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Memory represents a major bottleneck in modern embedded systems in terms of cost, power, and
performance. Traditionally, memory organizations for programmable embedded systems assume
a fixed cache hierarchy. With the widening processor–memory gap, more aggressive memory tech-
nologies and organizations have appeared, allowing customization of a heterogeneous memory ar-
chitecture tuned for specific target applications. However, such a processor–memory coexploration
approach critically needs the ability to explicitly capture heterogeneous memory architectures.
We present in this paper a language-based approach to explicitly capture the memory subsys-
tem configuration, generate a memory-aware software toolkit, and perform coexploration of the
processor–memory architectures. We present a set of experiments using our memory-aware archi-
tectural description language (ADL) to drive the exploration of the memory subsystem for the TI
C6211 processor architecture, demonstrating cost, performance, and energy trade-offs.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Modeling
of Computer Architecture; C.0 [Computer Systems Organization]: General—Systems Specifica-
tion Methodology; C.3 [Computer Systems Organization]: Special-Purpose and Application-
based Systems—Real-time and Embedded Systems; C.4 [Computer Systems Organization]:
Performance of Systems—Modeling Techniques

General Terms: Design, Experimentation, Languages

Additional Key Words and Phrases: Processor–memory codesign, memory exploration, architecture
description language, design space exploration

1. INTRODUCTION

Memory represents a major cost, power, and performance bottleneck for a large
class of embedded systems. Thus, system designers pay great attention to the
design and tuning of the memory architecture early in the design process. How-
ever, not many system-level tools exist to help the system designers evaluate the
effects of novel memory architectures, and facilitate simultaneous exploration
of the processor and memory subsystem.

While a traditional memory architecture for programmable systems was or-
ganized as a cache hierarchy, the widening processor/memory performance gap
[SIA 1998] requires more aggressive use of memory configurations, customized
for the specific target applications. To address this problem, recent advances
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in memory technology have generated a plethora of new and efficient memory
modules (e.g., SDRAM, DDRAM, and RAMBUS), exhibiting a heterogeneous
set of features (e.g., page-mode, burst-mode and pipelined accesses).

On the other hand, many embedded applications exhibit varied memory ac-
cess patterns that naturally map into a range of heterogeneous memory con-
figurations (containing for instance multiple cache hierarchies, stream buffers,
on-chip and off-chip direct-mapped memories). In the design of traditional pro-
grammable systems, the processor architect typically assumed a fixed cache
hierarchy, and spent significant amount of time optimizing the processor archi-
tecture; thus the memory architecture is implicitly fixed and optimized sepa-
rately from the processor architecture.

Due to the heterogeneity in recent memory organizations and modules, there
is a critical need to address the memory-related optimizations simultaneously
with the processor architecture and the target application. Through coexplo-
ration of the processor and the memory architecture, it is possible to exploit
the heterogeneity in the memory subsystem organizations, and trade-off sys-
tem attributes such as cost, performance, and power. However, such processor–
memory coexploration framework requires the capability to explicitly capture,
exploit, and refine both the processor as well as the memory architecture.

The contribution of this paper is the explicit description of a customized,
heterogeneous memory architecture in our EXPRESSION ADL [Halambi et al.
1999], permitting coexploration of the processor and the memory architec-
ture. By viewing the memory subsystem as a “first class object,” we gener-
ate a memory-aware software toolkit (compiler and simulator), and allow for
memory-aware design space exploration (DSE).

The rest of the paper is organized as follows. Section 2 presents related work
addressing architecture description language (ADL)-driven DSE approaches.
Section 3 outlines our approach and the overall flow of our environment.
Section 4 presents a simple example to illustrate how a compiler can exploit
memory subsystem description. Section 5 presents the memory subsystem
description in EXPRESSION, followed by a contemporary example architec-
ture in Section 6. Section 7 presents memory architecture exploration exper-
iments using the TIC6211 processor, with varying memory configurations to
explore design points for cost, energy and performance. Section 8 concludes the
paper.

2. RELATED WORK

We discuss related research in two categories. First, we survey recent ap-
proaches on ADL driven DSE, and second, we discuss previous works on em-
bedded system exploration.

An extensive body of recent research addresses ADL driven software toolkit
generation and DSE for processor-based embedded systems, in both academia:
ISDL [Hadjiyiannis et al. 1997], Valen-C [Inoue et al. 1998], MIMOLA [Leupers
and Marwedel 1997], LISA [Zivojnovic et al. 1996], nML [Freericks 1993], Sim-
nML [Rajesh and Moona 1999]; and industry: ARC [ARC], Axys [Axys], RADL
[Siska 1998], Target [Target], Tensilica [Tensilica], MDES [Trimaran 1997].
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Table I. Specification Changes for Architectural Modifications

Number of Lines Modified Number of Sections Modified
Architectural Modifications EXPRESSION MDES EXPRESSION MDES

Add a connection 2 5 2 4
Add a bus & two connections 6 17 2 7
Split a register-file 3 18 2 7

While these approaches explicitly capture the processor features to varying
degrees (e.g., instruction set, structure, pipelining, resources), to our knowledge,
no previous approach has explicit mechanisms for specification of a customized
memory architecture that describes the specific types of memory modules (e.g.,
caches and stream/prefetch buffers), their complex memory features (e.g., page-
mode and burst-mode accesses), their detailed timings, resource utilization,
and the overall organization of the memory architecture (e.g., multiple cache
hierarchies, partitioned memory spaces, and direct-mapped memories).

