: here the lazy DFA was always faster.
The difference from the graphs in Fig. 12 is explained by the fact that the warmup
phase is expensive.

Next, we ran similar experiments testing the sensitivity of the lazy DFA to in-
creasing numbers of ∗’s and //’s in the workload of XPath expressions. Figures 12
(c) and (d) show the variation of the throughput when Prob(∗) or Prob(//) vary.
We only show here the results for the nasa dataset; those for protein were simi-
lar. These graph show the same general trend as those in Figure 12 (a) and (b).
One interesting observation here is that the warmup phase of the lazy DFA is not
affected by the presence of ∗’s, only by that of //’s.

A type of workload of particular interest in practice is one without any occur-
rences of ∗ and //. We ran a similar set of experiments on such workloads, and
we report the results in Fig. 12 (e) and (f). We also report the absolute running
times in Fig. 13 (b). On such a workload both the NFA optimized by YFilter and
the DFA become two isomorphic Trie structures. As before, the lazy DFA is slow
during the warmup phase, which determined one total running time to be less than
for YFilter in Fig. 13 (b).

6.3 Evaluation of the SIX

In this set of experiments we evaluated the SIX on synthetic nitf data11, with
10000 XPath expressions using 0.2% probabilities for both the // and the ∗’s. The
justification for these low values is based on the discussion at the end of Sec. 5.4:
the SIX is ineffective for workloads with large numbers of // and ∗, and there exists
techniques (e.g. query pruning) for eliminating both // and ∗ by using a schema or
a DTD. In order to vary the selectivity parameter θ (Sec. 5.4), we made multiple,
disjoint copies of the nitf DTD, and randomly assigned each XPath expression to
one such DTD: θ decreases when the number of copies increases. We generated
about 50MB of XML data, then copied it to obtain a 100MB data set. The reason
for the second copy is that we wanted to measure the SIX in the stable phase, while
the lazy DFA warms up too slowly when using a SIX, because it sees only a small
fragment of the data. The size of complete SIX for the entire dataset was 6.7MB,
or about 7% of the XML data.

Fig. 14 (a) shows the throughput with a SIX, and without a SIX, for all three
selectivities. Without a SIX the throughput was constant at around 5MB/s. This
is slightly higher than for the previous experiments because of our optimization of
the “failure state” transitions: when the lazy DFA enters the failure state, where
all transitions lead back to itself, the lazy DFA processor does not lookup the next
state in the transition table (which is a hash table, in this case with only one entry),
but simply keeps the same current state.

When ran with a SIX, the throughput increased significantly for low selectivities.

11http://www.nitf.org/site/nitf-documentation/
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Fig. 12. The throughput of the lazy DFA and YFilter, as a function of the amount
of XML data consumed. Varying workload sizes (a), (b); varying probabilities for
∗ and // (c), (d); workloads without ∗ and // (e), (f). Here 1k XPE means 1000
XPath expressions.
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Prob (*) = 10%, Prob (//) = 10%
nasa

XPEs lazyDFA YFilter
500 7.14 30.73
5,000 9.99 60.79
50,000 54.89 129.54
500,000 602.68 323.58

protein
lazyDFA YFilter

1,000 289.52 1,349.65
10,000 285.88 1,872.38
100,000 355.41 2,944.26
1,000,000 3899.58 6,269.34

(a)
Prob(∗) = Prob(//) = 0:

nasa protein
lazyDFA YFilter lazyDFA YFilter

1,000 7.126 19.14 253.86 771.95
10,000 8.289 18.81 288.21 769.88
100,000 24.941 18.93 299.87 777.59

(b)

Fig. 13. Absolute running times in seconds for workloads with (a) and without (b)
occurrences of ∗ and //.
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Fig. 14. Throughput improvement from the SIX (a), and the effect of decreasing
the SIX size by deleting “small” XML elements (b).

For θ = 0.03 the throughput oscillated around 16-19MB/s, resulting in an aver-
age speed-up of 3.3. Notice that the throughput of the lazy DFA with a SIX was
higher in all cases, even significantly higher than the parser’s throughput, which
was around 6.8MB/s. This is because the SIX allows large portions of the XML
document to be skipped entirely, thus can be faster than parsing the entire docu-
ment.
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Next, we measured how much we can decrease the SIX by removing entries
corresponding to small XML elements. Reducing the size is important for a stream
index, since it competes for network bandwidth with the data stream. Fig. 14 (b)
shows the throughput as a function of the cut-off size for the XML elements. The
more elements are deleted from the SIX, the smaller the throughput. However, the
SIX size also decreases, and does so much more dramatically. For example at the
1k data point, when we deleted from the SIX all elements whose size is ≤ 1k bytes,
the throughput decreases to 14MB/s from a high of 19MB/s, but the size of the SIX
decreases to a minuscule 898bytes, from a high of 6.7KB. Thus we can reduce the
SIX more than seven times, yet retain 73% of the benefit in the throughput. The
explanation is that although the number of elements that can be skipped decreases,
their average size increases. In other words, we only miss the short elements, which
are not very useful to the SIX anyway.

6.4 Discussion

Our experiments demonstrate clearly that the DFA technique is effective at pro-
cessing XML data at a high, sustained throughput. The most important property
is that the throughput remains constant as the number of XPath expressions in the
workload increases. This makes the technique attractive for applications that need
to guarantee a certain throughput, independently of the size of the workload.

The experiments also show that by computing the DFA lazily one avoids, in
most cases of practical interest, an exponential state explosion. We have proven two
theoretical upper bounds on the number of states of the lazy DFA. Our experiments
confirmed a small number of states in both cases. However, the existence of “bad”
cases, i.e. data instance that might cause a state explosion in the lazy DFA, is not
completely ruled out. One can generate such XML instances syntheticaly, but it is
unclear whether such instances exists in practice: the only instance we found that
caused the number of states to grow into the tens of thousands was treebank, whose
complex structure is specific to Natural Language, and is not typical in XML data.
Still, it is wise to implement a safety valve in a lazy DFA processor, for example by
deleting all states and restarting from the initial state when it runs out of memory.

On the downside, our experiments have pointed out two limitations in our current
implementation of the lazy DFA: a rather high warmup cost, and large memory
consumption by the NFA states. We discuss here both limitations and possible
solutions.

Warmup First, let us address the high cost of the warmup phase. During this
phase the lazy DFA acts precisely like an NFA, only it has to memorize all states
it sees. Currently, our implementation of the NFA is very simple, without any
optimizations, and this leads to a high warmup cost. In contrast, YFilter consists
of an optimized version of the NFA, and it runs much faster than the lazy DFA
during warmup. YFilter first constructs an NFA for each XPath expressions in
the workload, then identifies common prefixes and eliminates them. For example if
given the two expressions /a//b/*/a//c and /a//b/*/a/c, YFilter would optimize
the NFA to share states and transitions for their common prefix /a//b/*/a, and
only branch at the /c and //c transitions. When extended to large workloads,
this optimization results in significant space and time savings over a naive NFA
approach. The solution here is to apply the same optimization to the NFA used
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by the lazy DFA. It suffices to replace the currently naive NFA with YFilter’s
optimized NFA, and leave the rest of the lazy DFA unchanged. This would speed
up the warmup phase considerably, making it comparable to YFilter, and would
not affect the throughput in the stable phase.

