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ABSTRACT

Engblom, J. 2002: Processor Pipelines and Static Worst-Case Execution Time Analy-
sis. Acta Universitatis Upsaliensis. Uppsala dissertations from the Faculty of Science
and Technology 36. 130 pp. Uppsala. ISBN 91-554-5228-0.

Worst-Case Execution Time (WCET) estimates for programs are necessary when
building real-time systems. They are used to ensure timely responses from interrupts,
to guarantee the throughput of cyclic tasks, as input to scheduling and schedule anal-
ysis algorithms, and in many other circumstances. Traditionally, such estimates have
been obtained either by measurements or labor-intensive manual analysis, which is
both time consuming and error-prone. Static worst-case execution time analysis is
a family of techniques that promise to quickly provide safe execution time estimates
for real-time programs, simultaneously increasing system quality and decreasing the
development cost. This thesis presents several contributions to the state-of-the-art in
WCET analysis.

We present an overall architecture for WCET analysis tools that provides a frame-
work for implementing modules. Within the stable interfaces provided, modules can
be independently replaced, making it easy to customize a tool for a particular target
and perform performance-precision trade-offs.

We have developed concrete techniques for analyzing and representing the timing
behavior of programs running on pipelined processors. The representation and anal-
ysis is more powerful than previous approaches in that pipeline timing effects across
more than pairs of instructions can be handled, and in that no assumptions are made
about the program structure. The analysis algorithm relies on a trace-driven processor
simulator instead of a special-purpose processor model. This allows us to use existing
simulators to adapt the analysis to a new target platform, reducing the retargeting
effort.

We have defined a formal mathematical model of processor pipelines, which we
use to investigate the properties of pipelines and WCET analysis. We prove several
interesting properties of processors with in-order issue, such as the freedom from timing
anomalies and the fundamental safety of WCET analysis for certain classes of pipelines.
We have also constructed a number of examples that demonstrate that tight and safe
WCET analysis for pipelined processors might not be as easy as once believed.

Considering the link between the analysis methods and the real world, we discuss
how to build accurate software models of processor hardware, and the conditions under
which accuracy is achievable.
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Martin Carlsson, and Magnus Nilsson. Thanks to them, several interesting
ideas have been explored that we would not have had time for otherwise. Jan
Lindblad at Enea OSE Systems (www.ose.com) and Jörgen Hansson at CC-
Systems (www.cc-systems.se) have been kind enough to help finance some of
the students and have provided industrial input to our research.

Over the years, I have had many interesting discussions with people in in-
dustry and academia (not all on WCET analysis). I cannot list them all, but
some of them are Professor David Whalley at Florida State University, Iain Bate
in York, Professor Sang Lyul Min at Seoul National University, Stefan Petters
in München, Peter Altenbernd at C-Lab in Paderborn, Thomas Lundqvist at
Chalmers, Professor Erik Hagersten here in Uppsala, and Raimund Kirner and
Pavel Atanassov at TU Wien.

Björn Victor helped me set up the LATEXdocuments, and Johan Bengtsson
and I helped each other figure out how to publish our theses and how and where
to print them.

I would also like to thank everyone at IAR in Uppsala and DoCS for all the
fun we have had together!

Anna-Maria Lundins Stipendiefond at Sm̊alands Nation has provided gen-
erous grants of travel money. If you are planning on getting a PhD in Uppsala,
Sm̊alands is the best nation!

The ARTES Network (www.artes.uu.se) has provided travel funding and
some nice summer schools.

Of course, life in Uppsala would have been much less fun without all of my
wonderful friends.

I would also like thank my parents, Lars-Åke and Christina, and my brother
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Chapter 1

Introduction

This thesis is about worst-case execution time (WCET) analysis for embedded
systems, in particular about the effects of processor pipelines on the WCET.
Before I present the concrete contributions of this thesis, I think it is appropriate
to provide some background on real-time systems, embedded systems, processor
pipelines, and other material of relevance. If you think you know the background
already, feel free to skip ahead to Section 1.11 where the contributions are
presented.

1.1 Real-Time Systems

A real-time system is a computer-based system where the timing of a com-
puted result is as important as the actual value. Timing behavior is much less
understood than functional behavior, and one of the most common causes of
unexpected failures.

Real-time does not mean that a value should be produced as quickly as
possible: in most cases, steady and predictable behavior is the desired property.
Consider video and audio playback: the important consideration is the steady
generation of images and synchronized sound, at a pace consistent with the
recording speed of the video and audio. Being too slow is obviously bad, but
being too fast, i.e. playing video faster, is not good either. The key is to be just
right.

A distinction is usually made between soft and hard real-time systems. In
hard real-time systems, the failure to meet a deadline (the time limit allocated
to complete a computation) can be fatal, like braking a car too late or letting a
chemical process run out of control.

In soft real-time systems, on the other hand, an occasional failure to meet a
deadline does not have permanent negative effects. Video playback is a good ex-
ample: skipping the occasional frame is not fatal, and often not even detectable
by the user. In general, for soft real-time systems, the failure to meet deadlines

1



2 Chapter 1. Introduction

means that the quality of the service provided is reduced, but the system still
provides a useful service.

To guarantee the behavior of a hard real-time system, the worst case behav-
ior of the system has to be analyzed and accounted for. If a system has several
concurrent programs running, it has to be shown that all programs can meet
their respective deadlines even in the case that all programs simultaneously per-
form the greatest amount of work. In this thesis, we are mostly dealing with
hard real-time systems, even if the techniques presented can be useful for the
development of soft real-time systems as well.

A good example of a hard real-time system are the devices that protect trans-
formers from damage caused by lightning strikes in powerlines. Such a system
has to detect a lightning strike within a millisecond and take the transformer
offline, or the transformer will catch fire. If it meets its deadline, it succeeds in
its task. If the deadline is not met, something very expensive gets blown up.
Note that no extra value is obtained from being faster then required to meet
the deadline.

Some hard real-time systems has the additional requirement that the vari-
ance (jitter) in the computation should be as small as possible. For example, in
control systems like engine controllers, the results of the computation of control
algorithms should be generated after a fixed time has passed from the measure-
ments used in the computation, as this is necessary to maintain good controller
performance.

1.2 Embedded Systems

An embedded system is a computer that “does not look like a computer”. In-
stead, it is embedded as a component in a product. It is a computer used as
a means to achieve some specific goal, not a goal in itself. Today, embedded
systems are everywhere: about eight billion embedded processors are sold each
year, and they are finding their way into more and more everyday items. In
recent years, 98%-99% of the total number of processors produced have been
used in embedded systems [Hal00b, Had02]1.

For example, a modern car like the Volvo S80 contains more than thirty em-
bedded processors, communicating across several networks [CRTM98, LH02]. A
GSM mobile phone contains at least two processors: a digital signal processor
(DSP) to handle encoding and decoding of speech and data signals and a main
processor to run the menu system, games, and other user-interface functions.
Household items like microwave ovens contain simple processors. Embedded
computers control chemical processes and robots in manufacturing plants. Mod-
ern instable jet fighters like the SAAB JAS 39 Gripen are completely dependent
on their embedded control systems in order not to crash.

1However, desktop processors represent a much larger share of the revenues in the processor
market, since the per-chip costs is on the order of dollars in the embedded field but on the
order of hundreds of dollars in the desktop field.
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Most embedded systems are (hard) real-time systems, since they are part of
devices interacting with and controlling phenomena in the surrounding physical
world. There are non-embedded real-time systems like multimedia players for
PCs (PC-based real-time systems are mostly soft real-time systems), and there
are non-real-time embedded systems like toys, but the embedded hard real-time
systems are far more common. Accordingly, we have focussed on the needs of
the developers of embedded hard real-time systems.

1.3 Execution Time and Real-Time Systems

The timing of a real-time system has to be validated on a system level: only if
each and every component of the system fulfill their timing requirements can
we be sure that the complete system meets its requirements.

For a system involving software programs (as all embedded computer systems
do), we need to determine the timing behavior of the programs running on the
systems. The timing of the programs are then used to determine the behavior of
the complete system (see Section 1.5). Knowing the execution time properties of
your code is one of the most important parts of real-time systems development,
and failing to ascertain the timing is a quick way to system failure [Gan01,
Ste01].

A software program typically does not have a single fixed execution time,
which is unfortunate for the predictability of a system. Variation in the execu-
tion time occurs because a program might perform different amounts of work
each time it is executed, or because the hardware it executes on varies in the
amount of time required to perform the same set of instructions. This variabil-
ity in the execution time of programs has to be analyzed in order to construct
reliable embedded real-time systems.

Note that a program with high execution time variation can still be con-
sidered predictable, if we can model and predict the causes of the variation in
execution time. Typically the control flow of a program can be modeled with rea-
sonable precision, while the hardware can pose a very big problem and give rise
to actual unpredictability (the control flow aspects are discussed in Section 1.9.2
and Section 2.2.2, and the hardware aspects in Chapter 8 and Chapter 10).

The implication is that real-time systems involving embedded computers
have to be analyzed as a combination of software and hardware. Both the
properties of the hardware and of the software have to be accounted for in order
to understand and predict the behavior of the programs running on the system
as well as the complete system. The use of intermediate software like real-time
operating systems can facilitate such analysis, but in the end, the actual software
and hardware being part of a shipping product have to be analyzed as a whole.
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Figure 1.1: Execution time estimates

1.4 Execution Time Estimates

There are a number of different execution time measures that can be used to
describe the timing behavior of a program. The worst-case execution time,
WCET, is the longest execution time of the program that will ever be observed
when the program runs in its production environment. The best-case execution
time, BCET, is the shortest time the program will ever take to execute. The
average execution time is the average, which lies somewhere between the WCET
and the BCET. It is in general very hard to determine the exact actual WCET
(or BCET) of a program, as this depends upon inputs received at run time,
and the average is even more difficult to determine since it depends on the
distribution of the input data and not just the extremes of program behavior.

Figure 1.1 shows how the BCET and WCET relate to the execution time of
a program. The curve shows the probability distribution of the execution time
of a program. There is an upper bound beyond which the probability of the
execution time is zero, the actual WCET, and lower bound, the actual BCET.

Timing analysis aims to produce estimates of the WCET and BCET. A
timing estimate must be safe, which means that WCET estimates must be
greater than, or, in the ideal case, equal to the actual WCET (the righthand
area marked “safe”). Conversely, the BCET estimate has to be less than or
equal to the actual BCET (lefthand “safe” area). Any other WCET or BCET
estimate is unsafe. An underestimated WCET is worse than no WCET estimate
at all, since we will produce a system which rests on a false assumption, and
which we believe is correct, but that can fail.

Note that it is trivial to produce conservative but perfectly useless estimates.
A statement like “the program will terminate within the next 5 billion years” is
certainly true (unless the program contains an infinite loop), but not very useful
(dimensioning for a WCET like this would be a tremendous waste of resources).
To be useful, the estimate must not only be conservative, but also tight, i.e. ,
close to the actual value, as shown by the “tighter” arrows in Figure 1.1.
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1.5 Uses of WCET

The concept of the worst-case execution time for a program has been around in
the real-time community for a long time, especially for doing schedulability anal-
ysis and scheduling [LL73, ABD+95, CRTM98]. Many scheduling algorithms
and all schedulability analysis assume knowledge about the worst-case execution
time of a task. However, WCET estimates have a much broader application do-
main; whenever timeliness is important, WCET analysis is a natural technique
to apply.

For instance, designing and verifying systems where the timing of certain
pieces of code is crucial can be simplified by using WCET analysis instead of
extensive and expensive testing. WCET estimates can be used to verify that
the response time of an interrupt handler is short enough, that a system reacts
quickly enough, or that the sample rate of a control loop or encoder/decoder is
kept under all circumstances.

Tools for modeling and verifying systems modeled as timed automata, like
Uppaal [LPY97], HyTech [HHWT97], and Kronos [BDM+98] can use WCET
estimates to obtain timing values from the real implementation of a system
[BPPS00].

When developing embedded systems using graphical programming tools like
IAR visualSTATE, Telelogic Tau, and I-Logix StateMate, it is very helpful to
get feedback on the timing for model actions and the worst-case time from input
event to output event, as demonstrated by Erpenbach et al. [ESS99]. Kirner
et al. perform WCET analysis for C code generated from Matlab/Simulink
models, and back-annotate the results into the model [KLP01].

WCET analysis can be used to assist in selecting appropriate hardware for a
real-time embedded system. The designers of a system can take the application
code they will use and perform WCET analysis for a range of target systems,
selecting the cheapest (slowest) chip that meets the performance requirements,
or adjust the clock frequency based on the worst-case timing estimate.

The HRT real-time system design methodology defined by British Aerospace
Space Systems makes use of WCET values to form execution time skeletons for
programs, where WCET estimates are given for the code that executes between
accesses to shared objects [HLS00a].

WCET estimates on the basic-block level can be used to enable host-
compiled time-accurate simulation of embedded systems. Programs are com-
piled to run on a PC, with annotations inserted on each basic block to count
time as it would evolve on the target system, allowing the PC to simulate the
timing of the target system [Nil01].

Timing estimates on the basic-block level can also be used to interleave the
code of a background task with the code of a foreground program, maintaining
the timing of the background task without the overheads of an operating system
to switch between the tasks [DS99].

In most real-time systems, best-case execution time (BCET) estimates are
also very interesting, since the variation in execution time between best and
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worst cases is often what causes fatal timing errors in a system (when the pro-
gram suddenly runs much faster or slower than expected from previous obser-
vations) [Gan01]. In many cases, code with constant timing is what is sought,
simply to make the system more predictable [Eyr01]. For tasks with a high
variation in execution time between best, average, and worst, using the WCET
for scheduling will give low resource utilization [Mär01].

For soft real-time applications, average execution time estimates are impor-
tant, since they help estimate the achievable sustained throughput (number of
phone calls a switch can handle, the frames per second achievable in a com-
puter game, etc.). Occasional spikes in execution time are not as critical. But
even for soft real-time systems, WCET analysis can still be used to indicate
potential bottlenecks in programs, even though the WCET estimate as such is
not of much use for system-level analysis. Also, since a missed deadline does
correspond to reduced quality of service, WCET estimates can still be useful to
maximize the quality of service for a specified load.

1.6 Obtaining WCET Estimates

There are two ways to obtain worst-case execution time information for software:
measure it experimentally, or estimate it by static analysis.

The state of the practice in WCET estimation today is measuring the run
time of a program, running it with “really bad” input (or a set of “typical” in-
puts), and keeping track of the worst execution time encountered (“high-water
marking”). Then, some safety margin is added, and hopefully the real worst
case lies inside the resulting estimate. However, there are no guarantees that the
worst case has indeed been found, and measurements can only produce statisti-
cal evidence of the probable WCET and BCET, but never complete certainty.
Note that the case illustrated in Figure 1.1, where the WCET is an outlier value,
is quite common in practice, which makes measuring the WCET riskier [Gan01].

To obtain a safe WCET estimate, we must use mathematically founded
static analysis methods to find and analyze all possible program behaviors. In
static analysis, we do not run the program and measure the resulting execution
time; instead, the code of the program (source code and executable code) is
inspected and its properties determined, and a worst-case execution time esti-
mate is generated from the information. Static analysis allows us to overcome
the measurement difficulties posed by execution time variability, provided that
we manage to model the relevant input data variation and hardware effects, and
use effective analysis methods.

The WCET of a program depends both on the control flow (like loop itera-
tions, decision statements, and function calls), and on the characteristics of the
target hardware architecture (like pipelines and caches). Thus, both the control
flow and the hardware the program runs on must be considered in static WCET
analysis. WCET approaches that work by ascribing a certain execution time
to each type of source code statement will not work when using anything but a
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Figure 1.2: Example scalar pipeline with parallel units

trivial compiler and simple hardware.
It should be noted that static WCET analysis carries the distinct advantage

over measurement techniques that more complex CPU architectures can be ana-
lyzed safely. The greater hardware variability introduced by such architectures
is hard to account for in measurement, while being modeled by necessity in
static WCET analysis. Another advantage is that the target hardware does not
have to be available in order to obtain timing estimates, since static WCET
analysis typically uses a hardware model to perform the analysis and not the
actual hardware.

In principle, static WCET analysis can be carried out by hand, without any
tool support. However, this is only practical for small and simple programs, ex-
ecuted on simple hardware. Thus, automated tools are crucial to make it prac-
tical to apply static WCET analysis. Widespread use of static WCET analysis
tools would offer improvements in product quality and safety for embedded and
real-time systems, and reduce development time since the verification of timing
behaviour is facilitated. This thesis presents some steps towards such a tool,
especially considering the timing effects of processor pipelines.

1.7 Processor Pipelines

The largest part of this thesis is devoted to the problems of analyzing the tim-
ing behavior of processor pipelines. The purpose of employing a pipeline in a
processor is to increase performance by overlapping the execution of successive
instructions. Early computers executed one instruction at a time, reading it
from memory, decoding it, reading the operands from memory or registers, car-
rying out the work prescribed, and finally writing the results back to registers
or memory. In the late 1950’s, it became clear that these phases could be over-
lapped, so that while one instruction was being decoded, the next instruction
could be fetched, etc., and thus the concept of pipelined execution was born.
The concept is similar to that of a assembly line where a car is assembled piece
by piece at several different assembly stations. The first commercial computer
to use a pipeline is considered to be the IBM 7030 “Stretch”, launched in 1959.
It took until the 1980’s and the first wave of RISC processors for pipelines to
be used in microprocessors and personal computers, and until the 1990’s until
they were used in embedded systems. Today, pipelines are almost mandatory
in new CPU designs [HP96].
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A pipeline consists of a number of stages that an instruction goes through in
order to execute. Not all instructions have to go through all stages, and it is quite
common for pipelines to have several parallel paths that instructions can take.
Figure 1.2 shows a processor containing four stages. In the IF stage, instructions
are fetched from memory. Integer and data memory instructions then take the
path through the EX stage, where arithmetic operations are performed, and the
M stage, where data memory is accessed. Floating-point instructions execute in
the F stage, in parallel to the integer and data memory instructions. Only one
instruction can use a pipeline stage at any one time, and execution progresses
by instructions moving forward in the pipeline, entering and leaving successive
stages until they finally leave the pipeline.
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Figure 1.3: Pipelining of instruction execution

Figure 1.3 shows the overlap between instructions achieved in a pipeline,
using pipeline diagrams similar to the reservation tables commonly used to de-
scribe the behavior of pipelined processors [Dav71, Kog81, HP96]. Time runs on
the horizontal, with each tick of time corresponding to a processor clock cycle.
The pipeline stages are shown on the vertical. Instructions progress from upper
left to lower right, and each step of execution is shown as a square.

Figure 1.3(a) shows how three instructions execute in a processor without
pipelining, each finishing its entire execution before the next instruction can
start, with a total execution time of ten cycles. Note that an instruction can
spend more than one cycle in a certain pipeline stage. Figure 1.3(b) shows the
same instructions overlapped by the pipeline, generating a total execution time
of only six cycles. Usually, we deal with blocks of instructions, and Figure 1.3(c)
shows how the instructions in the example are grouped into a block, where we
do not distinguish the individual instructions anymore.

Figure 1.4 shows the style of most illustrations in this thesis: only blocks
of instructions are shown, not the constituent instructions. Each block is given
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Figure 1.4: Pipelining basic blocks
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its own color to distinguish them from each other. Since a block can contain a
single instruction, we often use “instruction” and “block” interchangeably.
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Figure 1.5: Data hazard causing pipeline stall

Notice how the third instruction in Figure 1.3 has to wait before entering
the EX stage because the second instruction needs the EX stage for two cycles,
causing a pipeline stall where the instruction waits in the IF stage without do-
ing any work. Pipeline stalls like this, where an instruction cannot enter its
next stage because another instruction is using that stage, are called structural
hazards. Note that if an instruction is stalled in the IF stage, no following in-
struction can enter the pipeline until the stall has cleared. Stalls can also appear
because an instruction requires some data generated by a previous instruction,
and when, because of the pipelining of execution, the required information is
not yet available when the instruction needs it. This is called a data hazard,
and an example is given in Figure 1.5.

Type # pipelines issue order instr/cycle scheduling

Simple scalar 1 in-order 1 static
Scalar >1 in-order 1 static

Superscalar in-order >1 in-order >1 dynamic
VLIW >1 in-order >1 static

Superscalar out-of-order >1 out-of-order >1 dynamic

Figure 1.6: A simple classification of pipelines

Pipelines come in a wide range of complexities. In general, to reach higher
performance, more complex pipelines are required. Figure 1.6 shows the classi-
fication of pipeline types employed in this thesis, and their defining properties.
In-order issue means that instructions are sent to the pipeline in the order speci-
fied in the program, while out-of-order means that the processor can potentially
change the order of the instructions to make the program execute faster.

1.7.1 Simple Scalar Pipelines

The simplest form of a pipeline is a single pipeline where all instructions execute
in order, as employed on the early SPARC and MIPS processors. An example
of such a pipeline is shown in Figure 1.7. The stages in this pipeline are IF,
where instructions are fetched, ID, for decoding the instructions, RR, where
operands are read from registers, EX, where the results of arithmetic instructions
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Figure 1.7: Example simple scalar pipeline

are generated, MEM, where memory is accessed for data, and WB, where values
computed in EX or read from memory in MEM are written back to registers. All
instructions must progress through all the stages in this pipeline in order to
complete execution.

Current industrial examples of simple scalar pipelines are the ARM7 and
ARM9 cores from ARM [ARM95, ARM00b], the Hitachi SH7700 [Hit95], Infi-
neon C167 [Inf01], ARC cores [ARC], and some embedded MIPS cores [Sny01].
The IBM 7030 also belonged to this family, using a four-stage pipeline [HP96].
Such simple pipelines can reach respectable performance while still being sim-
ple enough to implement in a very small and cheap processor. The number of
pipeline stages vary between three and about ten, with most processors having
between five and seven stages.

1.7.2 Scalar Pipelines

To increase the performance of a processor, execution can be split across multiple
pipelines at some stage in the execution, as illustrated in Figure 1.2. Prior to
the split points, instructions proceed through a common sequence of stages.
For example, beginning in the late 1980’s, many processors added a second
pipeline to support floating point instruction execution in parallel with integer
instructions [Pat01]. A second pipeline can also be used for other purposes than
floating point, as illustrated by the NEC V850E [NEC99] (see Figure 7.1).

Industrial examples of this type of pipeline are the NEC V850E [NEC99],
MIPS R3000 [LBJ+95], and MIPS R4000 [Hei94].

1.7.3 Superscalar In-Order Pipelines

A superscalar CPU allows several instructions to start each clock cycle, to make
more efficient use of multiple execution pipelines. Instructions are grouped for
execution dynamically : it is not possible to determine which instructions will
be issued as a group just by inspecting the program text, since the behavior of
the instruction scheduler must be taken into account. Note that instructions
are still issued in-order, only in groups of (hopefully) several instructions per
cycle.

Figure 1.8 shows a simplified view of the pipeline of a superscalar processor.
The IF stage fetches several instructions per clock cycle from memory, and
the S stage maintains a queue of instructions that are waiting to issue, finding
groups of instructions that can be executed in parallel. Each of the functional
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Figure 1.8: Example in-order superscalar pipeline structure

units IU, BU, and FU are usually multi-stage pipelines in their own right. On
modern processors, total pipeline depth from instruction fetch to completion of
execution can be twenty cycles or more.

This type of pipeline has been used in many early (and current) 64-bit server
processors like the HP-PA 7200 [CHK+96], Alpha 21164 [DEC98], SuperSparc
I [SF99], and UltraSparc 3 [Son97].

1.7.4 VLIW (Very Long Instruction Word)

In a Very Long Instruction Word (VLIW) processor, instructions are statically
grouped for execution at compile time. The processor fetches and executes
very long instruction words containing several operations that the compiler has
determined can be issued independently [SFK97, pp. 93–95]. Each operation
bundle will execute all its operations in parallel, without any interference from a
hardware scheduler. The structure is similar to that of an in-order superscalar,
but without the complexity of the dynamic instruction grouping.

Current examples of this class of processors are mainly DSPs, like the Texas
Instruments TMS320C6xxx, Analog Devices TigerSharc, and Motorola/Lucent
StarCore SC140 [WB98, Hal99, TI00, Eyr01]. On the desktop and server side,
the Intel/HP Itanium is a VLIW processor [Int00b], and the core of the Trans-
meta Crusoe is also a VLIW design [Kla00].

1.7.5 Superscalar Out-of-Order Pipelines

To get the most performance out of multiple pipelines, modern high-end super-
scalar processors allow instructions to execute out-of-order (in an order different
from that of the program text). This allows the processor to use the pipelines
more efficiently, mainly since delays due to data dependences can be hidden by
executing other instructions while the pipeline waits for the instruction provid-
ing the information to finish.

However, out-of-order execution introduces a great deal of complexity into
the pipeline for tracking the instructions that are executing, and determining
which instructions can be executed in parallel. Such processors are optimized
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for providing good average-case performance, but the worst-case behavior can
be very hard to determine and analyze [BE00, Eyr01].

Examples of processors employing out-of-order issue are the Pentium III
and Pentium 4 processors from Intel [Int01a], AMD’s Athlon [AMD00], the
PowerPC G3 and G4 from Motorola and IBM [Mot97], HP’s PA-8000 [Kum97],
and the Alpha 21264 from Compaq [Com99]. The first commercial processor in-
corporating out-of-order dynamic scheduling of instructions was the CDC 6600,
launched in 1964. The technology entered high-end microprocessors in the mid-
1990’s [Pat01].

Note that out-of-order execution is not absolutely necessary for high per-
formance, as proven by the UltraSparc 3 (in January 2002, the 1050 Mhz Ul-
traSparc 3 (Cu) processor had the third highest SPECfp2000 peak score, after
IBM’s 1300 Mhz Power4 and Compaq’s 1000 Mhz Alpha 21264. It was ahead
of the aggressive out-of-order Intel Pentium 4 processor (running at 2000 Mhz)
and AMD’s Athlon XP (at 1600 Mhz)).

1.8 Properties of Embedded Hardware

An embedded system is usually based on a microcontroller, a microprocessor
with a set of peripherals and memory integrated on the processor chip. Micro-
controllers can be standard off-the-shelf products like the Atmel AT90 line or
Microchip PIC, or custom application-specific integrated circuits (ASIC) based
on a standard CPU core (like an ARM or MIPS core) with a custom set of
peripherals and memory on-chip.

As shown in Figure 1.9, microcontrollers completely outnumber desktop pro-
cessors in terms of units shipped. We also note that simple microcontrollers
(8-bit and 16-bit) dominate sales. The reason for this is that embedded sys-
tems designers, in order to minimize the power consumption, size, and cost of
the overall system, use processors that are just fast and big enough to solve a
problem.

