

Processing XML with Java – A Performance Benchmark

Bruno Oliveira
1
,Vasco Santos

1
 and Orlando Belo

2

1
CIICESI, School of Management and Technology, Polytechnic of Porto

Felgueiras, PORTUGAL

{bmo,vsantos}@estgf.ipp.pt
2
Algoritmi R&D Centre, University of Minho

4710-057 Braga, PORTUGAL

obelo@di.uminho.pt

ABSTRACT

Over time, XML markup language has acquired a

considerable importance in applications development,

standards definition and in the representation of large

volumes of data, such as databases. Today, processing

XML documents in a short period of time is a critical

activity in a large range of applications, which imposes

choosing the most appropriate mechanism to parse

XML documents quickly and efficiently. When using a

programming language for XML processing, such as

Java, it becomes necessary to use effective

mechanisms, e.g. APIs, which allow reading and

processing of large documents in appropriated manners.

This paper presents a performance study of the main

existing Java APIs that deal with XML documents, in

order to identify the most suitable one for processing

large XML files.

KEYWORDS

XML, XML Markup languages, XML Documents, Java

API, Performance Analysis.

1 INTRODUCTION

Due to the simplicity of its hierarchical structure,

XML (Extensible Markup Language) is widely

used for data representation in many applications.

As a result of its portability, XML is used to

ensure data interchanging among systems with

high heterogeneous natures, facilitating data

communication and sharing, it’s platform

independent, which makes it quite attractive for the

majority of applications. Associated with the XML

format there are other languages that complement

the application area of this format, such as XSD,

XSLT or XQuery. Currently, XML format is used

in the development of several types of software,

including web pages, web services, network

applications, and fully based XML databases.

Access and modification operations are essential to

XML files manipulation once they are affected by

any increasing amount of data, by the complexity

of those operations, and by shorter periods of time

needed to process them. Coupled with this data

growing, XML documents can reach large number

of megabytes (or even gigabytes), limiting and

conditioning the technology used for development

of applications appealing for XML data

processing. Also coupled with the concept of

portability, Java programming language provides a

set of interfaces allowing for the manipulation of

structured documents according to the XML

format. Due to their portability, Java and XML are

commonly used in application development and in

native XML databases for data manipulation [1].

The main focus of this paper was to conduct a

study of the various parsing models and APIs

(Application Programming Interfaces) for XML

processing using Java programming language, with

the purpose to supply a refresh benchmark to the

available representation models, identifying which

is the most suitable for access and transformation

of large XML documents. We also refer the main

advantages identified for each representation

model, always keeping the performance factor in

mind. In the next section we will examine some

interesting related work about studies and

evaluations between several Java APIs across time.

Later, in section 3, we will discuss some other

operational characteristics for memory and

streaming representation models, identifying how

documents are processed according to each parsing

model. Section 4 and section 5, respectively,

72

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

presents some memory-based APIs and streaming-

based APIs and their main features. After, in

section 6, a brief comparison between performance

and memory consumption of memory-based APIs

and streaming-based APIs will be done. We used

specific XML instances with different sizes and we

tested selected APIs (memory and streaming

based) for execution time and memory

consumption. We also developed a specific unary

and binary transformation operations, and tested

them for execution time using best memory and

streaming APIs selected from previous tests. Next,

in section 7, we compare modification

performance of the best memory-based APIs

studied previously, exploring some configurations

in each of them that influences execution time and

memory consumption. We finish the paper in

section 8 summarizing results and presenting

conclusions.

2 RELATED WORK

In [2] the process of handling XML documents

was described in four phases: Parsing, that is

considered a critical step in performance, Access,

Modification and Serialization (figure 1), whose

performance is directly affected by the parsing

models.

Figure 1. Example of a XML memory tree representation

As the most critical factor of performance, parsing

is characterized by the conversion of characters,

mainly related to the conversion of characters into

a format that a programming language

understands, lexical analysis which is the process

that identifies XML elements, e.g. start node, end

node or characters, applying regular expressions

defined by World Wide Web Consortium (W3C)
1
.

The last step of the parsing phase is the syntactic

analysis of the document, where it is checked if the

document complies with the rules of construction

1
http://www.w3.org/

of an XML document. Finally, the API implements

access and modification operations on the data

resulted from the parsing process.

Due to its complexity and importance, the parsing

process is the most critical operation in XML

processing, directly conditioning processing time

and memory consumption. Several studies [3–9]

have been conducted with the goal to test, improve

representation models and APIs in XML

processing [10]. As Java and other technologies

evolve, it is necessary to review the new

approaches and improvements provided by several

XML parsers available.

In 2001 Sosnoski condutes [11] a detailed study

with the main parsers that existed at the time. The

author tested DOM
2
, JDOM

3
, dom4j

4
, Electric

XML (no longer supported), and XML Pull Parser

- XPP (no longer supported), using small files with

diverse data structures. The benchmark consists in

document build time (construct XML document

based on text file), document navigation, modify

time, output XML document representations as

text documents, amount of memory needed for

document representation, execution time and

output document size for Java serialization step.