With or without optimizations, the manipulation of the NFA tables is expensive,
and we have put a lot of thought into their implementation. There are three
operations done on NFA tables: create, insert, and compare. To illustrate their
complexity, consider an example where the lazy DFA ends up having 10,000 states,
each with an NFA table with 30,000 entries, and that the alphabet Σ has 50 symbols.
Then, during warm-up phase we need to create 50 × 10, 000 = 500, 000 new sets;
insert 30, 000 NFA states in each set; and compare, on average, 500, 000×10, 000/2
pairs of sets, of which only 490,000 comparisons return true, the others return
false. We found that implementing sets as sorted arrays of pointers offered the
best overall performance. An insertion takes O(1) time, because we insert at the
end, and sort the array when we finish all insertions. We compute a hash value
(signature) for each array, thus comparisons with negative answers take O(1) in
virtually all cases.

Memory Second, we will discuss the high memory consumption of the lazy DFA.
As our experiments show, this is due to the NFA tables, not the number of states in
the lazy DFA. There are several possible approaches to address this, but studying
their effectiveness remains part of future work. The simplest one is to adopt the
YFilter optimizations as explained above: in addition to speeding up the warmup
phase this can also decrease the average size of the NFA tables. A second is to
delete the NFA tables from “completed” DFA states. A completed DFA state is
one in which all its transitions have already been expanded. The NFA table in a
DFA state is only needed when a new transition is followed, in order to construct
the new destination DFA state. Once all such transitions have been expanded,
there is no more need for the NFA table.

We notice however that, when run on smaller workloads, the lazy DFA uses far
less memory than many other systems. Peng and Chwawathe [Peng and Chawathe
2003] evaluate the throughput and the memory usage of seven systems, including
the XML Toolkit (which is based on the lazy DFA and is described here in Sec. 7).
In their evaluation the XML Toolkit used by far the least amount of memory, some
cases by several orders of magnitude.

Finally, we discuss here the effectiveness of the SIX. Like with any index, it only
benefits queries or workloads that retrieve only a very small portion of the data.
Our experiments showed the SIX to be effective for workload of 10,000, but on a
dataset where we decreased the selectivity artificially. In order to use the SIX in an
application like XML packet routine, one needs to cluster XPath expressions into
workloads in order to reduce the θ factor for each workload. When this is possible,
then the SIX can be very effective.

7. AN APPLICATION: THE XML TOOLKIT (XMLTK)

We describe here an application of our XPath processing techniques, to a set of tools
for highly performant processing of large XML files. The XML Toolkit is modeled
after the Unix tools for processing text files, and is available at http://xmltk.sourceforge.net.
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Command Arguments (fragment) Brief description

P = XPath expr, N = number

xsort (−c P (−e P (−k P)∗)∗)∗ sorts an XML file

xagg (−c P (−a aggFun valP)∗)∗ computes the aggregate function
aggFun (see Fig. 19)

xnest (−e P ((−k P)∗) | −n N)∗ groups elements based

on key equality or number

xflatten (−r)? − e P flattens collections
(deletes tags, but not content)

xdelete −e P removes elements or attributes

xpair (−e P − g P)∗ replicates an element multiple times,
pairing it with each element in a collection

xhead (−c P (−e P (−n N )?)∗)∗ retains only a prefix of a collection

xtail (−c P (−e P (−n N )?)∗)∗ retains only a suffix of a collection

file2xml −s dir generates an XML file for the dir file

directory hierarchy

Fig. 15. Current tools in the XML Toolkit.

The tools currently in the XML Toolkit are summarized in Fig. 15. Every tool in-
puts/outputs XML data via standard i/o, except file2xml which takes a directory
as an input and outputs XML to the standard output.

The xsort tool is by far the most complex one and we describe it in more detail.
The others are briefly illustrated in the Appendix, but we note that most can be
used in quite versatile ways [Avila-Campillo et al. 2002]. When illustrating the
tools we will refer to the DBLP database [Ley ]. We used a dataset with 256599
bibliographic entries.

7.1 Sorting

The command below sorts the entries in the file dbpl.xml in ascending order of
their year of publication12:

xsort -c /dblp -e * -k year/text() dblp.xml > sorted-dblp.xml

The first argument, -c, is an XPath expression that defines the context: this is
the collection under which we are sorting: in our example this matches the root
element, dblp. The second argument, -e, specifies the items to be sorted under the
context: on the DBLP data this matches elements like the book, inproceedings,
article, etc. Finally, the last argument, -k, defines the key on which we sort the
items; in our example this is the text value of the year element. The result of this
command is the file sorted-dblp.xml which lists the four publications in increasing
order of the year. In case of publications with the same years, the document order
is preserved.

The command arguments for xsort are shown in Fig. 15, with some details
omitted. There can be several context arguments (-c), each followed by several item
arguments (-e), and each followed by several key arguments (-k). The semantics is
illustrated in Fig. 16. First, all context nodes in the tree are identified (denoted c

12Unix shells interpret the wild-cards, so the command should be given like: xsort -c /dblp -e

"*" .... We omit the quotation marks throughout the paper to avoid clutter.
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c

c

c

e3e4 e2e1 e8 e7e6
e10 e9

c

c

c

e1 e2
e3

e4 e6 e7 e8 e9 e10

xsort

Fig. 16. Semantics of xsort. Under each context node the item nodes are sorted
based on their key. Any nodes that are “between” context nodes and item nodes
are omitted from the output.

in the figure): all nodes that are not below some context node are simply copied to
the output in unchanged order. Next, for each context node, all nodes that match
that context’s item expressions are identified (denoted e1, e2, ... in the figure),
and a key value is computed for each of them, by evaluating the corresponding key
expressions. These item nodes are then sorted according to the key values, and
output in increasing order of the keys. Notice that the nodes that are below a
context but not below an item are omitted from the output.

We illustrate below several examples of xsort.

7.1.0.1 Simple sorting. We start with a simple example:

xsort -c /dblp -e */author -k text()

The answer has the following form, listing all author elements in alphabetical
order:

<dblp>
<author>...</author>
<author>...</author>
. . .