Processor Category Number Sold
Embedded 4-bit 2000 million
Embedded 8-bit 4700 million
Embedded 16-bit 700 million
Embedded 32-bit 400 million
DSP 600 million
Desktop 32/64-bit 150 million

Figure 1.9: 1999 world market for microprocessors [Ten99]

For most 4-, 8-, and 16-bit processors, low-level WCET analysis is a simple
matter of counting the executing cycles for each instruction, since these CPUs
are usually not pipelined. There are some 16-bit processors with pipelines (like
the Infineon C166/C167).
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Processor Family Number Sold
ARM 151 million
Motorola 68k 94 million
MIPS 57 million
Hitachi SuperH 33 million
x86 29 million
PowerPC 10 million
Intel i960 7.5 million
SPARC 2.5 million
AMD 29k 2 million
Motorola M-Core 1.1 million

Figure 1.10: 1999 32-bit microcontroller sales [Hal00b]

32-bit processors are usually more complex, but the embedded 32-bit proces-
sors still tend to be relatively simple. Figure 1.10 shows market shares for 1999
in the 32-bit embedded processor segment. It is clear that simple architectures
dominate the field. The best-selling 32-bit microcontroller family is the ARM
from Advanced Risc Machines. All ARM variants have a single, simple pipeline,
and very few have caches. The embedded x86 and PowerPC processors belong
to desktop processor families, but the processors used for embedded systems are
usually based on older 386 and 486 designs (for the x86), or simplified systems
with a scalar pipeline (for the PowerPC). Cutting-edge processors are simply
too expensive and power-hungry to be used in most embedded systems.

In 2000 and 2001, ARM has dominated the embedded 32-bit RISC market.
In 2001, ARM sold about 400 million units2, with MIPS following at 60 million
units, and Hitachi/ST Microelectronics SH at 49 million units. PowerPC brings
up the rear with 18 million units, and all other architectures share the remaining
11 million units [Ced02]. Note that these statistics cover a smaller part of the
overall market than those in Figure 1.10, since not all processors qualify as
“RISC” (the x86 and Motorola 68k are not part of the embedded RISC market).

Digital Signal Processors (DSPs), processors built for maximal performance
on signal processing and media processing tasks, are rapidly expanding their
market due to the needs of portable media devices. DSPs are becoming more
complex to meet higher computational demands, but are still built for pre-
dictable performance. They usually employ very long instruction word (VLIW)
architectures to boost performance rather than going for dynamic out-of-order
scheduling in hardware [Eyr01].

For embedded systems designed for predictability, memory is generally based
on on-chip static RAMs, since caches are considered to introduce too much vari-
ability in the system. Note that even for systems that have not been explicitly
designed for predictability, caches are still not that common. Caches are used

2A very impressive increase in total sales compared to 1999, mainly thanks to ARM be-
coming the dominant architecture for PDAs and high-end mobile phones.
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on many high-end embedded 32-bit CPUs, but are generally not needed for
processors running at clock frequencies below 100 MHz. Also, caches are quite
demanding in terms of processor area and power consumption, making them
hard to squeeze into the limited budgets of embedded processors.

Accordingly, the embedded real-time systems market requires WCET anal-
ysis methods that are easy to port to several architectures and that support the
efficient handling of on-chip memory and peripherals, and the inclusion of cache
analysis results. One should note that in order to build a reliable real-time sys-
tem, the selection of hardware is critical. This issue is discussed at some length
in Chapter 8 and Chapter 10.

1.9 Properties of Embedded Software

A useful WCET analysis tool has to be adapted to the characteristics of pro-
grams used in embedded real-time systems. Here, we will discuss two categories
of properties: which types of constructions are used when writing program code,
and which types of algorithmic behavior can be expected?

1.9.1 Programming Style

Today, most embedded systems are programmed in C, C++, and assembly lan-
guage [SKO+96, Gan02]. More sophisticated languages, like Ada and Java,
have found some use, but the need for speed, portability (there are C compil-
ers for more architectures than any other programming language), small code
size3, and efficient access to hardware is likely to keep C the dominant language
for the foreseeable future. C is also very popular as a backend language for
code generation from graphical programming notations such as UML, SDL, and
StateCharts, which are getting increasingly important because they promise
higher programming productivity and higher-quality software.

As a prelude to this research, we performed an investigation into the prop-
erties of embedded software. The programs investigated were written in C and
used in actual commercial systems [Eng98, Eng99a]. In general, embedded pro-
grams code seems to be rather different from desktop code. Desktop software
has a tendency to perform arithmetic operations, while embedded software con-
tains more logical and bitwise operations. This means that we should not use
desktop code like the SpecInt benchmarks to test tools intended for embedded
systems, but rather look for benchmarks relevant to the particular application
area [Eng99b, Hal00a].

Concerning static WCET analysis, the result of our investigation was that
while most of the code is quite simple (using singly nested loops, simple deci-

3It is a common claim that Java programs could be quite small thanks to the byte-code
architecture, but if the memory required for the Java Virtual Machine is factored in the
total system size is still quite large. Also, Java compilers do not have the same level of size
optimization as good C compilers for embedded targets.
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sion structures, etc.), there are some instances of highly complex control flow.
For instance, deeply-nested loops and decision structures do occur, and, more
problematically, recursion and unstructured code. From a low-level timing anal-
ysis perspective, this means that we cannot assume any particular structure for
program (like perfectly nested loops) if we want to stay general [Eng99a].

Usually, WCET analysis is applied to user code, but in any system where an
operating system is used, the timing of operating system calls have to be taken
into account. This means that WCET analysis must also consider operating
system code. Colin and Puaut [CP01b] have investigated parts of the code for
the RTEMS operating system, and found no nested loops, unstructured code, or
recursion. This seems to be a well-behaved special case, since Carlsson [Car02]
reports rather more complex program structures in the OSE Delta kernel.

Holsti et al. [HLS00a] report that a compiler used for compiling real-time
software for a space application employed several assembly-written libraries that
included features like jumps to function pointers and unstructured loops; this
has to be addressed in a practical WCET tool.

Another important aspect of software structure is that ordinarily, only small
parts of the applications are really time-critical. For example, in a GSM mobile
phone, the time-critical GSM coding and decoding code is very small compared
to the non-critical user interface. Using this fact, ambitious WCET analysis
can be performed on the critical parts (provided that they can be efficiently
identified and isolated from the rest of the code), ignoring the rest of the code.

1.9.2 Algorithmic Timing Behavior

Regarding the timing behavior of the algorithms used in embedded real-time
programs, the general opinion in the real-time systems field is that programs
should be written in such a way that termination is guaranteed and variability
in execution time is minimized.

Ernst and Ye [EY97] note an interesting property of the control flow of some
signal-processing algorithms. While the program source code contains lots of
decisions and loops, the decisions are written in such a way that there is only
a single path through the program, regardless of the input data4. Similarly,
Patterson [Pat95] notes that most branches in the Spec benchmarks are inde-
pendent of the input data of the program.

Indicating the opposite, Fisher and Freudenberger [FF92] note a large vari-
ability in the number of instructions between “unpredictable” branches, in an
experiment designed to test the effectiveness of profile-driven optimization, in-
dicating that the predictability varies quite significantly between programs.

Ganssle [Gan01] reports that in many instances on small 8-bit and 16-bit
microcontrollers, compiler libraries for arithmetic functions like multiplication
exhibit large execution time variation, and recommend that algorithms with

4A typical example of this is when decision statements depend on the value of a loop
counter, like performing different work for “odd” and “even” iterations of a loop.
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more stable timing is used. For WCET analysis, such variability will contribute
to making the estimates quite pessimistic visavi the common case, and the use
of stable algorithms seems quite valuable. The same behavior is observed in
hash table algorithms by Friedman et al. [FLBC01].

Hughes et al. [HKA+01] have investigated the execution time variability
inherent in modern multimedia algorithms. They found that the algorithms
had a large execution time variability across different types of frames, with
smaller variation within each type of frame.

Taken together, the research cited indicates that there are programs where
the flow is very predictable, which a WCET analysis method should take ad-
vantage of, but that cases will also occur where not much can be known about
the program flow, and thus it is dangerous to base a tool design on programs
having very predictable flow. It is also possible that programs have a number
of different modes, each with a rather narrow execution-time spectrum. WCET
analysis should support the analysis of such modal behavior by allowing for the
use of several different sets of input assumptions, each corresponding to the
activation of a certain mode in the software (see Section 2.2.1).

1.10 Industrial Practice and Attitudes

According to a survey by Ermedahl and Gustafsson [EG97b, Gus00], WCET
analysis is used in industry to verify real-time requirements, to optimize pro-
grams, to compare algorithms, and to evaluate hardware. None of the compa-
nies contacted in the survey used a commercial WCET tool (since no such tools
were available), instead they used measurements or manual timing analysis to
estimate worst-case times.

A wide variety of measurement tools are employed in industry, including
emulators, time-accurate simulators, logic analyzers and oscilloscopes, timer
readings inserted into the software, and software profiling tools [Ive98].

The reported consensus among the developers contacted in the survey was
that a WCET tool would be valuable, since it would save the development
time spent performing measurements, allow more frequent timing analysis, and
enable what-if analysis by selecting various CPUs and processor speeds.

In the space industry, WCET tools have been available for some years,
even though they have not been adapted by mainstream embedded develop-
ers [HLS00a, HLS00b]. It seems likely that the aerospace and automotive in-
dustries will be the leading industries in accepting static WCET analysis as
a mainstream tool, since they build many embedded safety-critical real-time
systems [FHL+01].
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1.11 Contributions of This Thesis

The quality of real-time software is to a large extent dependent on the quality
of the analysis methods applied to it. In particular, quality execution time es-
timates for the software are needed to make it possible to determine the timing
behavior of a system before it is deployed. Static WCET analysis is a promis-
ing technology to determine the timing behavior of programs, especially for
programs used in embedded real-time systems.

Tool support is necessary to perform WCET analysis, since the calculations
involved can be very complicated, especially for large programs. For a tool to be
useful in real life, it has to be efficiently retargetable so that the many different
processors used in the embedded world can be targeted with minimal effort.
It also needs to be flexible, in the sense that different target systems require
different types of analyses to be performed.

The underlying technology used needs to be reasonably efficient, so that
development work does not have to stall waiting for WCET analysis results. The
technology must also have broad applicability, covering all or most of the types of
hardware and software used to build embedded real-time systems. Finally, the
correctness of all analysis methods used is central to build a tool that actually
produces safe estimates.

This thesis addresses the technology issues of building a broadly applicable
and efficient timing model of a program, and the architectural issues of how to
construct a portable, correct, and flexible WCET analysis tool. The technical
contributions towards those goals are the following:

� A tool architecture for the modularization of WCET analysis tools is pre-
sented in Chapter 3. This architecture divides the WCET analysis task
into several modules, with well defined interfaces that allow modules to be
replaced independently of each other. This is intended to increase the flexi-
bility and retargetability of a WCET tool, by reducing the amount of work
required to implement new features and allowing the reuse of existing mod-
ules in new combinations. Correctness should be enhanced since it is easier
to validate the functioning of isolated modules.
The types of modules in our architecture are flow analysis (determining the
possible program flows), global low-level analysis (caches, branch prediction,
and other global hardware effects), local low-level analysis (pipeline anal-
ysis, generating concrete execution times for program parts), and calcula-
tion (where flow and execution times are combined to determine the overall
WCET estimate). Several flow analysis and global low-level analysis mod-
ules can be used simultaneously. The interfaces are a program structure and
flow description based on basic blocks annotated with flow information and
information about the low-level execution of instructions (the scope graph),
and concrete low-level timing information in the form of a timing model (as
presented in Chapter 4).
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� The low-level timing model presented in Chapter 4 is used communicate tim-
ing information from the low-level timing analysis to the calculation. The
timing model assumes that a program is represented as a set of basic blocks,
and ascribes times to these basic blocks. To account for the potential overlap
of instructions executing on a pipelined processor, timing effects (values that
should be added to the basic block times) are given for sequences of basic
blocks. The goal is to capture all effects that a certain instruction can have on
the execution of other instructions in a pipelined processor, and this means
that effects across more than two instructions and basic blocks have to be
considered. Usually, timing effects indicate speedups due to pipeline overlap,
but sometimes, timing effects indicate that extra pipeline stalls occur, for
example when two non-adjacent instructions interfere with each other.

� The timing analysis method presented in Chapter 6 is a (local low-level ana-
lysis) module that generates the timing model for a program. It has been
designed to use existing trace-driven simulators instead of a special-purpose
model for WCET analysis, in essence assuming that the hardware model is
a black box. This loose coupling is intended to reduce the effort required to
adapt the WCET tool to a new target processor.
Since the information from the timing analysis is deposited in the timing
model, the WCET calculation is independent of the timing analysis and hard-
ware used. Both the timing analysis and the timing model are applicable to a
broad spectrum of embedded processors, and do not constrain the structure
of the programs to be analyzed (even spaghetti code is admissible).

� The formal pipeline model presented in Chapter 5 is used to reason about the
timing behavior of pipelined processors, in particular considering the times
and timing effects of our timing model. Using the model, we analyze the
correctness and tightness of our timing model, and determine when timing
effects can occur and when they have to be accounted for to generate safe
WCET estimates. We further prove some properties of certain classes of
pipelines, such as the absence of timing anomalies and the absence of in-
terference between non-adjacent instructions, and discuss the safety of other
pipeline timing analysis methods in the light of our formal model.

� Chapter 8 discusses the construction of hardware models for static WCET
analysis tools. A WCET tool has to use some model of the processor for
which it is performing WCET analysis, and getting this model correct is
crucial to obtaining correct WCET estimates. Unfortunately, it is very hard
to prove that a hardware model is correct visavi the hardware. We provide
some advice on how to build and validate processor models, and how to select
modelable hardware.

� As described in Chapter 9, we have performed extensive experiments to eval-
uate the correctness, precision, and efficiency of our timing analysis method.
We have implemented a prototype tool based on the WCET tool architecture,
with machine models for two embedded RISC processors, the NEC V850E
and the ARM9.
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1.12 Outline

The rest of this thesis is organized as follows:

� Chapter 2 gives an overview of static WCET analysis and previous work in
the field.

� Chapter 3 presents the modular architecture for WCET analysis tools and
gives a short overview of the interface data structures.

� Chapter 4 presents the low-level timing model and its background in the
behavior of processor pipelines.

� Chapter 5 presents the formal model of processor pipelines and the proofs of
several properties of pipelines relevant to WCET analysis.

� Chapter 6 presents the timing analysis method used to generate the timing
model.

� Chapter 7 shows how the timing analysis is applied to the NEC V850E and
ARM9 processors.

� Chapter 8 discusses the issues involved in constructing a precise processor
simulator.

� Chapter 9 presents the prototype implementation used to experiment with
the timing model and timing analysis, and the results of our experiments.

� Chapter 10 draws conclusions from the work presented and provides a dis-
cussion on the applicability and future of WCET analysis.
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Chapter 2

WCET Overview and
Previous Work

This chapter presents an overview of previous work in WCET analysis, using a
conceptual map of WCET analysis as the organizing principle.

2.1 Components of WCET Analysis
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Figure 2.1: Components of WCET analysis

We divide static WCET analysis into four distinct components or phases, as
illustrated in Figure 2.1.

� Flow analysis analyzes the program source code and/or object code, and
determines the possible flows through the program.

� Global low-level analysis determines the effect on the program timing of global
machine-dependent factors, like cache memories. The global low-level analy-
sis might use information from the flow analys to obtain better results.

� Local low-level analysis determines the effect on the program timing of
machine-dependent factors that can be handled locally for a few instruc-
tions, like pipelines. It might use both flow and global low-level information
to obtain better results.

21
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� Calculation combines the results of the three other components to find the
actual WCET of the program.
This division is useful as guide to understand the field, and some variant of

this conceptual map is generally used in the WCET literature. It is also the
base of the tool architecture introduced in Chapter 3. Our contributions to local
low-level analysis are presented in Chapters 4, 6, and 7.

2.2 Flow Analysis

The purpose of program flow analysis is to determine the possible paths through
a program, i.e. the dynamic behavior of the program. The result of the flow
analysis is information about which functions get called, how many times loops
iterate, if there are dependences between different if-statements, etc. Since
the problem is computationally intractable in the general case, a simpler, ap-
proximate analysis is normally performed. This analysis must yield safe path
information, i.e. all feasible paths must always be covered by the approximation.
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Figure 2.2: Components of flow analysis

Flow analysis can be further subdivided into three stages, as illustrated in
Figure 2.2:

� Flow Determination, the actual analysis of the code.
� Flow Representation, the representation of the information obtained in the

analysis phase.
� Preparation for Calculation, where the information is processed to be useful

for the particular calculation module used.
Sometimes, it is also necessary to map flow information from the source-code

level used in flow analysis to the object-code level used in calculation.

2.2.1 Flow Determination

The flow information can be calculated manually, and communicated to the
WCET tool by adding annotations to the program source code or by giving
additional information outside the program code.

Puschner et al. [KP01, Kir02] allow flow information to be entered into the
program source code by extending the C language with additional syntax to
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define loop limits and path information. Börjesson [Bör95] takes a different
approach by using #pragmas in C code instead of altering the language syntax.

Adding information outside the source code is necessary if we assume that
the compiler cannot be changed to support WCET analsysis, when we want
to give information about the flow without using the structure of the source
code, or we want to be able to try several different scenarios for the same
program without having to recompile it. Park [Par93] defines IDL (Information
Description Language), based on regular expressions, to describe the possible
paths, while the approaches by Li and Malik [LM95] and Theiling and Ferdinand
[TF98] use linear constraints to describe the program flow on the object-code
level, where the constraints are considered global for the whole program. We
have defined the flow facts language to describe the flow of a program on the
object-code level using constraints that are local to a small part of the program
rather than global [EE00].

Automatic flow analysis can be used to obtain flow information from the
program source code without manual intervention. The different approaches all
have different complexity, generate different amounts of information, and can
handle different levels of program complexity.

Altenbernd [Alt96, SA00] and Chapman et al. [CBW94] use symbolic exe-
cution to find flow information, while Ermedahl and Gustafsson [EG97a, Gus00]
use abstract interpretation on the source code. Lundqvist and Stenström [LS99a]
find path information using symbolic instruction-level simulation of the object
code. Ferdinand et al. [FHL+01] are able to detect some infeasible paths by ana-
lyzing the object code using abstract interpretation over the values of processor
registers. Healy et al. [HSRW98, HW99, HSR+00] use data flow analysis and
special algorithms for loops (relying on induction variables) to find loop bounds
and infeasible paths inside loops. Holsti et al. [HLS00b] use Presburger Arith-
metic to calculate loop bounds for counted loops, analyzing programs on the
object code level. The approach by Liu and Gomez [LG98] performs symbolic
evaluation on a functional language to find executable paths. Ziegenbein et al.
[ZWR+01] identify segments of a program that only have a single feasible paths
by following input-data dependences. Colin et al. [CP00] use symbolic evalu-
ation to calculate the number of iterations in inner loops where the iteration
count depends on the loop variables of outer loops.

To help automatic flow analysis in the case where input data to a program
has effect on the possible program paths, the user typically has to provide some
input. One method is to specify modes for a program, and then analyze the
WCET given the assumptions specified in the mode [CBW94, WE01]. Holsti
et al. [HLS00b] allows for several types of information (loop bounds, variable
value bounds) to be added as annotations to help the automatic flow analysis,
which also makes it possible to explore different program execution scenarios
without changing the source code.

Annotation systems often allow for the program code to be annotated by
more than just program flow. Hard-coded timing values for certain functions
or statements can be given, excluding them from the WCET analysis. This is
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Figure 2.3: Sets of possible program paths

useful for code that is not handled in WCET analysis tool (like library functions
or operating systems), or to indicate the time budget for functions which are
not yet implemented [HLS00b].

Note that user-provided assertions about a program must be carefully val-
idated, and it is a distinct possibility that a static WCET estimate can be
exceeded, if some assumption is violated. Obtaining good assumptions is a dif-
ficult engineering issue that is key to generating good quality WCET estimates.

2.2.2 Flow Representation

In most approaches to flow analysis, the flow representation is an intrinsic part of
the flow analysis and calculation method used, but there are some approaches
where flow information facts can be specified without reference to a certain
calculation method or flow analysis method.

Most analysis methods generate only loop bounds, which are quite easy
to separate and represent for each loop. For more complex flows, Park’s IDL
[Par93] and our flow facts language [EE00] can be considered explicit represen-
tations of the program flow independent of any particular analysis method and
calculation method.

The use of linear constraints in some WCET analysis approaches offers a
powerful representation of program flow, which is independent of the flow anal-
ysis but not of the solver [LM95, PS95, OS97, TF98, EE99].

Figure 2.3 provides an illustration of the various levels of information about
the flow of a program that can be represented for use in WCET calculation. The
largest set of executions of a program is given by the structure of the program:
all paths that can be traced through the program, regardless of the semantics
of the code. This set is usually infinite, since all loops (iterative or recursive)
can be taken an arbitrary number of times. This set of paths is implicit in the
structure of a program.

The execution of the program is made finite by introducing basic finiteness
information, where all loops are bounded by some upper limit on the number
of iterations. If such limits cannot be provided, the termination of the program
must be called into question. Any real-time program should finish every loop
within some bounded number of iterations (unless it is the outermost loop that



2.2 Flow Analysis 25

keeps the system running). Basic loop bounds may not be enough to give a tight
WCET estimate. In some cases, using only loop bounds gives an overestimation
by a factor 100, clearly indicating the need for more advanced path modeling
[PB01].

Adding even more information allows the set of executions to be narrowed
down further, to a set of statically feasible paths. These are the paths allowed by
the information we can hope to obtain about the program using offline analysis.
This set will vary with the sophistication of the analysis methods used, and is
hopefully coincident with the actually feasible paths of the program. If not, the
result of the static analysis might be an overestimation of the execution time.

2.2.3 Preparation for Calculation

If a more general flow representation like our flow facts language is used, the
flow information has to be preprocessed to be used by a particular calculation
method. In some cases, certain information items might have to be discarded
since the calculation module is unable to take advantage of them. Note that it
is safe to discard facts if we assume that the flow information is used only to
narrow down the set of allowed paths. Discarding facts will thus only lead to a
potentially less tight WCET estimate, but not an erroneous estimate.

In [EE00], we show how to use flow facts for a constraint-based (IPET)
calculation module. The same flow facts were later used in a very different
calculation module based on explicit path exploration, where we could not take
advantage of some classes of flow facts [SEE01b, SEE01a].

2.2.4 The Mapping Problem

There is a problem with obtaining or representing program flow based on a
source code view of a program: the information has to be mapped down to the
object-code structure of the compiled and linked program, since this is the only
representational level where execution times can be generated.

Considering modern compilers, the relation between the source code and
the object code is not obvious, since the compiler can perform transformations
like unrolling loops, inlining functions, and duplicating code. For example,
Lundqvist and Stenström [LS98] report a case where entire conditional state-
ments were removed from the program during the compilation process. Thus,
mapping flow information obtained at the source code level down to the object
code level is a non-trivial task, where the transformations to the code made by
the optimizations in the compiler have to be reflected in the flow information.

I attacked this problem in my Master’s thesis [Eng97] by designing an exter-
nal system that transforms the flow information to reflect the code transforma-
tions performed by the compiler. Kirner [KP01] uses the internal debug infor-
mation propagation facilities in the gcc compiler to achieve the same task. Lim
et al. [LKM98] proposes an approach where the compiler is assumed to maintain
labels identifying relevant places in the code, allowing loops in the object code
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to be identified with their source code equivalents. Holsti et al. [HLS00b] map
information about loop bounds and variable values by using information that
allows a certain part of the code to be found based on characteristics like “the
loop that modifies the variable X”.

An interesting parallel is that programming in general has been raised to
higher levels of abstraction (from assembly code to C to graphical programming
tools), at the expense of much more complex programming tools. The amount
of code involved in compiling a statechart diagram to executable code is much
larger than an early-70s C compiler. WCET analysis will have to evolve with the
programming tools: raising the level of the input abstraction for flow analysis
will require a more complex mapping tool, since information has to be mapped
through more layers of abstraction.

One way to avoid the mapping problem is to perform (automatic) flow anal-
ysis on the object code of a program [LS99a, HLS00a, FHL+01]. However,
working on the object code is unnecessarily difficult, since variables migrate be-
tween memory and registers, making it difficult to identify and track relevant
data objects. Also, the code emitted by the compiler for complex construc-
tions like switch statements and the use of complex assembly-language coding
techniques in compiler libraries have to be specially recognized to be handled
effectively [HLS00a].

Assuming control over a compiler, it is possible to perform the analysis
inside the compiler on the intermediate code, which mostly avoids the mapping
problem since the analysis can then be performed on the optimized program
with full information about variables etc. [HW99, HSR+00]. This also avoids
discarding the large amount of information about a program that a compiler
gathers as a part of the compilation process.

2.3 Low-Level Analysis

As mentioned, it is necessary to analyze the object code of a program to obtain
the actual timing behavior. This analysis is called low-level analysis.

2.3.1 Global Low-Level Analysis

For some timing behaviors of a microprocessor, analysis over the whole program
(or at least large parts of it) is required in order to obtain a safe and tight
result. Examples of features with global effects are cache memories and branch
prediction. To determine the cache behavior of an instruction, the analysis must
consider many instructions, arbitarily remote from the instruction considered.

Since exact analysis is normally impossible for global features, an approxi-
mate but safe analysis is necessary. For example, when an attempt is made to
determine whether a certain instruction is in the cache, a cache miss is assumed
unless we can be absolutely sure of a cache hit. This might be pessimistic but
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is safe (assuming that the types of timing anomalies discussed in Section 2.3.2
do not occur).

Instruction caches are quite easy to analyze, since the instruction fetch be-
havior can be determined from the program flow. Data caches are more difficult,
since the data access patterns of a program are hard to predict statically, and
a single instruction can access many different memory locations.

Some approaches integrate the cache analysis into the calculation phase. Lim
et al. [LBJ+95] analyze the instruction cache behavior by traversing the syntax
tree of a program, determining a cache behavior abstraction for each node. Kim
et al. [KMH96] add data cache analysis to the approach, in a rather pessimistic
way by assuming two cache misses for each unknown data access. Li et al.
[LMW96] build a cache conflict graph to model conflicting instruction cache
accesses. The graph is converted to a set of linear constraints, and solved as
part of the calculation phase. Ottosson and Sjödin [OS97] also employ constraint
techniques to model the execution time gains from using instruction caches and
data caches. Lundqvist and Stenström [LS99a] perform instruction and data
cache analysis together with flow analysis and calculation in a modified processor
simulator.