Later in 2002, Oren [5] proposes Piccolo XML

parser presenting a comparative study between

parsers, which implements SAX (Simple API for

XML Processing)
5
 interfaces. Although outdated,

these study provided interesting guidelines related

to the test methodology and conclusions about the

overall best API, which changes in subsequent

studies [6] for similar tests. Another interesting

study was realized by Perksins et al. [9], where

authors use a small (less than 1 KB) XML

representing a typical purchase order structure to

test transcoding impact and object creation of

DOM, SAX and JAX-RPC. The authors also

explore the navigation costs of each API and

compare the results with a specific XPath parser.

In [6], authors provide a detailed study about

performance of VTD (Virtual Token Descriptor
6
)

(with and without buffer reuse), SAX (Piccolo and

2
 http://download.oracle.com/javase/6/docs/ technotes/guides/xml/

3
 http://www.jdom.org

4
 http://dom4j.sourceforge.net/dom4j-1.6.1

5
 http://www.saxproject.org

6 http://vtd-xml.sourceforge.net

73

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

Xerces implementation), XML Pull Parser and

DOM (with and without deferred node expansion).

In order to provide a benchmark of each one of

APIs tested the authors used a set of XML

example files, which represents typical real-world

applications. These files have several sizes

categorized as Small (between 1,6 ~ 6,8 KB),

Medium (10 ~ 1 MB) and Big (between 1 ~ 15

MB). Tests were conducted with files in memory

(same as [5]), with the purpose of reducing I/O

costs. XML parsing performance was conducted

for testing latency, memory usage and navigation

performance. Further, Haw and Rao [3] provided a

comparative study and benchmarking between

SAX, StAX (Streaming API for XML
7
), DOM and

Electric XML, proposing a new SAX

implementation called xParse. In that work,

authors compared SAX and DOM for Xerces Java

and .NET implementations using specific

operations based on small XML files.

More recently, VTD website [12] conducted a

benchmark between Xerces DOM (with defered

and non-defered mode), SAX, Piccolo, XML Pull

Parser (XPP3) and VTD, showing the global

superiority of VTD. Authors use four

benchmarking processes, the first one, tests VTD

and DOM for indexing-related performance using

a XML data structure from a typical selling

application with sizes between 6 KB and 9 MB.

The tests apply specific XPath expressions to these

files in order to test a variety of scenarios based on

filter and select operations. Initially, XML index

files are loaded into memory, in order to remove a

specific node from the result set, generated by the

application of XPath expressions. Consequently,

the result sets are written to the output document.

Next, authors test the parsing process, XPath

evaluation and XML modification, using the same

files and XPATH expressions for VTD (with

buffer and without buffer reuse), and DOM. For

this benchmark, XML files are loaded into

memory and after the parsing of the document,

XPath expressions are evaluated, a specific node is

removed from the result set that is then written to

an output document. The third test compares

performance of XPath expressions for a large

7 http://stax.codehaus.org/Home

number of iterations for VTD, Jaxen and Xalan.

Finally, the last test compares VTD

implementation in Java (with and without buffer

reuse) and C language to SAX, DOM, Piccolo and

XPP3 for performance and memory usage. For

that, authors use diverse XML data structure files

with a size between 1 KB and 26 MB

(approximately). The overall results show a clear

superiority of VTD in relation to other approaches.

This last test is the most interesting for us, since

we will focus on the similar topics in this article.

However being very detailed, the benchmark from

VTD website did not focus in all topics that we

want to test (e.g. big files with more than 1GB),

and some of the other benchmarks already focused

were outdated or did no use Java programming

language. This is mainly caused by miscellaneous

updates and improvements in the execution

environment, particularly in the Java Virtual

Machine, which affects, as we know, runtime and

effectiveness of the operations.

3 MEMORY AND STREAMING-BASED

REPRESENTATION MODELS

Most memory-based APIs use a common model in

data processing, where XML documents are

entirely stored in memory in a tree format with

multiple nodes, descending all from a single node

representing the root of the tree. This kind of

schema allows the use of different methods to

locate and manipulate data contained inside the

nodes. Using memory-based models implies that

the parser partially or totally allocates memory for

data tree (figure 2) from specific XML file,

making data ready for using in navigation methods

in order to process required data.

Figure 2. Parsing step for memory-based models

74

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

For each search or other kind of manipulation, it is

necessary to start processing by the root element

continuing in the structure hierarchy to access the

remaining data (figure 3). Since all the information

is available in memory, we can traverse the tree in

random order, changing the positioning of the

nodes and performing data transformations in a

very simple and accessible way. Considering its

memory structure representation, these APIs

facilitate the process of application development,

providing a wide range of search methods that

allow you to easily perform operations on the

constituent nodes of the tree. However memory-

based APIs consume, in average, four to five times

more memory than the document’s size. For

example, a 20 megabytes document needs,

depending on the representation model,

approximately 100 megabytes in order to be stored

in memory, which may represent a problem in

processing large documents.