EXPRESSION is well suited as a language for rapid design space explo-
ration. It allows easy and natural way of specifying architectures. The amount
of modification needed in the specification is minimal. For example, the be-
havior of each instruction in LISA [Zivojnovic et al. 1996] is described using
pipeline structure explicitly. Therefore, a slight change in the pipeline structure
would require modification of all the instruction behaviors. In EXPRESSION
the instruction set description is not affected by the modification of the pipeline
structure. Table I shows the amount of modification needed in EXPRESSION
and MDES [Trimaran 1997] language to perform three architectural changes.
The first column lists the architectural modifications performed. The second
and third columns show the number of lines to be modified for the architec-
tural change in EXPRESSION and MDES, respectively. Finally, the fourth and
fifth columns presents the number of sections to be modified for the change in
EXPRESSION and MDES, respectively.

Memory exploration for embedded systems has been addressed by Panda
et al. [1997]. The metric used for the system are data cache size and number
of processor cycles. The method has been extended by Shiue and Chakrabarti
[1999] to include energy consumption as one of the metric. Catthoor et al. [1998]
have presented a methodology for memory hierarchy and data reuse decision
exploration. Grun et al. proposed techniques for early memory [Grun et al.
2001] and connectivity [Grun et al. 2002] architecture exploration.

The work by Slock et al. [1997] presents a memory exploration technique
based on the data layout and flow graph analysis of the applications. Their work
tries to minimize the required memory bandwidth by optimizing the access
conflict graph for groups of scalars within a given cycle budget. The work by
Lee et al. [1998] presents a framework for exploring programmable processors
for a set of applications. They used IMPACT tool suit [Chang et al. 1991] to
collect run-times of the benchmarks on different processor configurations by
varying processor features. They performed K-selection algorithm to select a
set of machine configurations based on area and performance constraints.

A system-level performance analysis and DSE methodology (SPADE) is pro-
posed by Lieverse et al. [1999]. In this methodology, the application tuning
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Fig. 1. Processor–memory coexploration framework.

is driven manually by the designer. Several DSE approaches use heuristics to
prune the potentially large design space. Givargis et al. [2001] used a clustering-
based technique for system-level exploration in which independent parameters
are grouped into different clusters. An exhaustive search is performed only on
elements within a cluster (i.e., on dependent parameters) thereby reducing the
search space. Ascia et al. [2001] proposed a technique to map the exploration
problem to a genetic algorithm. Fornaciari et al. [2001] use a sensitivity-based
technique in which the sensitivity of each parameter over the design objective
is determined using experiments. The exploration is performed on each param-
eter independently in the order determined by the sensitivities.

These approaches assumed a relatively fixed memory structure. The mem-
ory modules considered are traditional cache hierarchies and SRAMs. Also,
the compiler is not aware of the memory subsystem. Our framework allows
exploration of generic memory configurations consisting of varied connectivity
and modules. The memory subsystem exploration is performed along with any
processor architecture driven by an ADL. Designers specify the processor and
memory subsystem configuration in an ADL as an input to our automatic explo-
ration framework. Any of the exploration algorithms and pruning techniques
proposed in the abovementioned approaches can be used to generate the ADL
description during design space exploration.

3. OUR APPROACH

Figure 1 shows our processor–memory coexploration framework. In our IP
library-based DSE scenario, the designer starts by selecting a set of compo-
nents from a processor IP library and memory IP library. The EXPRESSION
[Halambi et al. 1999] ADL description (containing a mix of such IP components
and custom blocks) is then used to generate the information necessary to target
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both the compiler and the simulator to the specific processor–memory system
[Mishra et al. 2001].

Our previous work on reservation table [Grun et al. 1999] and operation tim-
ing generation [Grun et al. 2000a] algorithms can exploit this detailed timing
information to hide the latency of the lengthy memory operations. Section 4
shows an example of performance improvement due to this detailed memory
subsystem timing information [Grun et al. 2000a]. Such aggressive optimiza-
tions in the presence of efficient memory access modes (e.g., page/burst modes)
and cache hierarchies [Grun et al. 2000b] are only possible due to the explicit
representation of the detailed memory architecture. We generate memory sim-
ulator (shown shaded in Figure 1) that is integrated into the SIMPRESS [Khare
et al. 1999] simulator, allowing for detailed feedback on the memory subsystem
architecture and its match to the target applications.

4. MOTIVATING EXAMPLE

A typical access mode for contemporary DRAMs (e.g., SDRAM) is burst-mode
access, that is not fully exploited by traditional compilers. This example shows
the performance improvement made possible by compiler exploitation of such
access modes through a more accurate memory timing model.

The sample memory library module used here is the IBM synchronous DRAM
[IBM0316409C ]. This memory contains two banks, organized as arrays of 2048
rows × 1024 columns, and supports normal, page-mode, and burst-mode ac-
cesses. A normal read access starts by a row decode (activate) stage, where
the entire selected row is copied into the row buffer. During column decode,
the column address is used to select a particular element from the row buffer
and output it. The normal read operation ends with a precharge (or deactivate)
stage, wherein the data lines are restored to their original values. For page-
mode reads, if the next access is to the same row, the row decode stage can be
omitted, and the element can be fetched directly from the row buffer, leading
to a significant performance gain. Before accessing another row, the current
row needs to be precharged. During a burst-mode read, starting from an initial
address input, a number of words equal to the burst length are clocked out on
consecutive cycles without having to send the addresses at each cycle.

Another architectural feature that leads to higher bandwidth in this DRAM
is the presence of two banks. While one bank is bursting out data, the other
can perform a row decode or precharge. Thus, by alternating between the two
banks, the row decode and precharge times can be hidden. Traditionally, the
architecture would rely on the memory controller to exploit the page/burst ac-
cess modes, while the compiler would not use the detailed timing model. In our
approach, we incorporate accurate timing information into the compiler, which
allows the compiler to exploit such parallelism globally, and better hide the
latencies of the memory operations.