A different approach is to perform a separate cache analysis phase to de-
termine the instruction cache behavior, and then to use this information in the
local low-level analysis or the calculation phase. In this case, an explicit rep-
resentation of the cache analysis result is used. Ferdinand et al. [FMW97] use
abstract interpretation techniques to conservatively estimate instruction cache
hits and misses. Healy et al. [HAM+99] perform a static cache simulation which
generates a categorization of each instruction cache access as one of always miss,
always hit, first miss, first hit. This approach has been extended to instruction
cache hierarchies with several levels of cache [Mue97]. White et al. [WMH+97]
extends the approach to data caches, classifying instructions in a similar man-
ner, exploiting the data locality inherent in loops over arrays to decrease the
number of pessimistic miss categorizations. The instruction cache analysis used
by Stappert and Altenbernd [SA00] uses data flow analysis methods to deter-
mine cache hits and misses for programs without loops (the pipeline state is
determined simultaneously).

Unified caches are generally considered a very difficult problem, since data
and instruction accesses go to the same cache, giving a very complex behav-
ior. However, by integrating the pipeline and cache analysis, Ferdinand et al.
[FHL+01] have constructed a low-level analysis for a processor employing a
unified cache, where value analysis using abstract interpretation is performed
on the object code of the program in order to determine the potential target
addresses of data access instructions.

Branch prediction is another global effect that can have a large effect on
the execution time of a program. Colin and Puaut [CP00] model the effect
of the branch target buffers (BTB) and branch prediction mechanism of the
Intel Pentium processor. Mitra and Roychoudhury [MR01] model the effect of
advanced branch predictors with global histories using linear constraints. The
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analysis is integrated with the calculation of the longest path, and can take
quite long to run even for small programs.

Petters and Färber [PF99, Pet00] do not rely on a model of the system
but rather run code on the actual target system, with instrumentation code
inserted to control the execution and explore the longest executable path. This
“models” both the caches and branch prediction of the Pentium III and Athlon
processors (as well as all other processor behavior), but it is hard to guarantee
the worst case. Wolf and Ernst [WE01] also use instrumentation code to guide
the execution of a program, using a simulator of the hardware.

Patterson [Pat95] performs an analysis of the taken/not-taken probability of
branches, for the purpose of compiler optimization rather than WCET analysis
(which means that approximations do not have to be safe).

The results of global low-level analysis can be incorporated into the final
WCET estimate in two different ways. The simplest approach is to assign a
certain execution time penalty to bad cases like cache misses, and then add
this penalty to the execution time estimate to account for the global effect
[LBJ+95, KMH96, TF98, CP00]. A more precise approach is to use the global
results as input to the local low-level analysis, and simulate the result of the
cache miss on the actual execution of instructions in the processor pipeline
[HAM+99, EE99, SA00, FHL+01].

2.3.2 Local Low-Level Analysis

The local low-level analysis handles machine timing effects that depend on a
single instruction and its immediate neighbors. Examples of such effects are
pipeline overlap and memory access times. Almost all research in local low-
level analysis has been directed at pipeline analysis. Just like in global analysis,
approximated but safe approaches are sometimes necessary, but thanks to the
simpler behavior of local effects, the precision is usually higher for local low-level
analysis.

For simple processors with no pipeline or very simple pipelines, a constant
execution time per instruction might be given [HLS00b], but for more complex,
pipelined architectures, a more in-depth analysis is necessary to provide tight
execution time bounds.

Theiling and Ferdinand [TF98] use simplified instruction timing in order to
model the effect of cache missed on the execution time of instructions, assuming
a fixed execution time of one cycle for all instruction when they hit the cache
and 10 cycles otherwise.

As illustrated in Figure 2.4, it is possible to describe the execution time
of a pipelined processor by ignoring the overlap between instructions which
“always” occurs, and rather use the interarrival time, which is done in many
CPU manuals. Compared to the block time in Figure 2.4, the interarrival time
represents a form of “steady state” in the pipeline. Processor manuals written
in this style give a number of cycles for each instruction rather than a detailed
pipeline diagram, and some rules for when the execution gets slowed down due
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Figure 2.4: Block times and interarrival times

to resource contention [Inf01, ARM00b]. Atanassov et al. [AKP01] have built a
model for the pipelined Infineon C167 processor using constant execution times
for each instruction plus formulas that account for the interference between
neighboring instructions, the effect of memory access times, etc. We use a
similar model for the ARM9 (see Section 7.2).

Lim et al. [LBJ+95] analyze the pipeline overlap between program basic
blocks in conjunction with instruction cache analysis. The target processor is
a MIPS R3000/3010, with parallel integer and floating-point pipelines and in-
order issue, modeled using reservation tables similar to our pipeline diagrams.
The approach is extended to in-order superscalar processors, by maintaining
instruction dependence and latency graphs instead of reservation tables. The
target is a fictive superscalar processor [LHKM98].

Healy et al. [HAM+99] analyze the concatenation of reservation tables for
a MicroSPARC 1 processor (similar in complexity to the MIPS R3000/3010),
over paths inside loops and functions. They are able to capture pipeline effects
affecting more than just neighboring basic blocks.

Ottosson and Sjödin [OS97] express the effect of pipeline overlap between
basic blocks as negative times. The model presented in this thesis is a gener-
alization of this timing model, allowing for overlaps between blocks which are
not neighbors, and presenting a method to obtain the execution times for a
particular program and processor.

Colin and Puaut [CP01a, CP01c] perform WCET analysis for one of the
integer pipelines of a Pentium processor, using reservation tables.

The analysis of Altenbernd and Stappert [SA00] performs pipeline analysis
for a somewhat simplified superscalar PowerPC 604. The pipeline analysis is
integrated with the instruction cache analysis and computes a pipeline reser-
vation table for each basic block. These tables are then concatenated in the
calculation phase to find the longest path.

Wolf and Ernst [WE01] analyze the pipeline behavior of the scalar Strong-
ARM and SPARClite processors using processor simulators, or special devel-
opment hardware for the processors, avoiding the need for a special pipeline
model.

Schneider and Ferdinand [SF99] analyze the in-order superscalar Super-
SPARC I using an abstract pipeline state to model the timing effect of the
superscalar pipeline, assuming that cache hit and miss information is available.
Ferdinand et al. [FHL+01] analyze the pipeline and cache for the scalar ColdFire
5307 processor, also using an abstract pipeline model.
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Bate et al. [BBMP00] form a WCET model for a Java Virtual Machine
(JVM) by calculating an execution time for each JVM instruction in isolation,
and a speedup for each pair of JVM instructions when executed in sequence.
The assumption is that a very simple ahead-of-time compiler is used to translate
Java byte codes to native code for the target platform.

Lundqvist and Stenström [LS99a] perform pipeline analysis for a simpli-
fied PowerPC processor with in-order dual instruction issue, as part of their
instruction-level simulation, integrated with the cache and flow analysis. They
also noted [LS99b] that out-of-order processors are subject to timing anomalies
that potentially makes the analysis of such processors inachievably complex.
The problem is that, for example, assuming a cache hit for a certain instruc-
tion can lead to an overall greater execution time than assuming a cache miss
(the commonly assumed local worst case for cache analysis). Thus, an analysis
would in principle have to investigate all possible execution paths, instruction
reorderings, and cache hit/miss scenarios for the entire program to be sure to
find the worst-case execution time1.

Petters and Färber [PF99, Pet00] perform the pipeline analysis for the su-
perscalar Pentium III and Athlon processors by running code on the hardware.
The analysis is thus intrinsically integrated with the global low-level analysis.

Burns and Edgar [BE00] have performed experiments to demonstrate the
unpredictability of execution times on a superscalar Pentium II processor, and
concluded that statistical models must probably be used to model such proces-
sors. Their assumption is that a modern processor can be considered as a set of
independent units affecting the execution time, allowing for statistical analysis
of the execution time variations [EB01].

Burns et al. [BKY98] describe how to model a fictive superscalar processor
using Colored Petri Nets, but does not use the model for WCET analysis, only
as a model to simulate the processor timing.

2.4 Calculation

The purpose of the calculation is to calculate the WCET estimate for the pro-
gram, given the program flow and global and local low-level analysis results.
There are three main categories of calculation methods proposed in the litera-
ture: path-based, tree-based, or IPET (Implicit Path Enumeration Technique).

2.4.1 Tree-Based

In a tree-based calculation the WCET estimate is generated by a bottom-up
traversal of a tree corresponding to a syntactical parse tree of the program,

1All WCET analysis methods for caches presented in the literature assume that a cache
miss is worse than a cache hit, which makes it possible to assume a cache miss in cases of
uncertainty. For an out-of-order superscalar, this assumption cannot be used, and hence all
possibilities for all uncertain instructions must be investigated, giving an explosion in the
analysis complexity.
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using rules defined for each type of compound program statement to determine
the WCET of the statement. The method is conceptually simple and compu-
tationally quite cheap, but has problems handling flow information, since the
computations are local within a single program statement and thus cannot con-
sider dependences between statements.

Park and Shaw dubbed the approach “timing schema” [PS90], which is ex-
tended to include pipeline and cache states by Lim et al. [LBJ+95, LHKM98,
KMH96]. Chapman [Cha95] also explored the use of timing schema. Puschner
et al. [PK89, PPVZ92] uses a “program timing tree” which contains some path
information. Bate et al. [BBMP00] perform a tree-based calculation where the
number of executions of each type of JVM instruction is propagated, and not
actual execution times.

2.4.2 Path-Based

In a path-based calculation, the WCET estimate is generated by calculating
times for different paths in a program, searching for the path with the longest
execution time. The defining feature is that possible execution paths are explic-
itly represented or determined. The path-based approach is natural within a
single loop iteration, but has problems with flow information stretching across
loop-nesting levels.

Healy et al. [HAM+99] look for longest paths inside loops and functions,
one loop nesting level at a time, with some special-case handling for cache and
pipeline effects between loop levels. Flow information can be used to prune the
set of allowable paths, by limiting the number of times a particular path can be
executed [HW99]. Stappert and Altenbernd [SA00] investigate the longest paths
in a non-looping program, and select the longest path which is also feasible.
Stappert, Ermedahl, and Engblom [SEE01b] find the longest executable path
for each loop nesting level, allowing for flow information to limit the set of paths
explored.

Petters and Färber [PF99], and Lundqvist and Stenström [LS99a] integrate
the determination of the longest path with global and local low-level analysis.

2.4.3 IPET

IPET calculation express program flow and execution times using algebraic
and/or logical constraints. Each basic block and program flow edge in the
program is given a time variable (tentity), denoting the execution time of that
block or edge, and a count variable (xentity), denoting the number of times
that block or edge is executed. The WCET is found by maximizing the sum∑

i∈entities xi ∗ ti, subject to constraints reflecting the structure of the program
and possible flows. The result is a worst-case count for each node and edge, and
not an explicit path like in path-based calculation.

The term “implicit path enumeration” (IPET) was coined by Malik et al.
[LM95]. Puschner et al. [PS95] showed how some path information could be
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expressed by numerical constraints, work which was later extended by our group
[EE00]. Ferdinand et al. [FMW97] partially unroll loops in the program before
calculation in order to increase the precision when analyzing caches.

Usually, IPET is applied across a whole program, but Holsti et al.
[HLS00b]use integer linear programming on a per-function basis. Wolf and
Ernst [WE01] use IPET with a slightly larger basic unit: program segments po-
tentially containing several basic blocks, which makes their approach a hybrid
between IPET and path-based calculation.

IPET constraint systems can be solved using either constraint-solving [OS97,
EE99] or integer linear programming techniques (ILP) [PS95, FMW97, HLS00b],
with ILP being the most popular thanks to the availability of efficient solvers.
Constraint solving allows for more complex constraints to be expressed, with
the corresponding risk of higher solution times.

2.4.4 Parametrized WCET Calculation

Sometimes, the input data to a program cannot be bounded in a reasonable
fashion, but the data will become known when the program is invoked. For
example, a sorting function in a library will have the data size fixed when
called. In such cases, it is possible that instead of generating one hard WCET
estimate, the result of the WCET calculation is a formula containing unknowns
that are fixed when the WCET estimate is needed in a running system.

Chapman [Cha95] generates a symbolic time expression for a program using
a tree-based calculation. Puschner and Bernat [PB01] also work within a tree-
based method, generating a formula that allows for some of the path information
detailed in [PK89] to be used in making the final symbolic expression tighter.
Vivancos et al. [VHMW01] perform parametric WCET analysis within a path-
based calculation framework, demonstrating how the timing effects of caches
and pipelines can be accounted for in a potentially pessimistic and but safe
manner.



Chapter 3

WCET Tool Architecture

In order to build a tool which is powerful and portable, we have defined a mod-
ular WCET tool architecture, shown in Figure 3.1. The archicture is based
on well-defined data structures which provide an interface between replaceable
modules. Compared to the conceptual view in Figure 2.1, interface data struc-
tures have been added and the low-level analysis has been given more detail.

The purpose of the architecture is to keep analysis modules separate and
isolated, to facilitate the porting of WCET tools to new target architectures and
the replacement of modules. Furthermore, clear separation between modules in
combination with well-defined interfaces makes it easier to validate a WCET
tool, since module-wise testing is facilitated.

There are three interface data structures in the architecture: the object code,
the scope graph and the timing model. The object code is target-dependent
by nature, and contains the compiled and linked code of the program being
analyzed. The scope graph reflects the structure of function calls and loops
in the program, and is used to express the results of flow analysis and global
low-level analysis. The timing model communicates the timing of the program
from the low-level analysis to the calculation. Within the pipeline analysis, the
timing graph is used to represent the target program.

It is possible to string several different flow analysis or global low-level anal-
ysis methods together, each adding information to the scope graph (and poten-
tially rewriting its structure). For example, cache analysis and branch predic-
tion analysis modules could both be used, and the joint result represented in the
scope graph. This makes it easy to extend the tool with new analyses, without
disturbing the existing modules.

The modules that we consider suitable to vary are the simulator (to adapt to
a new target architecture), the flow analysis (to use different analysis methods
with varying precision and computational cost), the global low-level analysis (to
analyze different types of caches or other factors), and the calculation (to trade
speed against precision). The pipeline analysis method we prefer is the one
presented in this thesis, with the simulator used to vary the target architecture.

33
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Figure 3.1: WCET tool architecture

3.1 Separation vs. Integration

Our architecture is based on a clear separation of all analysis modules. At
the other end of the design spectrum is the complete integration of all analysis
modules into a single pass that performs both flow analysis, low-level analysis,
and calculation (the best example of this is the work of Lundqvist and Stenström
[LS99a]).

By clearly separating the modules, porting to new target platforms is facil-
itated, since only minor parts of the tool have to be replaced or rewritten. It
is easier to slot in new analyses, since they can work with the defined interface
data structures [EES01a, CP01a, FHL+01]. This is the guiding principle be-
hind the clear separation of timing modeling and timing analysis made in this
thesis, where the timing model is the interface between the calculation and the
low-level analysis.

Considering the validation of WCET tools, separating WCET analysis into
modules allows for module-wise testing, which makes it easier to validate and
test a tool. To guarantee that a WCET estimate produced by a WCET analysis
tool is safe and tight, each analysis phase must be safe and tight in its own
right. Otherwise, errors in one module could mask errors in other modules
[ESE00, EES01b].

Another argument for separation is that the integration of some analyses may
cause excessive solution times due to the complexity of the integrated problem,
even if each separate problem is quite easy to solve. Especially vulnerable is the
simultaneous analysis of caching behavior (global low-level analysis) and pipeline
behavior (local low-level analysis). Solution times even for quite small programs
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Figure 3.2: Example of basic block structure

can easily explode into several minutes or even hours [LMW96, OS97, FHL+01].
Separating each algorithm into a module of its own also makes that module
simpler, which makes implementation easier.

However, it is possible that some precision is lost when enforcing separation
of modules in the case that there are circular dependences between different
analyses. A good example is the analysis of unified caches1, where the pipeline
behavior affects the cache behavior and vice versa, making an integration of the
two phases very attractive precisionwise [FHL+01]. Another example is the use
of speculative execution in processors, where instructions that are fetched and
executed due to control speculation, but then discarded can affect the caching
behavior of a program.

3.2 Basic Blocks

All data structures in our tool architecture are based on dividing the object
code of the program to be analyzed into basic blocks. A basic block is a piece
of sequential code that does not contain any flows into or out of it, except at
the start and end [ASU86, Muc97]. Figure 3.2 shows an example of how a small
C function containing a loop is compiled to object code, and the corresponding
basic block graph. It is possible to use compiled code or handwritten assembly
with our techniques, since it is neutral regarding how the code is generated (the
use of assembly is not illustrated in Figure 3.1).

The edges in the basic block graph represent the potential flows in a program.
For example, in Figure 3.2, there is an arrow from the block fib to fib 0 since
there is an unconditinal jump at the end of block fib. From fib 0 it is possible
to get to both fib 1 if the conditional branch is taken, and to fib 2 if the branch
is not taken (fall-through). Note that not all flows corresponding to edges in
the basic block graph are necessarily possible in any actual execution of the
program (see the discussion about possible execution paths in Section 2.2.2).

1Caches where instructions and data are mixed.
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Delayed branches, as employed on the SPARC and some other RISC archi-
tectures, are handled by including the instructions in the delay slot (immediately
following the branch instruction) in the same basic block as the branch, which
means that the last instruction of the basic block is not a branch.

The basic block model presented so far is the one used in compilers. Each
machine instruction in the program is only present once in the basic block graph.
However, there might be cases where the basic block model used by the WCET
technique is different from the one generated by a compiler.
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Figure 3.3: Example of an implicit jump

For example, many DSPs have instructions with semantics like “repeat the
next n instructions m times”. There is no jump at the end of the loop, and thus
jumping into the tail of a loop will not cause a loop. Figure 3.3(a) shows an
example of such a DSP-style loop. Figure 3.3(b) shows the simple basic block
model, as a compiler would do it, while Figure 3.3(c) shows how the program
should be modeled in a WCET tool for maximum accuracy [HLS00b]. Note the
difference in where a jump from X enters the loop.

3.3 Scope Graph

The scope graph provides the WCET tool with the structure of the program
to analyze. It is a directed acyclic graph of scopes. Each scope corresponds
to a program feature like a loop or a function; the exact scope structure of a
program depends on the analysis modules used for flow analysis and global low-
level analysis. In unstructured code, loops could be identified using techniques
like DJ graphs [SGL96, Ram00], but we do not prescribe any particular method.
Scopes are necessary in order to carry program flow execution, in particular
bounds for all loops and context-sensitive flow information for function calls.

In our current implementation (see Chapter 9), we let each function call and
each loop nesting level generate a scope, thus obtaining a program structure
similar to that used by Healy et al. [HAM+99]. The global low-level analysis can
generate new scopes in order to model the first iteration of a loop differently from
subsequent iterations, in the manner pioneered by Ferdinand et al. [FMW97].
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Figure 3.4: Scope graph for the code in Figure 3.2

We have defined a textual format for scope graph files. The scope structure
and text format of the example program from Figure 3.2 is shown in Figure 3.4.
Figure 3.4(a) shows how the scope graph divides the basic block graph into
a function Fib and a loop FibLoop within the function, and how the basic
blocks in the program are divided between the two scopes. Figure 3.4(b) shows
the textual description for the two scopes, and Figure 3.4(c) shows the scope
hierarchy, where the basic blocks contained in each scope are hidden, to make
the structure of the scopes relative to each other easier to see.

Each scope contains a code section that describes the code of the scope.
Currently, the code section references the basic blocks from the object code of
the program that are part of the scope. Extra information about the execution
of each node can be added, using execution scenarios as described below.

Note that each basic block can be present in several copies in the scope graph.
The most common example is that a function is called at several different places
in the program. In such cases, each call will be described by a separate scope,
and thus the code in the function will be present multiple times. Cache analysis
can also give rise to multiple copies of a basic block, by unrolling a loop to
differentiate between the first and successive iterations.

A separate section describes the possible flow between the basic blocks in
the scope, as well as into and out of the scope. This corresponds to a subset
of the flow edges of the program, as can be seen in the internaledges and
exitedges sections of the scopes in Figure 3.4(b).

One of the basic blocks in each scope is designated as the header node, which
is used to define the iteration of the scope. Usually, the header node is the first
node encountered when entering the scope. A basic loop bound has to be given
for each scope, and this bound corresponds to the number of times the header
node can be executed for each entry into the scope. The limitation to a single
header node will be removed in a future revision of the scope graph format, in
order to support more complex program structures. Note that these limitations
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Figure 3.5: Example execution scenario

in the program structure are related to the expression of program flow and
thus only affects the calculation module and flow analysis module; the low-level
timing analysis does not depend on any particular program structure.

Finally, more detailed flow information can be added to the scopes using the
Flow Facts Language, which is a rather powerful language to express program
flow [EE00, SEE01b]. The flow facts are independent of the calculation module
and flow analysis module used.

3.3.1 Execution Scenarios

In order to perform WCET analysis for a piece of object code, we need informa-
tion about factors affecting the hardware execution time for instructions that
cannot be determined from the instructions themselves. Examples of such in-
formation are cache hits and misses, the speed of memory being accessed, and
bound on the execution time of varying-length instructions. This information
needs to be communicated from the generating analysis module to the pipeline
analysis module.

Our solution to this problem is to attach execution scenarios to the basic
blocks in the scope graph. Every instruction in a basic block can have zero
or more execution facts attached, providing information about the execution of
that instruction. The execution facts for all the instructions in a basic block form
an execution scenario. Figure 3.5 shows an example of an execution scenario for
a basic block, with information from memory access analysis and cache analysis.

The information in the execution scenarios is used by the pipeline analysis
when determining the execution time of the basic block. It is possible to have
several execution scenarios for each basic block in a program, each represented
in a separate scope.

Each execution fact has to have a constant effect on the execution of the
associated instruction. Cache behavior characterizations like first-miss and
first-hit proposed by Healy et al. [HAM+99] are not valid as execution facts.
In this case, two execution scenarios would have to be set up, one with a hit
and one with a miss, and the scope graph modified to include a basic block for
each alternative, with flow information added to make the WCET calculation
count each node an appropriate number of times.
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Figure 3.6: Timing graph for the program in Figure 3.2 and Figure 3.4

3.4 Timing Graph

The pipeline analysis is performed using a graph of basic blocks with execution
scenarios called the timing graph, which is generated from the scope graph (as
shown in Figure 3.1). The timing graph is a flat representation of the program,
and the hierarchy from the scope graph is not present. As explained in Sec-
tion 3.3, an individual basic block in the program can be present many times in
the analysis for a program, with a different execution scenario associated with
each occurrence (in a practical implementation, the timing graph nodes simply
contain pointers to the basic blocks and the execution scenarios, no data needs
to be copied).

The times generated from the timing graph have to be related back to the
scope graph, since the calculation module has to combine the program flow in-
formation expressed in the scope graph with the times from the timing analysis.
Thus, each node in the timing graph has to be labeled with the scope graph
node it is generated from.

Figure 3.6 shows the timing graph for the Fib program, with scope graph
correspondences, basic blocks, and execution scenarios.

3.4.1 Global or Local Timing Graphs

The normal case is to build a timing graph and perform timing analysis across
the entire program. Doing a global timing analysis makes sure that all timing
effects are found, regardless of their relation to any boundaries used in the
calculation phase. The results of the analysis can then be used in their entirety
in a global calculation method like IPET, or have pieces extracted to be used
in the local calculations typical of path-based approaches [SEE01a].

The analysis can also be performed within smaller units of a program. This
could be appropriate, for example, inside a compiler employing separate com-
pilation. The functions in each file would be analyzed locally, from which a
global result can be generated in a later, global, pass. Note that in this case,
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the calculation module has to employ some safe approximation for timing effects
across file boundaries, since no information about such effects can be generated.



Chapter 4

Timing Model

This chapter presents the timing model used in our WCET tool architecture.
The timing model is an abstract representation designed to capture the execu-
tion time of a program running on some particular hardware, in such a way that
the program path with the longest total execution time can be efficiently found.
In particular, we are interested in modeling the timing effects of a processor
pipeline, and will sometimes call the timing model a pipeline timing model.

The analysis used to obtain the timing model for a program is described
in Chapter 6. This separation of analysis and representation is shown in Fig-
ure 4.1, illustrating the important point that the hardware model (processor
simulator) employed is isolated from the program timing model and the cal-
culation. The basis of the model is described intuitively in Section 4.3, and
formally in Chapter 5.
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Figure 4.1: Isolating the timing model from the hardware model

The goal of our pipeline timing model is to allow the execution time of a
program to be composed from smaller parts. This avoids the need to analyze
the timing of complete execution paths in the program, thus increasing the
efficiency of the WCET analysis tool, since the number of paths can potentially
be very large. To support the use of a hardware model that is treated as a black
box, we store only concrete execution times in the model, and not some state
related to a special-purpose pipeline model.

The timing model is based on the timing graph, and can be seen as a deco-
ration of the graph with times for nodes and sequences of nodes.

41
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4.1 The Hardware Model

We consider the hardware model used in the timing analysis and timing model
to be a function T that returns an execution time given a sequence of nodes
in the timing graph (containing instructions and execution facts). We use the
notation T (N1 . . . Nn) for the execution time of a sequence of nodes N1 . . . Nn.
For simplicity, we define the execution time of the empty sequence as zero, i.e.
T () = 0.

We assume that the hardware is deterministic: each time a certain sequence
of instructions or nodes is executed from the same initial condition, the same
execution time results. Each node, or sequence of nodes, in the timing graph has
a single execution time. All effects of variable factors like caches are handled by
using execution facts to fix the behavior for the instructions in a certain timing
graph node. To capture some global low-level effects, a node might have to be
split into several nodes with different execution facts.

In general, the times in the timing model may be overestimates of the actual
execution time, since this might be necessary to obtain safe WCET estimates.
For example, an instruction with unknown caching behavior can be classified as
a cache miss, and the cache miss time used to calculate the execution time for
that instruction in the timing model. Instructions with variable execution time
due to input data will have to assume the worst-case execution, unless we can
determine the possible values of the input data.

The timing model is independent of how the timing function T defines the
execution time of a piece of code. The exact definition of the execution time
reported by T depends on the hardware model. The function T is simply an
oracle that assigns some time to each sequence of nodes, in a deterministic
manner, and we do not know how this oracle determines its execution time
estimates. For a typical model of a pipelined processor, the time will be from
the time the first instruction enters the pipeline until the last instruction exits
the pipeline, as illustrated by the “block time” in Figure 2.4. With this definition
of execution time, for two nodes A and B executing in sequence on a pipelined
processor, typically T (AB) < T (A)+T (B), thanks to the pipeline overlap between
the two nodes.

In principle, the weak requirements on the hardware model allow us to use
any trace-driven cycle-accurate processor model (or even the hardware itself) to
perform WCET analysis, making it much easier to retarget the WCET analysis
to new processors. A trace-driven simulator does not need to simulate the
semantics of the code executed (like the results of arithmetic operations or
the contents of memory locations), it need only provide execution times for a
given sequence of instructions. This type of simulators is commonly used in
microprocessor design to evaluate new features and design tradeoffs [BC98].

