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Abstract 

The use of simulation is well established in processor design research to evaluate 

architectural design trade-offs. More importantly, Cycle by Cycle accurate simulation is widely 

used to evaluate the new designs in processor research because of its accurate and detailed 

processor performance measurement. However, only configuration in a subspace can be 

simulated in practice due to its long simulation time and limited resources, leading to suboptimal 

conclusions that might not be applied to the larger design space.  In this thesis, we propose a 

performance prediction approach which employs a state-of-the-art technique from experimental 

design, machine learning and data mining. Our model can be trained initially by using Cycle by 

Cycle accurate simulation results, and then it can be implemented to predict the processor 

performance of the entire design space. According to our experiments, our model predicts the 

performance of a single-core processor with median percentage error ranging from 0.32% to 

3.01% for about 15 million design spaces by using only 5000 initial independently sampled 

design points as a training set.  In  CMP the median percentage error ranges from 0.50% to 

1.47%  for about 9.7 million design spaces  by using only 5000 independently sampled CMP 

design points as a training set. Apart from this, the model also provides quantitative 

interpretation tools such as variable importance and partial dependence of the design parameters. 
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1. Introduction 

1.1 Overview 

 

Exponential increase in transistor density inside the chip allows us to build chips with enhanced 

capability and functionality. Processor design industries have seen major growth in the past few 

decades such as out-of-order processor, super scalar processor, SMT processor, CMP processor, 

and clock frequency enhancement technology. These technologies, not only enhance the 

performance of the processor, but also increase the complexity of processor design and 

evaluation. This rapid technological advancement in  chip design creates two major challenges in 

evaluating the new design space. 

1.2 Slow Simulation Environment 

Computer architects have to use complex simulation models. Usually, they evaluate their new 

designs using cycle-accurate processor simulators which provide them with insight details on 

processor performance, power consumption and complexity. The code complexity of these 

architecture simulators increases drastically due to the advancement in processor technology. As 

a result of this technological advancement, the simulator requires longer simulation time and 

larger computational resources.  

1.3. Huge Design Space 

This design space is composed of  the product of choices of many architectural design 

parameters, such as  frequency, issue width, cache parameters, different branch  predictor 

settings, ALU size, ROB size, LSQ size etc.  To understand the impact of design parameters and 

their interactions with a new design, the computer architect will have to evaluate the huge 

spectrum of design space before coming to any conclusions. 

These two challenges render the evaluation of a new design over the entire design space using a 
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cycle-accurate simulator nearly impractical, so architects resort to analyzing their new designs 

for a selected important configuration in a subspace. These kinds of analyses might lead to sub-

optimal conclusions which might not be applicable to the whole design space. In addition, more 

parameters brought by chip-multiprocessors (CMPs) make this problem more urgent.   

In this thesis, we propose to use a state-of-art tree based predictive modeling technique 

combined with advanced sampling techniques from statistics and machine learning to predict 

processor performance for the entire design space based on initial independent training design 

points. This technique fills the gap between simulation requirement, simulation time and 

resource costs. 

The proposed method includes the following four components: (1) the maximin space-

filling sampling method that selects initial design representatives from a large amount of design 

alternatives; (2) the state-of-the-art predictive modeling method - Multiple Additive Regression 

Trees (MART) [8] which builds an ensemble of trees with high prediction accuracy; (3) an active 

learning method which adaptively selects the most informative design points needed to improve 

the prediction accuracy sequentially; (4) interpretation tools for MART-fitted models which are 

able to show the importance and partial dependence of design parameters and shed light on the 

underlying working mechanism. These provide computer architects a quantitative and efficient 

approach to optimize processor performance by tuning key design factors. 

For each workload, 500 initial design points were sampled based on the maximin distance 

methods (detailed in Chapter 3.1). Then another 500 points were sampled according to an 

adaptive sampling scheme (described in Chapter 3.3). We repeat the sampling process until 3000 

design points were sampled for each benchmark. An independent test set which consists of 

another 5000 points is used to evaluate the prediction performance of fitted models. After 
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sampling and testing, the interpretation is performed based on the fitted MART model with all 

the 3000 sampled points.  

According to our experiments on 12 SPEC CPU2000 and 4 SPLASH2 benchmarks, by 

sampling 3000 points drawn from a microarchitecture design space with nearly 15 million 

configurations for each SPEC program and a CMP design space with nearly 9.7 million points 

for each SPLASH2 workload, we can summarize the following result: 

1.4. Performance Prediction 

Application-specific models predict performance, based on 5000 independently sampled design 

points, with median percentage error ranges from 0.32% to 3.01% for our single-core processor 

performance prediction in a design space with about 15 million points and 0.50% to 1.47% for 

the CMP performance prediction in a design space with about 9.7 million points.     

1.5. Worst-Case Performance  

For the single-core processor performance prediction, the worst percentage errors are within 7% 

for 10 out of the 12 benchmarks; the largest worst-case percentage error is 22.56% for art. In the 

CMP performance study, the worst percentage errors are within 16.1% for all the 4 benchmarks. 

1.6. Relative Performance 

Compared to a classical linear regression model with a random sampling scheme, our method 

typically reduces 88% and 98% average percentage error for the single-core and CMP study 

respectively. Our method also has 8% and 37% less average percentage error in the single-core 

and CMP study separately than multiple additive regression trees with a random sampling 

scheme. 