A sample code shown in Figure 2(a) is used to demonstrate the performance
of the system in three cases: (I) without efficient access modes, (II) optimized
for burst-mode accesses, but without an accurate timing model, and (III) opti-
mized for burst-mode accesses with an accurate timing model. The primitive
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Fig. 2. A motivating example.

access mode operations for a synchronous DRAM are shown in Figure 2(b): the
unshaded node represents the row decode operation (taking 2 cycles), the solid
node represents the column decode (taking 1 cycle), and the shaded node repre-
sents the precharge operation (taking 2 cycles). Figure 2(c) shows the schedule
for the unoptimized version, where all reads are normal memory accesses (com-
posed of a row decode, column decode, and precharge). The dynamic cycle count
for this case is 9 × (5 × 4) = 180 cycles.

In order to increase the data locality and allow burst-mode access to read
consecutive data locations, an optimizing compiler would unroll the loop three
times. Figure 2(d) shows the unrolled code. Figure 2(e) shows the static and the
dynamic (run-time) schedule of the code1 for a schedule with no accurate timing.
Traditionally, the memory controller would handle all the special access modes
implicitly, and the compiler would schedule the code optimistically, assuming
that each memory access takes 1 cycle (the length of a page-mode access). Dur-
ing a memory access that takes longer than expected, the memory controller
has to freeze the pipeline, to avoid data hazards. Thus, even though the static
schedule seems faster, the dynamic cyclecount in this case is 3×28 = 84 cycles.

1In Figure 2(c) the static schedule and the run-time behavior were the same. They are different in
this case due to the stalls inserted by the memory controller.
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Figure 2(f) shows the effect of scheduling using accurate memory timing on
code that has already been optimized for burst mode. As the memory controller
does not need to insert stalls anymore, the dynamic schedule is the same as the
static one. Since accurate timing is available, the scheduler can hide the latency
of the precharge and row decode stages, by precharging the two banks at the
same time, or executing row decode while the other bank bursts out data. The
dynamic cycle count here is 3×20 = 60 cycles, resulting in a 40% improvement
over the best schedule a traditional optimizing compiler would generate.

Thus, by providing the compiler with more detailed information, the efficient
memory access modes can be better exploited. The more accurate timing model
creates a significant performance improvement, in addition to the page/burst-
mode optimizations. The optimizing compilers have traditionally been designed
to exploit special architectural features of the processor (e.g., detailed pipeline
information). Traditionally, the memory features (e.g., DRAM access modes)
were transparent to the processor, and were exploited implicitly by the memory
controller. However, the memory controller only has access to local information,
and is unable to perform more global optimizations (such as global code reorder-
ing to better exploit special memory access modes). By providing the compiler
with a more accurate timing model for the specific memory access modes, it
can perform global optimizations to generate a better performance. The com-
piler can combine the timing model of the memory modules with the processor
pipeline timings to generate accurate operating timings. The exact operation
timings are used to better schedule the application, and hide the latency of the
memory operations [Grun et al. 2000a].

5. THE MEMORY SUBSYSTEM DESCRIPTION IN EXPRESSION

In order to explicitly describe the memory architecture in EXPRESSION, we
need to capture both structure and behavior of the memory subsystem. The
memory structure refers to the organization of the memory subsystem contain-
ing memory modules and the connectivity among them. The behavior refers to
the memory subsystem instruction set.

The memory subsystem instruction set represents the possible operations
that can occur in the memory subsystem, such as data transfers between dif-
ferent memory modules or to the processor (e.g., load and store), control in-
structions for the different memory components (such as the DMA), or explicit
cache control instructions (e.g., cache freeze, prefetch, replace, and refill).

The memory subsystem structure represents the abstract memory modules
(such as caches, stream buffers, RAM modules), their connectivity, and char-
acteristics (e.g., cache properties). The memory subsystem structure is repre-
sented as a netlist of memory components connected through ports and con-
nections. The memory components are described and attributed with their
characteristics (such as cache line size, replacement policy, write policy).

Table II shows the primitives used in the memory subsystem description.
The first column represents the name of the parameter, the second column
represents the possible values for that parameter, and the third column provides
a brief description of the parameter.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.



Processor-Memory Coexploration • 147

Table II. Memory Subsystem Primitives

Parameter Values Description
STORAGE SECTION Start of memory description

SRAM, DRAM, REGFILE,
CONNECTIVITY,

TYPE DCACHE, WRITE BUFFER, Type of the component
VICTIM BUFFER, ICACHE,

STREAM BUFFER
SIZE positive integer Number of storage locations

WIDTH positive integer Num of bits in each storage
ADDRESS RANGE two positive integers Range of addresses

WORDSIZE positive integer Number of bits in a word
LINESIZE positive integer Num of words in a cache line

NUM LINES positive integer Number of lines in a cache
ASSOCIATIVITY positive integer Associativity of the cache

REPLACEMENT POLICY LRU, FIFO Cache replacement policy
WRITE POLICY WRITE BACK, Write policy for the cache

WRITE THROUGH
ENDIAN LITTLE, BIG Endianness

READ LATENCY positive integer Time for reading
WRITE LATENCY positive integer Time for writing

NUM BANKS positive integer Number of banks in the module
ACCESS MODE PAGE, BURST, NORMAL Access modes supported

NUM PARALLEL READ positive integer Num of parallel reads per cycle
NUM PARALLEL WRITE positive integer Num of parallel writes per cycle
READ WRITE CONFLICT boolean true means bank R/W conflict

PIPELINE pipeline stages describes the pipeline paths
ACCESS MODES page, burst, pipelined, and so on memory access modes

Fig. 3. A simple memory subsystem.