</dblp>

7.1.0.2 Sorting with multiple key expressions. The following example illustrates
the use of two keys. Assuming that author elements have a firstname and a
lastname subelement, it returns a list of all authors, sorted by lastname first, then
by firstname:

xsort -c /dblp -e */author
-k lastname/text() -k firstname/text()

7.1.0.3 Sorting with multiple item expressions. When multiple -e arguments
are present, items are included in the result in the order of the command line. For
example the following command:

xsort -c /dblp -e article -e inproceedings -e book -e *

lists all articles first, then all inproceedings, then all books, then everything
else. Within each type of publication the input document order is preserved.
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data size (KB) Xalan (sec) xsort (sec)

0.41 0.08 0.00
4.91 0.09 0.00

76.22 0.27 0.02
991.79 2.52 0.26

9,671.42 27.45 2.85
100,964.43 - 43.97

1,009,643.71 - 461.36

xsort -c /dblp -e * -k title/text()

(a)

data size (KB) Xalan (sec) xsort (sec)

0.41 0.08 0.00
4.91 0.10 0.00

76.22 0.29 0.03
991.79 2.78 0.35

9,671.42 29.42 3.54
100,964.43 - 35.52

1,009,643.71 - 358.47

xsort -c /dblp/* -e title -e author -e year -e *

(b)

Table I. Experiments with xsort: (a) a global sort, and (b) multiple local sorts. Numbers are

running times in seconds. A “-” indicates ran out of memory

7.1.0.4 Sorting at deeper contexts. By choosing contexts other than the root
element we can sort at different depths in the XML document. A common use is
to normalize the elements by listing their subelements in a standard order. For
example, consider:

xsort -c /dblp/* -e title -e author -e url -e *

This keeps the order of the publication, but reorders their subelements, as follows:
first all title elements, then all author elements, then all year elements, and then
everything else.

Notice the use of the “catch all” element -e * at the end. We can omit it, and
include only selected fields in the result. For example:

xsort -c /dblp/* -e title -e author

retains only the title and author in each publication.
The following example sorts authors alphabetically within each publication:

xsort -c /dblp/* -e author -k text() -e *

7.1.0.5 Sorting with multiple context expressions. Finally, multiple context ar-
guments can be specified to sort according to different criteria. For example:

xsort -c /dblp/book -e publisher -e title -e *
-c /dblp/* -e title -e *

lists publisher then title first under books, and lists title first under all other
publications.

7.1.0.6 Using the XPath Processor. The XPath expressions in the command line
for each tool in the XML Toolkit are converted into a query tree. For illustration,
Fig. 17 shows the query tree for the xsort command. The tree has a root variable,
one variable for each context, one variable for each item under each context, and
one variable for each key under each item under each context. The sax f flag for all
context events is false, because we do not need the SAX events that are between
contexts and items (these are omitted from the output).

7.1.0.7 Implementation. We briefly describe here the implementation of xsort,
which we designed to scale to very large XML files. It sorts one context at a time,
copying all other elements (not within a context) to the output file in unchanged
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.  .  .  .  .  .

$E1 $E2

$K1

$R

$C1 $C2

$K2

.  .  .  .  .  .

.  .  .  .  .  .

sax_f = true

sax_f = true
sax_f = true

sax_f = true sax_f = true

Fig. 17. The Query Tree generated for the xsort command in Fig. 15.

order. When sorting one context, it creates a global key for each item to be sorted,
consisting of the item identification number on the command line, the concate-
nation of all its keys, and its order number under the current context (to make
xsort stable). Next it uses multi-way merge-join, with as much main memory as
available, and runs for at most two steps. The first step produces the initial runs,
using STL’s priority queue [ANDIS/ISO 1998], and applying replacement selec-
tion [Graefe 1993]. This results in initial runs that may be larger than the main
memory: in particular, only one run is produced if the input is already sorted. If
more than one run is generated then the second step is executed, which merges
all runs to produce the final output. With today’s main memories, practically any
XML file can be sorted in only two steps. For example, with 128MB of main mem-
ory and disk pages of 4KB, we can sort XML files of up to 4TB [Garcia-Molina
et al. 2000], and the file size increases quadratically with the memory size. More
practical considerations, such as a hard limit of 2GB on file sizes on most systems,
or limits on the number of file descriptors, are more likely to limit the size of the
largest file we can sort.

7.1.0.8 Experiments. We evaluated xsort in two experiments13, shown in Ta-
ble I. We compare xsort with xalan, a publicly available XSLT processor. For
xsort we limit the main memory window to 32MB. The first represents a global
sort which reorders all bibliographic entries: xsort’s running time increases lin-
early, with the exception of an extra factor of two, when the data size exceeds the
memory size. The second table represents local sorts, with small contexts. Here a
single pass over the data is always sufficient, and the sorting time increases linearly.
The sorting time for xalan also increases linearly, but is an order of magnitude
longer than for xsort. Its processing model is DOM-based.

13The platform is a Pentium III, 800 MHz, 256 KB cache 128 MB RAM, 512 MB swap, running
RedHat Linux 2.2.18, the compiler is gcc version 2.95.2 with the “-O” command-line option, and

Xalan-c 1.3.
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8. RELATED WORK

The problem of evaluating large collections of XPath expressions on a stream of
XML documents was first introduced in [Altinel and Franklin 2000], for a publish-
subscribe system called XFilter. Improved techniques have been discussed in XTrie [Chan
et al. 2002] (based on a trie), our preliminary version of this work [Green et al. 2003]
(based on lazy DFAs), and YFilter [Diao et al. 2003] (based on optimized NFAs). In
all methods, except ours, there is a space guarantee that is proportional to the total
size of all XPath expressions in the workload, but no guarantee on the throughput.
Our method makes the opposite tradeoff.

Two optimizations of the lazy DFA are described in [Onizuka 2003]. In one,
the XPath expressions are clustered according to their axis types (/ or //) at each
depth level. This is shown to reduce the number of DFA states: for example, it is
shown that by clustering into 8 DFAs, memory usage decreases by a factor of 40
and throughput only by a factor of 8. In the other optimization, NFA tables are
allowed to share common subsets, thus saving memory.

More recently, some systems have been described that process more complex
XPath expressions [Peng and Chawathe 2003; Gupta and Suciu 2003], or fragments
of XQuery [Ludaescher et al. 2002; Diao and Franklin 2003]. A complete XQuery
engine for streaming data is described in [Florescu et al. 2003].

A related problem is the event detection problem described in [Nguyen et al.
2001]. Each event is a set of atomic events, and they trigger queries defined by
other sets of events. The technique used here is also a variation on the Trie data
structure.

Ives et al. [Ives et al. 2002] describe a general-purpose XML query processor
that, at the lowest level, uses an event based processing model, and show how
such a model can be integrated with a highly optimized XML query processor.
We were influenced by [Ives et al. 2002] in designing our stream processing model.
Query processors like [Ives et al. 2002] can benefit from an efficient low-level stream
processor. Specializing regular expressions w.r.t. schemas is described in [Fernandez
and Suciu 1998; McHugh and Widom 1999].

The conversion problem from regular expression to an NFA has been intensively
studied in the 60s and 70s: see [Watson 1993] for a review. The most popular
methods is due to Thompson [Thompson 1968] and is adopted by most textbooks.

Empirical studies of the (eager) DFA construction time have been done in the
automaton community [Watson 1996], for NFAs with up to 30 to 50 states.