Streaming-based APIs perform a sequential scan of

the document using minimum memory resources.

Typically, this type of APIs use the depth of the

XML document (number of nested elements) and

the maximum data stored in XML attributes on a

single XML element. Both of these are always

smaller than the size of the memory-based parsing

tree approach. Then, a small portion of the

document is extracted sequentially without the

need to load the whole document structure.

Usually, the parser reads the XML document

calling a specific method for each type of event to

process its object. Figure 4 presents the SAX

conceptual model for XML processing, which is

similar to other streaming-based APIs.

The parser is configured as an input source, which

is associated with a set of content management

methods that identify, for example, the beginning

or the end of the document and elements of data

that might contain errors that occurred during the

parsing step. When the parser runs, some event

triggers are captured by content management

methods. Each time the parser detects an important

part of the XML document it triggers the

appropriate method in order to read the respective

data block.

Conceptual model from figure 4 represents push

model that is used by SAX API. Basically, in push

model parser checks for each event type retrieve

by source XML file. With this approach, the parser

handles all XML events making uninterested

events impossible to avoid, and as consequence

access applications must handle all events

provided from parser. In other way, StAX

implements pull model, which events are handled

by access applications that are responsible to

invoke specific events, avoiding non-necessary

events (figure 5).

Essentially, taking into account its operational

characteristics, the push model is more suitable

when we need to read all XML file, since the

parser will read all XML event tokens. However

when user applications need, for some reason, to

Figure 3. Example of a XML memory tree representation

75

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

skip parts of XML file, then the pull model should

be used [2].

Figure 4. SAX parsing model
8

Streaming-based APIs are more suitable for

processing large XML documents, because, in

theory, they can process documents of infinite size.

Figure 5. Push vs pull model

4 MEMORY-BASED APIS

Included in JAXP package, DOM API is a

collection of classes that has a set of Java methods

that allows XML processing in memory with a

structure similar to figure 3. In several cases, the

DOM API is the basis for the construction of new

8 Image Source:

http://www.inf.ufrgs.br/gppd/disc/inf01008/trabalhos/sem01-

1/t2/apis_xml_java/

APIs that revise some of its characteristics, with

the aim of serving specific requirements.

For instance, the JDOM API allows the

manipulation of XML documents with Java via a

tree structure representation, thus being similar to

DOM. However, this API has been developed

specifically for Java language, making it much

more intuitive for a typical Java programmer. For

example, there is no Text class [13], since Java

programming language provides its own class

(String class). JDOM takes advantage of Java

features such as: creating methods with the same

name, reflection
9
, weak references

10
, and the use of

collections such as List and Iterator [14]. JDOM

API differs from DOM API in the use of classes

instead of interfaces, simplifying the API but

limiting flexibility.

For his part, the dom4j is an open-source API

based on DOM and JDOM concepts, using an

interface and abstract base class approach, with

extensive use of the Collection classes. dom4j is a

more complete solution than JDOM, which gives

more emphasis to the use of the interfaces, adding

more flexibility at the cost of a little added

complexity [11, 12].

Inspired by DOM and JDOM, the XOM API was

designed to be the best of both worlds. In Harold’s

presentation [16], XOM is classified as an easy to

use API, fast and simple. XOM makes use of

existing Java mechanisms (like JDOM), revealing

a far more restricted API that does not allow

creation of malformed documents, forcing

validations through the use of inheritance. In such

overview some disadvantages of JDOM were

presented, namely the one that considers it

inconsistent since there are several ways to

accomplish the same tasks (like reading a child

element) and due to some gaps in the use of Java

convention (e.g. set methods not always return

void).

Another disadvantage listed, refers to elements of

an XML document that are represented using

objects, which produces small memory overheads.

In addition, a comparison is also provided with the

9
http://java.sun.com/developer/technicalArticles/ALT/Reflection/

10
http://weblogs.java.net/blog/2006/05/04/understanding-weak-

references

76

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

dom4j that uses interfaces instead of classes

resulting in a more complex API. Briefly, we can

say that dom4j is an API based on DOM (and

extended), and the XOM API based on the

principles of DOM with the main goal of

simplifying XML processing. JDOM, dom4j and

XOM have the advantage of being specifically

developed for the Java language, unlike other APIs

(like DOM), which were developed in a generic

way for several programming languages [11].

XQuery is a language for extracting data from an

XML document that allows the creation of a high-

level code for extraction of data, similar to what

happens with SQL language for relational

databases. This language will require native

support from the API that should interpret

commands produced from XQuery language.

OJXQI (Oracle Java XQuery API) is an API

proposed by Oracle which is incorporated into its

database with support for XQuery language,

simplifying XML transformations through the use

of a simple language, which is very similar in

construction to SQL language.

Oracle supports XQuery in two different levels:

database and mid-tier. The first one applies queries

in the database environment and the second one

run queries on sources, which are not databases.