1.7. Model Interpretation  

The model can be used to explain variable importance and partial dependence to each variable. 
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For the two selected benchmarks, we find that “Width/ALU” and “L2Size” are key factors to 

bzip2 while “LSQ” is important to MCF. Tuning these factors helps to improve processor 

performance to these programs. The partial dependence plots clearly illustrate processor design 

trends and bottlenecks for the processor.     

The remainder of this thesis is organized as follows. Chapter 2 describes the related work. 

Chapter 3 introduces the MART-aided methodology. Chapter 4 describes the experimental setup, 

while experiment results are presented in Chapter 5. The model interpretation tools and model 

discussion are demonstrated in Chapter 6. Chapter 7 concludes this thesis. 
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2. Related Work 

As we know, the transistor budget has been increasing exponentially after  advancements in  

circuit design technology. Over the past decades, architects are concentrating more on building 

detailed simulation environments to evaluate their new designs. Such detailed simulation results 

are more accurate and reliable but also for certain far-reaching new ideas, building a simulation 

environment is more complex and time consuming.  Design space exploration and performance 

prediction have been emerging as  hot problems recently. Researchers explore various 

performance predictive modeling techniques to reduce the painstakingly slow simulation times 

and resource constraints. These models can predict the expected behavior of future systems 

before they are developed and such analysis could reduce the burden of building unnecessary 

wasteful systems. Martonosi and Skadron et al [19] pointed out that research in multiprocessor 

(MP) systems are affected by the difficulty in building complex simulation environments. The 

number of MP system research papers which appeared in ISCA (International Symposium of 

Computer Architecture) was 50% during 1985 and was reduced to 10% in 2001.  Their NSF 

workshop conclusion includes developing scientific methods for abstracting evaluations to 

explore large design spaces accurately and efficiently. They recommended developing more 

abstract modeling techniques that includes analytical, statistical and neural network models that 

provide deeper insight into system behavior. Kumar et al [14] found out that the design decisions 

without the interaction of interconnections were more likely wrong when the interconnect 

interactions were considered. So sensitivity studies of larger design space are essential for 

making optimal conclusions.  

2.1 Design Space Exploration 

Li et al. [17] explored the multi-dimensional design space across a range of possible chip sizes 
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and thermal constraints for both CPU-bound and memory-bound workloads. They showed the 

inter-related nature of parameters such as core count, pipeline depth, super scalar width, L2 

cache size, operating voltage and frequency. The methodology used by Li et al. [18] was, 

decoupling core and interconnect or cache simulation to reduce simulation time. They used 

single core L2 cache-access traces along with the zauber; a cache simulator they developed to 

model the interaction of multiple threads on one or more shared interconnects. 

Xi et al. [29] explored  3D design spaces.  Interconnects have become a major challenge 

in the achievement of good performance with given power budgets for the microprocessors. The 

authors considered  3D architectures as an attractive solution for this problem; they also focused 

on building CAD tools and architectural techniques to explore the design space of 3D. 

2.2 Analytical, Neural Networks and Statistical Models 

Karkhanis et al. [12] proposed an analytical performance model for superscalar processors. They 

used trace-derived data dependence information, data and instruction cache miss rate and branch 

miss prediction rates as inputs to the model and estimated the performance of a superscalar 

processor. The error rates are with 5.8 % of detailed simulation on average and 13 % in the worst 

case. Building analytical models required the collection of micro-architectural statistics.  These 

techniques are useful exclusively to evaluate the performance of closely related designs points 

not for the entire design space.    

Ipek et al. [9]attacked the design space exploration problem with a neural network based 

predictive modeling technique. They predicted the performance of memory subsystems, 

processors and chip multiprocessors. The authors used intelligent machine learning methods to 

sample a small number of design points from the larger design space to train the artificial neural 

networks (ANNs) model and continued training their model with sample points until the 
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prediction error estimates dropped sufficiently low. They predicted the entire design space with 

(98-99 % for uniprocessed studies and 95-96% for CMP study) by training their model with only 

1-2 % of the entire design space. 

Lee et al. [15] proposed regression models to efficiently predict the performance and 

power. They considered prediction based on both linear and nonlinear regression models as well 

as model inference such as significance testing for each design parameter and assessing goodness 

of fit. They also used regression models in Pareto frontier analysis, pipeline depth analysis and 

multiprocessor heterogeneity study [16].  They randomly sampled 4000 design points  from the 

entire design space of 22 billion points and their application specific model predicted 

performance with median error as low as 4.1 percent. 50 to 90 % prediction achieved error rates 

of less than 10 percent depending on the applications. Their regional model predicted power with 

median error rates as low as 4.3 percent and 90 percent of prediction achieved error rate of less 

than 10 percent. 

Joseph et al. [10] developed linear regression models that characterized the interaction 

between processor performance and microarchitectural parameters. They built the models by 

using Akaike's Information Criteria (AIC) directed iterative processes by which significance of 

the parameters to the CPI performance were ordered. They further approached this problem with 

nonlinear regression models using the functional approximation capabilities of radial basic 

function networks (RBF). They used Latin hypercube sampling to select design points for 

training their model. They obtained a prediction error rate of 2.8% [11]. 

Yi et al. [30] used Plackett and Baurman design to determine the most important 

parameter and used this design to reduce the simulation time. 