9. CONCLUSION

We have described two techniques for processing linear XPath expressions on streams
of XML packets: using a Deterministic Finite Automaton, and a Stream IndeX
(SIX). The main problem with the DFA is that the worst case memory requirement
is exponential in the size of the XPath workload. We have presented a combination
of theoretical results and experimental validations that together prove that the size
of the lazy DFA remains small, for all practical purposes. Some of the theoretical
results offer insights into the structure of XPath expressions that is of independent
interest. We also validated lazy DFAs on streaming XML data and shown that
they indeed have a very high throughput, which is independent on the number of
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XPath expressions in the workload. The SIX is a simple technique that adds some
small amount of binary data to an XML document, which helps speed up a query
processor by several factors. Finally, we described a simple application of these
XPath processing techniques: the XML Toolkit, a collection of command-line tools
for highly scalable XML data processing.

Electronic Appendix The electronic appendix for this article can be accessed
in the ACM Digital Library. The appendix contains the proofs of many theorems
from the main body of the article, and a description of several tools in the XML
toolkit.

Acknowledgment We thank Peter Buneman, AnHai Doan, Zack Ives, and Ar-
naud Sahuguet for their comments on earlier versions of this paper. We also thank
Iliana Avila-Campillo, Yana Kadiyska, Jason Kim, and Demian Raven for their
contributions to the XML Toolkit, Cristine Haertl for pointing out a bug in the
second example in Fig. 6 and suggesting the fix, and the anonymous reviewers for
their useful comments. Suciu was partially supported by the NSF CAREER Grant
IIS-0092955, NSF Grants IIS-0140493 and IIS-0205635, a gift from Microsoft, and
a Sloan Fellowship.

REFERENCES

Abiteboul, S., Buneman, P., and Suciu, D. 1999. Data on the Web : From Relations to

Semistructured Data and XML. Morgan Kaufmann.

Aho, A. and Corasick, M. 1975. Efficient string matching: an aid to bibliographic search.
Communications of the ACM 18, 333–340.

Altinel, M. and Franklin, M. 2000. Efficient filtering of XML documents for selective dissem-
ination. In Proceedings of VLDB. Cairo, Egipt, 53–64.

ANDIS/ISO 1998. C++ Standard. ANDIS/ISO.

Avila-Campillo, I., Green, T. J., Gupta, A., Onizuka, M., Raven, D., and Suciu, D. 2002.

XMLTK: An XML toolkit for scalable XML stream processing. In Proceedings of PLANX.

Borne, K. D. NASA’s astronomical data center. ADC XML resource page.
http://xml.gsfc.nasa.gov/.

Buneman, P., Davidson, S., Fernandez, M., and Suciu, D. 1997. Adding structure to un-

structured data. In Proceedings of the International Conference on Database Theory. Springer
Verlag, Deplhi, Greece, 336–350.

Buneman, P., Naqvi, S. A., Tannen, V., and Wong, L. 1995. Principles of programming with
complex objects and collection types. Theoretical Computer Science 149, 1, 3–48.

Chan, C., Felber, P., Garofalakis, M., and Rastogi, R. 2002. Efficient filtering of XML

documents with XPath expressions. In Proceedings of the International Conference on Data
Engineering.

Chen, J., DeWitt, D., Tian, F., and Wang, Y. 2000. NiagaraCQ: a scalable continuous query
system for internet databases. In Proceedings of the ACM/SIGMOD Conference on Manage-

ment of Data. 379–390.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT
Press.

Corp., M. DIME - direct internet message encapsulation spec-
ification index page. IETF Internet Draft, available from
http://msdn.microsoft.com/webservices/understanding/gxa/default.aspx.

Diao, Y., Altinel, M., Franklin, M., Zhang, H., and Fischer, P. 2003. Path sharing and
predicate evaluation for high-performance XML filtering. ACM Transations on Database Sys-

tems 28, 4, 467–516.

Diao, Y. and Franklin, M. 2003. Query processing for high-volume XML message brokering.

In Proceedings of VLDB. Berlin, Germany.

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



Processing XML Streams with Deterministic Automata and Stream Indexes · 35

Fernandez, M. and Suciu, D. 1998. Optimizing regular path expressions using graph schemas.

In Proceedings of the International Conference on Data Engineering. 14–23.

Florescu, D., Hillary, C., Kossmann, D., P.Lucas, Riccardi, F., Westmann, T., Carey,
M., Sundararajan, A., and Agrawal, G. 2003. The bea/xqrl streaming xquery processor. In

VLDB. Berlin, Germany, 997–1008.

Garcia-Molina, H., Ullman, J. D., and Widom, J. 2000. Database System Implementation.

Prentice Hall, Upper Saddle River, New Jersey 07458.

Goldman, R. and Widom, J. 1997. DataGuides: enabling query formulation and optimization

in semistructured databases. In Proceedings of Very Large Data Bases. 436–445.

Graefe, G. 1993. Query evaluation techniques for large databases. ACM Computing Sur-

veys 25, 2 (June), 73–170.

Green, T. J., Miklau, G., Onizuka, M., and Suciu, D. 2003. Processing XML streams with
deterministic automata. In Proceedings of ICDT. 173–189.

Gupta, A., Halevy, A., and Suciu, D. 2002. View selection for XML stream processing. In

WebDB.

Gupta, A. and Suciu, D. 2003. Stream processing of XPath queries with predicates. In Proceeding
of ACM SIGMOD Conference on Management of Data.

Gupta, A., Suciu, D., and Halevy, A. 2003. The view selection problem for XML content based

routing. In Proceeding of PODS.

Higgins, D. G., Fuchs, R., Stoehr, P. J., and Cameron, G. N. 1992. The EMBL data library.

Nucleic Acids Research 20, 2071–2074.

Hopcroft, J. and Ullman, J. 1979. Introduction to automata theory, languages, and computa-
tion. Addison-Wesley.

Ives, Z., Halevy, A., and Weld, D. 2002. An XML query engine for network-bound data.

VLDB Journal 11, 4, 380–402.

Laurikari, V. 2000. Nfas with tagged transitions, their conversion to deterministic automata
and application to regular expressions. In Proceedings of SPIRE. 181–187.

Ley, M. Computer science bibliography (dblp). http://dblp.uni-trier.de.

Liefke, H. and Suciu, D. 2000. XMill: an efficent compressor for XML data. In Proceedings of

SIGMOD. Dallas, TX, 153–164.

Ludaescher, B., Mukhopadhyay, P., and Papakonstantinou, Y. 2002. A transducer-based

XML query processor. In Proceedings of VLDB. 227–238.

Marcus, M., Santorini, B., and M.A.Marcinkiewicz. 1993. Building a large annotated corpus

of English: the Penn Treenbak. Computational Linguistics 19.

McHugh, J. and Widom, J. 1999. Query optimization for XML. In Proceedings of VLDB.

Edinburgh, UK, 315–326.

Nguyen, B., Abiteboul, S., Cobena, G., and Preda, M. 2001. Monitoring XML data on the
web. In Proceedings of the ACM SIGMOD Conference on Management of Data. Santa Barbara,

437–448.

Onizuka, M. 2003. Light-weight xpath processing of XML stream with deterministic automata.

In Proc. CIKM. 342–349.

Peng, F. and Chawathe, S. 2003. XPath queries on streaming data. In Proceedings ACM
SIGMOD International Conference on Management of Data. ACM Press, 431–442.