The pipeline stages and parallelism for each memory module, its connections,
and ports, as well as the latches between the pipeline stages are described
explicitly, to allow modeling of resource and timing conflicts in the pipeline. The
semantics of each component is represented in C, as part of a parameterizable
components library. We are able to describe the memory subsystem for wide
variety of architectures, including RISC, DSP, VLIW, and Superscalar.

The memory subsystem is described within STORAGE SECTION of the EX-
PRESSION description. The following sample STORAGE SECTION describes
the memory subsystem shown in Figure 3.
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(STORAGE_SECTION

(DataL1

(TYPE DCACHE)

(WORDSIZE 64)

(LINESIZE 8)

(NUM_LINES 1024)

(ASSOCIATIVITY 2)

(REPLACEMENT_POLICY LRU)

(WRITE_POLICY WRITE_BACK)

(READ_LATENCY 1)

.............

)

(ScratchPad

(TYPE SRAM) (ADDRESS_RANGE 0 4095)

...........

)

(SB

(TYPE STREAM_BUFFER) ....

)

(InstL1

(TYPE ICACHE) ...........

)

(L2

(TYPE DCACHE) ...........

)

(MainMemeory

(TYPE DRAM) .............

)

(Connect

(TYPE CONNECTIVITY)

(CONNECTIONS

(InstL1, L2) (DataL1, SB) (SB, L2) (L2, MainMemory)

)

)

)

It has separate instruction and data caches (InstL1, DataL1). It has a unified
L2 cache. To get the advantage of the streaming nature of the data it uses a
stream buffer (SB). It also uses a small (4K) SRAM as a scratch pad data mem-
ory. Each of the memory modules have different parameter values. Connections
between memory modules can be described structurally as a netlist in terms of
ports and connections or behaviorally as shown in the example below in terms
of list of storage connections.

Section 6 describes how to describe TI C6211 memory subsystem using the
primitives described in this section. Further details on the memory subsystem
description in EXPRESSION can be found in Mishra et al. [2000].

6. EXAMPLE MEMORY ARCHITECTURE

We illustrate our memory-aware ADL using the Texas Instruments TIC6211
VLIW DSP [Texas Instruments 1998] processor that has several novel memory
features. Figure 4 shows the example architecture, containing an off-chip
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Fig. 4. Sample memory architecture for TIC6211.

DRAM, an on-chip SRAM, and two levels of caches (L1 and L2), attached to
the memory controller of the TIC6211 processor. For illustration purposes, we
present only the D1 ld/st functional unit of the TIC6211 processor, and we
omitted the external memory interface unit from the Figure 4. TI C6211 is an
eight-way VLIW DSP processor with a deep pipeline, composed of four fetch
stages (PG, PS, PW, PR), two decode stages (DP, DC), followed by eight func-
tional units. The D1 load/store functional unit pipeline is composed of D1 E1,
D1 E2, and the two memory controller stages: MemCtrl E1 and MemCtrl E2.

The L1 cache is a two-way set-associative cache, with a size of 64 lines, a
line size of four words, and word size of 4 bytes. The replacement policy is least
recently used (LRU), and the write policy is write-back. The cache is composed
of a TAG BLOCK, a DATA BLOCK, and the cache controller, pipelined in two
stages (L1 S1, L1 S2). The cache characteristics are described as part of the
STORAGE SECTION in EXPRESSION:

(L1_CACHE

(TYPE DCACHE)

(NUM_LINES 64)

(LINESIZE 4)

(WORDSIZE 4)

(ASSOCIATIVITY 2)

(REPLACEMENT_POLICY LRU)

(WRITE_POLICY WRITE_BACK)

(SUB_UNITS TAG_BLOCK DATA_BLOCK L1_S1 L1_S2)

)
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The memory subsystem instruction set description is represented as part of
the operation section in EXPRESSION [Halambi et al. 1999]:

(OPCODE LDW (OPERANDS (SRC1 reg) (SRC2 reg) (DST reg))

The internal memory subsystem data transfers are represented explicitly
in EXPRESSION as operations. For instance, the L1 cache line fill from L2
triggered on a cache miss is represented through the LDW L1 MISS opera-
tion, with the memory subsystem source and destination operands described
explicitly:

(OPCODE LDW_L1_MISS

(OPERANDS (SRC1 reg) (SRC2 reg) (DST reg) (MEM_SRC1 L1_CACHE)

(MEM_SRC2 L2_CACHE) (MEM_DST1 L1_CACHE)

)

)

This explicit representation of the internal memory subsystem data trans-
fers (traditionally not present in ADLs) allows the designer to reason about
the memory subsystem configuration. Furthermore, it allows the compiler to
exploit the organization of the memory subsystem, and the simulator to provide
detailed feedback on the internal memory subsystem traffic. We do not modify
the processor instruction set, rather represent operations explicitly that are
implicit in the processor and memory subsystem behavior.

The pipelining and parallelism between the cache operations are described
in EXPRESSION through pipeline paths [Halambi et al. 1999]. Pipeline paths
represent the ordering between pipeline stages in the architecture (represented
as bold arrows in Figure 4). For instance, a load operation to a DRAM address
traverses first the four fetch stages (PG, PS, PW, PR) of the processor, followed
by the two decode stages (DP, DC), and then it is directed to the load/store
unit D1. Here it traverses the D1 E1 and D1 E2 stages, and is directed by the
MemCtrl E1 stage to the L1 cache, where it traverses the L1 S1 stage. If the
access is a hit, it is then directed to the L1 S2 stage, and the data is sent back
to the MemCtrl E1 and MemCtrl E2 (to keep the figure simple, we omitted
the reverse arrows bringing the data back to the CPU). Thus the pipeline path
traversed by the example load operation is:

(PIPELINE PG, PS, PW, PR, DP, DC, D1_E1, D1_E2, MemCtrl_E1,

L1_S1, L1_S2, MemCtrl_E1, MemCtrl_E2

)

Even though the pipeline path is flattened in this example, the pipeline paths
in EXPRESSION are described in a hierarchical manner. In case of a L1 miss,
the data request is redirected from L1 S1 to the L2 cache controller, as shown
by the pipeline path (the bold arrow) to L2 in Figure 4.