Thus, it is possible to compile several clauses

allowing XQuery execution, and consequently lead

to a new set of results. Data from OJXQI API is

entirely processed in memory, allowing the

creation of DOM objects in order to represent the

data.

The last API that was analyzed, representing XML

data in an object tree structure, is named

Xerces2
11

, and consists in a set of parsers that use

DOM and SAX data models. We tested the DOM

implementation, which naturally follows the same

guidelines in terms of architecture as the previous

APIs presented.

On the other hand, VTD (Virtual Token

Descriptor) API uses a different approach, having

the premise that the creation of objects is the main

factor of low performance. VTD API implements

arrays of integers based structure to represent data

11

http://xerces.apache.org/xerces2-j/index.html

in memory, eliminating the cost of object creation

resulting from the extraction process, through the

use of arrays of 64-bit integers called VTD records

(figure 6).

Figure 6. Representation of a VTD record

12

A VTD record is a binary encoding format that

specifies how to assign tokens (identification codes

composed by length, offset, nesting depth and type

of XML tokens) in a non-extractive method. The

concept of parsing "non-extractively" [12] means

that XML text remains intact in memory while the

tokens are represented exclusively by using ranges

and sizes in bits (the contents of the string is not

copied) [2]. The process contrasts with the method

used by other extractive XML processing models

(such as DOM and SAX), which allocate blocks of

memory for document contents allocation,

manipulating data directly. This manipulation can

only be performed after the parsing process has

finished with document size as the largest

bottleneck in XML data access performance.

5 STREAMING-BASED APIS

Streaming-based APIs do not maintain long-lived

structures of documents in memory. This type of

APIs read data as a series of events representing

them in a form of objects (like the DOM API),

using a small portion of memory to process the

document in a sequential way. Objects are

associated with different types of events and are

not maintained too long in memory unlike the

approach of memory-based APIs.

The JSR (Java Specification Request) 173
13

defines Streaming API for XML (StAX
14

), that

allow parsing elements in streaming mode, and the

12

 Figure extracted from http://vtd-xml.sourceforge.net/
13

http://jcp.org/en/jsr/detail?id=173
14

 http://stax.codehaus.org/Home

77

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

extraction of information through events controlled

by the application (pull model), differing from

SAX API of JAXP package, that has a manager

that takes events as convenience of the parser

(push model). While StAX API allows you to

discard information in the document’s parsing as

appropriate (invoking the nextEvent method), SAX

parser extracts all elements even if you don’t need

them.

In addition, StAX has two integrated APIs with

different levels of abstraction: the cursed-based

API, which is a lower-level API, focused on

efficiency and simplicity of use, that works like a

stream of events, and the iterator based API that

offers a higher level of abstraction allowing

pipelining, and representing the events through

objects. This implementation allows the

programmer to ask (peek() method) without

reading the event.

It is possible to skip the input of both the Cursor

and Event approaches. In this study we focus on

cursed-based API because it is the most efficient

way to read XML data [17]. In addition to SAX

and StAX, we also tested XOM API with

NodeFactory implementation. NodeFactory allows

parsing the XML document as Streaming like SAX

and StAX.

SAX, StAX and XOM (streaming mode

implementation) allow access to data before the

parsing process is completed.

Table 1. APIs analysis summary

API Parsing Model

JAXP: Sax Streaming events: push model

JAXP: StAX Streaming events: pull model

JAXP: DOM Memory: tree object

XOM Memory: tree object

OJXQI Memory: tree object

jDOM Memory: tree object

dom4j Memory: tree object

Xerces2 Memory: tree object

VTD Memory: array of integers

This feature allows memory consumption to

remain low because processed data, and no longer

in need, might be released from memory, thus

keeping memory usage low as the parsing process

proceeds. Table 1 summarizes all APIs described

before.

In order to test memory usage and execution time

for each API, we used two different families of

XML documents:

1) one representing sales orders of a particular

company (SalesOrderDetail), which was

taken from the Microsoft Data Warehouse

samples: Adventure Works
15

;

2) an other generated by xmlgen
16

 tool which

aims to represent information about a bidding

web site, from an e-commerce
17

 typical

application.

6 PERFORMANCE ANALYSES OF APIS

Table 2 presents the size of the documents and the

properties used on tests for each API. We used

three instances of different sizes for each

document type in order to test not only the size of

in-memory representation, but also the elapsed

time of parsing each document.

Table 2. Documents used on tests

File File size Number of

nodes
18

SalesOrderDetail1 9,9 MB 20213

SalesOrderDetail2 60,8 MB 121317

SalesOrderDetail3 145,5 MB 304688

AuctionWebSite1 11,7 MB 2175

AuctionWebSite2 58,0 MB 10875

AuctionWebSite3 163,4 MB 30444

6.1 Memory-based APIs

The study consisted in measurements of memory

consumption in megabytes (MB) - (figure 7), and

execution time in milliseconds (ms) - (figure 8)

15

 http://msftdbprodsamples.codeplex.com/
16

 http://www.xml-benchmark.org
17

 Tests realized in 2.53 Ghz Intel Core 2 Duo, 4 GB 1067 Ghz

DDR3, Mac OS X 10.6.4, hard drive with 5400 RPM, 1.6.0_20 –

Open JDK Runtime Environment with 455 megabytes of memory

available
18

 In this particular scenario, a node represents a data record. For

example, in the SalesOrderDetail document, one node represents

one sales record.