Rozenberg, G. and Salomaa, A. 1997. Handbook of Formal Languages. Springer Verlag.

Sahuguet, A. 2000. Everything you ever wanted to know about DTDs, but were afraid to ask.

In Proceedings of WebDB, D. Suciu and G. Vossen, Eds. Sringer Verlag, 171–183.

Snoeren, A., Conley, K., and Gifford, D. 2001. Mesh-based content routing using XML. In
Proceedings of the 18th Symposium on Operating Systems Principles.

Thierry-Mieg, J. and Durbin, R. 1992. Syntactic Definitions for the ACEDB Data Base Man-

ager. Tech. Rep. MRC-LMB xx.92, MRC Laboratory for Molecular Biology, Cambridge,CB2

2QH, UK.

Thompson, K. 1968. Regular expression search algorithm. Communication of the ACM 11, 6,

419–422.

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



36 · Todd J. Green et al.

Watson, B. W. 1993. A taxonomy of finite automata construction algorithms. Computing Science

Report 93/43, University of Technology Eindhoven, The Netherlands.

Watson, B. W. 1996. Implementing and using finite automata toolkits. Journal of Natural
Language Engineering 2, 4 (December), 295–302.

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



Processing XML Streams with Deterministic Automata and Stream Indexes · App–1

This document is the online-only appendix to:

Processing XML Streams with Deterministic Automata and
Stream Indexes
Todd J. Green
University of Pennsylvania
Ashish Gupta
University of Washington
Gerome Miklau
University of Washington
Makoto Onizuka
NTT Cyber Space Laboratories, NTT Corporation

and
Dan Suciu
University of Washington

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004, Pages 1–0??.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 1529-3785/2004/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



App–2 · Todd J. Green et al.

a b a a b * c* a

* *

q00 q01 q02 q10 q11 q12 q13 q20 q21 q22 q23 q24

Fig. 18. The NFA for /a/b//a/∗/a//b/a/∗/c.

A. APPENDIX

A.1 Proof of Theorem 4.1

Proof. Let A be the NFA for an XPath expression P = p0//p1// . . . //pk (see
notations in Sec. 4.1) and denote Q its set of states. Q can be partitioned into
Q0∪Q1∪. . .∪Qk, which we call blocks, with the states in Qi = {qi0, qi1, qi2, . . . , qini}
corresponding to the symbols in pi; we have

∑
i=0,k ni = n. The transitions in A

are: states qi0 have self-loops with wild-cards, for i = 1, . . . , k; there are ε transitions
from qi−1ni−1 to qi0, i = 1, . . . , k; and there are normal transitions (labeled with
σ ∈ Σ or with wild-cards) from qi(j−1) to qij . Each state S in the DFA A0 is defined
as S = A(w) for some w ∈ Σ∗ (S ⊆ Q). Our goal is to count the number of such
states.

Before proving the theorem formally, we illustrate the main ideas on P = /a/b//a/∗/a//b/a/∗/c,
whose NFA, A, is shown in Fig.18. Some possible states are:

S1 = A(a) = {q01}
S2 = {q10, q12} = A(a.b.e.e.a.b)
S3 = {q10, q12, q20, q21} = A(a.b.e.e.a.b.a.e.e.a.b)
S4 = {q10, q20, q21} = A(a.b.e.e.a.b.a.e.e.b)

The example shows that each state S is determined by four factors: (1) whether
it consists only of states from block Q0, like S1, or has states from the other blocks,
like S2, S3, S4; there are n0 states in the first category, so it remains to count the
states in the second category only. (2) the highest state it reaches, which we call
the top: e.g. S2 reaches q12, while S3 and S4 reach q21. We shall see that there are
n1 + . . . + nk + 1 = n− n0 + 1 possible choices here (since we don’t count Q0 any
more) (3) the highest local state it reaches in any block, that is the state that is
farthest from the beginning of the block. We call this the local top. For example
for S3 the highest local top is q12, since this is at distance 2 from the beginning of
its block, while for S4 the highest local top is q21 since this is at distance 1 from
the beginning of its block. For each state whose top is in block Qi, there are at
most n1 + n2 + . . . + ni−1 + 1 choices for the local top: the last term, 1, accounts
for the fact that if the local top is in the block Qi then the local top is equal to the
top. (4) the particular values of the wildcards that allowed us to reach that local
top (not illustrated here); there are sm such choices.

We now make these arguments formal.

Lemma A.1. Let S = A(w) for some w ∈ Σ∗. If there exists some q0j ∈ S, for
j = 0, . . . , n0 − 1, then S = {q0j}.

Proof. There are no loops at, and no ε transitions to the states q00, q01, . . . , q0j ,
hence we have | w |= j. Since there are no ε transitions from these states, we have
S = A(w) = {q0j}
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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This enables us to separate the sets S = A(w) into two categories: those that
contain some q0j , j < n0, and those that don’t. Notice that the state q0n0 does not
occur in any set of the first category, and occurs in exactly one set of the second
category, namely {q0n0 , q10}, if k > 0 (because of the ε transition between them),
and {q0n0}, if k = 0 respectively. There are exactly n0 = prefix(P ) sets S in the
first category. It remains to count the sets in the second category, and we will show
that there are at most (k2−1

2k2 (n− n0)2 + (n− n0) + (n− n0 − nk) + 1)sm such sets,
when k > 0, and exactly one when k = 0: hence, the number of sets of the second
category is body(P ), and the total number of states is ≤ prefix(P ) + body(P ). We
will consider only sets S of the second kind from now on. When k = 0, then the
only such set is {q0n0}, hence we will only consider the case k > 0 in the sequel.

Lemma A.2. Let S = A(w). If qde ∈ S for some d > 0, then for every i =
1, . . . , d we have qi0 ∈ S.

Proof. This follows from the fact that the automaton A is linear, hence in order
to reach the state qde the computation for w must go through the state qi0, and
from the fact that qi0 has a self loop with a wild card.

Lemma A.3. Let S = A(w) and qde ∈ S for some d > 0. Let qij be a state
before qde, i.e. i < d or i = d and j ≤ e. Then, if we split w into w1.w2 where the
length of w2 is ≤ j, then qi0 ∈ A(w1).

Proof. If the computation for w reaches qde, then it must go through qi0, qi1, . . . , qij .
Hence, if we delete j or fewer symbols from the end of w and call the remaining
sequence w1 then the computation for w1 will still reach qi0, hence qi0 ∈ A(w1)
because of the selfloop at qt0.

We can finally count the maximum number of states S = A(w). We fix a w
for each such S (choosing one nondeterministically) and further associate to S the
following triple (qde, qtr, v): qde is the top, i.e. the highest state in S (defined by:
∀qij ∈ S, either i < d or i = d and j ≤ e); qtr ∈ S is the local top, i.e. the state
with the largest r (defined formally by ∀qij ∈ S, either j < r or j = r and i ≤ t;
that is, in the case of a tie we choose the largest t); finally v is the sequence of the
last r symbols in w. We claim that the triple (qde, qtr, v) uniquely determines S.