Ziegenbein et al. also use simulators or hardware to obtain execution times
for program segments, but in contrast to our approach, they use simulators that
include the code semantics, making it more difficult to guide the execution to
particular parts of the code [ZWR+01].
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Figure 4.2: Times and the timing model

4.2 The Timing Model

The timing model is a way to represent the times reported by the timing function
T , without storing the times for all possible sequences of nodes in the timing
graph. Instead, we represent the times using node times, denoted by tN , and
timing effects for sequences of nodes, denoted by δN1...Nn

. The definitions for t
and δ are the following:

tN = T (N) (4.1)

δN1...Nn,n≥2 = T (N1 . . . Nn) − T (N2 . . . Nn) − T (N1 . . . Nn−1) + T (N2 . . . Nn−1) (4.2)

The execution time for an arbitrary sequence of nodes in the timing graph
can be obtained by adding the node times for all the nodes in the sequence and
the timing effects of all subsequences (of length ≥ 2) of the sequence, which
should give the same time as if the sequence was run in the timing function, as
shown in Equation (4.3). The δ values are added to the basic execution times,
and thus they are negative in the case of a pipeline overlap. Figure 4.2 illustrates
how times for successively longer sequences are constructed from Equation (4.3):
the execution time T (N1 . . . Nn) for some sequence N1 . . . Nn is obtained by
summing all the t and δ variables within the corresponding triangle.

T (N1 . . . Nn) =
n∑

j=1

tNj
+

∑

1≤i<k≤n

δNi...Nk
(4.3)

Note that we are only interested in the sequences of nodes that can actually
occur in the program; that is only sequences where the successive nodes are
linked by edges in the timing graph.

It is natural to make a distinction between pairwise timing effect, that is,
effects over neighboring nodes (N1N2), and long timing effects, timing effects
across three nodes or more. The pairwise timing effects are expected in any
pipeline (as shown in Section 4.3.1), while long timing effects are less common
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and more complex to find and handle (as discussed in Section 4.3.2 and Chap-
ter 5). Positive timing effects add execution time to a program, and are critical
to consider since otherwise an underestimate of the WCET could result. Neg-
ative timing effects indicate potential savings in execution time, and ignoring
them only makes the WCET estimate less tight.

For an example of how Equation (4.3) works, consider the case of a sequence
of two nodes, N1 and N2 (note that the empty sequence takes zero time):

tN1 = T (N1)
tN2 = T (N2)

δN1N2 = T (N1N2) − T (N1) − T (N2) + T ()
= T (N1N2) − tN1 − tN2

T (N1N2) = tN1 + tN2 + δN1N2

Extending the example with a third node, N3, we get the following:

δN1N2N3 = T (N1N2N3) − T (N1N2) − T (N2N3) + T (N2)
T (N1N2N3) = tN1 + tN2 + tN3 + δN1N2 + δN2N3 + δN1N2N3

Considering a certain complete execution of a program, represented as a
(very) long sequence of nodes N1 . . . Nn, we get a very large number of times
and timing effects. In theory, we need the timing effect for every sequence of
nodes that is a subsequence of N1 . . . Nn (and of length ≥ 2), which is a rather
large set (it contains N + (N − 1) + . . . + 1 = N(N + 1) terms):

T (N1N2N3 . . . Nn) = tN1 + tN2 + tN3 + · · · + tNn−1 + tNn

+ δN1N2 + δN2N3 + · · · + δNn−1Nn

+ δN1N2N3 + · · · + δNn−2Nn−1Nn

+
...

+ δN1N2...Nn−1Nn

This is obviously very inefficient, but typically, most of the timing effects will
be zero. In Chapter 5 we will discuss when non-zero timing effects appear and
how we can bound them, and in in Chapter 6 we will give a practical algorithm
to build the timing model for a program.

To help us understand the source of the timing effects, we define a new
entity, εN1...Nn−1|Nn

, which corresponds to the change in total execution time
when the sequence N1 . . . Nn−1 is extended by Nn (the case n = 1, when there
is no sequence to start with, is defined as zero):

εN1...Nn−1|Nn
= T (N1 . . . Nn) − T (N1 . . . Nn−1) − T (Nn) (4.4)

ε|N1 = 0 (4.5)
T (N1 . . . Nn) = T (N1 . . . Nn−1) + T (Nn) + εN1...Nn−1|Nn

(4.6)
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Figure 4.3: Pipeline overlap between nodes and its timing model

Proposition 4.1 δN1...Nn
= 0 ⇐⇒ εN1...Nn−1|Nn

= εN2...Nn−1|Nn

Proof: From Equation (4.4) together with Equation (4.2), we get

δN1...Nn
= εN1...Nn−1|Nn

− εN2...Nn−1|Nn

Proposition 4.1 follows immediately. �
From this, we can see that a timing effect δN1...Nn

occurs for a sequence of
nodes N1 . . . Nn when the execution of nodes N2 . . . Nn in the sequence N1 . . . Nn

is different from the execution of the nodes N2 . . . Nn starting with node N2.
This is the case when N1 has some effect that can propagate all the way to Nn.
A number of examples will be shown in the next section.

4.3 Hardware Background

In the following, we will illustrate how timing effects relate to the actual execu-
tion of instructions on some pipelined processors. The goal is to give an intuitive
understanding for the relation between the timing model and the behavior on
the hardware. Times are measured from the point in time where the first in-
struction enters the pipeline until the point where the last instruction exits the
pipeline.

4.3.1 Pairwise Timing Effects

Figure 4.3 illustrates the simple case for a pair of nodes where T (AB) < T (A) +
T (B). The overlap between the two timing graph nodes A and B is modeled by a
negative timing effect over AB. When executed in isolation, A has an execution
time of 7 cycles, and B of 5 cycles. However, the path AB only takes 10 cycles,
since A and B partially overlap. This makes the timing effect over the sequence
AB minus two cycles: δAB = −2.

It should be noted that the state of the pipeline when executing node B
following node A is different from the initial state used when executing B in
isolation. However, the effect this has on the execution time of node B is included
in the timing effect over AB, since it is caused by node A.

Figure 4.3 also illustrates that our model can handle the same hardware
timing effects as approaches using reservation tables to explicitly model the
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pipeline behavior [LBJ+95, HAM+99, SA00, CP01c]. In such models, each basic
block in the program is modeled by a reservation table similar to our pipeline
diagrams. These tables are pushed together as far as possible to model the
pipeline overlap between nodes. Thus, the timing resulting from a reservation
table model can be expressed in our model by simply using the length of the
reservation table for a node as the time of the node. The timing effect between
two nodes corresponds to how far two tables for successive nodes can be pushed
together.
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Figure 4.4: Pipeline overlap over three nodes and its timing model

4.3.2 Long Timing Effects

Timing effects over three nodes or more are sometimes needed to accurately
model the timing of instructions executing on a pipelined processor. Such ef-
fects not only affect the WCET estimate generated, but can also change the
construction of the longest path in a program [SEE01a].

Figure 4.4 shows an example where node B is completely overlapped by node
A, and where node C will also overlap with node A, since there is an instruction
in A that keeps executing past the end of B. The effect on the program timing of
this behavior is modeled using a negative timing effect over the sequence ABC,
as illustrated in Figure 4.4(b).

Figure 4.5 shows an example where a node causes a delay to a node that is
not an immediate successor. Node C uses floating point and gets delayed due
to the use of the floating point stage in node A, despite the presence of node B
between them (which does not use floating point). This case is modeled by a
positive timing effect for the sequence ABC.

Both the above examples are caused by long-running instructions, instruc-
tions using the pipeline stages in such a way that other instructions can keep
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Figure 4.5: Pipeline interference over three nodes and its timing model

executing and completing without being disturbed by the instruction. Thus,
a node containing such an instruction can run for a long time in parallel to
successive nodes.

For long-running instructions to be present, the completion (but not issue)
of instructions must be allowed to be performed out of order. A common case
is the use of a floating-point unit, since it usually uses a register bank different
from that of integer instructions, and thus there is no data dependence between
integer and floating-point instructions. For example, consider the MIPS R4000
[Hei94], where the integer and floating point pipelines execute in parallel1. Some
floating point instructions require up to 100 cycles for execution, making it
possible for long timing effects to appear due to integer instructions completing
their execution while the floating point unit is executing the long floating point
instruction.

Another case when long timing effects can appear is when a pipeline is
structured in such a way that data hazards can appear between non-adjacent
instructions. This can be the case if the stage that produces a required value
is not adjacent to the stage that requires it (otherwise, the effect would be
covered by a pairwise timing effect). One pipeline with this property is shown
in Figure 1.7. We assume that all values are written in the write back stage
W, and read in the register read stage RR. This means that an instruction can
be forced to wait for an instruction that comes several steps before it in the
instruction stream, as illustrated in Figure 4.6. Note that this type of effect
is quite rare, since most modern pipeline designs include “data forwarding”

1All instructions pass through the same instruction fetch and decode stages before splitting
into the floating point or integer pipeline.
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Figure 4.6: Long timing effect due to data hazard
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Figure 4.7: Second long timing effect in same sequence

features to reduce the potential stalls due to waiting for data (generated data
is made available before the write back stage of the pipeline).

If we extend the example in Figure 4.6, we can get another long timing effect
starting with the same initial node A. As shown in Figure 4.7, if we add another
node D to the sequence, we will get a negative timing effect over ABCD, where
we in effect regain the time lost in the data stall over ABC.

Note that even very simple pipelines can exhibit long timing effects. As
shown in Figure 4.8, the two nodes A and C form “complementary” pipeline dia-
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Figure 4.8: Long timing effect in a simple pipeline

grams, and thus can be pushed together very far, if the intermediate node B has
the right structure. The example is a little contrived, but the long instruction
fetch time at the start of node C will appear if some areas of memory are slower
than others, or if an instruction cache miss occurs.



50 Chapter 4. Timing Model



Chapter 5

Pipeline Model

To show the relationship between the timing model of Chapter 4 and actual
hardware, we need to have a formal model for reasoning about the pipeline be-
havior. This chapter introduces such a model, and proves a number of properties
of pipelines.

Note that the illustrations in this chapter use a number of different pipeline
organizations. For each illustration, we have strived to find a minimal pipeline
that allows us to illustrate a concept, in order to reduce the complexity of the
examples, which instead increases the number of different pipeline organizations.

5.1 Modeling Pipelines

We will start by giving a model for a single in-order pipeline, and then show how
the model can be generalized to multiple pipelines and more complex pipeline
organizations. The modeling technique is not intended to be used as a processor
simulator, only to describe the effects of pipelined execution. In particular,
for multiple pipelines we assume that it is decided which pipeline a certain
instruction uses, and that all data dependences have been discovered.

5.1.1 Single In-Order Pipelines

We use the following model of a processor pipeline: a processor pipeline consists
of n pipeline stages. Each instruction Ii is considered to be a sequence r1

i . . . rn
i

of resource requirements, where rj
i corresponds to the time the execution of the

instruction requires in stage j. Only one instruction can occupy a pipeline stage
at any particular point in time. Instructions are numbered 1 to m, all instruc-
tions will use all pipeline stages, and use them in the same order. Instructions
proceed to the next stage as soon as possible. Time is discrete and expressed in
clock cycles.

Proposition 5.1 T (Ii) =
∑n

j=1 rj
i for a certain instruction i.

51
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Figure 5.1: Constraint model of pipeline execution

Proof: Since an instruction has to progress through all stages to complete its
execution, the execution time is obviously the sum of the time spent in all the
stages. �

To model the timing behavior of a sequence of instructions I1 . . . Im, we use
constraints which express conditions on the points in time when instructions
enter pipeline stages. For an instruction Ii, let pj

i be the point in time at which
Ii enters the pipeline stage j. By convention, pn+1

i is the time at which the
instruction leaves the last stage of the pipeline. For example, Figure 5.1(a)
shows the points for the instruction A in a three-stage pipeline. p1

A is the point
where A enters the pipeline, and p4

A is the point at which it leaves the pipeline.

The constraints required to model the behavior of a basic pipeline are the
following:

pj+1
i ≥ pj

i + rj
i (1 ≤ i ≤ m, 1 ≤ j ≤ n) (5.1)

pj
i+1 ≥ pj+1

i (1 ≤ i < m, 1 ≤ j ≤ n) (5.2)

Equation (5.1) models the fact that an instruction cannot enter its next
stage before the current stage is completed, and Equation (5.2) models the fact
that the next instruction cannot enter a certain pipeline stage before the current
instruction has started its next stage (thus making sure that only one instruction
occupies a certain stage at each point in time). All constraints for a particular
sequence of instructions are gathered into a constraint system C.

We can graphically represent this constraint system as a weighted directed
acyclic graph where the nodes correspond to the points pj

i and the arrows cor-
respond to the constraints between the points. Each instruction Ii is drawn as
a column of points p1

i . . . pn+1
i , with the constraints from Equation (5.1) shown

as vertical arrows. The weight between pj
i and pj+1

i corresponds to rj
i . The

constraints from Equation (5.2) are drawn as diagonal arrows with no weight,
since they have weight zero. An example is shown in Figure 5.1(b) (we only
show some of the pn

i variables to reduce the clutter).
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Figure 5.2: Constraints for branches and data dependencs

5.1.2 Branch Instructions

Branch instructions potentially break the regular structure of the basic model
in Section 5.1.1, since they generate dependences between the end of the stage
where the branch is decided (and the target address of the branch computed) and
the fetch of the next instrution. Thus, a branch will generate a constraint from
some point in the branch instruction to the first point of the next instruction,
as illustrated in Figure 5.2(a).

If the branch is computed in stage j of instruction Ii, the constraint generated
is the following (since branch dependences always affect the following instruction
for an in-order pipeline):

p1
i+1 ≥ pj+1

i (5.3)

5.1.3 Data Dependences

We can also allow for data dependences like those illustrated in Figure 4.6.
A data dependence means that before instruction Ii can enter stage j, some
previous instruction Ik will have to complete stage l (since stage l computes
some data required in stage j). Thus, we get the constraint:

pj
i ≥ pl+1

k (5.4)

An example of an additional constraint due to a data depedence is shown in
Figure 5.2(b), as a long arrow with weight zero.

Note that a data-dependence constraint is only meaningful if it goes between
two points that are not otherwise transitively connected via the basic constraints
from Equation (5.1) and Equation (5.2). As shown in Figure 5.2(c), such a data
dependence will be subsumed by the regular constraints from Equation (5.2).

5.1.4 Multiple In-Order Pipelines

The pipeline model presented in Section 5.1.1 is realistic and corresponds to the
pipelines described as simple scalar pipelines in Section 1.7. We can extend the
model to the case of scalar and superscalar pipelines, i.e. pipelines that fork out
to multiple pipelines at some point. In this extended model, not all instructions
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Figure 5.3: Constraints for multiple pipelines

will use all stages, and thus not all instructions will have the same sets of points.
More precisely, each instruction will have points corresponding to their entry
into the pipeline (p1

i ), and points corresponding to the entry into each stage of
the pipeline that they actually use.

The constraint system equations can be reformulated for multiple pipelines
by replacing the increments for instruction and pipeline stage numbers. To
this end, we define the functions previ(i, j) and nexti(i, j) which report for
instruction Ii the previous and next instruction using pipeline stage j. We also
have the functions prevs(i, j) and nexts(i, j) that for a certain instruction Ii

and pipeline stage j reports the previous and next pipeline stage used by Ii.
Thus, for a certain point in the constraint system pj

i we get:

p
nexts(i,j)
i ≥ pj

i + rj
i (5.5)

p
prevs(i,j)
nexti(i,prevs(i,j)) ≥ pj

i (5.6)

Equation (5.5) corresponds to Equation (5.1), that an instruction needs to finish
one stage before progressing to the next stage. Equation (5.6) corresponds to
Equation (5.2), and forces an instruction to wait until the previous instruction
using a stage it needs has left it.

Note that to ensure an acyclic constraint system, we require that the pipeline
stages form an acyclic graph (which is always the case in practice), and that
instructions are processed in order. The processing in order is expressed as a
requirement on the previ(i, j) function:

previ(i, j) < i < nexti(i, j)

5.1.5 Multiple Pipelines With Joins

Figure 7.1 on page 81 shows that the pipeline of the NEC V850E has two
parallel pipelines with the potential for instructions to cross over from the
master pipeline to the additional pipeline between the EX and MEM stages. Such
flows could potentially cause problems. For example, an instruction executing
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in the path IF-ID-EX-MEM can collide with an instruction executing IF-ID-MEM
(the lower path), possibly creating cycles in the constraint graph.

However, the V850E avoids such problems by always letting the instruction
that entered the pipeline first proceed first. Thus, all constraints still only go
from instructions to following instructions, and we have a constraint system
which is still an acyclic graph. Note that this is true because the pipeline has
such a structure, and instructions execute in such a manner, that an instruction
going the shorter path via the lower ID will never overtake an instruction taking
the longer path via the upper ID and EX to MEM. At worst, the two instructions
will reach MEM simultaneously.

5.1.6 VLIW Pipelines

As explained in Section 1.7.4, in a VLIW machine, each instruction fetched
actually consists of a number of parallel operations, each destined for a single
special-purpose pipeline. After instruction fetch is complete, each such pipeline
will in generate a constraint system of its own, making a basic VLIW model
quite simple. Instruction fetch is handled by making sure that all operations
in the previous instruction have left the instruction fetch stage before the next
instruction can enter.

In many cases, the pipelines are not completely decoupled. If hardware in-
terlocks to protect data dependences are not used in order to simplify implemen-
tation [WB98, TI00], the VLIW instructions have to proceed in lock-step in the
pipeline: no operation in a VLIW instruction can be allowed to race ahead of the
other operations in the same instruction. An example is the total pipeline stop
caused by data load latencies on the Texas Instruments TMS320C64x [TI00,
Section 6.3.3.1]. This will generate a series of constraints in that an operation
in instruction Ii+1 cannot enter its next stage until all operations in Ii have
left their current stage. Note that it is easy to make a system more regular by
adding extra points in the constraint system that corresponds to the point in
time when an entire very-long instruction enters its next pipeline stage. This
also gives us one unique starting point for the constraint system.

5.1.7 Superscalar Pipelines

A concrete execution of a sequence of instructions in a superscalar pipeline
can be modeled using our constraint model. The common part of the pipeline
(typically, fetch and dispatch stages), where all instructions proceed in parallel,
can be modeled as single stages, with a high fanout from the last common stage
to the start of the execution pipelines.

However, most of the properties proven in Section 5.2 rely on the fact that
adding a single instruction I1 in front of a sequence of instructions I2 . . . Im does
not change the structure of the constraint system for I2 . . . Im. But the dynamic
grouping of instructions in superscalars will probably make the constraints for
I2 . . . Im on their own different from the constraints for I2 . . . Im that is part of



56 Chapter 5. Pipeline Model

1������
	���� ���
����
��
������
�����
����	 0����
	����

�����
���%

���������
������ ����
��������
��� 	�������
������"�

�����
���#

�����
���$

Figure 5.4: Example of potentially infinite state propagation in superscalar

I1 . . . Im, since the instruction grouping starting with I1 can be different from
that starting with I2.

The superscalar instruction grouping is to some extent orthogonal to the
basic pipeline behavior, and it can cause potentially infinite propagation of state
in the pipeline. This is illustrated in Figure 5.4: assuming a processor that can
issue three instructions per clock cycle, the scenarios presented show that over
a series of nodes where the scheduler manages to issue three instructions per
cycle, the initial state of the scheduler affects the final state. In “scenario 1”,
the first two instructions in the sequence are grouped with a single preceding
instruction, and at the end of the sequence there is one free slot in the final
group. In “scenario 2”, the first instruction is grouped with two preceding
instructions, and the last instruction group is completely filled, while “scenario
3” illustrates that yet another final state is obtained if the first node starts a
new instruction group.

5.2 Properties of Pipelines

This section uses the pipeline model presented above to prove a number of
properties about pipelines that are of relevance to worst-case execution time
analysis. We start by defining some useful concepts, and then go on to prove
various properties.

Note that the results shown here are only applicable if the hardware model
used measures time like we do in the pipeline model, that is, from the time the
first instruction enters the pipeline to the time the last instruction exits the
pipeline.

5.2.1 Useful Concepts

A perfect instruction Ii is an instruction that spends only one cycle in each
stage (all rj

i = 1).
A long constraint is a constraint from a point in instruction Ii to a point

in instruction Ij , where j > i + 1, that is, a constraint between two non-
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Figure 5.5: Pipeline execution, constraint solution, and critical path for the
example in Figure 5.1

adjacent instructions. Data dependences and parallel pipelines can cause long
constraints.

The endpoints of a constraint graph are the points with no outgoing arrows.
Figure 5.3 shows an example constraint system for a multiple-pipeline processor
with the endpoints marked.

Final parallelism occurs between an instruction I1 and a sequence of follow-
ing instructions I2 . . . Im when there is no constraint from the last point of I1

to any instruction I2 . . . Im, i.e., the last point of I1 is an endpoint. An example
is given in Figure 5.3, where instruction A is finally parallel to BCD (but not to
the full sequence BCDEF, since E also uses the floating point unit).

A path P in the constraint system is a sequence of points pj1
i1

, pj2
i2

, pj3
i3

. . . such
that for any two successive points pjk

ik
, p

jk+1
ik+1

in P , there is a constraint (arrow)

from pjk

ik
to p

jk+1
ik+1

.
The length(P ) of a path P is the sum of the weights of all arrows in P .

Since only arrows corresponding to Equation (5.1) have weight, it is the sum of
all rj

i values along the path.
We define paths(pj

i , p
l
k) to be the set of all paths from the point pj

i to the
point pl

k.
A point pl

k in the constraint graph can be reached from point pj
i if there is

a path in the constraint graph from pj
i to pl

k.
The distance between two points pj

i and pl
k in the constraint graph is denoted

by D(pj
i , p

l
k). The distance is defined as the maximal length of all possible paths

from pj
i to pl

k (note that the distance can only be constructed if pl
k can be reached

from pj
i ):

D(pj
i , p

l
k) = max

P∈paths(pj
i ,pl

k)
(length(P )) (5.7)

A critical path CP is a path between two points pj
i and pl

k such that
D(pj

i , p
l
k) = length(CP ), that is, a path of maximal length. An example of

a critical path is shown in Figure 5.5(c). Note that there may exist several
critical paths between two points in a constraint system.
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Proposition 5.2 The execution time T (I1 . . . Im) of a sequence of instructions
I1 . . . Im forming a constraint system C is the maximal distance from p1

1 to some
point in C:

T (I1 . . . Im) = max(D(p1
1, p

j
i )), (1 ≤ i ≤ m, 1 ≤ j ≤ n)

Proof: We will start by proving that for each point pj
i , the distance D(p1

1, p
j
i )

corresponds to the time at which instruction Ii enters stage j (if we assume that
the first instruction enters the pipeline at time zero). We perform the proof by
induction over the maximal number of arrows in any path from p1

1 to pj
i .

Base case: For the point p1
1, the statement is trivially true.

Inductive case: Consider a point pj
i . It has arrows from a number of points

pl
k, at which, by the induction hypothesis, D(p1

1, p
l
k) is the time when instruction

Ik enters stage l of the pipeline. Since all arrows correspond to ≥-constraints,
D(p1

1, p
j
i ) will be the maximum of the incoming arrows (including their weight).

Considering the execution of instructions in a real processor pipeline, an
instruction Ii will enter stage j at the first point in time that the following
constraints are true: Ii has completed its own previous stage, stage j has been
cleared by the previous occupant, and all data required has been delivered.

Since the distance is formed by taking the largest value of the preceding
points (plus the weight of arrow, where applicable), D(p1

1, p
j
i ) corresponds to

the time that instruction Ii enters stage j of the pipeline, and the inductive
case is proven.

Hence, the distance D(p1
1, p

last
i ) to the last point plast

i of an instruction Ii

corresponds to the time that Ii leaves the pipeline, and the point plast
i with the

highest value D(p1
1, p

last
i ) corresponds to the point in time when all instructions

have left the pipeline. �
For single in-order pipelines, there is only one endpoint for a sequence of

instructions I1 . . . Im, pn+1
m , and the execution time is D(p1

1, p
n+1
m ). The relation

between execution time in the pipeline and the distances in the constraint system
is illustrated in Figure 5.5(a) and (b).

It is easy to see that Proposition 5.1 follows from Proposition 5.2 in the
special case that m = 1. There is only one path from p1

i to pn+1
i , and the distance

D(p1
i , p

n+1
i ) is obviously the sum of the resource times rj

i for the instruction.
We also note that the constraint system can be considered a scheduling

problem in an acyclic graph, and in scheduling theory it is well-known that an
ASAP (as-soon-as-possible) schedule always gives an the optimal solution for
such problems. It also known that for such graphs, the total execution time is
the length of the critical path, which fits nicely with our concepts and the proof
of Proposition 5.2.

A pipeline stall can be defined as shown in Equation (5.8):

D(p1
1, p

j
i ) > D(p1

1, p
prevs(i,j)
i ) + r

prevs(i,j)
i (5.8)

That is, whenever the distance D(p1
1, p

j
i ) is greater than the time obtained from

the previous stage of the same instruction. The instruction would like to con-
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tinue with its next pipeline stage, but is prevented from doing so since it has to
wait for an earlier instruction to vacate the next pipeline stage or to complete
a data dependence. This covers both data hazards and structural hazards.

An instruction Ii stalls another instruction Ik if there is a stall at a point pl
k

in Ik, and there is an arrow from a point pj
i in Ii such that it is the time value

propagated along the arrow gives pl
k its value (the greatest of all predecessor

times). In pipeline terms, the instruction Ii blocks the instruction Ik from
entering its next stage due to a structural or data hazard.

5.2.2 Effects Between Neighbors

Using this model of pipelined execution, only negative timing effects can occur
between two neighboring instructions I1 and I2, as shown in Theorem 5.1.

Theorem 5.1 For any two successive instructions I1 and I2, the timing effect
δI1I2 ≤ 0.

Proof: In the worst case, the critical path in the constraint system C for I1

and I2 will include all rj
i values, and thus T (I1I2) ≤ ∑n

j=1 rj
1 +

∑n
j=1 rj

2. By
Proposition 5.1, T (I1) =

∑n
j=1 rj

1 and T (I2) =
∑n

j=1 rj
2. Thus, T (I1I2) ≤

T (I1) + T (I2), and by Equation (4.2), δI1I2 ≤ 0. �

5.2.3 Pipelines Without Long Timing Effects

There are some classes of single pipelines where no long timing effects can occur
at all. Theorem 5.2 shows the result for an unrealistic perfect pipeline where
each instruction takes a single cycle in each stage, and no data dependences
occur. Unfortunately, such pipelines are rather rare in real life.