The L2 cache is four-way set associative, with a size of 1024 lines, and line
size of eight words. The L2 cache controller is nonpipelined, with a latency of
six cycles:
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(L2_CTRL (LATENCY 6))

During the third cycle of the L2 cache controller, if a miss is detected, it
is sent to the off-chip DRAM. The DRAM module is composed of the DRAM
data block and the DRAM controller, and supports normal, page-mode and
burst-mode accesses. A normal access starts with a row decode, where the row
part of the address is used to select a particular row from the data array, and
copy the corresponding data into the row buffer. During the column decode,
the column part of the address is used to select a particular element from
the row buffer and output it. During the precharge, the bank is deactivated.
In a page-mode access, if the next access is to the same row, the data can be
fetched directly form the row buffer, omitting the column decode and precharge
operations. During a burst access, consecutive elements from the row buffer are
clocked out on consecutive cycles. Both page-mode and burst-mode accesses,
when exploited judiciously generate substantial performance improvements
[Grun et al. 2000a]. The timings of each such access mode is represented using
the pipeline paths and LATENCY constructs. For instance, the normal read
access (NR), composed of a column decode, a row decode and a precharge, is
represented by the pipeline path:

(PIPELINE ROW_DEC COL_DEC PRECHARGE)

...

(ROW_DEC (LATENCY 6))

(COL_DEC (LATENCY 1))

(PRECHAREGE (LATENCY 6))

where the latency of the row decode (ROW DEC) is six cycles, column decode
(COL DEC) is one cycle, and of the precharge (PRECHARGE) is six cycles.

In this manner EXPRESSION can model a variety of memory modules and
their characteristics. A unique feature of EXPRESSION is the ability to model
the parallelism and pipelining available in the memory modules. This allows
the compiler to generate timing and resource information to allow aggressive
scheduling to hide the latency of the lengthy memory operations. The EXPRES-
SION description can be used to drive the generation of both a memory-aware
compiler [Grun et al. 2000a], and cycle-accurate structural memory subsystem
simulator, and thus enable coexploration of processor and memory architecture.
For more details on the memory subsystem description in EXPRESSION and
automatic software toolkit generation refer to Mishra et al. [2000].

7. EXPERIMENTS

As described earlier, we have already used this memory-aware ADL to generate
a compiler [Grun et al. 2000a] and manage the memory miss traffic [Grun et al.
2000b], resulting in significantly improved performance. We performed com-
parative studies with the MULTI integrated development environment (IDE)
version 3.5 from Green Hills Software Inc. [2003] for the MIPS R4000 processor.
We obtained the evaluation copy of the software.
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Table III. Comparison Between EXPRESSION and MULTI IDE

Code Size (Bytes) Cycle Count
Benchmarks EXPRESSION MULTI IDE EXPRESSION MULTI IDE

Compress 284 252 9,218 8,233
GSR 468 524 14,098 14,580

Laplace 476 876 11,562 12,430
Linear 332 488 7,962 7,273

Lowpass 504 400 10,922 10,170
SOR 656 576 12,300 14,524

Wavelet 300 92 7,609 6,805

Table IV. Benchmarks

Benchmark Description
Compress Image compression scheme
GSR Red-black Gauss-Seidel relaxation method
Hydro Hydro fragment
DiffPred Difference predictors
FirstSum First sum
FirstDiff First difference
PartPush 2-D PIC (Particle In Cell)
1DPartPush 1-D PIC (Particle In Cell)
CondCompute Implicit, conditional computation
Hydrodynamics 2-D explicit hydrodynamics fragment
GLRE General linear recurrence equations
ICCG ICCG excerpt (Incomplete Cholesky Conjugate Gradient)
MatMult Matrix multiplication
Planc Planckian distribution
2DHydro 2-D implicit hydrodynamics fragment
FirstMin Find location of first minimum in array
InnerProd Inner product
LinearEqn Banded linear equations
TriDiag Tri-diagonal elimination, below diagonal
Recurrence General linear recurrence equations
StateExcerpt Equation of state fragment
Integrate ADI integration
IntPred Integrate predictors
Laplace Laplace algorithm to perform edge enhancement
Linear Implements a general linear recurrence solver
Wavelet Debaucles 4-Coefficient Wavelet filter

Table III presents the code size and simulation cycle count for the multi-
media benchmarks. The description of the benchmarks are given in Table IV.
We enabled all the performance optimization switches in our compiler. We en-
abled the optimize for speed switch in MULTI IDE compiler. Both simulators
are cycle-accurate model of the MIPS 4000 processor. The first column lists
the benchmarks. The second and third columns present the code size gener-
ated by the EXPRESSION and MULTI IDE compiler respectively. The last two
columns present the cycle count generated by the EXPRESSION and MULTI
IDE (MIPSsim) simulators respectively. Our software toolkit has comparable
performance with MULTI IDE compiler and simulator.

In this section we demonstrate use of the memory subsystem specification
to describe different memory configurations and perform DSE with the goal of
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evaluating the configurations for cost, power, and performance. We describe the
experimental setup, followed by the estimation models used in our framework
for performance, area, and energy computations. Finally, we present the results.