First we show that this claim proves the upper bound on the number of sets
of the second category, hence proves the theorem. Indeed there are n1 + . . . +
nk + 1 = n − n0 + 1 choices for qde. This is because in each block i we can
choose qi0, qi1, . . . , qini−1 as top state: we cannot choose qini

as top state since this
automatically makes q(i+1)0 the top state, except when i = k then the top state
may be qknk

(and this accounts for the ending +1). For each top state qde there are
≤ n1 +n2 + . . .+nd−1 +1 choices for the local top. This is because if we choose the
local top in some block j with j < d then there are ≤ nj choices14; but if we choose
the local top in the same block d as the global top, then there is a single choice,
namely qde, and this accounts for the ending +1. The total number of choices for

14There are exactly nj − e choices when nj > e, and 0 choices when nj ≤ e.
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(qde, qtr) is bounded by:∑
1≤j<i≤k

njni +
k∑
1

ni︸ ︷︷ ︸
when qde 6= qknk

+
k−1∑
1

ni + 1︸ ︷︷ ︸
when qde = qknk

=

=
(
∑k

1 ni)2 −
∑k

1 n2
i

2
+

k∑
1

ni +
k−1∑
1

ni + 1

≤ 1
2
((

∑
ni)2 −

1
k2

(
∑

ni)2) +
k∑
1

ni +
k−1∑
1

ni + 1

=
k2 − 1
2k2

(n− n0)2 + (n− n0) + (n− n0 − nk) + 1

Here we used the inequality:

(
k∑

i=1

ni)2 ≤ k2
k∑

i=1

n2
i

Finally, there are at most sm choices for v since these correspond to choosing
symbols for the wild cards on the path from qt1 to qtr. The total is ≤ (k2−1

2k2 (n −
n0)2 + (n− n0) + (n− n0 − nk) + 1)sm, which, as we argued, suffices to prove the
theorem.

It remains to show that the triple (qde, qtr, v) uniquely determines S. Con-
sider two states, S, S′, resulting in the same triples (qde, qtr, v). We have S =
A(w.v), S′ = A(w′.v) for some sequences u, u′. It suffices to prove that S ⊆ S′ (the
inclusion S′ ⊆ S is shown similarly). Let qij ∈ S. Clearly qij is before qde, and
j ≤ r. Take out the last j symbols from v: this is possible since the length of v
is r, hence v can be written as v = v1.v2, with the lenght of v2 equal to j. Since
qij is before qde and qde ∈ A(w′.v), by Lemma A.3 we also have qi0 ∈ A(w′.v1).
The path from state qi0 to state qij accepts the word v2 because qij ∈ A(w.v1.v2).
Hence, qij ∈ A(w′.v1.v2) = S′.

A.2 Proof of Theorem 4.4

Proof. Given a set of XPath expressions Q, one can construct its DFA, A, as
follows. First, for each P ∈ Q, construct the DFA AP . Then, A is given by the
product automaton

∏
P∈Q AQ. From the proof of Theorem 4.1 we know that the

states of AP form two classes: a prefix, which is a linear chain of states, with exactly
prefix(P ) states, followed by a more complex structure with body(P ) states. In the
product automaton each state in the prefix of some AP occurs exactly once: these
account for

∑
P∈Q prefix(P ) states in A. The remaining states in A consists of sets

of states, with at most one state from each AP : there are at most
∏

P∈Q(1+body(P ))
such states.

A.3 Proof of Theorem 4.5

Proof. We introduce some definitions. Let S be a graph schema with symbols
from Σ and r its root node. A path is a sequence of nodes, p = (x0, x1, . . . , xn),
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.
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n ≥ 0. Every path consists of at least one node, and we denote last(p) = xn its
last node. A rooted path is one that starts at the root, i.e. x0 = r. We denote with
L(p) ∈ Σ∗ the sequence of labels on p and L(S) = {L(p) | p rooted path in S}.

To prove the theorem we will replace S with a graph Su obtained by unfolding
S s.t. L(S) = L(Su). In the traditional definition of unfolding the nodes of the
unfolded graph are all the rooted path in S, while an edge connects tow paths p,
p′ when p′ extends p with one more node. Under this definition, the unfolding is a
tree, which is infinite in general. We will modify the definition to ensure that the
unfolding is finite. Intuitively, we will unfold S in the traditional way, expanding all
possible paths, but checking along each branch that we don’t have repeated nodes.
When we are about to repeat a node along a branch, we stop the unfolding and
construct an edge back to that node on the branch.

Formally, call a path simple if all nodes are distinct. We define the unfolding
of S to be the graph Su whose nodes are all the rooted simple paths in S and
whose edges (p, p′) are of two kinds. Forward edges: p′ extends p with another
node. Backwards edges: p′ is a prefix of p and there exists an edge from last(p)
to last(p′) in S. Clearly the forward edges form a tree, while the backwards edges
introduce cycles. Finally, Su is labeled as follows: the label of a node p in Su is the
same as the label of last(p) in S.

Recall that a graph schema is simple if any two simple cycles either have disjoint
sets of nodes or are identical.

Example A.4 We will illustrate some of the concepts in the proof with the fol-
lowing example. Consider the following schema S:

Nodes(S):. 1, 2, 3, 4, 5, 6, 7, labels a, b, c, d, e, f, g (i.e. node 1 is labeled a, etc).
Edges(S):.

1 → 2 → 3 → 4 → 5 → 6 → 5
4 → 2

1 → 3 → 7

There are two simple cycles, (2, 3, 4) and (5, 6), and since they are disjoint the
schema is ’simple’. The unfolding is:

Nodes(Su):. all simple paths, e.g. 1, 12, 123, 1234, 1237, etc. The label of 12 is
b, the label of 123 is c, etc.

Edges(Su). The forward edges, which form a tree, are marked →; Backwards
edges are marked ⇒:

1 → 12 → 123 → 1234 → 12345 → 123456 ⇒ 12345
1234 ⇒ 12

123 → 1237
1 → 13 → 134 → 1345 → 13456 ⇒ 1345

134 → 1342 ⇒ 13
13 → 137
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In the following lemmas we fix S a simple graph schema and p = (x0, . . . , xn) a
rooted simple path.

Lemma A.5. Let C be a simple cycle s.t. C ∩ p 6= ∅. Then there exists i ≤ j s.t.
C ∩ p = {xi, xi+1, . . . , xj}; we call this set an interval and denote it [i, j].

Proof. Let xi be the first and xj the last node in C ∩ p, and suppose C ∩ p has
a gap, i.e. xk, xl ∈ C ∩ p but xk+1, xk+2, . . . , xl−1 6∈ C. Let p′ be the set of nodes
from xk to xl on the cycle C. Define C ′ = (C − p′)∪{xk, xk+1, . . . , xl}. Clearly C ′

is also a simple cycle different from C, and we have C ∩ C ′ 6= ∅, contradicting the
fact that S is simple.

Lemma A.6. Let C,C ′ be two different simple cycles s.t. C∩p 6= ∅ and C ′∩p 6=
∅. Let [i, j] and [i′, j′] be the intervals as defined in Lemma A.5. Then the intervals
[i, j] and [i′, j′] are disjoint.