Phansalkar et al. [21] approached this problem by exploring program similarity. They 
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used principal components analysis (multivariate statistical data analysis technique) for workload 

composition and benchmark sub-setting. They demonstrated that a subset of 8 programs can be 

effectively representing the entire SPEC CPU 2000 suite. Ould-Ahmed-Vall et al. [20] used a 

model tree to analyze the performance of a subset of SPEC2006 running on an Intel Core 2 Duo 

processor.  

Li, Peng and Ramadass[17] approached the microarchitecture design space exploration 

and performance prediction problem using MART Model. These measurements are parallel to 

my work done upon which the thesis is based. 

Compared with the analytical model, classical linear regression model, ANNs and RBF-

networks, our proposed method has the following features: 1) this method is particularly well 

suited for the discrete (either ordinal or nominal variables) design space parameters; 2) MART 

achieves extremely accurate prediction which is supported by both lots of empirical evidence and  

theoretical proofs; 3) this method is highly robust to the tuning parameter values (needs minimal 

knowledge to tune the model); and 4) it also comes with model interpretation tools such as the 

measure of variable importance and the partial dependence plot, which provide computer 

architects a quantitative view for design alternatives and may shed light on the underlying 

mechanism. 
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3. Methodology and Background 

We propose to use the nonparametric tree-based predictive modeling method combined with 

advanced sampling techniques from statistics and machine learning to explore the 

microarchitectural design space efficiently. The fitted model based on hundreds of regression 

trees can be summarized, interpreted and visualized similarly to conventional regression models. 

3.1 Maximin Distance Design 

In experiment design, the distance-based space-filling sampling methods are popular, especially, 

when we believe that interesting features of the true model are just as likely to be in one part of 

the experimental region as another. Among them, the maximin distance design is commonly 

used. The maximin distance criterion chooses a subset of design points (from the entire design 

space) in which the smallest pairwise distance is maximized.  

In our study, some architectural design parameters are nominal with no intrinsic 

ordering structure and the others are discrete with a small number of values (see Table 

1). Hence, we define the following distance measure used in our study. Let 
jwt  be the 

weight for the jth design parameter. The distance between design points x1 and x2 are 

defined as 

( ) ( )[ ]∑
=

≠×=
p

j

jjj xxIwtd
1

2121 , xx                     (2.1) 

where ( )parameterdesign  for  levels ofnumber log 2
th

j jwt = and ( )AI  is an indicator function, equal to 

one when A holds, otherwise zero. Note that the weight for each design parameter is 

equal to its information entropy with uniform probability for each of its possible values. 
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3.2 Regression Model with MART 

       3.2.1 Regression Tree 

 

 

                                                           Fig.1. Regression Tree 

The regression tree has been used as a tool for exploring multivariate data sets for some time. As 

in multiple linear regression, the technique is applied to a data set consisting of a continuous 

response variable y and a set of predictor variables {x1, x2,..., xk}. However, instead of 

modeling y as a linear function of the predictors, as shown in Fig.1, regression tree models y as a 

series of ‘if-then-else rules based on values of the predictors. 
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3.2.2 MART (Multiple Additive Regression Tree) 

MART is one of several techniques that aim to improve the performance of a single model by 

fitting many models and combining them for prediction. Fig.2, shows an illustration of MART in 

Regression. MART consists of two parts: classification and regression trees (CART [1]) and 

boosting technique. 

CART analysis consists of two basic steps. The first step consists of tree building, during 

which a tree is built using recursive binary splitting. The term “binary” implies that we first split 

the space into two regions, and model the response by a constant for each region. Then we 

choose a variable and split-point to achieve the best fit again on one or both of these regions.  

 

Fig.2. Illustration of MART in Regression 

Thus, each node can be split into two child nodes, in which case the original node is called a 
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parent node. The term “recursive” refers to the fact that the binary partitioning process can be 

applied over and over again until some stopping criterion is reached. Each resulting node is 

assigned a value, which is based on the distribution of the observations in the training set that fall 

in that node. The second step consists of tree “pruning'', which results in the creation of a 

sequence of simpler trees, through  cutting off the weakest links. 

Tree-based methods are popular because they represent information in a way that is intuitive 

and easy to visualize, and have several other advantageous properties. First, a tree is inherently 

nonparametric and can handle mixed-type of input variables naturally, i.e. no assumptions are 

made regarding the underlying distribution of the values for the input variables, e.g. numerical 

data that are highly skewed or multi-modal, as well as categorical predictors with either ordinal 

or non-ordinal structure. This eliminates researchers’ time which would otherwise be spent in 

determining whether variables are normally distributed, and making transformations if they are 

not. Second, a tree is adept at capturing non-additive behavior, i.e. complex interactions among 

predictors are routinely and automatically handled with relatively few inputs required from the 

analyst. This is in marked contrast to some other multivariate nonlinear modeling methods, in 

which extensive input from the analyst, analysis of interim results, and subsequent modification 

of the method are required. Third, a tree is insensitive to outliers, and unaffected by monotone 

transformations and differing scales of measurement among inputs. Despite these benefits, a tree 

is not usually as accurate as its competitors, and small changes in training data can result in very 

different series of splits [8].   

Boosting is a general method for improving model accuracy of any given learning algorithm, 

based on the idea that it is easier to find an average of many rough rules of thumb than to find a 

single highly accurate prediction rule[25]. The idea of boosting has its roots in PAC (Probably 
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Approximately Correct) learning[28]. Kearns and Valiant [13] proved the fact that “weak” 

learners, each performing only slightly better than a random decision, can be combined to form a 

“powerful” learner. In boosting, models (e.g. trees) are fitted iteratively to the training data, using 

appropriate methods to gradually increase emphasis on observations modeled poorly by the 

collection of trees. Boosting algorithms vary in how they quantify lack of fit and select settings 

for the next iteration.  