78

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

used by each memory-based API for the

replication of the respective XML file.

Results are based on an arithmetic average resulted

from five executions for each API for each

document (without considering the time of the first

execution).

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

!
"
#
$
%
&
'"
()

*$+$),-.()

'()*+,-.*-/*0(1)$"

'()*+,-.*-/*0(1)%"

'()*+,-.*-/*0(1)&"

2345678*9'10*$"

2345678*9'10*%"

2345678*9'10*&"

Figure 7. Memory consumption in megabytes of memory-

based APIs

The results shows the gain of VTD in relation to

other memory-based APIs, either in terms of

memory usage or at runtime, showing that VTD

representation model of data is much superior than

other APIs representation.

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

'#!!!"

'$!!!"

'%!!!"

!
"
#

$%&%#'()"#

()*+,-./+.0+1)2*'"

()*+,-./+.0+1)2*#"

()*+,-./+.0+1)2*3"

456789:+;(21+'"

456789:+;(21+#"

456789:+;(21+3"

Figure 8. Execution time in milliseconds of memory-based

APIs

With the exception of VTD, no other memory-

based API was able to perform the parsing of the

biggest documents with the amount of memory

available on Java Virtual Machine (Sales

OrderDetail3 - green bar and AuctionWebSite3 –

orange bar). Noteworthy is the good performance

in parsing time of DOM in relation to other

memory-based APIs. Although the representation

of a DOM document in memory is higher than the

XOM and OJXQI representation. When large

XML files are used, the memory-based approach is

not feasible due to inherent memory limitations.

6.2 Streaming-based APIs

Once memory consumption of streaming-based

APIs is reduced, not representing a critical point in

terms of processing, we only tested parsing speed

in milliseconds for each API: SAX, StAX (was

deemed the cursor-based API) and XOM

(streaming-based approach) (figure 9) for each of

the documents presented earlier.

SAX and StAX are very similar in time

consumption, which is easily expected, since the

main point that distinguishes these two APIs is

how the parser handles the events processed.

Considering the entire document, the results are

quite similar, nevertheless XOM has a much lower

performance compared to other streaming-based

APIs.

0"

2000"

4000"

6000"

8000"

10000"

12000"

StAX" SAX" XOM"

m
s
#

Java#APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Auc9onWebSite1"

Auc9onWebSite2"

Auc9onWebSite3"

Figure 9. Execution time in milliseconds from streaming-

based APIs

As we stated before, StAX provides two main

approaches for XML handling: Cursor API with

XMLStreamReader method and Event API with

XMLEventReader. Event API differ from Cursor

API in accessibility and flexibility, however

performance between the two approaches are very

distinctive since Cursor API is a lower level API

that processes XML files as a stream of events.

On the other way, Event API allows the processing

of XML files as a series of event objects,

supporting a more abstract way to handle XML

79

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

files through the use of XMLEvent objects.

However, the overhead related to the use of

XMLEvent objects make this implementation

slower as we can see in figure 10. Results show a

huge difference for files tested between the two

approaches, mainly related to the overhead of

object creation for Event base API.

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

StAX"cursor"API" StAX"iterator"

API"

m
s
#

StAX#APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Auc9onWebSite1"

Auc9onWebSite2"

Auc9onWebSite3"

Figure 10. Execution time in milliseconds from StAX cursor

and Iterator API

Memory consumption is relevant between the two

approaches. Event API consumes practically the

same memory for AuctionWebSite instances, and

for SalesOrderDetail instances consumes at most

43% more memory when compared to Cursor API.

6.3 Comparative analysis of two types of APIs

Memory-based APIs are widely used due to the

fact that, in most cases, documents being

processed are small enough to fit in memory.

However, in cases where memory availability is

limited, or the size of the XML document to be

processed is large, streaming-based APIs are the

most suitable. Project requirements are crucial to

determine the most suitable type of API used. The

need to apply document transformation is also a

considerable factor for API selection, once

memory-based APIs are much more suitable for

this type of operation, while streaming-based APIs

are more used for forward-only applications.

In order to test API performance in document

transformations we considered SalesOrderDetail

documents for the following APIs: SAX, StAX

and VTD. Two operations were developed for each

API:

• Selection: an operation that selects a set of

elements based on a given predicate,

representing forward-only access to data.

• Difference: an operation that removes from

the first document all the elements that are

in common with the second document,

representing a random access to data.