By allowing a single pipeline stage to take more time, we get a pipeline
like that of the ARM7 [ARM95], where instructions progress through a few
single-cycle pipeline stages for instruction fetch and decoding before entering
an execute stage where several cycles can be spent. Theorem 5.3 shows that no
long timing effects can occur for such a pipeline. In the common case that the
execution stage is the stage with variable duration (as on the ARM7), Theo-
rem 5.3 demands that single-cycle instruction memory is used and that all data
dependences are between the variable-length stages of adjacent instructions.
Otherwise, long timing effects like those shown in Figure 4.6 and Figure 4.8
could conceivably occur.

Theorem 5.2 For a single pipeline with n stages where every instruction is
perfect (every instruction uses each pipeline stage for precisely a single cycle),
with no data dependences or branch dependences, no long timing effects can
occur.
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Proof: For such a pipeline with n stages, the time to execute m instructions is
n+m−1, since the first instruction takes n cycles and each following instruction
adds a single clock cycle of execution time. In this case, we get the following
(assuming a single instruction in each node):

T (I1 . . . Im) = n + m − 1
tIi

= n

δI1I2 = T (N1N2) − T (N1) − T (N2) + T ()
= n + 2 − 1 − (n + 1 − 1) − (n + 1 − 1) + 0 = −(n − 1)

δI1...Im,m≥3 = T (I1 . . . Im) − T (I1 . . . Im−1) − T (I2 . . . Im) + T (I2 . . . Im−1)
= n + m − 1 − (n + m − 2) − (n + m − 2) + n + m − 3 = 0

Thus, no long timing effects can occur. �

Theorem 5.3 For a single pipeline with n stages, all of which take one cycle
except for stage v that takes one or more cycles, no long timing effects can occur.

Proof: Assume that the execution time of an instruction Ii in the variable-length
stage is rv

i . Then, the execution time of a single instruction Ii is n−1+rv
i . The

execution time for a sequence of instructions I1 . . . Im is n − 1 + rv
1 + · · · + rv

m.
We get the following calculations:

T (I1 . . . Im) = n − 1 + rv
1 + · · · + rv

m

tI1 = n − 1 + rv
1

δI1I2 = T (I1I2) − T (I1) − T (I2) + T ()
= n − 1 + rv

1 + rv
2 − (n − 1 + rv

1) − (n − 1 + rv
2) + 0 = −(n − 1)

δI1...Im,m≥3 = T (I1 . . . Im) − T (I1 . . . Im−1) − T (I2 . . . Im) + T (I2 . . . Im−1)
= n − 1 + rv

1 + . . . + rv
m − (n − 1 + rv

1 + . . . + rv
m−1)

− (n − 1 + rv
2 + . . . + rv

m) + (n − 1 + rv
2 + . . . + rv

m−1) = 0

Thus, no long timing effects can occur. �
If we look at the critical paths for the case in Theorem 5.3, we note that a

critical path will always follow the v stage.

5.2.4 Pipelines Without Positive Long Timing Effects

For single in-order pipelines with branches and data dependences between adja-
cent instructions, no positive long timing effects can appear. This result means
that we get a safe overestimation of the execution time of a program by only
considering timing effects for sequences shorter than a certain length l. By in-
creasing l, we only get better estimates. As shown in Section 5.2.6, in general
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Figure 5.6: Illustrating the principles of Theorem 5.4

we cannot assume that there is some upper bound on the maximal length of
sequences that can cause negative timing effects.

The proof is performed in two stages. Theorem 5.4 shows a basic result for
a pipeline model built from Equation (5.1) and Equation (5.2). Theorem 5.5
shows the result for the more complex case also including branch dependences
(from Equation (5.3)), and data dependences between adjacent instructions
(from Equation (5.4)).

Note that the applicability of this result is limited to the case of single
pipelines with data depedences only between adjacent instructions. If we allow
data dependences between non-adjacent instructions, we can get positive timing
effects as shown in Figure 4.6. If we allow multiple pipelines, positive timing
effects as shown in Figure 4.5 can occur.

Theorem 5.4 For a sequence of instructions I1 . . . Im,m ≥ 2, executing on a
single in-order pipeline without branch dependences or data dependences,
δI1...Im

≤ 0.

Proof: Consider the relation between the execution times and the constraint
system formed by I1 . . . Im. As shown in Figure 5.6(a), we have four points:

� m, corresponding to the start of instruction I1

� n, corresponding to the start of I2

� n′, corresponding to the end of Im−1

� m′, corresponding to the end of Im

The distances between these points form the execution times involved in the
δI1...Im

calculation as follows:

T (I1 . . . Im) = D(m,m′) = length(CP (m,m′))
T (I2 . . . Im−1) = D(n, n′) = length(CP (n, n′))
T (I1 . . . Im−1) = D(m,n′) = length(CP (m,n′))

T (I2 . . . Im) = D(n′,m) = length(CP (n,m′))
δI1...Im

= D(m,m′) + D(n, n′) − D(m,n′) − D(n,m′)

We must show that D(m,m′) + D(n, n′) ≤ D(m,n′) + D(n,m′). We select one
of the critical paths from n to n′ (CP (n, n′)), which is shown as the solid-drawn
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Figure 5.7: Illustrating the principles of Theorem 5.5

line in Figure 5.6(a). We also select one of the critical paths from m to m′

(CP (m,m′)), shown as a dashed line Figure 5.6(a).
The crucial fact is that CP (n, n′) and CP (m,m′) cross in a point q (the

location of this point depends on the structure of the constraint system). This
point divides CP (n, n′) into two paths segments, P (n, q) with length b = D(n, q)
and P (q, n′) with length c = D(q, n′). Likewise, CP (m,m′) is divided into two
segments with lengths a = D(m, q) and d = D(q,m′).

We now need to determine D(m,n′) and D(n,m′). Using the two path
segments P (m, q) and P (q, n′), we construct a path from m to n′. Since we can
get from m to n′ in this manner, any critical path CP (m,n′) must be as long
or longer than this path. This gives that D(m,n′) ≥ a+ c. The same reasoning
can be applied to paths from n to m′, obtaining D(n,m′) ≥ b + d

Thus, we get the following distances and thereby execution times:

D(m,m′) = a + d

D(n, n′) = b + c

D(m,n′) ≥ a + c

D(n,m′) ≥ b + d

Since D(m,n′) + D(n,m′) ≥ D(m,m′) + D(n, n′), we get δI1...Im
≤ 0. �

Theorem 5.5 For a sequence of instructions I1 . . . Im,m ≥ 2, executing on a
single in-order pipeline with branch dependences and data dependences between
adjacent instructions, δI1...Im

≤ 0.

Proof: To prove this theorem, we rely on the construction in Theorem 5.4, and
show that it can still be achieved in this case.

For the construction to be invalidated, we must be able to find two critical
paths CP (n, n′) and CP (m,m′) such that no common point q can be found.
For this to occur, the paths must cross without sharing a common point in the
constraint system. This can only happen at the new arrows introduced by the
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data dependences between adjacent instructions and the branch dependences,
since they cross over the basic arrows of the constraint system (as illustrated by
the arrow from d to d′ in Figure 5.7).

These crossing arrows do not allow critical paths to cross without sharing a
node. Consider the case in Figure 5.7(a), where the arrow from c to c′ crosses
the arrow from d to d′. However, the arrow from c to c′ cannot be on a longest
path (critical path), since if it was, that path could be made longer simply by
going from c to d to d′ to c′, and the critical paths would then share a number
of nodes.

Hence, we cannot construct CP (n, n′) and CP (m,m′) in Figure 5.6 such that
no common point q is present. Thus Theorem 5.4 holds also in the presence of
branches and data dependences between adjacent instructions. �

Note that if we have data dependences across more than two instructions,
the case in Figure 5.7(b) can occur, and the two paths can cross without sharing
a node.

5.2.5 Source of Long Timing Effects

A long timing effect for a sequence of instructions I1 . . . Im,m ≥ 3, occurs
whenever I1 has the effect of disturbing the execution in such a way that the
execution of the instructions I2 . . . Im is different compared to if I1 had not
been present. This occurs precisely when I1 causes a stall to some instruction
following it, which is proven in Theorem 5.6. The theorem gives a necessary
condition for the appearance of timing effects, but not a sufficient condition. It
is possible that no timing effect materializes at all, even though a stall is present
(as illustrated in Figure 5.13). Theorem 5.6 does not indicate whether the effect
that could appear is positive or negative.

Proposition 5.3 If an instruction I1 does not stall any succeeding instructions
I2 . . . Im, then D(p1

1, p
j
i ) = D(p1

2, p
j
i ) + r1

1.

Proof: Since there is no stall from I1, the maximum time for a point in I2 . . . Im

is never going to come across an arrow from I1, except for the case of p1
2, since

the only incoming arrow is the one from p2
1 (it has to wait for instruction I1

to clear the first stage of the pipeline before entering). Thus, all longest paths
from p1

1 can be constructed by first going to p2
1, and then to p1

2. The extra time
required to go from p1

1 is then just r1
1. �

Theorem 5.6 A timing effect δI1...Im
�= 0 can occur for a sequence of instruc-

tions I1 . . . Im,m ≥ 3 only if I1 stalls the execution of some instruction in
I2 . . . Im, or I1 is finally parallel to I2 . . . Im.

Proof: In the case that I1 is finally parallel to I2 . . . Im, a timing effect can occur
in the fashion illustrated in Figure 4.4.
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Figure 5.8: Example of difference between stalled and non-stalled execution

In the case that the instruction is not finally parallel, we use Proposition 4.1,
which gives us that δI1...Im

= 0 whenever εN1...Nn−1|Nn
= εN2...Nn−1|Nn

. By
Equation (4.4), we get the following:

εI1...Im−1|Im
− εI2...Im−1|Im

= T (I1 . . . Im) − T (I1 . . . Im−1)

− T (I2 . . . Im) + T (I2 . . . Im−1)

By Proposition 5.2, we know that the execution time for each sequence is the
maximum of the distance from the start point of the sequence to the endpoints
in the sequence. Since the case where I1 is finally parallel has been handled
separately, we know that there are no endpoints in I1. From Proposition 5.3,
we can deduce that the same point (or set of points with equal values) will be
maximal both when counting an execution time from I1 and I2, since the dis-
tances D(p1

2, p
j
i ) are a constant offset from the distances D(p1

1, p
j
i ). All together,

we get the following:

T (I1 . . . Im) = max(q ∈ I2 . . . Im : D(p1
1, q)) = a

T (I1 . . . Im−1) = max(q ∈ I2 . . . Im−1 : D(p1
1, q)) = b

T (I2 . . . Im) = max(q ∈ I2 . . . Im : D(p1
2, q)) = a + r1

1

T (I1 . . . Im−1) = max(q ∈ I2 . . . Im−1 : D(p1
2, q)) = b + r1

1

εI1...Im−1|Im
− εI2...Im−1|Im

= a − b − a − r1
1 + b + r1

1 = 0

�
Thus we have shown that long timing effects only occur if the first instruction

of a sequence stalls some successor instruction. An illustration of the idea is
shown in Figure 5.8, where Figure 5.8(a) shows a case with a stall from A to B,
and Figure 5.8(b) the same case without a disturbance from A.

5.2.6 Upper Bound on Timing Effects

Considering the safety and efficiency of the analysis, it would be very nice if we
could provide a bound on the longest sequence of instructions that can generate
a timing effect. Unfortunately, no such bound exists in the general case. As
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shown in Figure 5.9 and Figure 5.10, both negative and positive long timing
effects can propagate for unbounded distances.

The cases shown have been carefully constructed, and should be very hard to
encounter in real life. But we still need to handle the possibility of unbounded
long timing effects in some manner, if we want to create a truly safe analysis.
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Figure 5.9: Example of an unbounded negative timing effect

Figure 5.9 shows a case where any number of instructions like B can be
inserted between the instructions A and C, and we get a timing effect when C
is executed. To see this, consider the execution times of the sequences, with n
denoting the number of times instruction B is inserted between A and C:

T (AB . . . BC) = 7 + 3n
T (AB . . . B) = 6 + 3n
T (B . . . BC) = 6 + 3n
T (B . . . B) = 4 + 3n

δA...C = 7 + 3n − 6 + 3n − 6 + 3n + 4 + 3n = −1

Thus, we can have a timing effect over an arbitrary distance in the timing graph.
The effect results from the fact that the pipeline stall caused by A to the first
of the B instructions when waiting to enter stage M propagates via arbitrarily
long sequences of B instructions, and that no such effect is present when only
instructions like B are executed. C then causes this disturbance to surface as
a timing effect. Note that the timing effects for the subsequences AB . . . B are
always zero.

Positive Long Timing Effects Really spoiling the party, the example in
Figure 5.10 demonstrates that due to data dependences, we can get a positive
timing effect after an arbitrary sequence of instructions. There is a data depen-
dence between instructions A and C that causes a long constraint to be present.
After an arbitary number of instrutions D, we get a positive timing effect when
instruction E is added. From Figure 5.10(a) and Figure 5.10(b) we get the
following execution times for the sequences:
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Figure 5.10: Example of an unbounded positive timing effect

T (ABCD . . . DE) = 14 + 2n
T (ABCD . . . D) = 12 + 2n
T (BCD . . . DE) = 11 + 2n
T (BCD . . . D) = 10 + 2n

δA...C = 14 + 2n − 12 − 2n − 11 − 2n + 10 + 2n = +1

Note that in this example, we also have δABC = −1 and δABCD...D = 0. Thus,
the positive timing effect occurs after a number of zero timing effects.

Looking at the constraint graph for the start of the example, as illustrated
in Figure 5.10(c), we see the cause of this unbounded timing effect. The data
dependence allows for the appearance of two critical paths in the constraint
graph with equal length. When instruction E is added at the end however, the
top critical path becomes the only critical path, and the timing effect of the
data dependence materializes.

Compared to the construction in Theorem 5.4, we note that the paths from
the beginning of instruction A and instruction B never intersect, and thus there
is no point q. This is shown in Figure 5.10(c).

5.2.7 Absence of Timing Anomalies

Lundqvist and Stenström [LS99b] introduced the concept of a timing anomaly
in WCET analysis. Given a sequence of instructions I1 . . . Im with execution
time a = T (I1 . . . Im), if we change the execution time of the first instruction,
we get a new execution time b = T (I ′1 . . . Im) (with I ′1 different from I ′1). The
change in overall execution time is d = b−a. If the change to I1 was an increase
with k cycles, we have an anomaly if d < 0 or d > k. If the change to I1 was
a decrease by k cycles, we have an anomaly if d > 0 or d < −k. Note that
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this property was stated without considering individual pipeline stages, and we
translate it to our more detailed model by assuming that precisely one pipeline
stage takes longer time for I ′1 compared to I1.

By example, Lundqvist and Stenström demonstrated that out-of-order pro-
cessors can suffer from timing anomalies. Here, we show that for pipelines that
can be modeled by our constraint systems, such effects cannot occur.

Theorem 5.7 For in-order pipelines, no timing anomalies can appear when we
increase the execution time of an instruction.

Proof: The original execution time for I1 . . . Im corresponds to the longest path
in a constraint system C1. We increase the execution time by increasing the
time for I1 to complete one of its stages, obtaining a new constraint system C2,
where some rj

1 is bigger than in C1.
The new execution time for I1 . . . Im corresponds to some critical path in

constraint system C2. If the arrow with rj
1 was on a critical path before, the

execution time will increase by k cycles, d = k. If it was not on the critical path
before, and now is included, the time will increase by at most k. If it is not on
the critical path of either C1 and C2, d = 0. Thus, 0 ≤ d ≤ k, and no timing
anomaly can appear. �

Theorem 5.8 For in-order pipelines, no timing anomalies can appear when we
decrease the execution time of an instruction.

Proof: We assume the same setup as for the proof of Theorem 5.7, except that
rj
1 is now smaller in C2 than in C1. If the arrow with rj

1 is not on a critical path
in C1, it cannot be so in C2 either, and the execution time does not change.
If the arrow is on the critical path in C1 and still is in C2, the execution time
has decreased by k cycles. If the arrow is on a critical path in C1 and not on a
critical path in C2, the execution time has decreased by at most k cycles. Thus,
−k ≤ d ≤ 0, and no timing anomaly appears. �

5.2.8 Stabilizing the Pipeline State

As shown in Section 5.2.6, feeding an arbitrary number of instructions through
a pipeline does not guarantee that all timing effects from an instruction I1 have
been observed. However, Theorem 5.9 demonstrates that by sending a number
of perfect instructions through a pipeline, it is possible to construct a form of
barrier, across which no long timing effects can occur.

A consequence of Theorem 5.9 is that if we want to measure the execution
time of a sequence of code, after executing some unknown sequence of code,
inserting a number of NOP instructions allows us to reach a perfect pipeline
state, and thus we can measure the execution time without worrying about the
initial state causing unexpected delays (this method was used in the validation
of our V850E model, see Section 8.2.1).
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Theorem 5.9 For a single in-order pipeline with n stages and allowing data
dependences, no timing effects can appear past a sequence of n perfect instruc-
tions that have no incoming data dependences (for example, a sequence of NOP
instructions).

Proof: Due to stalls and data dependences in preceding instructions, the points
p1

i . . . pn+1
i of the last instruction Ii before the sequence of perfect instructions

Ii+1 . . . Ii+n will have different values a1 . . . an+1. Due to the constraints Equa-
tion (5.1), an+1 ≥ an ≥ . . . ≥ a1.

In the worst case (which is also the expected case, unless some rj
i = 0),

an+1 > an > . . . > a1. Now, pn
i+1 = an+1, as this is the biggest value it can

obtain considering Equation (5.1) and Equation (5.2) (since rj
pi

= 1). For Ii+k,
pn+1−i

i+k = an+1, and thus after at most n perfect instructions, p1
i+n = an+1.

3

3

3

3

3

3

3

3

3

�� 



%�


%�


%�

���
����
��
�������
��	��
�����	

1�	��
�����
���
	
�)���
��
���
	����	

���������
��	��
�����
	��
����

��

��

��

Figure 5.11: Example of cleaning the pipeline with perfect instructions

From p1
i+n, with D(p1

1, p
1
i+n = b, when distances are calculated we get values

b, b + 1, . . . , b + n. This provides a perfect boundary that can cause no stalls to
the next instruction, and by Theorem 5.6, there can then be no timing effects
from Ii+n onwards. The principle is illustrated in Figure 5.11. �

5.2.9 Properties that are not True

During the course of our investigation of pipeline properties, some properties
that would have been very useful and helpful for constructing safe WCET anal-
ysis methods were formulated and shown to be false. We present the most
important false properties here, so that others don’t have to repeat the same
mistakes.

One Positive Timing Effect Per Disturbance As shown in Figure 5.12, a
single stall from instruction A to instruction C (the stall is caused by instruction
C waiting to enter pipeline stage F, which is occupied by instruction A) causes
positive long timing effects for both the sequences ABC and ABCDDE. This example
indicates that a single disturbance can give rise to more than one positive long
timing effect. In the example, we assume a pipeline with a main path IF-ID-EX-
M-W, and a path for floating point instructions of IF-F.
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Figure 5.12: Example of double positive timing effect
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Figure 5.13: Example of no long timing effect despite pipeline interference

Parallel Pipeline Interference Must Cause a Positive Timing Effect
When an instruction executing in one parallel pipeline interferes with another
instruction in the same pipeline across a series of intermediate instructions that
execute in some other pipeline (like the cases shown in Figure 5.12 and Fig-
ure 4.5), the result is not necessarily a positive timing effect. Depending on the
time required for the intermediate instructions, the long timing effect might not
materialize at all, as shown for example in Figure 5.13.

5.3 Constructing a Safe Timing Model

Our approach to low-level timing analysis is based on using general-purpose
cycle-accurate simulators or actual hardware to generate the timing model for
a program, as discussed in Chapter 4 and Chapter 6. The advantages of this
approach is that retargeting to a new processor is very quick since no special-
purpose model has to be constructed, and that the model potentially is exact.
The disadvantage is that it is harder to ensure the safety of the analysis, since
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we cannot inspect the internal state of the pipeline and thus cannot precisely
know if there are long timing effects waiting to happen.

The core problem to be solved for the analysis presented in Chapter 6 is to
determine when a sequence of instructions starting from a certain instruction
I1 can cause more timing effects. If we are sure that I1 cannot cause any more
(positive) timing effects, we do not need to investigate longer sequences.

An easy way out is to reduce the precision by using a safe model, as discussed
in Section 5.4.1 below. However, even precise models can be used safely in some
circumstances.

5.3.1 Well-Behaved Single Pipelines

As shown in Theorem 5.5, if data dependences only appear between neighboring
instructions, no positive timing effects can occur in a single pipeline. For such
a pipeline, any timing model is safe, and analyzing longer sequences will just
yield a tighter WCET estimate.

If all data dependences in a processor only reach from a stage j to its prede-
cessor stage j−1, no data dependences can occur between non-adjacent instruc-
tions. This is thanks to the fact that since the dependence goes at most two
points back in the pipeline (from point pj+1

i to pj−1
i+1 ), all dependences beyond

the non-adjacent instructions will be subsumed by the regular constraints (as
illustrated in Figure 5.2(c)).

In practice, this is a rather common case, since most pipelines have data
forwarding paths [HP96] that avoid most data dependences, and in particular
the long data dependence used in the example in Figure 1.7. For a pipeline
like Figure 1.7 with full forwarding, data dependences only result from memory
load instructions (that necessarily generate their data in the MEM stage) loading
data that is needed by an immediately following arithmetic instructions (which
is waiting to enter the EX stage).

Examples of processors with pipelines exhibiting this nice behavior are the
ARM7 [ARM95] and ARM9 [ARM00b], NEC V850 [NEC95] (not the V850E),
Hitachi SH7700 [Hit95], and Infineon C167 [Inf01].

5.4 Safety of Other WCET Analysis Methods

Although the discussion in this chapter uses the timing model in Chapter 4, the
results are applicable to all WCET analysis methods. The occurrence of a long
timing effect from an instruction I1 to some later instruction Im (δI1...Im

�= 0
in our model) indicates that the execution of I1 in the processor pipeline causes
a delay or speedup for instruction Im. All pipeline analysis methods have to
account for such effects in some way, even if they do not use our pipeline timing
model.
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Figure 5.14: Pairwise conservative model of the scenario in Figure 4.8

5.4.1 Pairwise Conservative Analysis

Even if a certain pipeline structure (processor) is subject to long timing effects,
it might be possible to construct a model of it that is not subject to long
timing effects. Such a model would overestimate the execution times when long
timing effects could occur, ignoring the potential speedup from long negative
timing effects and taking the penalty from long positive timing effects early.
The measurements discussed in Section 9.5.1 give an indication of the precision
that could be lost if long timing effects are thus overapproximated.

One way to obtain a safe model is to only model the effect between pairs of
adjacent instructions, and make sure not to model the potential speedup from
overlap across more than pairs of instructions. In essence, this means working
with “rigid” basic block models, as illustrated in Figure 5.14: the pipeline shape
of all nodes is maintained, and thus the real-world overlap between A and C is
not modeled, leading to an overall pessimistic (but safe) execution time for the
sequence ABC of 15 cycles.

For parallel pipelines, we need to follow the rules of Lim et al. [LBJ+95],
where adding a new instruction to a sequence of instructions always adds at
least one cycle (otherwise, we could get long timing effects). Figure 5.15 shows
how the case in Figure 4.5 would be modeled: node A would not be allowed
to completely overlap node B (as shown for the sequence AB), which makes the
timing effect between the nodes minus four instead of minus five. Thus, the
positive timing effect of the interference between A and C is taken early, on the
edge between A and B, which is safe but pessimistic (ideally, the effect should
only be counted when all the nodes ABC are executed in sequence, not when only
AB are executed). Such models will also miss the speedup observed in Figure 4.6.

If a processor has instructions that can execute for quite a long time in
parallel to other instructions, such a pairwise model is likely to give very high
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Figure 5.15: Conservative model of the case in Figure 4.5

overestimations. This is due to the fact that the overlap between a long-running
instruction and the instructions or basic blocks after the immediate successor
cannot be accounted for.

The safety of these models using rigid instructions can be derived from The-
orem 5.6. Since an instruction is not allowed to change its shape, no stalls will
occur, and thus no long timing effects will happen.

Note that our timing model and the timing analysis presented in Chapter 6
can use any hardware model, including a safe model like those presented here,
and thus we can get a safe WCET analysis at the cost of some precision.

Data dependences between non-adjacent instructions are still a cause for
concern for the pairwise models, since they can cause stalls that cannot be
discovered without bringing the two instructions involved in the dependence
together.

In the simplest case, pairwise models do not maintain an approximation of
the pipeline state, only a number of cycles per instruction. Examples of this type
of model are our ARM9 model described in Section 7.2, the C167 model created
by Atanassov et al. [AKP01] (see Section 8.2.3), and the execution time model
for Java byte codes by Bate et al. [BBMP00]. The C167 model in particular has
been validated to be safe visavi the hardware, and is documented as sometimes
overestimating the execution time [AKP01]. In these particular examples, no
long data dependences can occur, and the analysis is thus safe.

A safe model incorporating a detailed pipeline model is the pairwise reserva-
tion-table approach used by Lim et al. [LBJ+95] and Colin and Puaut [CP01c].
Lim et al. note that they handle data dependences, but do not discuss the details
of the modeling.

The approach by Stappert and Altenbernd [SA00] uses reservation tables on
a basic-block level to model an out-of-order superscalar PowerPC 604 processor.
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Only pairs of basic blocks are considered, and if the reservation tables and
concatenation functions used are safe, this could result in a safe analysis. Due
to the more complex hardware modeled, we cannot determine whether the model
is actually safe or not (and as noted in Chapter 8, it is very hard to build an
accurate model for a processor as complex as the PowerPC 604).

We also like to point out that building safe models for WCET estimation has
the small drawback that another hardware model has to be defined in order to
perform BCET analysis. A model that is safe for WCET analysis is by necessity
unsafe for BCET analysis, since the WCET model overestimates the execution
time in cases of uncertainty, while a BCET model would need to underestimate
the time in such cases.

5.4.2 Path-Based Low-Level Analysis

A path-based low-level analysis examines complete paths through some section
of a program, instead of just pairs of basic blocks. A path can be formed across
multiple basic blocks, and thus timing effects across several instructions will be
accurately accounted for within each path. The disadvantage of this approach
is that the number of possible execution paths can potentially be very large
for complex code. Note the distinction between a path-based calculation and a
path-based low-level analysis. For example, it is posssible to use a path-based
low-level analysis with an IPET calculation.

In most cases, paths will not extend across the entire program execution, and
thus at some point, two paths P1 and P2 have to be appended to each other to
compute the execution time for larger sections of a program. Long timing effects
between instructions in P1 and P2 will not be accounted for, since no analysis is
performed across the boundary between P1 and P2. Thus, the append must be
performed in a safe manner. If the pipeline used has the potential for positive
long timing effects, we must use an empty pipeline assumption at the append
point. Unfortunately, the result can be a rather large loss in precision, since we
cannot account for the pipeline overlap between the successive paths. If only
negative long timing effects can occur, some estimate of the potential overlap
between P1 and P2 should be performed in order to increase precision.