In MART, boosting is a form of “functional gradient descent”. MART approximates the 

underlying function F(x) by an additive expansion 

( ) ( )∑
=

=
M

m

mm xbxf
1

;ˆ γβ                   (2.2) 

where the expansion coefficients { }Mm 1β  and the tree parameters { }Mm 1
γ are jointly fitted into the 

training data. The model is fitted in a forward “stagewise” (not “stepwise”) fashion, meaning that 

existing trees are left unchanged as the model is enlarged. In MART, one starts with an initial 

guess ( )x0f̂  and then for each iteration Mm ,,1 ⋅⋅⋅= : 

1) Compute the negative gradient { }n
iig 1=  as the working                            

( )
( ) ( ) ( )ii xx

i

i

x

x
ff

i
i

f

yL
g ˆ|

,
=∂

∂
= ,             (2.3) 

where ( )fyL ˆ,  is some loss function we expect to minimize.            
 
2) Fit a regression tree ( )γ;xb  and a gradient descent step size β that minimizes  

( ) ( )( )∑
=

− +
n

i

iimi bfyL
1

1 ;ˆ, γβ xx .           (2.4) 

3) Update the estimate of F(x) as  

( ) ( ) ( )γβ ;ˆˆ
1 xxx bff mm += − .            (2.5) 

  

From a user’s perspective, MART, as applied in this paper, has the following features. 



14 
 

First, the model fitting process is stochastic – i.e. it includes a random or probabilistic 

component. The stochasticity improves predictive performance, reducing the variance of the final 

model, by only using a random subset of data to fit each new tree [7]. This means that, unless a 

random seed is set initially, final models will subtly differ each time they are run. Second, the 

gradient descent step determines the contribution of each tree to the growing model. Studies in 

[6] show that using small values of gradient descent step size always lead to better prediction 

performance. Hence, we fix β at 0.01 in this study. Third, the tree complexity controls whether 

interactions are fitted: a tree with depth of one (“stump” with only two terminal nodes) fits an 

additive model without including any interaction. In this study, we set the maximum depth for 

trees at three, which fits a model with up to three-way interactions. Finally, the choice of M, i.e., 

when to stop the boosting algorithm, is based on monitoring the estimation performance on out-

of-bag samples, the set of observations not selected (from the training data) to fit trees within 

each iteration. 

In this paper, MART is run by using the gbm, an R implementation of the MART package 

produced by Greg Ridgeway [22]. 

3.3 Adaptive Sampling 

Adaptive sampling, also known as active learning in machine learning literature, involves 

sequential sampling schemes that use information gleaned from previous observations to guide 

the sampling process. Several empirical and theoretical studies have shown that adaptively 

selecting samples in order to learn a target function can outperform conventional sampling 

schemes. For example, Freund et al. [5], Saar-Tsechansky and Provost [23] and Sung and P. 

Niyogi [27] all employed this method. 

In this paper, we select the 500 subsequent samples in the following four steps:  
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1) Apply MART on the sampled points 20 times with different random seeds.  

2) For each of the MART-fitted model, predict the unsampled points in the design space.  

3) Sort these points (in a decreasing order) according to the coefficient of variance (CoV, the 

ratio of standard deviation to mean) for the model prediction.   

4)Set an initial distance threshold θ. First, include the least confident point (one with the largest 

CoV value). Then, include the next least confident points if its distance to the first point is above 

θ. After that, we include the least confident points if its distances to the first two points are above 

θ. Repeat the procedure. If all 500 points have been selected, increase the value of distance 

threshold θ slightly and restart the selection procedure until we reach the maximum threshold 

that allows us to select all 500 points. 

The intuition of selecting the subsequent samples as above is based on the bias-variance 

decomposition. Note that the decomposition is originally proposed for the squared loss, but can 

be generalized to other losses such as zero-one losses for classification [3]. In practice, since the 

bias is unknown before measuring, we can only measure the variance of predictions. However, 

there are two concerns. First, we often care more about the relative scale than the absolute loss in 

practice. This makes us to sort the design points based on their CoV rather than the variances. 

Second, if we select the points strictly according to their CoV, the selected ones are often 

clustered. In other words, they tend to be close to each other in the design space. In order to 

achieve  global accuracy, we try to select sampling points as separated as possible, although the 

ones with large CoV should have higher preference to be selected.   

3.4 Stopping Criterion 

The procedure is stopped based on either the time/cost constraint or the performance measure. 

The former depends on investigators’ time and cost budget, while for the latter, we can monitor 
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the procedure based on a cross-validation measure or prediction performance on an independent 

test set. Namely, if the prediction accuracy is above a pre-specified level and/or the improvement 

of prediction accuracy is below a pre-specified level, the procedure will be stopped. Since we 

consider the stopping issue is more on the user-end, in this study, we fix the total number of 

points we need to sample throughout the paper.  

3.5 Interpreting the Model 

Even producing a model with hundreds to thousands of trees, MART does not have to be treated 

like a black box. A MART model can be summarized, interpreted and visualized similarly to 

conventional regression models. This involves identifying those parameters that are most 

influential in contributing to its variation and visualizing the nature of dependence of the fitted 

model on these important parameters. 