A selection operation, based on a predicate, selects

all elements where SalesOrderID has a value of

43,659, producing a new document. The difference

operation checks if an element, immediately below

the root node of a document R, exists in a

document S thus disregarding it and keeping it

only if he doesn’t exists if document S. For the

difference operation we considered

SalesOrderDetail for both arguments in order to

produce an empty document so we could

extensively use the algorithm and disregard the

size of the result document, since it will be null.

In memory-based APIs, documents are fully

loaded into memory allowing access to the whole

XML structure. In our tests the result is

immediately written to disk without creating an in-

memory structure. For streaming-based APIs,

transformations are performed in a sequential way;

i.e. as data is read from, changes are reflected in

the outcome document. According to results

(figure 11 and figure 12) we can see that StAX is

the API that has the better performance, followed

by VTD.

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

StAX" SAX" VTD"

m
s
#

APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Figure. 11. Execution time in milliseconds for selection

operation

80

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

However, VTD consumes a considerable amount

of memory. Memory consumption can be a

bottleneck for environments that provide limited

capabilities. We used a new document:

SalesOrderDetail0 with 2,9 megabytes in order to

reduce execution time of the test. Considering the

selection operation, StAX is slightly faster, with

the advantage of lower memory consumption

compared to VTD.

0"

10"

20"

30"

40"

50"

60"

70"

80"

StAX" VTD"

m
in
u
t
e
s
(

Java(APIs(

SalesOrderDetail0"

SalesOrderDetail1"

Figure 12. Performance test for the difference operation in

minutes (m)

This increase in memory usage occurs mainly due

the cost of rebuilding the entire structure of

document in memory, which also implies a higher

execution time. Only after the correct

representation of the document in memory the

processing phase starts. Streaming-based APIs do

not have this procedure, starting transformation

immediately, obtaining results faster and with less

computational resources.

For the difference operation, memory-based APIs

are faster than streaming-based APIs. The

difference operation requires that for each element

of R, a verification process be done that uses

multiple comparisons in order to verify if it exists

in document S.

With streaming-based APIs it is necessary to

perform a large number of I/O (input/output)

operations, because for every element of R it might

parse the entire document S (at worst). In case of

memory-based APIs, since both documents are

fully represented in memory, the comparisons do

not have to do any I/O thus reducing execution

time. Due to memory limitations, if we need to

work over several documents at the same time

their size is even more restricted since they all

need to be in memory to be processed.

It was also found that the first run of the operations

is slower than subsequent runs. Therefore, we

conducted a study (figure 13) for the selection

operation with StAX and VTD with

documents:SalesOrderDetail1, SalesOrderDetail2

and SalesOrderDetail3 in order to evaluate the

impact of the first run.

The first-run impact has more emphasis on VTD,

and speed execution increases considerably as the

size of documents increases, influencing runtime

speed between StAX and VTD.

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

StAX" VTD"

m
s
#

Java#APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Figure 13. Elapsed time in milliseconds (ms) for the selection

operation first run

7 MODIFYING PERFORMANCE

An important feature that appeared in the analysis

of the APIs was the ability to manipulate elements

of an XML document, i.e., insert, delete or update

information. Streaming-based APIs are not

adequate to this kind of operations because they

process documents in a sequential way, which

complicates the implementation of the previous

operations without apparent benefit since

transformations are not performed by the order of

elements presented in document. In this case, it

would be necessary to perform multiple I/O

operations.

For memory-based APIs, we tested DOM and

VTD, mainly because almost all other APIs tested

are based on the same model of DOM and the

performance differential between them is not very

relevant. VTD uses much less memory than DOM

81

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

and performs document parsing in less time. The

cost of object creation in DOM API is the main

factor for the different performance. VTD is

immune to this cost due to its inherent

representation structure. However, tree structured

manipulation for DOM allows a fairly trivial

manipulation of data, since adding or removing a

node in the tree is done by a manipulation of

pointers between nodes. On the other hand, VTD

needs to rebuild VTD records for processing next

update. We built a test scenario that changes the

content of AuctionWebSite documents.

The structure of such documents consists in the

following elements: regions, categories, catgraph,

people, open_auctions, and closed_auctions. Each

of these elements contains a set of lines with

information relating to an auction site. The tests

change data on persons and consist of three steps:

1) adding an element nationalidnumber with

unknown content;

2) renaming creditcard element for cc; and

changing gender element content of each

person,

3) replacing male for M and female for F.

In both APIs, documents are loaded into memory

and scanned in order to scroll through the contents

of each person, making modifications at the same

time. After performing all transformations, the

document is written to a file using DOM

Transformer class and VTD XMLModifier class

respectively. For performance analysis we

measured APIs with four smaller AuctionWebSite

documents. Each document contains the following

number of persons:

• AuctionWebSite1 – 2550 persons

• AuctionWebSite2 – 7649 persons

• AuctionWebSite3 – 12750 persons

• AuctionWebSite4 – 20400 persons

In figure 14 we can see the results of the tests for

each of the documents processed. Note that for

large documents we had to increase the Java

Virtual Machine memory available in order to

process them. Results show a clear superiority of

VTD for data insertions and updates. For this

scenario, object manipulation of DOM has no

advantages in relation to the array of integers’

structure used by VTD.