At end of a section analyzed using complete paths (like the end of a loop
body), the pipeline state of all the possible paths for the section have to be
merged, before the merged state is used to append to the path for the following
section. At such merge points, it is critical that potential long timing effects are
taken into account, or else we risk underestimating the WCET.

The pipeline analysis designed by Healy et al. [HAM+99] is a path-based
approach that uses reservation tables concatenated along paths. They have
seen pipeline effects across several instructions in their experiments, due to the
slow floating point unit of the MicroSPARC I, which would allow as many as fifty
integer instructions to execute in parallel to a single floating point instruction.
When appending paths, they compute the overlap, but since their processor
is potentially subject to positive long timing effects from the parallel pipeline,
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this is not necessarily safe. However, they report no cases of underestimation in
their experiments. At merge points, they are slightly conservative and compute
some form of union of the pipeline state for all the paths.

Ziegenbein et al. [ZWR+01] also execute long paths in the program on a
simulator or actual hardware, and use empty pipeline assumptions between
paths. This is safe, and results in a certain overestimation, as reported in their
experiments.

It would be interesting to consider a combination of our timing model and
low-level path-based timing analysis, working with paths instead of nodes as
units in the timing model. The nodes currently used can actually be considered
as short paths, since they usually contain several instructions that are analyzed
as a unit. We would expect that we would get fewer long timing effects, since we
are increasing the size of the units in the analysis. On the downside, we would
probably get more units to analyze, since the number of paths in a program
segment can be rather large.

5.4.3 Abstract Interpretation-Based Analysis

The abstract interpretation-based models of Schneider et al. [SF99, FHL+01]
are claimed to provide safe models of the behavior of processor pipelines. Sev-
eral possible pipeline states are maintained for each point in the analysis, which
should mean that they also propagate pipeline states across more than neigh-
boring instructions. Thus, they gain in precision but also need to consider long
timing effects since they are not performing a conservative pairwise analysis.

It is not clear if there is a limit on the number of states propagated, since
this would seem to be a potentially rather large set. If some limit is enforced,
the reduction of the set of states has to be carefully designed to make sure that
all stalls that have not yet manifest themselves as timing effects are considered.



Chapter 6

Timing Analysis

This chapter presents the timing analysis method we have designed in order to
generate the concrete values of the timing model described in Chapter 4. As
illustrated in Figure 6.1, this chapter presents the analysis part of the separation
between model and analysis.
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Figure 6.1: Isolating the timing model from the hardware model

6.1 Algorithm

The input to the timing analysis algorithm is the timing graph, containing nodes
pointing to basic blocks in the program code and execution scenarios describing
how the basic blocks execute. The timing analysis uses Equations (4.1) and
(4.2) to generate node times and timing effects from the raw execution times
returned by the timing function T .

�

�=%,

�=%'

�=%%

�9&

�=%.

�=!&

�=!%�=!$

�=!%

��	�	�������
���

&

��

'

�

&

��

'

�

��	�������
���"������������
���

�=!#

�
	�	��������"��

�:=%% �:;=�B&

�<='

�;=%'

�==%,

�>=%.

�:<=�B#

�;==�B$

�<==�B%

�=>=�B%

�:;==�/

�:<==�/

�;=>=�/

�:<=>=�/

�<=>=�/

�:;=>=�/

(�	��
�����
�#��
����
	�������

:���
1!

Figure 6.2: Pipeline analysis and modeling
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As illustrated in Figure 6.2, the timing analysis results in a timing model for
the program. The timing model can be illustrated by adding the time values
for nodes and timing effects for edges to the timing graph.

TimingAnalysis(TimingGraph TG, TimeFunction T):

/** Local variables **/
TimingModel M /** Mapping from sequences to times **/
TimeDatabase D
SequenceQueue Q
Sequence s
Integer l
/** Run all nodes **/
for each node n in TG do

s = {n}
add T (s) to D /** Here we run the sequence **/
tn = D.time(s)
add <n,tn> to M
for each successor m to n in TG do /** Add all sequences of length two**/

add s · m at end of Q /** Append m to sequence s **/
end for

end for

/** Investigate successive sequences **/
while Q not empty

s = head of Q /** s is removed from Q **/
l = length(s)
add T (s) to D
δs = D.time(s) - D.time(s[1..l − 1]) /** s[x..y] is a subsequence of s **/

-D.time(s[2..l]) + D.time(s[2..l − 1])
add <s,δs> to M
if Extend(s) then

for each successor m to n in TG do

add s · m at end of Q
end for

end if

end while

/** Return the result **/
return M

Figure 6.3: Timing analysis algorithm
We assume that we have access to a hardware model (timing function) that

is opaque, i.e. we cannot investigate the internal state of it. A typical example
of such a timing function is a cycle-accurate trace-driven simulator for a CPU,
that is, a CPU model that returns a cycle count given a sequence of instructions,
but that does not consider the values computed and the contents of registers and
memory. In the case that instruction semantics has an effect on the execution
time (like instructions with input-dependent execution times or memory accesses
via cache memory hierarchies), the execution scenarios must provide enough
information to determine the execution time. Note that we need an interface
that allows us to provide the timing function (processor simulator) with the
information in the execution scenarios.

A pseudo-code description of the timing analysis algorithm is shown in Fig-
ure 6.3. We start by generating times for all nodes, and then all pairs of nodes
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are entered into the queue (Q) of sequences to analyze. For each sequence s
in the queue, we get the execution time from the time database (D.time(s))
and calculate the corresponding timing effect. The time database (D) stores
all times obtained from the timing function, and runs a sequence through the
timing function only if the database contains no time for it. Thus, no sequence
is ever run more than once in the hardware model. Since the hardware model
can be rather complex and have a large execution time cost, this helps bring
down the absolute run time of the algorithm.

A central part of the algorithm is the extension condition, a function that
determines whether we have found all positive timing effects along a certain
sequence. If positive timing effects are judged to still be possible, all the possible
extensions to the sequence are entered into the queue Q. It is also nice if the
extension condition allows us to find as many of the negative timing effects as
possible, since this will increase the precision of the analysis. More details are
given in Section 6.3 below.

6.2 Using the Hardware Model

To reduce the coupling between components and thus enhance retargetability,
we do not want to build a special-purpose model of each target processor within
the timing analysis module. Instead, as explained in Chapter 3, we use a sepa-
rate hardware model (timing function) which is supposed to be opaque, but
still controllable enough to be useful. The requirements on the model are that
it must be possible to control the hardware model enough to enact the effects
of the execution facts, and that the model is deterministic so that the same
sequence of instructions and execution facts always give the same execution
time. This should be possible to achieve using a standard processor simulator
with some interface code.

Note that the same code can take different time to execute in a pipeline if the
initial states of the pipeline are different (different preceding instructions). The
effect of the differing initial conditions between program nodes is captured by the
timing effects, which accurately model the fact that a certain node might have
different execution times depending on its predecessor in the pipeline (consider
the execution of block C in Figure 4.5 and block B in Figure 4.8). Thus, only
the initial state of the program to be analyzed can have an effect on the overall
execution time. The initial state can typically be assumed to be a cold pipeline,
and the impact of a mistake in this assumption is at most a few cycles at program
start, which can be accounted for by a safety margin.

6.3 Extension Condition

The extension condition is at the heart of our pipeline analysis method, and
defining the extension condition is the central problem when porting our pipeline
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analysis method to a new CPU (or more precisely, to a new hardware model).
The goal is to formulate a condition that is efficient, in that it evaluates as

few unnecessary sequences as possible, and safe, in that it never misses a positive
long timing effect (since we could otherwise underestimate the WCET). It must
also work with the information available to it by the principle of separation of
components, which we assume does not include the detailed internal state of
the hardware model.

In the following, we discuss the extension conditions that we have designed
and used in our experiments.

6.3.1 Simple Extension Condition

For a processor or conservative processor model where no long timing effects
can occur, the extension condition is simply to return false for all sequences
of length two or longer (no need to analyze beyond length two).

extcond-simple � (length(s) < 2)

This condition is safe and precise for pipelines that satisfy Theorem 5.2 or
Theorem 5.3. It is also applicable for pipeline models that are conservative in
the fashion discussed in Section 5.4.1.

6.3.2 Extension Condition for Scalars

For more complex pipelines, we propose an extension condition based on the
observation that most long timing effects occur close to when an instruction
enters the pipeline. Thus, we select to stop looking for more timing effects
when all instructions of the first node in a sequence have left the pipeline.

Considering our assumption of an opaque hardware model, we cannot di-
rectly observe the instructions in N1 as they execute, but we can observe the
following:

� The execution time for a sequence of instructions, which is the value of the
timing function T (N1 . . . Nn).

� The last time an instruction is fetched (enters the pipeline) for a sequence
of instructions, which can be determined since we feed the timing function
with instructions. The last fetch of an instruction in a sequence of nodes
N1 . . . Nn is called LF (N1 . . . Nn). Figure 6.4 shows the last fetch times for
three progressively longer sequences: A, AB, and ABC.
Given the T and LF functions, we define the extension condition for a se-

quence of nodes N1 . . . Nn as:

extcond-scalar � (LF (N1 . . . Nn) ≤ tN1)

The extension condition extcond-scalar returns true, i.e. commands the
analysis to consider extensions of the sequence N1 . . . Nn, as long as any of the
instructions from the first node in the sequence (N1) are still in the pipeline.
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Figure 6.4: Illustration of last fetch times

For a pipeline without positive timing effects, like those discussed in Sec-
tion 5.3.1, using this extension condition will yield a safe but potentially impre-
cise model (since some really long negative timing effects could conceivably be
missed).

For pipelines with positive timing effects that only take effect immediately
(i.e. when the stall causing the timing effect occurs), this extension condition
should also be safe, since it waits until all instructions in the first node has left
the pipeline and thus all stalls have manifest themselves.

6.4 Complexity

The goal of the pipeline model and analysis presented in this thesis is to create an
efficient WCET analysis by avoiding the need to examine long paths (sequences)
in the program (the number of which is exponential in general). Thus, the
complexity of the pipeline analysis method should be investigated.

Let f be the greatest fan-out of the timing graph, i.e. the number of suc-
cessors to a node. Then the worst-case number of sequences that need to be
investigated is nfm−1, where n is the number of nodes in the timing graph and
m is the length of the longest sequence investigated.

However, this complexity is often much larger than that which is actually
encountered in practice, since the fan-out for a typical program is on average
much less than f . A branch statement has a fan-out of two, while most nodes
have a single successor. switch-statements or calls to function pointers can give
rise to very high local fan-outs, but they are very few compared to the total
number of nodes in the program. Furthermore, not all sequences up to length
m need to be investigated; only those where there is a risk of encountering long
timing effects. To bring the complexity down, the extension condition needs to
be more selective than just looking at the length of sequences.

Measurements indicate that in general, the analysis is linear in the size of
the program, as shown by Figure 9.5 and Figure 9.9 in Chapter 9.
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Chapter 7

Applications of the Analysis

We have applied the analysis described in Chapter 6 to two concrete pipelines:
the NEC V850E and the ARM9. This chapter describes the details of those
applications.

7.1 The NEC V850E

The NEC V850E [NEC99] is the second-generation core in the NEC V850 family
[NEC95]. The instruction set architecture (ISA) is an extension of the V850,
and the pipeline has been extensively redesigned to improve performance. Mi-
crocontrollers based on the V850E core are available up to a speed of about 100
Mhz; with typical clock speeds between 33 and 66 Mhz. A variety of on-chip
peripherals are available, depending on the particular model.

The main performance-improving factor of the V850E compared to the V850
is the “additional” pipeline shown in Figure 7.1. This allows branches, loads,
and stores to execute in parallel to regular instruction execution in the main
pipeline. The NEC V850E also allows for pairs of instructions to start execut-
ing in parallel; for example, a short load (SLD) and short arithmetic instructions
(encoded in 16 bits) can be issued on the same cycle, if they are present within
the same 32-bit word [NEC99, Mon00]. This behavior is dictated by the in-
struction layout in memory: only aligned pairs can be issued in parallel, and so
the V850E does not really qualify as a “superscalar” CPU. There is a simple
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Figure 7.1: V850E Pipeline
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instruction prefetcher to increase performance.
The memory architecture is Harvard style, with separate data and address

buses for for instructions and data [HP96]. Typical microcontrollers based on
the V850E core feature on-chip single-cycle ROM (or FLASH) for programs,
and SRAM for data, making the timing behavior quite easy to analyze.

7.1.1 Hardware Model

The V850E hardware model used is a cycle-accurate trace-driven simulator mod-
eling the pipeline in great detail. It has been developed within our research
group to gain insight in how a simulator works and to facilitate experimenta-
tion by affording us complete control over the simulator.

The simulator has been validated against real hardware for the case that we
have single-cycle memory for both instructions and data [Mon00]. Each run of
the processor (when used as a timing function for WCET analysis) is assumed
to start from an empty pipeline state, with an empty prefetch queue. Some
experiments were performed using longer data memory latencies, which made it
possible to generate long timing effects. The behavior in this case has not been
validated against hardware.

7.1.2 Extension Condition

For the V850E, we have used the extension condition extcond-scalar, de-
scribed in Section 6.3.2. In experiments, extcond-scalar did successfully de-
tect all timing effects, as discussed in Section 7.1.3.

7.1.3 Long Timing Effects

In our main line of experiments with the V850E, with single-cycle data mem-
ory, no timing effects across longer sequences than two nodes were observed.
However, we did manage to provoke long timing effects by increasing the data
memory access time to six cycles. In this case, timing graph nodes containing
data memory accesses had the potential to overlap the following nodes, poten-
tially generating long timing effects.

In the experiments (as reported in Section 9.5) only negative long timing
effects were observed (created in the fashion shown in Figure 4.4). Despite this
experimental result, it should be possible to get positive long timing effects on
the V850E. By manually writing assembly code, we found that the sequence of
instructions “STW-BR-STW” does generate a positive timing effect, in the manner
shown in Figure 4.5. However, no case of positive timing effect was observed in
our experiments.

There are several properties of the V850E that conspire to generate only
negative timing effects in our experiments. The most important factor is that
perfect instructions1 executing between memory accesses do not cause positive

1As defined in Section 5.2.1.
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Figure 7.2: V850E Pipeline with execution times for each stage

long timing effects, thanks to the particulars of the V850E pipeline. This is a
real-life example of the case shown in Figure 5.13, where a disturbance due to
a parallel pipeline does not manifest as a long timing effect.

Perfect instructions are very common, since almost all instructions only re-
quire a single cycle in each pipeline stage. Figure 7.2 shows a reduced diagram
of the V850E with the possible number of cycles in each stage (due to the special
behavior of the additional pipeline, this diagram shows a pipeline organization
that is equivalent to that in Figure 7.1). The notation x/y means that in-
structions use either x or y cycles in the pipeline stage. In the IF stage, only
misaligned branch targets and the MOV32 instruction use more than one cycle,
and the only instruction using more than one cycle in EX is division. Hence,
almost all instructions that do not access memory are perfect instructions.

Furthermore, data dependences are of the well-behaved kind discussed in
Section 5.3.1, which means that each of the Master and Additional pipelines in
themselves cannot generate positive long timing effects. Thus, only the effects
of the parallelism can cause long timing effects.

Note that since we are working with nodes containing several instructions,
many effects will never be seen since they are internal to nodes. Working on the
node level reduces the practical complexity of the WCET analysis.

Considering the applicability of the pipeline model in Chapter 5, we note
that when investigating various instruction sequences on the V850E, the model
and “reality” (in the form of the V850E simulator) consistently gave the same
timing results.

7.1.4 Miscellaneous Notes

On the V850E, as on most pipelined processors, conditional branch instructions
have different execution times depending on whether the branch is taken or not.
Taken branches require more clock cycles to execute. Thus, for sequences of
nodes ending with a conditional branch instruction, we assume that the branch
is taken. For branches in the middle of a sequence, the time taken for the branch
depends on whether the next instruction corresponds to the taken or not-taken
cases of the branch, as illustrated in Figure 7.3.

In our implementation, we use execution facts that are conditional on
the context in which they are used. Such facts contains a number of pairs
(nextnode,fact), and a default case. This removes the need to decorate the
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Figure 7.3: Modeling a conditional branch

��������
������������
��������
�������"���"����"�
������
�
��"
������������39�4������4�����������
���������
��������
�
��

�������+����
������
�

Figure 7.4: ARM9 Pipeline

edges in the timing graph with facts, which would have been the alternative
implementation.

7.2 The ARM ARM9

The Advanced Risc Machines Ltd. (ARM) ARM9 [ARM00b] was launched in
late 1997. It is an integer-only processor core which can be licensed for use
in custom integrated circuits (ASICs). ARM also supplies some macrocells,
combining the ARM9 core with caches, to make it simple to create complete
microcontrollers based on the ARM9. ARM9 cores are typically configured to
run between 100 Mhz and 200 Mhz, but the exact clock speeds available depend
on the manufacturing process used [Tur97].

The five-stage pipeline of the ARM9 core is shown in Figure 7.4. The memory
interface is Harvard, with separate address and data buses for instructions and
data. Typically, an ARM9 core would be equipped with separate instruction and
data caches, although it is conceivable to implement an ARM9 core with SRAM
for instructions and/or data instead of caches (this is actually recommended by
ARM for real-time systems [ARM01]).

ARM recently released an update to the ARM9, the ARM9E [ARM99,
ARM01], which includes some DSP extensions in the instruction set and a much
faster multiplier circuit. We modeled only the basic ARM9.

The documentation from ARM [ARM00b] is quite scarce on the layout of
the pipeline of the ARM9. The diagram in Figure 7.4 is taken from [Tur97],
and a very similar pipeline structure is used in the ARM9E [ARM99].

7.2.1 Hardware Model

Our ARM9 model was described to support a specific project involving WCET
analysis on the interrupt disable regions of the OSE Delta real-time operating
system [Car02].
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The hardware model used in our implementation for the ARM9 is a simple
table of execution cycle count for each instruction, based on the types of the
operands and the operation, with additional rules for when data dependences
delay the instruction execution. The model is based on Table 7.2 in the ARM9
user’s manual [ARM00b], and has not been verified against real hardware. All
instructions with execution time depending on the value of operands unknown
at compile time, like the multiplication instruction, are assumed to execute for
the longest time possible. Since no effects across more than two instructions are
documented in the manuals, we assume that this is a safe model in the manner
discussed in Section 5.4.1 (the pipeline organization supports this, since data
depedencies can only occur from MEM to EX, and thus only between adjacent
instructions).

For our experiments with the ARM9, we assumed a perfect memory system
with single-cycle access to all instructions and data. No caches were modeled.

The initial condition for each run of the hardware model is an empty pipeline
with no data dependences coming in, since we assume that a program starts
without an incoming register-write dependence (which is very reasonable, since
the instruction leading to the execution of the program usually is some form of
branch).

We were considering using the cycle-accurate ARMulator ARM simulator
from ARM Ltd., but we could not find any documentation on how to use it as
a backend (the documentation deals with how to plug in new memory, cache,
and peripheral models into the ARMulator, but not on the interface for running
code in the ARMulator itself). Futhermore, the cost of a license was prohibitive.

7.2.2 Extension Condition

We used the extension condition extcond-simple for the ARM9 experiments,
since the hardware model was a safe pairwise model.

7.2.3 Long Timing Effects

Since the processor model used is a safe model according to Section 5.4.1 and
we used the extension condition extcond-simple, no long timing effects were
observed.

7.2.4 Miscellaneous Notes

An interesting feature of the ARM processors is the use of predicated execu-
tion. Predicated execution means that regular computational instructions can
be conditional, with their results ignored if some condition is not met. In tradi-
tional instruction set design, only branches are conditional, and pieces of code
are skipped by jumping past them. In an architecture with predicated exe-
cution, short jumps can be avoided by making the instructions to be skipped
conditional. The concept is illustrated in Figure 7.5: contrast the jump in
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Figure 7.5(b) with the predicated instructions in Figure 7.5(c). Extensive pred-
icated execution is present on the ARM, HP-PA, and Intel/HP Itanium archi-
tectures. Many other architectures support it in a limited form with a condi-
tional move instruction, like the NEC V850, Motorola/IBM PowerPC, and Sun
SPARC.
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Figure 7.5: Example of predicated execution

To correctly account for predicated instructions in WCET analysis, we need
consider their pipeline behavior. In many cases, the timing and pipeline behavior
of a predicated instruction is the same no matter if the condition is true or not,
and the only difference is whether the result of the operation is actually recorded
in the processor’s register file. When the timing or pipeline behavior is different
(for example, a predicated load instruction that only accesses memory when
the condition is true, or a time-consuming division instruction that just skips
its calculation when the condition is false), we can either use a safe worst case
(typically executing the instruction), or introduce a separate timing graph node
for each case, as shown in Figure 7.6(b).
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Figure 7.6: Duplicated timing graph nodes to model predicated execution

We saw no need to model the predicated execution of the ARM9 in this
detail, since there is no explicit model of the pipeline state that could be different
in the taken and not-taken cases. Unless instructed otherwise by execution
facts, the ARM9 analysis assumes worst-case execution times for all instructions,
which means that predicated instructions are assumed to execute.



Chapter 8

Building Hardware Models

Static WCET analysis relies on models of the processor on which a program is
executed. For pipelined processors, a variety of modeling methods have been
used: cycle-accurate simulators [EE99, ZWR+01], special-purpose models using
reservation tables or similar techniques to model the behavior of the proces-
sor pipeline [LBJ+95, Sta97, HAM+99, CP01c], dependence graphs [LHKM98],
pipeline abstractions [SF99, FHL+01], and tables of instruction execution times
and inter-instruction effects [BBMP00, AKP01, Car02]. All approaches share
the common problem of not using the actual hardware but rather a model of
it, and thus bringing the quality of the model into question. This chapter will
discuss the issues involved in building hardware models.

8.1 Error Sources in Model Construction

Considering the design flow for hardware models, several sources of errors can
be identified. Figure 8.1 shows an overview of the design and implementation
work separating a simulator from the physical chips shipped by the processor
manufacturer.

Starting with the design for the chip, engineers implement the design as
hardware, creating a program in VHDL (or other hardware description lan-
guage) describing the implementation of the processor. This model is then
compiled through a synthesis tool to generate a physical layout which is used to
manufacture the actual processor chips. In parallel to the implementation work,
manuals are written. The tool developer who is attempting to build a simulator
for the processor reads the manuals, and creates the design for a simulator. The
design is then implemented to create a simulator that can be run. In each step,
errors can be introduced.

In the hardware implementation stage, errors can be introduced relative to
the design. The most famous recent example is the Pentium FDIV bug [Pri95],
where a bug was present in millions of Intel Pentium processors sent to cus-

87



88 Chapter 8. Building Hardware Models

���
E�
������

�����"�����

A�
"7�
�
��������������

������


�����

GA<9���"��

������������H
���������
���

����

��������

<�����

��������

��������������

��������
��

�����"�����

7����		��
���
����
���

����
���������

Figure 8.1: Schematic flow of simulator implementation

tomers. The presence of extensive errata lists from various processor vendors
further show that hardware does contain bugs which are not found until after
products have been shipped to customers and used in products [Int01b, Mot01].
However, it should be noted that correct behavior is the norm for the commonly
used parts of an architecture. The bugs mostly relate to rarely-used features
like performance counters.

Bugs related to the timing behavior of processors are more common, since
timing is usually not tested and validated as extensively as function. The large
number of bugs relating to interrupt timing (where sometimes desktop proces-
sors can lock up in unfortunate scenarios [Int01b]) indicate that timing correct-
ness and timing bugs is a problem not only in real-time software design but
also in hardware design. Note that a timing bug in the hardware is likely to
be diagnosed as a manual-writing error by a simulator designer, since it will be
observed as a discrepancy between the manual and the hardware.

The hardware compilation and manufacturing stage takes the design from the
VHDL code (or other hardware synthesis language) to actual processors. Here,
faults can be introduced by errors in the compilation process or manufacturing
defects. This is however rather rare today, and the processors that are shipped
to customers are usually free of defects caused by this stage.

Manual writing is a major source of errors and vagueness, since it adds a
(necessary) layer of interpretation between the users and the processor specifi-
cation, making the manuals probably the biggest source of errors. The manual
writers have to interpret the processor design, and this interpretation can be
different from that of the hardware implementors. Simple typos add to the
confusion that can be created. Since the intended audience for the manuals is
usually regular programmers using the processor, many of the details needed to
implement a precise simulator (or an optimizing compiler) are abstracted away
or glossed over. Rules of thumb and tips for code optimization are more im-
portant than details about the pipeline operation. Thus, the manuals typically
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have a rather tenuous relation to the processors they are supposed to docu-
ment, and this presents a major hurdle for outside simulator implementors.
The conventional wisdom among embedded system engineers is that hardware
documentation is usually not to be trusted1.

In the simulator design step, the abstractions used when modeling the pro-
cessor are decided, and the manuals and other available information is scoured
for details on how the processor works. Not using up-to-date manuals, or mis-
interpreting the manuals cause errors. Instruction timings have to be decided,
and decisions have to be made on the level of detail in the model (with the risk
that important details are overlooked or simplified too much). The model will
be an abstract version of the real processor, but ideally, the abstractions used
accurately capture the behavior of the processor concerning the execution time
of instructions.

During simulator implementation, errors are introduced as the designed sim-
ulation model is converted into actual program code. All programmers make
mistakes, and the implementation of a simulator is no exception to this rule.

Hence, we can see that the hardware models we are using in static WCET
analysis are several bug-inducing steps away from the actual hardware we are
trying to model. This is a very serious problem for safe WCET analysis, since
even if all the analysis methods are correct, the errors introduced by the hard-
ware model can still make the analysis unsafe. This means that it is very
important to validate the hardware models used in WCET analysis.

Looking at Figure 8.1, it seems that it would be possible to shortcut the
process by deriving the simulator directly from the VHDL code from the pro-
cessor. However, using the VHDL code is not a feasible approach since it is
in general a very closely guarded secret of a processor manufacturer. Further-
more, the analysis required to abstract from the very detailed level of VHDL
to the instructions-and-clock cycles required for simulators is very complex and
not feasible to automate. Running a VHDL-level simulator is far too slow for
practical use, but is a good way to obtain a reference for validating processor
simulators.