7.1 Experimental Setup

We performed a set of experiments starting from the base TI C6211 [Texas
Instruments 1998] processor architecture, and varied the memory subsystem
architecture. We generated a memory-aware software toolkit (compiler and sim-
ulator), and performed DSE of the memory subsystem. The memory organiza-
tion of the TIC6211 is varied by using separate L1 instruction and data caches,
an L2 cache, an off-chip DRAM module, an on-chip SRAM module and a stream
buffer module [Jouppi 1990] with varied connectivity among these modules.

We used benchmarks from the multimedia and DSP domains for our exper-
iments. The list of the benchmarks is shown in Table IV. The benchmarks are
compiled using the EXPRESS compiler. We collected the statistics information
using the SIMPRESS cycle-accurate simulator, which models both the TIC6211
processor and the memory subsystem.

We used a greedy algorithm to modify the ADL description of the memory ar-
chitecture for each exploration run. The compiler and simulator automatically
extract the necessary parameters (e.g., cache parameters, connectivity, and so
on) from the ADL description. Each memory parameter described in ADL is
modified in powers of 2. For each module we used certain heuristics for size
limitations. For example, when certain program or data cache returns 98% hit
ratio for a set of application programs we do not increase its size any more. We
obtain a new memory configuration by adding a new module, or by changing
a parameter of an existing module, or by modifying the connectivity. However,
as we explained earlier, any of the existing exploration algorithms and pruning
techniques can be used to generate the ADL description during DSE.

7.2 Estimation Models

There are different kinds of estimation models available in the literature for
area and energy computations. Each of these models are specific to certain types
of architectures. While any micro-architectural estimation models can be used
in our framework, we use area models from Mulder et al. [1991] and energy
models from Wattch [Brooks et al. 2000]. These models are adapted to enable
estimation of wide variety of memory configurations available in DSP, RISC,
VLIW, and Superscalar architectures. The estimation models for performance,
area, and energy are described below.

7.2.1 Performance Computation. The performance of a particular memory
configuration for a given application program is the number of clock cycles
it takes to execute the application in the cycle-accurate structural simulator
SIMPRESS [Khare et al. 1999]. We divide this cycle count by 2000 to show both
energy and performance plots in the same figure.

7.2.2 Area Computation. We have used the area model of Mulder et al.
[1991] to compute the silicon area occupied by each memory configuration. The
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unit for the area model is a technology independent notion of a register-bit
equivalent or rbe. The advantage of this is the relatively straightforward rela-
tion between area and size, facilitating interpretation of area figures. One rbe
equals the area of a bit storage cell.

We present here the area model for set-associative cache and SRAM that we
have used during area computation of memory configurations. We use the area
model for set-associative cache to compute area for stream buffer as well. The
area model for other memory components can be found in Mulder et al. [1991].
The area equation for a static memory with memory array sizew words each of
lineb bits long is

areasram = 0.6(sizew + 6)(lineb + 6) rbe.

The area for a set-associative cache is a function of the storage capacity sizeb,
the degree of associativity ‘assoc’, the line size lineb, and the size of a transfer-
unit transferb. The area of a set-associative cache using static (areastatic

sac ) and
dynamic cells (areadynamic

sac ) are given below using the number of transfer units
in a line tunits, the total number of address tags ‘tags’, and the total number
of tag and status bits tsbb. Here, γ equals 2 for a write-back cache and 1 for a
write-through cache.

areastatic
sac = 195 + 0.6 × ovhd1 × sizeb + 0.6 × ovhd2 × tsbits rbe

areadynamic
sac = 195 + 0.3 × ovhd3 × sizeb + 0.3 × ovhd4 × tsbits rbe

tunits = lineb

transferb

tags = sizeb

lineb

tsbits = tsbb × tags =
(

1 + γ × tunits + log2
230 × assoc

sizeb

)
× tags

ovhd1 = 1 + 6 × assoc
tags

+ 6
lineb × assoc

ovhd2 = 1 + 12 × assoc
tags

+ 6
tsbb × assoc

ovhd3 = 1 + 6 × assoc
tags

+ 12
lineb × assoc

ovhd4 = 1 + 12 × assoc
tags

+ 12
tsbb × assoc

.

7.2.3 Energy Computation. We use the power models described in Wattch
[Brooks et al. 2000] for computation of energy dissipation in array structures
in memory configurations. We briefly explain the power models proposed in
Wattch. In CMOS-based logic circuits, dynamic power consumption Pd is the
main source of power consumption, and is defined as: Pd = CV 2

ddaf. Here, C is
the load capacitance, Vdd is the supply voltage, and f is the clock frequency.
The activity factor, a, is a fraction between 0 and 1 indicating how often clock
ticks lead to switching activity on average. C is calculated based on the circuit
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and the transistor sizings as described below. Vdd and f depend on the assumed
process technology. The technology parameters for 0.35µ process are used from
Palacharla et al. [1997].

The array structure power model is parameterized based on the number of
rows (entries), columns (width of each entry), and the number of read/write
ports. These parameters affect the size, number of decoders, number of word-
lines, and number of bitlines. In addition, these parameters are used to estimate
the length of the predecode wires as well as the lengths of the wordlines and
bitlines that determine the capacitive loading on the lines.

The capacitances are modeled in Wattch using assumptions that are similar
to those made by Wilton and Jouppi [1994] and Palacharla et al. [1997] in
which the authors performed delay analysis on many units. In both of the above
works, the authors reduced the units into stages and formed RC circuits for each
stage. This allowed them to estimate the delay for each stage, and by summing
these, the delay for the entire unit.