These two APIs have specific features with respect

to memory usage. For example, for DOM API we

can set deferred node expansion option (used by

default in JAXP DOM implementation) that

enables lazy loading, and full node expansion.

With deferred node expansion, objects are not

allocated until we need to navigate the tree for the

corresponding node position. In our tests, shown

before, we used a deferred DOM tree, making

parsing time faster and the tree navigation slower

than using full mode [18].

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

DOM" VTD"

m
s
#

Java#APIs#

Auc0onWebSite1"

Auc0onWebSite2"

Auc0onWebSite3"

Auc0onWebSite4"

Fig. 14. Execution time in milliseconds of each API

VTD also has a feature (introduced in version 1.5)

called buffer reuse that makes VTD records

reusable, which means that memory buffers can be

allocated once and used many times for an

application.

In order to test both features and its respective

impact, we present a comparison between results

obtained using both features of each API in terms

of memory usage and execution time. For DOM

tests we use defer-node-expansion from Apache

Xerces2 DOM implementation
19

. We set this

option to true for deferred mode and false for full

mode. Figure 15 shows the comparison of parsing

time between DOM with (DOM-DEF) and without

defer-node-expansion (DOM-FULL) for

AuctionWebSite XML files described before.

Using deferred DOM mode, the parser processes

the document faster than using the full-expanded

data tree in memory. For full mode, all data objects

19

 http://xerces.apache.org/xerces2-j/features.html

82

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

from the file are allocated and ready for navigation

purposes. On the other way, deferred mode only

allocates objects when it needs to navigate through

them. The results provided from figure 15 shows

that parsing performance is faster for DOM-DEF

and the benefit of its use increases along with the

increase of the file size.

0"

2000"

4000"

6000"

8000"

10000"

DOM"+"FULL" DOM"+"DEF"

m
s
#

DOM##features#

Auc3onWebSite1"

Auc3onWebSite2"

Auc3onWebSite3"

Auc3onWebSite4"

Figure 15. DOM with and without defer-node-expansion for

parsing time

In order to complete our benchmark we tested

execution time (figure 16) and memory usage

(figure 17) comparison between both DOM

approaches and VTD for the same operations used

before. In this particular test scenario, we need to

traverse almost all files in order to apply the

necessary transformations. For that reason, object

allocation cost related to the navigate methods for

deferred approach implies an extra cost that affects

global performance, even if we consider that

parsing time is faster for deferred approach. When

we need to traverse the whole or almost all data

tree, DOM full-expanded approach is faster than

deferred approach [18].

For our scenario we use big XML files with a set

of transformations that traverse the majority of the

data tree. For that reason we can see in figure 16

that DOM full expanded tree has advantages

related to execution performance, since for each

node that we need to traverse, DOM deferred

approach needs to allocate additional memory,

making navigation process slower. In these results

we consider parsing time, access, modification and

serialization. As we can see the cost of navigation

is higher when compared with high parsing costs

associated to DOM full expansion node.

Figure 16 also shows a slightly faster execution

time, when using reusable buffer in VTD

configuration. For this particular scenario results

are very similar.

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

DOM"+"

FULL"

DOM"+"

DEF"

VTD" VTD"+"

buffer"

reuse"

m
s
#

APIs#tested#

Auc:onWebSite1"

Auc:onWebSite2"

Auc:onWebSite3"

Auc:onWebSite4"

Figure 16. Execution time for DOM and VTD specific

features

0"

100"

200"

300"

400"

500"

600"

DOM","

FULL"

DOM","DEF" VTD"

M
e
g
a
b
y
te
s)

APIs)tested)

Auc6onWebSite1"

Auc6onWebSite2"

Auc6onWebSite3"

Auc6onWebSite4"

Figure 17. Memory consumption for DOM specific features

and VTD

For memory consumption DOM full-expanded tree

consumes more memory than deferred approach.

This behavior is expected since full-expanded

approach allocates data objects for all data tree,

making it ready for the application of navigation

methods.

The choice between the two approaches mainly

depends on user requirements, i.e., the file size and

the scope of operations that will be applied in

order to produce an output document. VTD

memory consumption was included for this test for

reference purposes, since the use of reuse or non-

reuse buffers does not differ in memory

consumption.

83

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

8 CONCLUSIONS

The use of structured documents in XML has a

wide area of application in different types of fields.

In many cases it is necessary to process documents

of a considerable size where runtime is relevant

and the execution window is clearly limited. As we

saw, there are two types of XML APIs: memory-

based APIs and streaming-based APIs. Memory-

based XML APIs maintain a long lived structural

data in memory and only when the parsing process

is finished modifications are allowed, while

streaming-based APIs use small memory footprint,

allocating and freeing memory constantly,

allowing the process of infinite size XML

documents (in theory).