8.2 Validating Simulators: Experience Reports

Most computer architecture research and design work is performed using simula-
tors of various kinds [BC98, DBK01], and some research groups and commercial
teams have reported their experiences in validating processor simulators against
the real hardware. Here, we will summarize the reports to gain an understand-
ing of the difficulties in building accurate processor simulators. We spend some

1Schneider and Ferdinand [SF99] note that the manual for the SuperSparc I processor they
are modeling by abstract notation is deficient, and that they make pessimistic assumptions
to compensate. Unfortunately, they do not explain how their safe pessimistic model was
constructed, and how they can know that their model is pessimistic against the unknown
information not contained in the manual.
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extra space on the V850E case study, since we have good insight into it and it
provides several interesting observations.

8.2.1 V850E Model

Montán [Mon00] validated and debugged the simulator we use for the V850E (see
Section 7.1) by comparing it with a hardware implementation. The hardware
used was a V850E emulator from NEC. An emulator is a special processor
intended to help software developers debug their code by providing a more
powerful debug interface than a regular processor. Using an emulator made it
much easier to obtain execution times, but raises the question of the relation to
the real hardware. According to NEC, exactly the same processor core is used in
the emulator and the processors, the only difference being in the packaging. The
validation work was initiated after we realized that the quality of the hardware
model is a critical correctness component of a WCET analysis tool.

Methodology

The testing methodology employed for validating the V850E simulator is illus-
trated in Figure 8.2.
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Figure 8.2: Work flow of the validation process for the V850E

The first step was to perform a manual analysis of the instruction set of the
V850E and the pipeline behavior of the instructions, using information from
the manuals [NEC99]. The result of the analysis was a set of test cases, each
consisting of a few instructions. In several instances, improvised tests on the
hardware was necessary to clarify the behavior of instructions when the manuals
were vague or contradictory, adding an exploration element to the basic analysis.

The test cases strived to cover all relevant behaviors of the V850E with
a minimal number of tests using a sophisticated classification of instructions
into equivalence classes. To get precise timing measurements on the hardware,
each test code sequence was repeated about one thousand times. A prologue and
epilogue of NOPs was added to the instruction stream. Test sequences containing
branches were constructed in such a way that the branches were always or never
taken, despite the repetition of the code sequence.

The prologue and epilogue were run on the simulator and the hardware, and
the difference was used to calibrate the measurements, since the hardware and
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simulator used different criteria for when to start and when to stop timing a
code sequence.

For each test, cycle counts were compared, and if a difference was found,
the test was analyzed in detail, trying to find the fault in the simulator that
caused the discrepancy. In some cases, this process generated new test cases,
since more information was needed to find the bugs, or to clarify the behavior
of the hardware (the feedback loop in Figure 8.2). The information from the
manuals was in effect extended with knowledge gained from the hardware; in
many cases, errors were found in the manuals.

Classes of Bugs

The bugs found in the validation process were related to all error sources dis-
cussed in Section 8.1. The simulator was originally based on an outdated version
of the manual, leading to the additional pipeline (see Figure 7.1 in Section 7.1)
not being part of the model, which gave an initial discrepancy of up to 30%
between the simulator and the hardware. This demonstrates the need to keep
up-to-date with documentation updates.

After this correction, the error was much smaller, but still many more bugs
were found, some of the more interesting of which are summarized in Figure 8.3.
Note that the validation produced evidence of a hardware bug, which was inde-
pendently found by NEC. This shows the need to be very careful when examining
hardware, and that hardware bugs can slip past manufacturer testing.

Improvement in Accuracy

We used exact clock cycle agreement as the criterion for passing a test, and as
the validation effort progressed, more and more of the small test cases passed.

To validate that the simulator was actually improving in accuracy on real
programs as well, a number of test programs were selected and run in the sim-
ulator and on the hardware, for each version of the simulator. The results are
shown in Figure 8.4.

For most programs, the final error is down to about 10 cycles, which can be
explained by differences in measurement start and stops between the hardware
and the simulator (note that the NOP technique was not applied to the large
test programs). This makes the percentage error rather meaningless, since it is
larger for programs with shorter execution times. However, for matmult and to a
lesser extent jfdctint, there are indications of residual errors in the simulator.
For matmult, most of the error is due to the fact that our simulator did not
model the missing interlocks between successive SLD instructions.

In total, the work took about five months, and resulted in a simulator which
generates execution times which are very close to the timing of the real V850E
processors. There are some remaining differences, especially the timing of the
buggy SLD instruction.
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Manual Writing
NOP instruction documented as going into the secondary pipeline (to the MEM stage), which
is not the observed behavior.
The MUL instruction sometimes writes two registers, which causes a delay of one cycle.
This was not documented.
Three-operand PREPARE instructions take one more execution cycle than stated in the
manuals.
The JMP and CTRET instructions were documented as being one cycle too fast.
A two-operand MOV instruction can be combined with a following two-operand arithmetic
instructions into a single-cycle three-operand instruction. This behavior was not described
in the manuals.
The instruction prefetch mechanism was more effecient than the manuals indicating,
speeding up the execution of instructions longer than 32 bits.

Simulator Design
Instructions could continue to flow through the additional pipeline when a long-running
instruction was busy in the master pipeline, which was not the case on the real hardware.
Only the other way around was possible, with the main pipeline executing instructions
while the additional pipeline was executing a long-running instruction.
The NOT instruction was not implemented.
Not modeling the read of the special CTBP register in the CALLT instruction, which missed
a data dependence between CALLT and other instructions.
The NOP instructions was modeled as using the WB pipeline stage, which caused extra
execution cycles to be inserted in some circumstances.

Simulator Implementation
Signed and unsigned division has a one clock-cycle difference in execution time, and the
implementation used the time for the signed case for the unsigned instructions and vice
versa.
The bit-manipulation instructions did not keep certain resources locked for their entire
execution, letting other instructions slip by, eventually leading to crashes in the simulator.

Hardware Implementation
There is no interlock for successive SLD instructions writing the same register, making it
possible to destroy data in certain conditions, and leading to faster execution of some
scenarios. This condition has been reported as a hardware bug by NEC, and was not
modeled in the simulator.

Figure 8.3: Selected bugs found in the V850E simulator

8.2.2 MCore Model

Collins [Col00, Chapter 3][BCF+01] describes the design and short validation
of a simulator for a Motorola MCore embedded processor. The target processor
is a low-power RISC design with a four-stage pipeline running at up to 100
Mhz. The simulator design very closely follows the processor design, including
modeling the data stored in latches between pipeline stages [HP96], which is a
higher level of detail than that used in our V850E simulator [Mon00].

The validation of the simulator was performed by running eight small ap-
plications on the simulator and comparing the clock cycle counts with a real
processor. This tested the basic arithmetic and other instructions. To test the
performance and correctness of interrupts and exceptions, a real-time operating
system was used on both the simulator and a real processor. The results reported
are an error of 100 cycles in one million, or 0.01%, which indicates that for such
a simple processor, it is quite possible to construct a cycle-accurate simulator of
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Emulator Initial Simulator Final Simulator
Program Error Error

Cycles Cycles Cycles % Cycles Cycles %

fibcall 325 286 -39 -12.0% 313 -12 -3.7%
insertsort 956 1123 167 +17.5% 939 -17 -1.8%
matmult 222236 239526 17920 +7.8% 221822 -414 -0.2%
duff 1094 1193 99 +9.0% 1083 -11 -1.0%
fir 348105 323277 -24828 -7.1% 348095 -10 0.0%

jfdctint 4686 5414 728 +15.5% 4733 47 +1.0%

Figure 8.4: Simulator accuracy improvement for test programs

high quality. Collins claims that the remaining error is due to a variable-latency
multiplication instruction which is modeled as being fixed-latency.

In general, basing the architecture of the simulator on the processor architec-
ture seems to be a good way to obtain a quality simulator, especially if detailed
design information about the hardware is available (or VHDL code).

8.2.3 C167 Model

Atanassov et al. [AKP01] use measurements on hardware to produce a worst-
case execution time model for an Infineon C167. They do not attempt to build
an exact simulator for the processor, but rather aim for a safe timing model
that can be used inside a WCET tool. The result does not model the four-stage
pipeline of the C167; instead, it is a set of equations detailing the execution time
of an instruction in isolation and considering its interaction with its neighbors,
as derived from the hardware measurements (as discussed in Section 5.4.1, the
interaction between neighbors are easy to translate into the δ values in our
timing model).

The model was constructed by measuring the execution time for single in-
structions and sequences of instructions. An external timer triggered via an
output pin on the C167 was used for timing measurements, and like Montán
[Mon00], instructions were repeated many times to obtain quality measure-
ments. The effect of placing code and data in different types of memory was
investigated and incorporated into the model.

The final model was validated by comparing WCET estimates from the
analysis tool with the measured WCET results on the target processor, and the
results indicate that the model is safe and tight. Most cases show no error, and
a few cases give overestimations in the range of 2% to 5%.

Atanassov et al. note that there it cannot be proven that the model is com-
plete, since it is infeasible to test all possible instruction sequences on the hard-
ware.

8.2.4 PowerPC 604 Model

Black and Shen [BS98] report their experience in validating and fine-tuning a
model of a PowerPC processor. The methodology employed is illustrated in
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Figure 8.5: Setup of Black and Shen’s Experiments [BS98]

Figure 8.5(a). Many test cases (small programs) are executed on the simulator
(PowerPC 604 model) and the real hardware (PowerPC 604 processor). The
criterion used for determining whether test cases pass is not clock cycle counts
but rather the values of the built-in performance counters2 of the PowerPC,
which is only an indirect indication of the execution time. For such a complex
processor, however, this is a reasonable approach. As a sanity check, they
also execute a number of larger programs and compare the cycle counts on the
simulator and the hardware.

The small test cases used are alpha tests that execute one instruction at
a time to investigate instruction latencies, beta tests that check for data de-
pendences between instructions, and gamma tests that execute all pairs of in-
structions to check for inter-instruction interference. Random test sequences
are employed to test more complex interactions. Handwritten test sequences
investigate particular properties that are found to be relevant and interesting.
The total number of test cases used was about 200000, which was still only a
small subset of all the test suites used by the processor designers at IBM and
Motorola. Black and Shen strongly recommend the use of as many test suites
as possible for timing validation. The small benchmarks all fit in the processor
cache, making the results independent of the external memory system, and thus
more reproducible and stable.

Black and Shen report that they never manage to get a perfect correspon-
dence between the simulator and the hardware. Fixing an error in the simulator
sometimes revealed other errors that had been masked by the first, and the to-
tal error could thus increase for some fixes. As illustrated in Figure 8.5(b)3,
over time, the accuracy of the simulator increased (even if some fixes cause the

2Most modern desktop processors have an on-chip module that can be used to collect
information about how the processor executes instructions, by counting pipeline stalls, cache
hits and misses, clock cycles spent, etc. The counters available in such a module are usually
called performance counters.

3The zero line in Figure 8.5(b) indicates that the simulator and the real processor agrees,
while negative values indicate that the simulator underestimates the execution time and pos-
itive values indicate an overestimation.
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overall error to increase), both for the performance counter agreements and the
cycle counts for the large programs. For their final simulator, about 20 percent
of the individual small tests failed to be within one clock cycle of the hardware
timing, while the large test programs showed an error between 2 and 10 percent.

The errors found were categorized as specification (user’s manuals, some of
which concerning instruction latencies were quite severe), modeling (design and
implementation of the simulator), and abstraction (over-simplifying parts of the
architecture in the simulator design).

Their conclusion is that systematic validation is necessary to build a perfor-
mance model in which users can have confidence, and that achieving a reliable
and precise model requires a lot of development effort. The complexity of current
high-end microprocessors makes the development of reliable hardware models a
“great challenge”.

8.2.5 Stanford Flash Models

Gibson et al. investigated the quality of the models used in the development of
the Stanford FLASH multiprocessor [GKO+00]. The FLASH project employed
a large number of simulators during the development of the system, and thus
collected a large amount of data on how simulators and hardware correlate.

The most detailed part of their simulators was the memory controller (since
that was at the core of the FLASH research). They also used several different
simulators for the MIPS R10000 CPUs used in the FLASH computer.

The testing was initially based on running large multi-processor numerical
applications and comparing the resulting execution times. Smaller benchmarks
were introduced to help pinpoint specific performance mismatches later in the
process.

The mismatches between hardware and simulator were classified as imple-
mentation bugs, where the behavior deviated from that intended in the simulator
design, omissions like not modeling the translation look-aside buffers (TLBs) of
the real CPU (the same as the abstraction bugs in Black and Shen [BS98], i.e.
ignoring relevant hardware details in the simulator), and lack of detail where
effects are included but not modeled in sufficient detail (simulator design bug).

The CPU models used were all based on generic simulation packages like
the SimOS simulators Mipsy and MXS [Her98], which were given parameters to
closely emulate the R10000. However, these models were unable to capture
all relevant details of the CPU, giving very different execution time results for
key parts of the code like TLB miss handlers. This is claimed to be a general
problem with generic CPU simulators: they are not sufficiently configurable to
model all the corner cases of the real hardware. Certain simplifying assumptions
have to be made.

Gibson et al. conclude that that simulation technology is barely able to keep
up with the increased complexity of modern computer systems, and that it
is necessary to compare the simulation results to hardware in order to build
a good model. By calibrating models to match the hardware as it is being
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made available, good models can be obtained, but without validation against
the actual hardware, simulation results should be treated with caution.

8.2.6 Alpha 21264 Model

Desikan et al. [DBK01] validated a simulator for the superscalar Compaq Alpha
21264 processor [Com99], built from the SimpleScalar toolkit [ALE02] with
added code to model the intricacies of the Alpha 21264 pipeline. The validation
was performed by comparing the simulator with a Compaq workstation based on
the processor. A small number of microbenchmarks were used in this validation
effort, and the average number of instructions per cycle (IPC) was used as the
main comparative metric. The measurements on the hardware was accomplished
by using profiling tools that accessed the processor’s performance counters.

The microbenchmarks attempted to exercise only parts of the processor
pipeline, by keeping the load on other parts of the pipeline low. The error
rate on the microbenchmarks was brought down to around 2%, with one outlier
at 11%. Desikan et al. list several known discrepancies in their model that could
be the cause of the remaining error. It should be noted that the microbench-
marks all fit within the cache of the 21264, making them quite independent of
the behavior of the external memory system.

Extending the experiments to larger programs from the Spec suite, the error
rate varied between -39% and +40% (still counting IPC). The main reason for
the residual error was not in the processor core modeling but in the memory
system, especially regarding the handling of page faults and DRAM access la-
tencies. The authors point out that this is very hard to simulate in a precise
manner, due to the many and complex interactions in the memory system.

They compared their validated simulator with a simplified simulator that
only models a few of the performance-enhancing features of the Alpha 21264,
and the generic sim-outorder simulator from the SimpleScalar toolkit, with
Alpha 21264-like parameters. The simplified simulator underestimates perfor-
mance, since it only models the limitations of the processor, while the generic
simulator overestimates the performance since it doesn’t model many of the
limitations present in real processors. Their conclusion is that since simulators
(and real machines) can have different bottlenecks limiting the performance,
simulation of new features intended to enhance performance can come to very
different conclusions depending on the simulation model used, which is a prob-
lem for computer architecture research.

From a WCET analysis standpoint, this work points to the importance of
validating simulators against real hardware, and provide further evidence that
generic simulators typically do not provide the level of detail required to obtain
reliable timing models. Furthermore, the large number of details not modeled
in the validated simulator due to missing information points to the need to use
hardware that is simple and well-documented if precise simulators are desired.
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8.3 Other Hardware Aspects

Apart from processor pipelines, there are many other hardware features that
must be modeled correctly to enable a safe WCET analysis to be performed.
This section will give a quick overview of some of the problems.

8.3.1 Caches

The first type of cache to be analyzed in WCET analysis was direct-mapped
caches [LBJ+95, HAM+99], since their behavior is easy to model and predict.
Direct-mapped caches are popular in real systems thanks to their simple imple-
mentation, and there is no need to cut corners or make simplifications to the
implementation. Thus, direct-mapped caches can be considered to correspond
perfectly to the models (modulo hardware implementation bugs).

For set-associative caches, things get more complicated. Most analyses for
set-associative caches in the literature [LBJ+95, LMW96, OS97, Sta97, FMW97,
Mue00] assume that the replacement condition is perfect LRU, Least-Recently
Used [HP96].

LRU is simple, understandable, gives good performance in real life, and is
easy to model, but it is not generally practically implementable in hardware
when associativity is greater than four, due the effort required to track the
latest access date for all cache lines in a set. For example, a two-way associative
cache only requires one bit of information per cache set (which was most recently
used), while at four ways associativity, you need six bits of state per set of cache
lines for a practical implementation [Mot90]. For a 32-way set associative cache,
the minimal number of bits per set is 118, while a practical implementation uses
160 bits [Han98]. In addition to the memory overhead in the cache, there is also
the question of the logic required to update the LRU information, and its impact
on the number of read and write ports required to the cache array. The logic is
burdensome enough that Intel’s four-way caches are only pseudo-associative, in
order to increase the clock speed of the CPU [Han98].

For cost reasons, some set-associative cache systems for embedded systems
use other replacement policies. The Intel XScale uses a round-robin cache re-
placement scheme for its 32-way set-associative cache [Int00a] and the ARM
710T, 720T, and 740T macrocells all use a 4-way unified cache with random
replacement policy [ARM98b, ARM98c, ARM00a].

One way of handling (pseudo-) random cache replacement and round-robin
replacement is to treat the cache as a direct-mapped cache [FHL+01]. This
is safe but quite pessimistic. The pessimism depends on the size of the sets
(the Coldfire 5307 analyzed in [FHL+01] is four-way set associative), and could
be very bad for high-associativity caches like those of the XScale. It is not
feasible to track the pseudo-random sequence generated by the random number
generator on a processor, since this depends on knowing the precise number of
cache misses since system start. Furthermore, the random sequences can be
rather long. The ARM7 series use a 16-bit linear feedback register, providing
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a random-number sequence that contains 32768 distinct values before starting
over [ARM98a].

This points to a need for research into predictable cache architectures, and an
awareness of the great variety of caching systems in use for embedded systems.
Just like the models of processor pipelines, cache models need to be validated
against the actual caches used.

8.3.2 Memory-Management Units

For a system using a memory-management unit (MMU), there is a need to
analyze the worst-case timing of memory accesses in more detail. The time
required to load a value from memory can be quite high (even for fast memory
and no cache), since a translation-lookaside buffer (TLB) miss can require a
complex table walk in main memory, involving several memory accesses. Some
techniques to reduce this penalty are presented in [BA01].

8.3.3 Dynamic Random-Access Memories

Dynamic RAM (DRAM), unlike static RAM (SRAM), has to be periodically
refreshed to retain its data. This refresh will occasionally make the memory
unavailable, leading to unpredictable delays to a program. The effect can be
measured to be a few percent of execution time, which has to be accounted for,
and no practical analysis has yet been presented to address the problem [AP01].

A related issue that (as far as we know) has not received any research at-
tention is WCET analysis of the complex timing behavior of modern memory
subsystems like RDRAM and SDRAM, where memory latencies depends on the
previous accesses.

8.4 How to Build a Good Simulator

From the information presented in this chapter, we can draw some conclusions
on how to build quality processor simulators for WCET analysis can be drawn.

8.4.1 Do Not Trust Manuals

Hardware manuals cannot be considered a reliable source of information, and
other sources of information are necessary to construct good models. They are
useful as a starting point for a simulator design effort, but should always be
validated by experiments on the hardware.

8.4.2 Validate Against Hardware

It is absolutely necessary to validate a simulator or other model of any hardware
against the real hardware. In addition to handwritten code sequences designed
to test known difficulties, the validation must include testing using real programs
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and random code sequences in order to make sure that as many bugs as possible
from the simulator design phase are caught.

If a VHDL RTL model of a processor is available, it can be used to validate
the software model by running tests of the two against each other. If this can
be automated, such tests can be run for weeks or months, reducing the number
of errors in the hardware model successively.

8.4.3 Use Simple Processors

Contrasting the experience with the V850E, MCore, and C167 with that from
the PowerPC, Alpha, and Stanford FLASH, the conclusion is that it is much
easier to build models for simple processors. The simulators for the simple
processors show very good agreement between simulators and hardware, while
the results for the complex processors are less precise.

The border between “modelable” and “not modelable” is not clear-cut. As
complexity is added, models get increasingly complex to build, but we believe
that processors with a complexity like the V850E are modelable. Dynamic
superscalars could be manageable, but out-of-order processors are definitely too
complex to model with current techniques.

Hughes et al. [HPRA02] note that even if absolute agreement with the hard-
ware is not achievable, a model can still be useful for architectural research as
long as it allows good predictions of the relative impact of various features. For
WCET analysis, however, we require absolute agreement with the hardware.

8.4.4 Avoid Generic Modeling Packages

Generic processor modeling tools like SimpleScalar are good for experimenting
with certain processor design ideas, but they are in general not able to cap-
ture all the details of a particular real-life processor. Speed of implementation
and convenience is bought by simplifying many factors and providing general
approximations, making it very hard to model the peculiar design choices of a
particular processor.
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Chapter 9

Prototype and Experiments

We have implemented a prototype tool incorporating the pipeline timing anal-
ysis and timing model described in this thesis. The tool does not yet use au-
tomatic flow analysis and global low-level analysis has not been needed for the
targets and programs we have studied. Thus, the current tool is a subset of the
full architecture in Figure 3.1, as shown in Figure 9.1.
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Figure 9.1: WCET tool prototype implementation

The tool is currently a command-line tool that runs under Solaris, Linux,
and Windows 2000. We have implemented two different CPU models, V850E
and ARM9 (as well as two variants of the V850E with slower memory timing).
It is possible to select the CPU model by using a --cpu option on the command
line for the tool. There are also two calculation modules, one IPET-based [EE99]
and one path-based [SEE01b], which can be selected independently of the CPU
model used using a --mode option. This independence shows that it is quite
easy to port the tool to new targets and exchange components, thanks to our
architecture.

101
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For ARM9 programs, we parse the object code in ELF format directly and
construct a scope graph from it, while V850E programs rely on a modified
IAR V850/V850E C/Embedded C++ compiler [IAR99] (we have only tried C
programs) to generate object code files on a special format which are then used
to construct the scope graph.

We have implemented a cache analysis in the style of Ferdinand et al.
[FMW97], just to check that it was possible to deposit information about cache
hits and misses in the scope graph. However, we are not using it in our experi-
ments, since none of our targets currently use a cache.

Currently, the tool only generates WCET estimates. An industrial tool has
to generate best-case estimates as well as a worst-case estimates, since this allows
a user to get a rough idea of the tightness of the WCET estimate. Implementing
BCET analysis in addition to WCET analysis should not be too difficult, and
has been done by several other WCET research groups [HAM+99, ZWR+01].

9.1 Test Programs

Program Description Properties

compress Compression using lzw. Nested loops, goto-loop, function
calls.

crc Cyclic redundancy check computa-
tion on 40 bytes of data.

Complex loops, many decisions, loop
bounds depend on function argu-
ments, function that executes differ-
ently the first time it is called.

duff Using “Duff’s device” [Ray00] to
copy a 43 byte array.

Unstructured loop with known
bound, switch statement.

expint Series expansion for computing an
exponential integral function

Inner loop that only runs once,
structural WCET estimate gives
large overestimate.

fibcall Simple iterative Fibonacci calcula-
tion, used to calculate fib(30).

Parameter-dependent function,
single-nested loop.

fir Finite impulse response filter (signal
processing algorithms) over a 700
items long sample.

Inner loop with varying number of
iterations, loop-iteration dependent
decisions.

insertsort Insertion sort on a reversed array of
size 10.

Input-data dependent nested loop
with worst-case of n2/2 iterations.

jfdctint Discrete-cosine transformation on a
8x8 pixel block.

Large basic blocks, single-nested
loops.

lcdnum Read ten values, output half to LCD Loop with iteration-dependent flow.
matmult Matrix multiplication of two 20x20

matrices.
Multiple calls to the same function,
nested function calls, triple-nested
loop.

ns Search in a multi-dimensional array Return from the middle of a loop
nest, deep loop nesting.

nsichneu Simulate an extended Petri Net Automatically generated code con-
taining massive amounts of if-
statements (> 250)

Figure 9.2: The test programs used in our experiments

In our experiments, we have used a number of diverse test programs, as
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No Pipeline Pipeline Actual No pipe
Program cycles +% cycles +% cycles -pipe
compress 10388 19.9% 8672 0.12% 8662 19.8%

crc 61340 102.6% 30271 0.0% 30271 102.6%
expint 10062 17.2% 8588 0.0% 8588 17.2%

fibcall 559 78.6% 313 0.0% 313 78.6%
fir 487808 40.1% 352073 1.14% 348095 39.0%

insertsort 2328 116.8% 1794 67.0% 1074 49.7%
jfdctint 5388 9.4% 4942 0.35% 4925 9.1%

lcdnum 341 72.2% 198 0.0% 198 72.2%
matmult 275859 24.4% 221824 0.0% 221824 24.4%

ns 20653 48.3% 13934 0.04% 13928 48.2%
nsichneu 87193 70.6% 51133 0.03% 51116 70.5%

Figure 9.3: Execution time estimates with and without pipeline effects

presented in Figure 9.2. The goal has been to collect programs with many
different types of flows and structures, to thoroughly test all aspects of the low-
level analysis and the calculation. Most of the programs have been used by
other WCET research groups1, and some have been specially crafted to test
particular aspects of calculation.

Actual execution time values for these programs were obtained by running
a worst-case trace of the programs through the same simulator used for the
WCET analysis. Thus, these experiments only deal with the effectivenes of
pipeline modeling and do not take into account any differences between the
simulator and the actual hardware. The trace was obtained by manual analysis
of the programs, and extensive testing was performed to make sure that they
really correspond to the worst case.

9.2 Usefulness of Timing Effects

To demonstrate the value of modeling the pipeline overlap between basic blocks
(pairwise timing effects), we generated WCET estimates for our test programs
both with and without timing effects. By ignoring the timing effects, we do not
model the pipeline overlap between basic blocks. Figure 9.3 shows the results of
the experiments, using the V850E processor model and path-based calculation.

The columns under “No pipeline” shows the WCET estimates achieved as-
suming all timing effects are zero, while “Pipeline” shows the estimates achieved
when timing effects were used. The “+%” columns shows the overestimate com-
pared to the execution time in the “Actual cycles” column. The last column, “No
pipe-pipe” shows the difference in overestimation between the “No pipeline” and

1Despite this fact, comparing experimental results is very difficult since all groups target
different processors and use different calculation methods.
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IPET with flow Actual Facts
Program cycles + % cycles used

crc 30271 0.0% 30271 6
duff 1083 0.0% 1083 1

expint 8588 0.0% 8588 4
fibcall 313 0.0% 313 0

insertsort 1074 0.0% 1074 1
lcdnum 198 0.0% 198 2
matmult 221824 0.0% 221824 0

Figure 9.4: Estimated and actual execution times, with known program flow

“Pipeline” numbers, and is a measure of the tightness gained from the pipeline
modeling by timing effects.