Proof. Follows immediately from the fact that C and C ′ are disjoint.

Lemma A.7. Let d be the number of simple cycles that p intersects, and denote
these cycles C1, . . . , Cd. Denote with L(p) ⊆ Σ∗ the set of all sequences of labels
on all paths in Su from the root to p. Then there exists words w0, w1, . . . , wd ∈ Σ∗

and z1, . . . , zd ∈ Σ+ s.t. L(p) = w0.z
∗
1 .w1 . . . wd−1.z

∗
d .wd.

Example A.8 Before giving the proof, we illustrate the lemma on our running
example:

L(1234) = a(bcd)∗bcd
L(12345) = a(bcd)∗bcd(ef)∗e
L(137) = acg

L(1237) = a(bcd)∗bcg
L(1342) = a(cdb)∗cdb

Proof. Let [i1, j1], . . . , [id, jd] be the disjoint intervals obtained by intersecting
p with C1, . . . , Cd, i.e. p has the form:

p = (. . . , xi1 , . . . , xj1 , . . . , xi2 , . . . , xj2 , . . . , xid
, . . . , xjd

, . . .)

and each Ck intersects p precisely at xik
, xik+1, . . . , xjk

. Consider any path p0, p1, . . . , pm

in the unfolded schema Su from the root to p, where each pq is a simple path in S,
q = 0, . . . ,m. Call pq good if it is either a of the form (x0, . . . , xk (i.e. a prefix of
p), or it is of the form (x0, . . . , xjk

, y1, . . . , yl), where y1, . . . , yl ∈ Ck (i.e. a prefix
of p followed by some fragment of Ck). We claim that for each q, pq is good. In
particular last(pq) is a node belonging either to p or to some cycle Ck. If this claim
holds, then it suffices to pick each wk to be the word between xik

and xik+1 (with
xi0 defined to be x0 and xid+1 defined to be last(p)), and to pick zk to be the word
on the cycle Ck when traversed starting at the node xik

and it follows that the path
p0, p1, . . . , pm spells out a word in the language w0.z

∗
1 .w1 . . . wd−1.z

∗
d .wd.
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To prove the claim let q be the largest index for which pq is not good. Then pq+1

is good, hence it is a prefix of pq (because, if pq were a prefix of pq+1, then pq were
also good). Hence there is a cycle C ′ in S going from last(pq+1) to last(pq) and
with one edge back to last(pq+1). This cycle is not one of C1, . . . , Cp (otherwise pq

were the concatenation of pq+1, which is good, and a cycle Ck, and then pq were
also good). We have already established that last(pq+1) belongs to this cycle. On
the other hand, since pq+1 is good, the node last(qq+1) belongs either to p or to
one of the cycles C1, . . . , Cp. The first case however contradicts the fact that p only
intersects the cycles C1, . . . , Cp, not C ′; the second case contradicts the fact that
two distinct cycles are disjoint.

Finally, let L(S) be the regular set of all labels on all rooted path in a graph
schema S: we have denoted this Lschema in Sec. 4.2.1. Then:

Lemma A.9. If S is a simple graph schema then L(S) = L(Su).

Proof. Obviously L(Su) ⊆ L(S). For the converse, let p = (x0, x1, . . . , xn)
be a rooted path in S, and let C1, . . . , Cd be all the simple cycles that it in-
tersects. Reasoning as in the proof of Lemma A.7, p can be decomposed into
p = p0C

m1
1 p1C

m2
2 p2 . . . Cmd

d pd, for some numbers m1, . . . ,md > 0. A similar same
path exists then in Su, hence the word spelled by p is in L(Su).

We now return to the proof of Theorem 4.5. We consider a graph schema S and,
by using Lemma A.9 we can assume that S is already unfolded, and that Lemma A.7
holds. Then the set of all root-to-leaf sequences allowed by S, L(S) ⊆ Σ∗, can be
expressed as:

L(S) = {ε} ∪
⋃

x∈nodes

L(x)

where L(x) denotes all sequences of tags up to the node x in S. Our goal is to
compute the number of states, as given by Eq.(3), with Ldata replaced by L(S).
Since the graph schema is simple and each simple path intersects at most d cycles,
we have by Lemma A.7:

L(x) = {w0.z
m1
1 .w1 . . . zmd

d .wd |
m1 ≥ 1, . . . ,md ≥ 1} (5)

where w0, . . . , wd ∈ Σ∗ and z1, . . . , zd ∈ Σ+. (To simplify the notation we assumed
that the path to x intersects exactly d cycles.) We use a pumping lemma to argue
that, if we increase some mi beyond n (the depth of the query set), then no new
states are generated by Eq.(3). Let u.zm.v ∈ L(x) s.t. m > n. We will show that
An(u.zm.v) = An(u.zn.v). Assume q ∈ An(u.zn.v). Following the transitions in
An determined by the sequence u.zn.v we notice that the word zn must traverse a
self-loop in An, because n is the depth; the self-loop, of course, corresponds to a //
in one of the XPath expressions. It follows that u.zm.v has the same computation
in An: just follow that loop an additional number of times, hence q ∈ An(u.zm.v).
Conversely, let q ∈ An(u.zm.v) and consider the transitions in An determined by
the sequence u.zm.v. Let q′ and q′′ be the beginning and end states of the zm

segment. The shortest path from q′ to q′′ in An has at most n Σ ∪ {∗}-transitions
ACM Transactions on Computational Logic, Vol. ??, No. 4, 12 2004.



App–8 · Todd J. Green et al.

(since the depth of the XPath expression is ≤ n), and at most n − 1 self-loops.
Consider the smallest number p s.t. ∀p1, p ≤ p1 ≤ m there is a computation from
q′ to q′′ accepting the word zp1 . We will prove that p ≤ n. Suppose the contrary,
p > n, and consider a computation of zp from q′ to q′′. Then the computation must
traverse at least one loop |z| times or more, where |z| ≥ 1 is the length of the word
z: for if not, then the word spelled out by the computation has at most length
(n−1)(|z|−1)+n < (n−1)|z|+1, hence it couldn’t spell out the word zp. Remove
exactly |z| consecutive symbols from zp that traverse that self-loop. The remaining
word is zp−1 and there exists a computation for it from q′ to q′′, contradicting the
fact that p is minimal such. This proves that u.zn.v also has a computation from
the initial state in An to q. We have thus concluded that An(u.zm.v) = An(u.zn.v).

As a consequence, there are at most (1+n)d sets in {An(w) | w ∈ L(x)} (namely
corresponding to all possible choices of mi = 0, 1, 2, . . . , n, for i = 1, . . . , d in Eq.(5)).
It follows that there are at most 1 + D(1 + n)d states in Al.