The relative variable importance measures are based on the number of times a variable is 

selected for splitting, weighted by the squared improvement to the model as a result of each split, 

and averaged over all trees. The relative influence is scaled so that the sum adds to 100, with 

higher numbers indicating stronger influence on the response.  

Visualization of fitted functions in a MART model is easily achieved using a partial 

dependence function, which shows the effect of a subset of variables on the response after 

accounting for the average effects of all other variables in the model. Given any subset 
sx
 of the 

input variables indexed by { }p,,1 ⋅⋅⋅⊂s . The partial dependence of ( )xf  is          

( ) ( )[ ]xx
sxs fEF s \

=               (2.6) 

where [ ].
\ sxE  means the expectation over the joint distribution of all the input variables with 

index not in s .  

      In practice, partial dependence can be estimated from the training data by 
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, where { }ni 1\sx  are the data values of sx \ .  
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4. Experimental Setup 

We have two sets of experiments: single core processor simulation and CMP simulation. For 

single core simulation, we modified the sim-outorder, the out-of-order pipelined simulator in 

Simplescalar [2], to be an eight-stage Alpha-21264 like pipeline. Only twelve (eight integer and 

four floating point) CPU and memory intensive programs from SPEC2000 were selected due to 

limited simulation time and resource. They are art, bzip2, crafty, equake, fma3d, gcc, mcf, parser, 

swim, twolf, vortex and vpr. We skipped a number of instructions for each SPEC program based 

on a previous work[24]. Then we collected the number of execution cycles for the next 100 

million instructions. Since we use generic simulators and benchmarks, we believe that the 

validated model can be applied to other simulators and workloads. Table 1(a) lists 13 groups of 

design parameter choices for an OoO executed pipelined processor. The cross-product of these 

choices is about 15 million design points per benchmark, representing an intractably large space 

to fully simulate. 

For CMP simulation, we employed SESC [26] which has detailed out-of-order processor 

simulation for each core and memory subsystem. We downloaded pre-compiled binaries of four 

SPLASH2 applications from [26]. They are barnes, fmm, radiosity and raytrace. During 

execution of these programs, the number of slave threads was set the same as the number of 

cores. We collected execution cycles for 100 million instructions. For results of multiple cores, 

we took the average number of execution cycles as CMP’s execution cycles. Table 1(b) lists 14 

groups of design parameter choices for a CMP. For each program, the design space size is about 

9.7 millions. Fig. 3 shows a scheme plot of our sampling, modeling and interpretation procedure. 

For each workload, 500 initial design points were sampled based on the maximin distance 

criterion described in Chapter 3.1. Then another 500 points were sampled according to the  
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adaptive sampling scheme described in Chapter 3.3 

 

Table 1 
(a) Single Core Processor Simulation Parameters 

 

Parameters Values 

Fetch/Issue/Commit Width  2 / 4 / 8 instructions 

Branch Predictor:  

  Bimod predictor   

   or 

  2-level predictor 

<L1>/<L2>/<History size> 

Bimod predictor – 4096 entries or 8192 entries 

2-level predictor:  

1/4096/10, 1/8192/10, 

2/4096/10, 2/8192/10, 

4/4096/10, 4/8192/10 

Branch Target Buffer <Number of sets>/<Assoc> 1024 / 4, 2048 / 2, 

1024 / 8, 2048 / 4 

Integer/Floating ALUs  1/1, 2/1-related to issue width 2  

2/1, 2/2-related to issue width 4  

2/2, 4/4-related to issue width 8 

Register Update Units  64 / 128 / 256 entries 

Load Store Queue  16 / 32 / 64 entries 

L1 Inst. Cache Size  8K, 16K, 32K, 64KB 

L1 Data Cache Size  8K, 16K, 32K, 64KB 

L2 Unified Cache Size  256K, 512K, 1024K, 2048KB 

Memory Latency  100, 140, 180, 220, 260 cycles 

L1 I/D and L2 Block Size 32B, 64B, 128B 

L1 I/D Cache Associativity  1, 2, 4 

L2 Cache Associativity  4, 8, 16 

 
 

(B) CMP Simulation Parameters* 

Parameters Values 

Core Configuration In order, Out of order  

Issue Width 1,2,4 

Number of Cores 1,2,4,8 

Off Chip Bandwidth 4,8,16,24,32 bytes/cycles 

Memory Latency (cycles) 200,250,300,350,400,450,500 

L2 Cache Size  1, 2, 4, 8 MB 

L2 Cache Block Size 32, 64,128 B 

L2 Cache Associativity 1,2,4,8,16 way  

L2 Cache Hit Latency      7,9,11,13 cycles  

L2 Replacement Policy LRU, Random 

L1 I/D Cache Size   32 KB, 64 KB  

L1 I/D Cache Block Size 32, 64B 

L1 I/D Cache Associativity 1,2,4 

Branch Predictor Hybrid , 2level 

*L2 cache is shared and L1 I/D cache are private to each core. 
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We repeated the sampling process until 3000 design points were sampled for each 

benchmark. Notice that for the 3000 points, we only explored approximately 0.02% of the total 

15 million points in the design space for the single-core study and about 0.03% of the 9.7 million 

points. An independent test set consisting of another 5000 points was used to evaluate the 

prediction performance of fitted models. The interpretation was based on the fitted MART model 

with all the 3000 sampled points.  