Similar steps are performed for the power analysis in Wattch with two key
differences. First, they are only interested in the capacitance of each stage,
rather than both R and C. Second, in Wattch the power consumption of all
paths are analyzed and summed together. This is in contrast with the delay
analysis approach in Wilton and Jouppi [1994], where the expected critical path
is of interest. The analytical model for the capacitance estimation for wordline
(WL) and bitline (BL) are given below.

WL Capacitance = Cdiff (WLDriver) + Cgate(CellAccess) × NumBitLines
+ Cmetal × WLLength

BL Capacitance = Cdiff (PreCharge) + Cdiff (CellAccess) × NumWLines
+ Cmetal × BLLength.

Figure 5 shows a schematic of the wordlines and bitlines in the array struc-
ture. For more details on computation of power consumption in array structures,
refer to Brooks et al. [2000]

7.3 Results

Some of the configurations we experimented with are presented in Table V.
Each row of the table corresponds to a memory configuration. The second
column presents the area of the memory configurations. The remaining en-
tries in the table represent the size of the memory module (e.g., the size of
L1 in configuration 1 is 256 bytes) and the cache/stream buffer organizations:
num lines× line size×num ways×word size. The LRU cache replacement pol-
icy is used. The latency is defined in number of processor cycles. Note that, for
stream buffer the num ways represents the number of FIFO queues present
in it. The first configuration contains an L1 instruction cache (256 bytes), L1
data cache (256 bytes), and a unified L2 cache (8K bytes). All the configurations
contain the same off-chip DRAM module with a latency of 50 cycles. The cache
sizes are decided based on the application programs. We used benchmarks from
the multimedia and DSP domains for our experiments. These benchmarks are
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Fig. 5. Schematic of wordlines and bitlines in array structures.

Table V. The Memory Subsystem Configurations

Area L1 ICache L1 DCache L2 Cache SRAM Str. Buffer
Cfg (rbe) (latency = 1) (latency = 1) (latency = 5) (lat = 1) (lat = 5)

1 54,567 256 B (8 × 2 × 4 × 4) 256 B (8 × 2 × 4 × 4) 8K (256 × 8 × 1 × 4) – –
2 61,335 256 B (8 × 2 × 4 × 4) 256 B (8 × 2 × 4 × 4) 4K (64 × 2 × 8 × 4) 4K –
3 60,449 256 B (8 × 2 × 2 × 4) 256 B (8 × 2 × 4 × 4) 8K (64 × 4 × 8 × 4) – –
4 66,394 256 B (8 × 2 × 4 × 4) 256 B (8 × 2 × 4 × 4) 8K (64 × 4 × 8 × 4) – 8 × 2 × 8 × 4
5 125,466 256 B (8 × 2 × 4 × 4) 256 B (8 × 2 × 4 × 4) 2K (16 × 4 × 8 × 4) 16K 8 × 2 × 8 × 4
6 51,169 128 B (8 × 2 × 2 × 4) 128 B (8 × 2 × 2 × 4) 8K (256 × 8 × 1 × 4) – –
7 52,868 128 B (8 × 2 × 2 × 4) 256 B (8 × 2 × 4 × 4) 8K (256 × 8 × 1 × 4) – –
8 58,198 128 B (8 × 2 × 2 × 4) 256 B (8 × 4 × 2 × 4) 8K (64 × 4 × 8 × 4) – –
9 52,057 128 B (8 × 2 × 2 × 4) 256 B (16 × 2 × 2 × 4) 8K (256 × 8 × 1 × 4) – –

10 52,868 256 B (8 × 2 × 4 × 4) 128 B (8 × 2 × 2 × 4) 8K (256 × 8 × 1 × 4) – –
11 33,099 256 B (8 × 4 × 2 × 4) 256 B (8 × 4 × 2 × 4) 4K (64 × 4 × 4 × 4) – –
12 31,698 256 B (16 × 2 × 2 × 4) 256 B (16 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) – –
13 33,469 256 B (16 × 2 × 2 × 4) 512 B (32 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) – –
14 53,847 512 B (16 × 4 × 2 × 4) 128 B (8 × 2 × 2 × 4) 8K (256 × 8 × 1 × 4) – –
15 33,488 512 B (16 × 4 × 2 × 4) 256 B (16 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) – –
16 35,259 512 B (16 × 4 × 2 × 4) 512 B (32 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) – –
17 58,100 512 B (8 × 8 × 2 × 4) 512 B (8 × 8 × 2 × 4) 8K (256 × 8 × 1 × 4) – –
18 36,066 512 B (8 × 8 × 2 × 4) 512 B (16 × 4 × 2 × 4) 4K (256 × 4 × 1 × 4) – –
19 59,156 512 B (8 × 4 × 4 × 4) 512 B (8 × 4 × 4 × 4) 8K (256 × 8 × 1 × 4) – –
20 55,182 256 B (16 × 2 × 2 × 4) 256 B (16 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) 4K –
21 53,406 128 B (8 × 2 × 2 × 4) 128 B (8 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) 4K –
22 76,753 128 B (8 × 2 × 2 × 4) 128 B (8 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) 8K –
23 36,227 128 B (8 × 2 × 2 × 4) 256 B (16 × 2 × 2 × 4) 4K (256 × 4 × 1 × 4) – 8 × 8 × 2 × 4
24 33,909 128 B (8 × 2 × 2 × 4) 256 B (16 × 2 × 2 × 4) 8K (256 × 4 × 1 × 4) – 8 × 4 × 2 × 4
25 106,722 128 B (8 × 2 × 2 × 4) 256 B (16 × 2 × 2 × 4) 8K (64 × 8 × 4 × 4) 8K 8 × 8 × 2 × 4
26 106,722 128 B (8 × 2 × 2 × 4) 256 B (16 × 2 × 2 × 4) 8K (64 × 8 × 4 × 4) 8K 8 × 8 × 2 × 4
27 85,146 128 B (8 × 2 × 2 × 4) 512 B (32 × 2 × 2 × 4) 8K (64 × 8 × 4 × 4) 4K 8 × 8 × 2 × 4
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Fig. 6. Memory exploration results for GSR.

small/medium size kernels. Therefore, the cache sizes are smaller than typical
sizes used in processor architectures.