A.4 Proof of Theorem 4.8

Proof. Each state in At
i can have at most one transition labeled text(Si):

hence, the number of sink states in Ai is at most si. The automaton for Q = Q1 ∪
. . .∪Qq is can be described as the cartesian product automaton A = A1× . . .×Aq,
assuming each Ai has been extended with the global sink state ∅, as explained in
Sec. 3.1. The Σs-sink states15 in A will thus consists of the disjoint union of the
Σs-sink states from each Ai, because the transitions leading to Σs-sink states in Ai

and Aj are incompatible, when i 6= j. Hence, there are
∑

i si sink states.

A.5 Other Tools in the XML Toolkit

All the other tools are designed to do a single pass over the XML data; we illustrate
them here only briefly. Some are straightforward, like xdelete; others are quite
versatile, like xagg, but we omit more interesting examples for lack of space.

A.5.0.9 Aggregation. The xagg command line is given in Fig 15, while some
details of the -a argument are given in Fig. 19. We illustrate it here with three
examples:

xagg -c /dblp -a count text *
xagg -c /dblp -a count text *

-a count text */author -a avg float */price
xagg -c /dblp/* -a first text title
-a count text author -a count text url

The first example counts the total number of publications under dblp. Its result
is:

<xagg>
<context path="/dblp">
<agg type="count" path="*">256599</agg>

</context>
</xagg>

15We call them that way in order not to confuse them with the ∅ sink state.
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valP type meaning

(from Fig. 15)

int number text() interpreted as integer

float number text() interpreted as float

text text text() interpreted as string

depth number the depth of the current element

aggFun type meaning

(from Fig. 15)

count any counts the elements

sum number sum value

text concatenates the values

max number maximum value

min number minimum value

avg number average value

first any returns the first data value found

last any returns the last data value found

choice#342 any returns the 342nd data value,

or 0 if out-of-bound

Fig. 19. Details of the xagg command.

That is, there are 256599 bibliographical entries in the dblp data. The tags xagg,
context, and agg are chosen by default and can be overridden in the command
line.

The second computes two aggregate functions: the total number of elements,
and the average value of price (assuming some publications have a numeric price
subelement). Its result will look like in Fig. 20 (a): this is a hypothetical result, in
reality the dblp data does not contain prices.

The third computes two aggregate functions for each publication: the first title
element and the number of authors. The result will have the form shown in Fig. 20
(b). There will be as many context elements in the result as publications in the
input data.

A.5.0.10 Collection-oriented operations. The toolkit contains a few collection-
oriented tools, inspired from [Buneman et al. 1995]: xnest, xflatten, xpair, and
xdelete. The xdelete command simply deletes elements matching one or several
XPath expressions. xflatten flattens a nested collection; equivalently, it deletes
only the tags, but not the content. For example:

xflatten -e //b

transforms the input XML document as follows:

from: to:
<a> <b> <c> </c> <a> <c> </c>

<d> </d> <d> </d>
<b> <e> </e> </b> <b> <e> </e> </b>

</b>
<c> <d> </d> </c> <c> <d> </d> </c>
<c> <b> <e> </e> </b> </c> <c> <e> </e> </c>

</a> </a>
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xagg -c /dblp -a count text * -a count text */author

-a avg float */price

<xagg>

<context path="/dblp">

<agg type="count" path="*">256599</agg>

<agg type="count" path="*/author">548856</agg>

<agg type="avg" path="*/price">44.4503945</agg>

</context>

</xagg>

(a)

xagg -c /dblp/* -a first text title

-a count text author

-a count text url

<xagg>

<context path="/dblp/*">

<agg type="first" path="title">XML in a Nutshell</agg>

<agg type="count" path="author">2</agg>

<agg type="count" path="url">0</agg>

</context>

. . .

</xagg>

(b)

Fig. 20. Results of various xagg commands.

xnest -e /dblp/* -k year/text()

<dblp>

<group> <key> 2001 </key>

<book> . . . </book>

<inproceeding> . . . </inproceedings>

<inproceeding> . . . </inproceedings>

. . .

</group>

<group> <key> 2000 </key>

<inproceedings> . . . </inproceedings>

<article> . . . </article>

<article> . . . </article>

<book> . . . </book>

. . .

</group>

<group> <key> 2001 </key>

. . .

</group>

. . .

</dblp>

Fig. 21. Illustration of xnest.

Only the two top-most b tags are deleted: the flag -r specifies recursive flattening.
xnest groups multiple adjacent elements under a new collection: in other words, it
inserts new tags in the XML document, without erasing anything. For example:
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file2xml -s data > output.xml

<directory>

<name>data</name>

<file>

<name>file1</name>

<filelink xlink:type="simple"

xlink:href="file:/homes/june/suciu/data/file1">

</filelink>

<path>/homes/june/suciu/data/file1</path>

<size>33</size>

<permissions>-rw------</permissions>

<type>regular file</type>

<userid>13750</userid>

<groupid>330</groupid>

<lastAccess>Wed Nov 21 11:22:33 2001</lastAccess>

<lastModification>Wed Nov 21 11:22:23 2001</lastModification>

</file>

...

</directory>

Fig. 22. Illustration of file2xml.

xnest -e /dblp/* -k year/text()

groups publications based on their year subelement. The output is illustrated in
Fig. 21. Here one group is created for every set of adjacent publications that have
the same year value. Notice that there may be multiple groups with the same key
value, like 2001 above: to have unique groups, one needs to sort first. Multiple
keys can be specified, like in xsort. If no key is specified then all adjacent elements
are placed under the same group. There is a second variant of xnest that creates
groups by their number of elements, see Fig. 15.

Finally, xpair, called pair-with in [Buneman et al. 1995], pairs an element with
each item of a collection. For example:

xpair -e /a/b/c -g /a/b/d

replaces each occurrence of /a/b/d with an element <pair> <c> </c> <d> </d>
</pair>, where the c element is the last it has seen before. Its effect is:
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from
<a> <b> <c> 1 </c>

<d> 2 </d>
<d> 3 </d>

</b>
<b> <d> 4 </d> </b>
<b> <c> 5 </c>

<d> 6 </d>
</b>

</a>

to
<a> <b> <c> 1 </c>

<pair> <c> 1 </c>
<d> 2 </d>

</pair>
<pair> <c> 1 </c>

<d> 3 </d>
</pair>

</b>
<b> <pair> <c> 1 </c>

<d> 4 </d>
</pair>

</b>
<b> <c> 5 </c>

<pair> <c> 5 </c>
<d> 6 </d>

</pair>
</b>

</a>

A.5.0.11 Heads or Tails?. xhead and xtail select and output the head or tail
of a sequence of elements matching one or several XPath expressions. For example:

xhead -c /dblp -e book -n 20 -e article

outputs only the first 20 book elements and the first 10 (default value) article
elements under dblp.

A.5.0.12 File Directories to XML. The file2xml generates an XML file that
describes a file directory hierarchy. For example:

file2xml -s data > output.xml

traverses the data directory and all its subdirectories and creates the output.xml
document which has an isomorphic structure to the directory hierarchy. The output
is shown in Fig. 22.

As another example, the command below lists the top ten largest files in a direc-
tory hierarchy:

file2xml -s . | xsort -b -c /directory
-e //file -k size/text():%i |
xhead -c /directory -e file

The %i option in xsort indicates that size is an integer field.
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