 
 

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Overview of the Proposed MART Model 
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5. Prediction Performance Evaluation 

Table 2 shows the average and maximum percentage error (PE) 

( ) %100 Actual Actual  -  Predicted  ×=PE        (4.1) 

of our method on an independent test set with 5000 design points. We see that the average PE  

 

decreases as the training set sizes increase (via adaptive sampling). In the single-core study, by 

sampling only 0.02% of sample points from the design space, the mean average PE’s are within 

1% for 9 out of 12 benchmarks. For art, which achieves least accuracy, the mean average PE is 

4.18%. Similarly, in the CMP study, by sampling only 0.03% of sample points from the design 

 

Table 2 
 Summary of relative prediction performance with specified error and sample size 

 

 

Benchmark 

Single-Core Study 

0.0067% Sample (1000 pts.) 0.013% Sample (2000 pts.) 0.02% Sample (3000 pts.) 

Mean PE Max PE Mean PE Max PE Mean PE Max PE 

art 6.30 42.79 4.63 24.95 4.18 22.56 

bzip2 0.73 4.50 0.46 3.16 0.41 3.33 

crafty 1.62 13.11 1.02 7.17 0.87 5.53 

equake 2.65 18.69 2.26 15.77 2.13 15.04 

fma3d 0.91 5.43 0.70 3.36 0.62 2.96 

gcc 0.74 4.04 0.49 3.02 0.43 2.26 

mcf 0.67 4.99 0.50 4.22 0.46 4.24 

parser 0.83 4.90 0.52 3.65 0.42 2.30 

swim 1.44 9.59 0.90 5.94 0.66 4.63 

twolf 1.83 10.36 1.38 7.53 1.23 6.31 

vortex 1.36 13.07 0.93 7.11 0.80 6.88 

vpr 0.98 6.93 0.62 4.53 0.53 4.32 

 

Benchmark 

CMP Study 

0.01% Sample (1000 pts.) 0.02% Sample (2000 pts.) 0.03% Sample (3000 pts.) 

Mean PE  Max PE  Mean PE Max PE  Mean PE  Max PE  

barnes 2.53 17.26 2.05 13.43 1.90 13.91 

fmm 2.17 15.71 1.72 11.78 1.45 10.15 

raytrace 1.12 21.90 0.83 17.36 0.75 16.02 
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space, the mean average PE’s are all within 2% for the four multithreaded benchmarks.  

Lee and Brooks [15] proposed a regression modeling method for performance prediction. In 

their paper, they used the similar design space as ours. Their mean percentage error was 4.9%. 

Đpek et al. [9] proposed a neural network based active learning method to explore the design 

space. 

Although their design spaces are quite different from ours, they reported 4-5% error on 

average on the CMP study based on training the model on a 1.03% sample drawn from the 

design space (about 2500 sampled design points). Hence, we conclude that our method has a 

highly compatible mean PE compared to those two methods.  

One advantage for the tree-based methods is that they are highly stable and robust to the 

outliers (or extreme values). A common way to evaluate the robustness of a method is to check 

the worst-case performance. Table 2 also shows the maximum percentage errors among the 5000 

testing points. By exploring 0.02% of the design space in the single-core study, the maximum PE 

is less than 10% in 10 out of 12 benchmarks. Even in the least accurate benchmark, art, the 

maximum PE is 22.55%. In the CMP study, the maximum PE is within 20% for the 4 

benchmarks. As comparison, the maximum PE, in Lee and Brooks[15], is 20.298%. In the CMP 

study from Đpek et al. [9], their maximum PE ranges from about 34% to 53%. Therefore, our 

method has a comparable maximum PE to Lee and Brooks’ work and a highly compatible worst-

case performance to Đpek et al.’s approach. This shows strong robustness of our models.  

Fig. 4 shows the average PE’s (black line) with different number of sampled points in the single-

core study. The x-axis represents the portion of full parameter space simulated to form the 

training sets, and the y-axis stands for the average percentage error rate across the independent  

test set. The gray lines represent the mean plus/minus one standard deviation of PE’s. We see  
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 the average percentage error rate decreases monotonically as the training set size increases (via 

adaptive sampling). 

Fig. 5 depicts the empirical CDF plots of percentage errors (on test set) with about 0.02% 

sampled points in the single-core study. The x-axis shows the PE, and the y-axis shows the 

percentage of data points that achieve error less than each x value. We see that for 9 out of 12  

benchmarks, more than 90% of the points are predicted with less than 2% error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Prediction accuracy of the models on the design space  
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The three with largest percentage errors are art, equake and twolf. For these three workloads, 

more than 90% of the points are predicted with less than 10%, 5% and 3% error respectively. 

Figure 6 and 7 illustrate the average PE’s (with standard deviations) across different number of 

sampled points and CDF plots in the CMP study.  

Note that for all the four benchmarks, 90% of the points are predicted with less than 4.2% error.  

The reasons that our method achieves high prediction accuracy are twofolds: (1) the superior 

prediction performance inherited from MART; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Empirical CDF of prediction errors (single-core study) 
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 (2) and the proposed adaptive sampling scheme. To illustrate the robustness of our model, we 

compare the predictive ability of our method with another two regression models, differing in 

specification and data used to perform the fit. The two models are listed as follows. 

1) R+M: Fitting MART on the randomly selected sample points.  

2) R+L: Fitting traditional linear regression model with all possible two-way interactions on 

randomly selected sample points. 