Here we analyze a subset of the experiments we ran with the goal of evaluat-
ing different memory configurations for area, energy, and performance. Figure 6
shows the exploration result for the GSR benchmark. The X-axis represents
the memory configurations in the increasing order of cost in terms of area. The
Y-axis represents values for both performance and energy. The performance
value is normalized by dividing cycle count by 2000. The energy value is given
in µJ. Although the cost for memory configurations 6 and 9 are much lower
than the cost of configuration 5, the former (6 and 9) configurations deliver
better results in terms of energy and performance. Configuration 21 consumes
lower energy and delivers better performance than configuration 6. However,
the former is worse than the latter in terms of area. Depending on the priority
among area, energy and performance, one of the configurations can be selected.

When area consideration is not very important we can view the pareto-
optimal configurations from energy–performance trade-offs. Figure 7 shows
the energy–performance trade-off for Compress benchmark. It is interesting to
note that a set a memory configurations (with varied parameters, modules, and
connectivity) deliver similar performance results for Compress benchmark. As
we can see that there are three distinct performance zones. The first zone has
performance values between 5 and 10. This zone consists of memory configu-
rations 2, 5, 20, 21, 22, 25, 26, and 27. The power values are different due to
the fact that each configuration has different parameters, modules, connectiv-
ity, and area. However, the performance is almost similar since the data fits in
SRAM of size 2K for these configurations. Similarly, the second zone (configu-
rations 1, 6, 7, 9, 10, 14, 17, and 19) has performance values between 15 and
20 with very different power values. The performance is almost same for these
configurations because the L2 cache size of 8K or larger has very high hit ratio
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Fig. 7. Energy–performance trade-off for Compress.

and as a result for all these memory configurations L2 dominates and L2 to
DRAM access remains almost constant.

Similarly, the third zone (configurations 3, 4, 8, 11, 12, 13, 15, 16, 18, 23,
and 24) has almost same performance with different power values. This is due
to the fact that each of these configurations has L2 line size of 4 that domi-
nates over other parameters for these configurations. This line size is the rea-
son why configurations in third zone are worse than the configurations in the
second zone. Depending on the priority among cost, energy, and performance
one of the three configurations (Config 11, 17, 26) can be chosen. The same phe-
nomenon can be observed in the benchmarks FirstSum, FirstDiff, and FirstMin
[Mishra et al. 2002]. The benchmark InnerProd has four such zones whereas
the benchmark Tridiag has five such performance zones [Mishra et al. 2002].
The pareto-optimal configurations are shown using symbol X, and the corre-
sponding memory configuration is mentioned in the figure.

However, for some set of benchmarks the energy–performance trade-off
points are scattered in the design space and thus the pareto-optimal config-
urations are of interest. Figure 8 shows the energy–performance trade-off for
the benchmark MatMult. It has only one pareto-optimal point, that is, config-
uration 5. However, the Laplace benchmark (Figure 9) has two pareto-optimal
points. The configuration 5 delivers better performance than configuration 17
but consumes more energy and has larger area requirement. Depending on the
priority among area, energy, and performance, one of the two configurations
can be selected. The energy–performance trade-off results for the remaining
benchmarks are shown in Mishra et al. [2002].

Thus, using our Memory-Aware ADL-based DSE approach, we obtained de-
sign points with varying cost, energy, and performance. We observed various
trends for different application classes, allowing customization of the memory
architecture tuned to the applications. Note that this cannot be determined
through analysis alone; the customized memory subsystem must be explic-
itly captured, memory-aware compiler and simulator should be automatically
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Fig. 8. Energy–performance trade-off for MatMult.

Fig. 9. Energy–performance trade-off for Laplace.

generated, and the applications have to be executed on the configured
processor–memory system, as we demonstrated in this section.

8. CONCLUSIONS

Memory represents a critical driver in terms of cost, performance, and power for
embedded systems. To address this problem, a large variety of modern memory
technologies, and heterogeneous memory organizations have been proposed.

On one hand, the application is characterized by a variety of access pat-
terns (such as stream, locality-based, and so on). On the other hand, new mem-
ory modules and organizations provide a set of features which exploit specific
application needs (e.g., caches, stream buffers, page-mode, burst-mode, and
DMA). To find the best match between the application characteristics and the
memory organization features, the designer needs to explore different memory
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configurations in combination with different processor architectures, and evalu-
ate each such system for a set of metrics (such as cost, power, and performance).
Performing such processor–memory coexploration requires the capability to
capture the memory subsystem, generate memory aware software toolkit, and
perform a compiler-in-the-loop exploration/evaluation.

In this paper we presented an ADL that captures the memory subsystem
explicitly. The ADL is used to drive the generation of a memory-aware software
toolkit including compiler and simulator, and also facilitate the exploration of
various memory configurations. We obtained design points with varying cost,
energy, and performance attributes using ADL-driven processor–memory coex-
ploration.

Our ongoing work targets the use of this ADL-driven approach for further
memory exploration experiments, using larger applications, to study the im-
pact of different parts of the application (such as loop nests) on the memory
organization behavior and overall performance, as well as on system power.
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