Generally, for XML handling, dom4j, and DOM

are good choices, with the preference between

them determined by Java-specific features or

cross-language compatibility, depending on project

requirements. Although less flexible in XML

transformations, OJXQI is a very good choice

when you need to do standard modifications with

good performance. VTD array of integers’

structure proves to be the best model in almost all

tests. It is a model that consumes less memory

(compared to other memory-based APIs), the

processing time is very fast and even their ability

to update a document, maintaining its structure in

memory, proved being far superior in relation to

the other memory-based APIs (for tested scenario).

The use of VTD API is more complex in

comparison to other memory-based APIs, where it

is necessary an additional effort to dominate the

API’s features.

For streaming-based APIs, StAX has proved to be

an API with better overall performance compared

to SAX and XOM. This kind of APIs do not

maintain long-lived structural data in memory, so

there are no advantages in using this type of API

when you need to perform a set of transformations

that somehow change the order of elements in the

XML hierarchy. Typically, these types of APIs are

used only for forward-only applications or simple

modifications using XSLT language.

Memory-based APIs maintain the structure of the

whole document in memory, resulting in some

overhead, however, for updates that somehow

change the document structure, this type of APIs

lead to some advantages over the streaming-based

APIs since those need to perform increased I/O

operations to do same transformation.

Manipulating a document using memory-based

APIs is much more accessible and quick, since for

streaming-based APIs we need to constantly use

temporary buffers to keep information in memory.

In summary, we can conclude that choosing from

the two approaches studied for processing XML

documents depends mostly on project’s

requirements.

REFERENCES

[1] M. Van Cappellen, Z. H. Lui, J. Melton, and Maxim

Orgiyan, “XQJ - XQuery Java API is Completed”,

SIMOD Record, vol. 38, no. 4, 2009.

[2] T. C. Lam, J. J. Ding, and J.-C. Liu, “XML

Document Parsing: Operational and Performance

Characteristics”, Computing & Processing, vol. 41,

no. 9, pp. 30–37, 2008.

[3] S. C. Haw and G. S. V. R. K. Rao, “A Comparative

Study and Benchmarking on XML Parsers”, in

Advanced Communication Technology, The 9th

International Conference on, 2007.

[4] L. L. B. Zhao, “Performance Evaluation and

Acceleration for XML Data Parsing”, in In 9th

Workshop on Computer Architecture Evaluation

using Commercial Workloads (CAECW), 2006.

[5] Y. Oren, “SAX Parser Benchmarks”, http://piccolo.

sourceforge.net/bench.html, 2002. .

[6] J. Zhang, “Simplify XML Processing with VTD-

XML”, JavaWorld.com, 2006. .

[7] R. Alnaqeib, F. H.Alshammari, M.A.Zaidan,

A.A.Zaidan, B.B.Zaidan, and Z. M.Hazza, “An

Overview: Extensible Markup Language

Technology”, Journal of computing, vol. 2, no. 6, pp.

177–181, 2010.

[8] V. Sengirova, A. Oralbekova, and N. Shah, “An

Empirical Evaluation of BFS, and DFS Search

Algorithms on J2ME Platform, and SVG Tiny

Parsing on J2ME Platform Using SAX, StAX, and

DOM Parsers”, International Journal on Advanced

Science, Engineering and Information Technology,

vol. 2, no. 5, pp. 65–70, 2012.

84

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

[9] E. Perkins, M. Kostoulas, A. Heifets, M. Matsa, and

N. Mendelsohn, “Performance Analysis of XML

APIs”, in XML 2005 Conference proceeding, 2005.

[10] F. Wang, J. Li, and H. Homayounfar, “A space

efficient XML DOM parser”, Data & Knowledge

Engineering, vol. 60, no. 1, pp. 185–207, 2007.

[11] D. Sosnoski, “XML and Java technologies:

Document models, Part 1: Performance”,

http://www.ibm.com/developerworks/xml/library/x-

injava/, 2001.

[12] J. Zhang, “VTD-XML: XML Processing for the

Future (Part I),”

http://www.codeproject.com/Articles/23516/VTD-

XML-XML-Processing-for-the-Future-Part-I, 2008.

[13] B. McLaughlin and J. Edelson, Java and XML, 3rd

Editio. O’Reilly Media, 2006, p. 480.

[14] W. Biggs and H. Evans, “Simplify XML

programming with JDOM”,

http://www.ibm.com/developerworks/java/library/j-

jdom/, 2001.

[15] D. Sosnoski, “XML and Java technologies: Java

document model usage”,

http://www.ibm.com/developerworks/xml/library/x-

injava2/, 2002.

[16] E. Harold, “XOM presentation,”

http://www.xom.nu/whatswrong/whatswrong.html,

2003.

[17] J. W. S. P. Team, “Streaming APIs for XML

Parsers,”

http://java.sun.com/performance/reference/whitepap

ers/StAX-1_0.pdf, 2005.

[18] E. Litani and M. Glavassevich, “Improve

performance in your XML applications, Part 2,”

http://www.ibm.com/developerworks/xml/library/x-

perfap2/index.html, 2004.

85

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