Table 3 lists the relative percentage errors in R+L and R+M against our proposed method. The 

numbers in Table 3 are the ratios of the average and maximum PE (based on the test set) from the 

specified model and the proposed method.  

Note that in Table 3, the larger the numbers, the more improvements from using our proposed 

method. If the ratio is equal to one, it means that the averages PEs are the same. From Table 3, 

we have the following two conclusions: (1) The ratios for R+L are larger than those for R+M in 

both studies, which means using MART substantially improves the prediction performance under  

the random sampling scheme. This is due to the fact that MART is adept at capturing nonlinear 

 

 

 

 

 

Fig. 6. Prediction accuracy of the models on the design space (adaptive sampling in the CMP study) 

 

 

 
 
 
 
 

 
Fig. 7. Empirical CDF of prediction errors for the CMP performance study 
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and non-additive behavior, e.g. nonlinear dependence and interactions among independent 

variables are routinely and automatically handled. (2) The ratios of relative prediction 

performance for R+M are greater than 1 in most of cases of the single-core study and all the 

cases in the CMP study. The benefit of using the adaptive sampling scheme is obvious, especially 

in the CMP study. For example, with 0.03% of the sampled points, using the proposed adaptive 

Table 3 
 Summary of relative predictive accuracy (against A+M) with specified sample size 

 

 

Benchmark 

Single-Core Study 

0.013% Sample (2000 pts.) 0.02% Sample (3000 pts.) 

R+L  R+M  R+L  R+M  

Mean PE Max PE Mean PE Max PE Mean PE Max PE Mean PE Max PE 

art 4.05 3.76 1.12 1.09 4.44 3.89 1.00 1.04 

bzip2 7.40 4.13 1.21 1.31 8.27 4.02 1.11 1.01 

crafty 7.62 6.02 1.11 1.41 8.64 7.41 1.10 1.50 

equake 2.74 2.50 1.04 1.00 2.81 2.54 1.04 0.94 

fma3d 3.25 3.79 1.07 1.22 3.56 4.32 1.04 1.14 

gcc 9.63 7.25 1.07 1.52 10.89 9.47 1.10 1.59 

mcf 10.90 4.99 1.06 1.15 11.84 4.58 1.10 1.05 

parser 7.83 4.06 1.06 0.90 9.45 6.33 1.08 1.19 

swim 14.76 8.99 1.06 0.87 20.11 10.67 1.04 0.78 

twolf 3.55 4.26 1.05 1.20 3.90 4.93 1.04 1.44 

vortex 3.87 2.87 1.11 1.67 4.38 2.77 1.11 1.40 

vpr 13.25 6.89 1.14 1.03 15.26 7.45 1.18 1.02 

 

Benchmark 

CMP Study 

0.02% Sample (2000 pts.) 0.03% Sample (3000 pts.) 

R+L  R+M  R+L  R+M  

Mean PE Max PE Mean PE Max PE Mean PE Max PE Mean PE Max PE 

barnes 25.68 15.20 1.38 1.89 27.55 12.67 1.37 1.95 

fmm 48.50 27.79 1.66 2.19 57.86 31.26 1.83 2.24 

raytrace 65.58 10.18 1.64 1.15 72.29 10.12 1.69 1.09 

radiosity 65.57 24.39 1.42 1.98 70.36 23.62 1.50 2.01 

 
Table 4: Summary of Bootstrap interval for mean and median PE 

Benchmark Mean PE 95% BI on Mean PE Median PE 95% BI on Median PE 

art 4.18 (4.05,4.31) 3.01 (2.90, 3.11) 

equake 2.13 (2.08, 2.19) 1.62 (1.57, 1.67) 

barnes 1.90 (1.85, 1.94) 1.47 (1.42, 1.51) 
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sampling scheme reduces more than 37% of the average PE for all of the four benchmarks and 

more than 95% worst-case PE for three out of the four benchmarks. Multithreaded programs 

running on CMPs generates high variability that can be easier caught by our adaptive sampling 

method compared to random sampling approach. The comparisons illustrate the robustness of 

our proposed method. 
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6. Model Discussion, Interpretation and Visualization 

6.1 Model Discussion 

6.1.1 Statistical Justification of Test Set Size  

 

In this study, we evaluated the prediction performance based on 5000 independently and 

randomly selected test samples. Compared with the overall design space, it is still a small set. A 

natural question is: whether the test sample size is large enough to have an accurate evaluation of 

the prediction performance. Hence, we applied a bootstrapping technique to justify our choice of 

test sample size. Bootstrapping developed by Efron [4] is a general tool of estimating statistical 

properties of an estimator (e.g. the 95 percent confidence interval for the median and mean 

percentage errors). By using bootstrapping, we can estimate the confidence interval for the mean 

and median PE based on 5000 test samples. Note that the confidence interval based on 

bootstrapping does not assume any distribution assumption on the population (e.g. normal 

distribution assumption on PE’s). However, bootstrapping procedure needs resampling the 

samples (in this case, they are the 5000 test samples) with replacement a large number of times 

(say 1000 times). We can check whether the test sample size is large enough based on the width 

of the bootstrap interval. Namely, if the width of the bootstrap interval (BI) is small, it indicates 

the test sample size is large enough and the mean and median PE based on this test samples have 

small sampling variation. Table 4 shows the 95 percent bootstrap interval based on 1000 

bootstrapped samples for the mean and median PE in three benchmarks, which have the highest 

mean PE in single-core and CMP studies. We see that both upper and lower confidence limits for 

the 95% bootstrapped intervals are very close to their corresponding point estimates. For 

example, the mean PE for art is 4.18 which is very close to its upper and lower limits for the 

95% bootstrap interval on mean PE. This indicates that the test sample size is large enough to 

have an accurate estimate of prediction performance in the study. 
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6.1.2 Sensitivity Study of Sampling Set Size 

Like other regression methods, MART typically predicts better when trained on more data. On 

the other hand, data collection in architecture design space exploration is expensive, and a 

tradeoff exists between number of simulations and model accuracy. As we mentioned in Chapter 

3.4, determination of the training sample size is an end-user issue. Namely, the stopping criterion 

is based on either the investigator’s time and cost budget or convergence of prediction 

performance. Fig. 8 shows two typical curves of the percent of improvement in the single-core 

and CMP studies, which is defined as the proportion of improvement for each additional batch 

over the total improvement (in terms of the mean PE in the test set) in six batches. For example, 

suppose the mean PE based on the first 500 points (first batch) is 0.11. The mean PE based on 

the first 1000 points (two batches) is 0.06. The mean PE based on the total 3000 points (six 

batches) is 0.01. Then the total improvement is 0.11-0.01=0.1. The improvement based on the 

second batch is 0.06-0.01=0.05. Hence, the proportion of improvement for the second batch is 

then (0.05/0.1)×100%=50%. Based on Fig. 8, we see that the percent of improvement after the  

fourth batch (2000 design points) is relatively small comparing to the first three batches in both 

single-core and CMPs studies. Hence, the results suggest the reasonable number of training 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Sensitivity of Training Set Size 
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samples to be 2000 for a large simulation study.    

6.2 Variable Importance 

The proposed method can easily be used to analyze the importance of individual design 

parameters. This illustrates an inside view and provide computer architects with efficient 

directions of improving processor performance. We select two workloads bzip2 and mcf in the 

single-core study as an example. Fig. 9 shows the relative variable influence, scaled to have a 

sum added to 100. For bzip2 shown in the left figure, the most important variables are 

“Width/ALU” and “L2Size” while “LSQ” is the most important factors for mcf. From these 

figures, we can see that CPU intensive programs such as bzip2 are very sensitive to the 

instruction issue width and integer/floating point units as well as L2 cache size. Increasing these 

parameters provides an efficient way to improve processor performance. Mcf presents another 

sensitivity preference on LSQ size. This is reasonable because mcf has a considerable percentage 

of L2 cache misses due to its intensive pointer chasing. These outstanding load instructions tend 

to exhaust LSQ entries. The right part of Fig. 9 indicates that tuning LSQ entries will obtain 

greater performance benefits than other design parameters. Similarly, the variable importance 

method can also apply to multi-core processors. We found that the number of cores is the most 

 

 

 

 

 

 

Fig .9 Variable Importance of bzip2 and mcf 
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important parameters with an importance factor over 90 in average. This indicates that thread-

level parallelism is the key factor for CMPs performance.     

6.3 Partial Dependence Plot 

Another advantage of the proposed model is that visualization and interpretation of fitted 

functions in a MART model can be achieved through partial dependence plots even though 

functions fitted by the MART models can be highly variable in shape and are frequently non-

linear. The partial dependence plots can provide computer architects with visible interactions 

between different design parameters and performance trends and bottlenecks. From the plots, 

they can select configurations with optimized performance given a cost budget. As an example, 

we illustrate the two-dimensional partial dependence plot of the execution cycle of mcf to the 

two most important variables in Fig. 10. From this figure, we can see that a processor with a 

large LSQ size and cache block size tends to have high performance (the white region marked by 

“H”). On the other hand, the bottom left region marked by “L” indicates low performance 

configurations with a large execution cycle suffering from the small sizes of the LSQ and cache 

blocks. Moreover, we can see the tradeoffs between the design alternatives from this figure. For 

example, to reach a performance design goal which demands about 6.5e+08 for the execution 

cycle of mcf, one can design a processor with the following alternatives for the LSQ and the 

cache block size: 

(1) the LSQ size equals to 26 and the cache block size is larger than 88 (part A of the line marked 

with “6.5e+08”); 

(2) the LSQ size ranges from 26 to 46 and the cache block size equals to 88 (part B of the line); 

(3) the LSQ size equals to 46 but the cache block size ranges from 32 to 88 (part C of the line). 

With the help of this tool, computer architects can make judicious choices with other constraints 
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from power, cost and complexity. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. The two-dimensional partial dependence plot of the execution cycle of mcf to the 

most important variables: “LSQ Size” and “Cache Block Size”. 
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7. Conclusion 

In this thesis, we proposed a MART model that exploits micro-architectural design space and 

predicts performance of a single-core processor and a CMP. This model samples up to 0.02% of 

the full design space for a single-core processor with about 15 million points but achieves a very 

high accuracy. The median percentage error rate, based on an independent 5000 test points, 

ranges from 0.32% to 3.12% in 12 SPEC CPU2000 benchmarks. For a CMP design space with 

about 9.7 million points, the median percentage error is limited to a range from 0.50% to 1.89%. 

These results show that our model has highly compatible prediction performance to recently 

proposed regression and neural network models. The comparison of worst case prediction also 

shows that our model has stronger robustness. In addition, our model reflects performance trends 

and bottlenecks by showing the importance and partial dependence of processor design 

parameters.  
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