The flow facts that the path-based calculation can use were applied to gener-
ate the best possible estimates, but some programs still exhibit execution time
overestimations due to program flow, especially insertsort.

In general, modeling pipelines seem to tighten WCET estimates by at least
20%, with some programs gaining much more. The benefit is greatest for pro-
grams with many small basic blocks (like crc, fibcall, and nsichneu), and
least for programs with large basic blocks (like jfdctint). Experience from
compiler design and computer architecture indicates that the case with many
small basic blocks is quite common [HP96, Muc97], and thus modeling effects
across basic blocks is essential for a tight WCET analysis. In an analysis of over-
estimation sources in WCET analysis, Kim et al. also reached the conclusion
that pipeline effects between basic blocks is a very important factor [KHM99].

Note that the measurements in Figure 9.3 do not include duff, since it is an
unstructured program and cannot be handled by the path-based calculation.

9.3 Precision

The precision of the pipeline analysis can be evaluated by performing WCET
analysis for programs with known worst-case flows. WCET estimates are gen-
erated using flow information that perfectly models the flow of the program,
and thus any overestimate observed will have been caused by the timing model
and not the flow information. We have such precise flow information for some
of our test programs, requiring the use of the IPET-based calculation module
to handle all the facts.

Note that to eliminate the possibility that errors in the calculation mod-
ule mask errors in the pipeline model, the program execution profiles (execu-
tion counts for basic blocks in the program) generated by the calculation were
checked against the execution counts for the basic blocks in the worst-case traces
[EES01b].

Figure 9.4 shows the results of running the programs where the flow is per-
fectly modeled, using the V850E pipeline model. The columns under “IPET
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with flow” shows the WCET estimate from the tool. The “Actual cycles” col-
umn shows the actual WCET for the program. The column “Facts used” shows
the number of facts needed to achieve the precision (each fact states an exe-
cution count bound for a particular block, or an infeasible path). We can see
that the execution times agree perfectly for all the programs, which indicates
that no precision is lost in the pipeline model, if used with a powerful enough
calculation module. Usually, not too many flow facts are needed to achieve good
precision in the WCET analysis. Here, duff is included, since our IPET-based
calculation module can handle unstructured programs.

Compared to other work in WCET analysis, the precision we achieve is
competitive. Stappert and Altenbernd report overestimations between 4% and
13% for straight-line code on a superscalar PowerPC 604 processor with caches
[SA00]. Healy et al. reports 0% overestimation (perfect agreement) for pre-
dictable programs like matmul, and up to 100% overestimation for a sort pro-
gram similar to insertsort (due to the limited power of the calculation method
used), considering only the pipeline of the MicroSPARC 1 [HAM+99]. Ernst and
Ye report overestimates ranging from 0% to 10%, analyzing a SPARC pipeline
similar in complexity to our V850E, using IPET calculation [EY97]. Colin and
Puaut report overestimates between 1% and 265% for a simplified integer-only
Pentium CPU with caches and branch prediction [CP00]. Lundqvist and Sten-
ström report overestimates between 0% for programs with predictable flow, up
to 1600% for programs with very irregular flow [LS99a].

Note that not all published work include measurements comparing the gen-
erated WCET estimates with actual execution times; in many cases, the ef-
fectiveness of analysis methods are evaluated by comparing the estimated and
actual number of cache misses etc., and not actual execution times.

9.4 Computation Time

In order to determine the computational costs of the pipeline analysis, we mea-
sured the time required for the pipeline analysis part of our WCET tool proto-
type for each of the test programs. Note that we exclude the time required to
read the input files and perform the calculation, since they are not really related
to the analysis.

Figure 9.5 shows the time required to perform the pipeline analysis for our
test programs. “Pipe time” shows the time required for the timing analysis.
In order to give an appreciation for the magnitude of the time, the column
“Load time” shows the time taken to read the input files into the tool, and
“Sim time” the time required to run the trace corresponding to the worst-case
execution of the program in the simulator. The column “Pipe/Sim” shows the
relation between the time for the pipeline analysis and simulation of the worst-
case execution. All times are in seconds, obtained on a PC with a 700 Mhz
Pentium III processor, 768 MB of RAM, and Windows 2000 SP2. Our tool was
compiled in release mode with Visual C++ 5.0.
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Program Load Time Pipe Time Sim Time Pipe/Sim
compress 0.24 0.52 0.33 1.58

crc 0.10 0.19 1.58 0.12
duff 0.03 0.09 0.07 1.31

expint 0.05 0.13 0.19 0. 68
fibcall 0.01 0.03 0.02 1.50

fir 0.04 0.08 17.55 ≈ 0%
insertsort 0.03 0.04 0.07 0.57
jfdctint 0.17 0.23 0.20 1.16

lcdnum 0.03 0.12 0.01 12.00
matmult 0.08 0.18 11.29 0.02

ns 0.03 0.09 0.76 0.12
nsichneu 3.60 5.20 2.98 1.74

Figure 9.5: Computation times (in seconds of wall clock time)

The time taken for the pipeline analysis is roughly linear to the size of the
program, as measured by the time taken to load the code. Typically, it takes
about twice as long as loading the program code (which is linear to the size of
the program).

Compared to the time required to simulate the worst-case execution, the
pipeline analysis is generally efficient. For programs that are loop-intensive,
the pipeline analysis time (“Pipe time”) can be much smaller than the time to
run the program on the simulator (fir and matmult are the best examples).
The numbers for lcdnum shows that there are cases when the analysis can take
longer, which is explained by the high branching factor of a switch statement in
the lcdnum code (in Figure 9.7, we can see another effect of this in that lcdnum
requires investigating quite many long sequences).

9.5 Long Timing Effects

As discussed in Section 7.1.3, by extending the memory latency in our V850E
model from one to six cycles, we provoked long pipeline effects. This is an
artificial test not corresponding to any particular real setup of the V850E, but
it is a useful way to test the extension condition and timing analysis method.

Figure 9.6 shows the number of times and timing effects found; to make the
table easier to read, zeroes have been replaced by dashes. Sequences of length
one correspond to nodes in the timing graph, and length two to the simple
timing effects between neighboring nodes. Sequences of length three and up are
long timing effects. Note that we are discussing nodes in the timing graph, and
that each node can contain several instructions.

Note that all long timing effects found were negative, even though the V850E
has the potential to exhibit positive long timing effects, as discussed in Sec-
tion 7.1.3.
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Length of timing effects
Program 1 2 3 4 5 6 7
compress 106 142 19 7 - - -

crc 45 58 4 - - - -
duff 18 27 2 - - - -

expint 24 30 - - - - -
fibcall 7 8 - - - - -

fir 14 18 - - - - -
insertsort 7 8 2 1 - - -

jfdctint 14 13 6 3 - - -
lcdnum 26 43 3 2 - - -
matmult 36 43 10 3 - - -

ns 18 22 1 - - - -
nsichneu 754 1377 2 1 - - -

Figure 9.6: Times, timing effects, and long timing effects found

The frequency of long timing effects vary significantly across the test pro-
grams. We note that no programs feature long timing effects longer than four
nodes. The frequency of occurence of long timing effects compared to the num-
ber of effects across two nodes varies from very rare (nsichneu), to very common
(matmult).

We validated that we have found all timing effects by using a much more
conservative extension condition with the same set of programs, finding the
same set of timing effects.

Length of sequences analyzed
Program 1 2 3 4 5 6 7
compress 106 147 120 48 13 1 -

crc 45 58 44 15 - - -
duff 18 27 32 7 - - -

expint 24 30 29 11 - - -
fibcall 7 8 9 5 - - -

fir 14 18 17 11 6 1 -
insertsort 7 8 6 4 1 - -
jfdctint 14 16 16 8 - - -

lcdnum 26 43 59 23 2 1 -
matmult 36 43 49 28 12 6 -

ns 18 22 28 18 2 - -
nsichneu 754 1378 1009 2 2 - -

Figure 9.7: Length of sequences investigated

To determine the run-time cost of the extcond-scalar extension condition
used for the V850E visavi the timing effects found, we counted the number of
sequences of a given length that were analyzed for each benchmark, with the
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results shown in Figure 9.7. The number of sequences examined goes down
quickly after length three, since fewer and fewer sequences will need to be ex-
tended according to the extension condition.
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Figure 9.8: Longest timing effects vs. longest sequences investigated

Comparing the lengths of sequences investigated shown in Figure 9.7 with
the length of the timing effects shown in Figure 9.6, we see that we typically
examine a few sequences that are longer than the longest timing effect found,
but not very many.

Figure 9.8 shows the length of the longest timing effect found vs. the length
of the longest sequence examined for the test programs. We note that for
jfdctint, the maximal timing effect and sequence length are both four, which
is a very good result, while fir is worse, with a maximal timing effect length
of two but requiring sequences up to length six to be examined. In general,
examining sequences two nodes longer than the length of the longest timing
effect found seems to be typical. This indicates that a more intrusive extension
condition could conceivably do better.

Program Load time Pipe time Sim time Pipe/Sim LTE/noLTE

compress 0.24 0.70 0.44 1.59 1.35
crc 0.10 0.22 1.63 0.14 1.16
duff 0.03 0.11 0.08 1.47 1.29

expint 0.05 0.13 0.20 0.65 1.00
fibcall 0.01 0.03 0.21 0.14 1.00

fir 0.04 0.10 21.59 0.00 1.25
insertsort 0.03 0.05 0.08 0.63 1.25

jfdctint 0.17 0.25 0.22 1.14 1.08
lcdnum 0.03 0.13 0.01 13.00 1.08
matmult 0.08 0.24 12.48 0.02 1.33

ns 0.03 0.10 0.83 0.12 1.11
nsichneu 3.10 5.77 4.22 1.37 1.11

Figure 9.9: Computation times for pipeline analysis with long timing effects
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Figure 9.9 shows the execution time of the timing analysis when long tim-
ing effects are present. The columns “Load time”, “Pipe time”, “Sim time”,
and “Pipe/sim” have the same meaning as in Figure 9.5. The last column,
“LTE/noLTE” shows how the timing analysis time when long timing effects
are present relates to the time when no long timing effects are present. This
number shows that the analysis gets a little more expensive, but not inordi-
nately so. The values in the column “Pipe/sim” are very similar to Figure 9.5,
also demonstrating that long timing effects do not cause any explosion in the
complexity of the analysis.

9.5.1 Long Timing Effects and Precision

IPET, no LTE Actual
Program Cycles +% Cycles

crc 34427 1.5% 33914
duff 1705 16.2% 1467

expint 8720 0.0% 8720
fibcall 332 0.0% 332

insertsort 2361 0.2% 2356
lcdnum 268 12.6% 238
matmult 312550 9.5% 285384

Figure 9.10: Effect of long timing effect on precision of WCET estimates

Considering the effect on the precision of the execution time estimates, Fig-
ure 9.10 shows the results of doing WCET analysis with the slow data memory
on the V850E. The “IPET, no LTE” columns shows the execution time esti-
mates generated by ignoring all timing effects for sequences of length three or
longer. We only use the programs where we have perfect flow information, since
we do not want uncertainty about the program flow to disturb the experiments.
We can see that for the programs that do not exhibit long timing effects (expint
and fibcall), the result is still a perfect estimate. For the other programs, we
get an overestimate since the long timing effects observed are all negative, and
ignoring them thus increases the execution time estimate2.

The numbers indicate that for some programs, the consequences of long tim-
ing effects can be quite substantial, while it hardly matters for other programs.
In general, we claim that long timing effects must be modeled in order to gen-
erate safe and tight WCET estimates. As always, the effect varies with the
processor architecture and the properties of the program code.

2We do not show numbers for the timing estimates generated by calculating WCET with
the long timing effects, since they would be identical to the actual execution times. The
interesting question that we are trying to answer is how much precision is lost by ignoring
the long timing effects.
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Chapter 10

Conclusions and Discussion

Static WCET analysis is about overcoming the obstacle of execution time vari-
ability in determining the WCET of a program. Compared to measurements,
static WCET analysis offers the ability to obtain guaranteed safe estimates,
with no risk of missing the worst case due to a bad choice of test cases or bad
luck with hardware variability. In this thesis, I have presented five contributions
to the state of the art in worst-case execution time (WCET) analysis.

In the field of fundamental theory, a formal mathematical model (Chapter 5)
has been used to reason about and investigate the safety and tightness of WCET
analysis. Considering the problem of building correct WCET analysis methods,
a discussion on how to build hardware models was given in Chapter 8. On the
practical technique side, I have presented a low-level timing modeling scheme
(Chapter 4) and a corresponding timing analysis method (Chapter 6) to generate
the timing model for a program. The overall tool architecture presented in
Chapter 3 shows how the timing model and timing analysis are integrated with
other parts of the WCET analysis problem.

Overall, these contributions aim towards building retargetable, flexible, ef-
ficient, broad applicable, and correct static WCET analysis tools for real-time
embedded systems. Considering each of these properties:

Retargetability is supported by the timing model and timing analysis since
they isolate the model of the target processor from the other parts of the tool
(as specified by the tool architecture). The architecture allows other analysis
modules to be chosen to suit the properties of a particular target processor,
allowing the efficient reuse of existing modules.

The timing analysis is designed to allow the use of any trace-driven simu-
lator for the target processor, which makes it possible to use already existing
simulators, reducing the time required for adapting the analysis to new targets.
There is no need to construct a special-purpose timing model just for WCET
analysis, as is the common practice in WCET research. Proven and familiar
simulators can thus be used a new way, making WCET analysis easier to sell
to engineers. We have demonstrated the retargetability by implementing our
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analysis for two targets, the NEC V850E and the ARM9.
Flexibility is enhanced by the tool architecture since it is easy to add new

analyses to a modular tool. The set of components active for any particular
analysis instance can easily be customized. The interface data structures allows
the results of several analyses to be combined. Compared to other WCET tool
architectures [FKL+00, CP01a], the interface data structures only assume that
a program is structured as a set of basic blocks with flows between them, but
no restrictions are made considering the flows. The architecture is also flexible
enough that if needed, it would be possible to implement an integrated cache
and pipeline analysis method within our framework, even if it would not be true
to its spirit.

In our prototype, we have implemented two calculation modules, one path-
based and one using IPET. The modules can be chosen independently of the
target processor, thus demonstrating that modules can be replaced indepen-
dently of other modules.

Efficiency is achieved by separating WCET analysis into modules, each of
which performs a single well-defined task. Trade-offs between speed and preci-
sion can be performed by using different versions of a component, which makes
it possible to select a good compromise for a particular program and target
hardware.

The timing analysis method presented in this thesis is efficient, typically
running in time linear to the size of the program. The timing model has been
used to implement some very efficient calculation methods [SEE01b]. Using a
prototype tool, we have evaluated the speed of the timing analysis, and the
results indicate that we quickly generate precise timing models.

Broad applicability has been designed into the timing analysis method and
timing model. The timing model is independent of the particulars of the pro-
cessor architecture, supports any program structure (even spaghetti code, as
demonstrated by including an unstructured test program in our experiments),
and can represent the timing of a wide spectrum of embedded processors (the
model might have to be approximate in some circumstances, though). The tim-
ing analysis is likewise hardware independent, capable of handling any program
structure, and applicable to a wide spectrum of embedded processors.

Verifying the correctness of a tool is facilitated by the tool architecture
since each component can be tested and validated in isolation. Errors in one
component cannot compensate and mask errors in another component, as is
the case for validation dealing with an entire tool as a black box. Since each
component is comparatively simple, its implementation is simpler and therefore
less error-prone.

Understanding the issues involved in modeling hardware is crucial to building
correct WCET analysis tools, and to build systems that are amenable to static
WCET analysis. The discussion on hardware models gives some concrete advice
on how to build correct processor simulators and how to validate simulators.

The formal pipeline model (Chapter 5) allows us to show under which cir-
cumstances our timing analysis method is safe, and explores the theoretical
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limits of precise pipeline timing modeling and analysis. It has been shown that
for some classes of pipelines, WCET analysis will always be safe since only nega-
tive timing effects can occur. There are other classes of pipelines where positive
timing effects can occur and even propagate arbitrarily, requiring conservative
models to achieve a safe analysis. For future research in WCET analysis, the
model provides a formal framework for investigating pipeline timing modeling
and analysis.

10.1 Scalability of Our Approach

Most of the test programs presented in Chapter 9 are quite small, and do not
really stress our prototype tool and computers. Hence, it is natural to question
the scalability of the proposed pipeline analysis method. However, the results
for nsichneu are encouraging: even for a program 50 times bigger than most of
the other test programs, the time for the analysis is proportional to the size of
the program. Furthermore, theoretical arguments can be made for the almost-
linearity of the analysis: since each basic block in the program is only visited a
few times in the analysis, the analysis should be roughly linear in the program
size.

We should note that the experiments show that the precision of WCET anal-
ysis and the computation time required to perform the analysis varies greatly
between test programs. The structure of flow of a program, the quality of the
object code generated by a compiler, the size of basic blocks, and the proces-
sor used: all these factors affect the time taken for the pipeline analysis1. The
largest complexity risk in this regard probably comes from the processor archi-
tecture: if very long timing effects are common, the timing analysis will have to
examine many long sequences, and the computation time will increase.

The main performance bottleneck for scaling WCET analysis as a whole to
bigger programs is probably the calculation. We have demonstrated that, by us-
ing our timing model, path-based calculations can be performed in almost linear
time, even when taking certain flow facts into account [SEE01b]. However, for
maximal precision and flow expressiveness, IPET calculation seems necessary.
Thus, one possible solution is to use different calculation algorithms for different
parts of a program, depending on the complexity of the flow facts for that part
of the program.

10.2 Practical Capability of WCET Analysis

As discussed in Chapter 2, a lot of research effort has been spent on static
WCET analysis. The result of this is a body of knowledge that should allow us

1This is not surprising; all research in static program analysis suffers from the same fact of
life: the quality of the results is dependent on the programs an analysis method is applied to.
Unless the application domain is very narrow, there is no such thing as a “typical” program
that can be considered representative for all programs.
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to build usable WCET analysis tools. In this section, we will try to summarize
the current state of WCET research, in order to ascertain the maturity of WCET
analysis techniques and the practicality of implemeting WCET analysis tools.

10.2.1 Flow Analysis

The complexity of the flow of a program seems to be the greatest determiner
for the WCET estimation precision achievable for a particular program. Most
WCET research groups report results that indicate a tight analysis of the hard-
ware, while the program flow sometimes causes large overestimations.

Applying WCET analysis to real-life systems requires assistance in determin-
ing the program flow. A practical tool has to be pretty much one-click analysis,
where the initial analysis can then be sharpened by adding user information.
Of course, there are cases when user intervention is needed to get a result at all,
like complex loops that cannot be automatically bounded. It is also important
that the results of the flow analysis are presented to the user to enhance the
understanding of the program.

Automatic flow analysis methods are currently limited to well-written pro-
grams with well-structured loops. In most cases, only counted loops can be auto-
matically bounded, while loops that use shift operations or other non-arithmetic
operations to manipulate the loop index have to be manually bounded. Also,
using function pointers or unstructured code breaks most analysis methods.
However, even with these limitations, flow analysis methods are good enough to
provide decent assistance for real-time programmers, with manual intervention
necessary in tricky cases. The useability is not as good as compilers, and could
maybe be compared to lint-style tools, where the users have to invest some
effort in configuring the tool before obtaining useful results.

Since flow analysis can fall back to the great body of research in program
analysis and program understanding, it is relatively easy to show that a certain
analysis method is correct.

The information used to guide the flow analysis should be represented in
a robust format that lets the information survive changes to surrounding code
[HLS00b]. Our flow facts language is excellent for flow information to be used in
calculation, but is invalidated by recompiles since it depends on the structure of
the object code. Thus, flow facts as they are currently designed are not suitable
for source-code annotation.

10.2.2 Global Low-Level Analysis

On the hardware side, pipelines and caches have to be modeled if the target
systems includes such features, since otherwise the estimates could potentially
be off by several hundred percent [KHM99].

Since the access pattern of the instruction cache can be determined from
the program flow graph (at least when speculatively execution is not being
used), instruction cache analysis is quite easy. Current techniques generate good
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estimates for the caching behavior, at least for single-level caches. However,
some cache designs (like using random replacement policies) makes it hard to
obtain tight results. Reported results for direct-mapped and set-associative
instruction caches indicate that very high precision could be achieved in practice.

Data caches are harder to analyze tightly, since the addresses accessed from
a certain memory access instruction can vary across the execution of a program.
No really satisfactory solution to this problem has been presented, only partial
solutions that decrease the pessimism for certain classes of accesses.

Unified caches pose a much harder problem since they mix the predictable
accesses to the program instructions with the unpredictable accesses to data.
They can be analyzed at a great cost in computational complexity, but should
be avoided since they decrease the precision achievable.

Similarly, most hardware tricks aimed at improving the performance of
caches reduce the modelability and thus predictability. Examples are critical-
word-first cache refills, non-blocking caches, and victim caches.

Considering branch prediction, practical analyses have been presented for
simple predictors. For complex multilevel predictors, the complexity of the
analysis is daunting, and it is not clear that there is a practical method to
analyze them.

Demonstrating the correctness of global low-level analyses should not be
overly difficult, since they work in rather simple domains. However, it is nec-
essary to show that the hardware used actually implements the architecture
assumed in the analyses.

10.2.3 Local Low-Level Analysis

For simple processors without pipelines, local low-level WCET analysis is triv-
ial. Just assign an execution time to each instruction, without regard to the
neighboring instructions.

Pipelines makes things more complicated, but the analysis for pipelines can
still be made very precise, at least for simple pipelines. Almost all research
has targeted processors with in-order issue and at most two parallel pipelines,
and for these processors, the results indicate that very tight timing analysis is
possible.

No practical analysis for out-of-order superscalar processors has been pre-
sented. Due to the problems of very complex behavior, timing anomalies, and
the problem of finding all relevant processor features, we do not think that a
practical, safe, and tight analysis is feasible2.

Proving the correctness of pipeline analysis is much harder than for flow
analysis methods or global low-level analysis, since pipeline analysis needs to

2It is possible that using a timing model like ours with some fixed maximum length of
sequences to investigate would give a reasonable approximation of the execution time of an
out-of-order superscalar processor, since the effects of the scheduler would tend to even out
across longer streches of code. However, there would be no guarantees about the safety of the
analysis, but the results would probably be rather good on average.
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model some very complex hardware. The best we can do is to validate the
hardware models used against the hardware, which is time-consuming. It is
also very hard to show that all cases that can occur on the hardware have been
found and accounted for in the model. Thus, in the best case we have an analysis
which is highly likely to be correct.

Considering the impact of the memory system (ignoring the caches), different
memory areas with different access speeds can be easily handled. Delays due
to DRAM refresh are hard to analyze, and no really satisfactory solutions have
been presented.

10.2.4 Calculation

The calculation methods presented in the literature gives us a number of choices
in trading flow precision for speed of computation.

Tree-based approaches are very fast, but have problems taking advantage of
flow information and handling programs with irregular flows.

IPET is the most powerful technique presented, and seems capable of han-
dling almost any kind of program flow, including unstructured programs. Many
different kinds of flows can be expressed. In most cases, the calculation is effi-
cient, even if there is a theoretical potential for a complexity explosion.

Path-based approaches take a middle ground, handling more complex flows
than tree-based approaches, but less than IPET. They are generally efficient,
but if complex flows are modeled, many paths may need to be examined to find
the longest path, making the approach less efficient.

Correctness is quite easy to show for calculation methods, since they operate
in a simple and well-defined domain (assuming that we do not integrate the low-
level analysis with the calculation).

10.3 Building Analyzable Systems

In the fortunate case that an embedded real-time systems project can choose the
hardware to use, and predictable timing and behavior is an issue, the hardware
selection should be oriented towards predictability (and thus analyzability).

Our ability to predict the behavior of a real-time system depends on being
able to model the behavior of the processors used in sufficient detail, and this
appears not to be the case for current high-end processors. Unless a precise
simulator can be constructed, we should consider a processor as being unpre-
dictable and unreliable. Thus, selecting a processor which is simple enough to
be understood seems prudent for hard real-time systems where predictability is
key.

The conventional wisdom is that execution time unpredictability at the hard-
ware level makes superscalar architectures inherently unsuitable for hard real-
time tasks where the maximum performance of the processor is required to fulfill
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requirements [Eyr01], and we agree with this view, especially since performing
WCET analysis for such beasts is very difficult.

Another system architecture that is becoming popular but which causes
unpredictability in a system is the use of virtual machines like the Java vir-
tual machine (JVM) and binary-to-binary translation schemes like Transmeta’s
Crusoe [Kla00]. In those systems, the program object code is translated by a
just-in-time (JIT) compiler before running on the target hardware [AEGS01].
Such systems make off-line prediction of real-time behavior almost impossible,
since both the actual hardware platform used, the final form of the object code,
and the overheads of dynamic translation are unknown before the program runs
on the target.

Considering the memory system, there are two issues: whether to use a
cache, and if a cache is used, how should it should be organized. If variability in
execution time has to be minimized, using on-chip fast SRAM under program
control instead of a cache is highly appropriate. It should be noted that the
programmer-controlled SRAM model has traditionally been employed in DSPs,
where being able to predict the performance is paramount [Eyr01]. ARM Ltd.
recommends this configuration for timing-critical real-time applications, in the
form of the ARM966E-S macrocell [ARM01]. Some research has been performed
on how to selectively statically map parts of a program and its data onto on-chip
memory [BSL+01, SvP01, ABS01], and such techniques can be used to reduce
the manual work required to gain the most from the SRAM.

In many cases, however, there is a strong incentive to use a cache, since this
removes the effort to map code and data to different memories. For instruction
caches, it is recommended to stick with a direct-mapped cache or a cache with
low associativity, since they behave in an analyzable manner. More complex
cache organizations should be throroughly checked to ensure that they can be
analyzed safely. It is hard to account for the full speed-up achieved by data
caches, and thus they might not make the WCET estimate for a program much
lower than not having a data cache at all. Unified caches introduce dangerous
unpredictability and interference into a system, and are not suitable for real-
time systems.

In many cases, choosing a predictable architecture with low inherent varia-
tion and no cache is not going to lose much performance compared to a more
complex and unpredictable chip, when we have to consider the worst case. As
an example, let’s investigate the effect of a cache on execution time variation, by
a quick back-of-an-envelope calculation: consider a 500 Mhz simple superscalar
machine that can execute at most two instructions per cycle, and that has sep-
arate data and instruction caches. When every instruction hits the cache, and
the code is well-scheduled, we reach a peak cycles-per-instruction value (CPI)
of 0.5, giving a performance of 1000 Million instructions per second (MIPS).
However, we have to account for the instruction cache behavior. Assume that
the cost of a cache miss is twenty cycles (due to the need to refill whole cache
lines and the requirement to first detect a cache miss before starting to fetch
the missing data to the cache).
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The pessimistic scenario that has to be used in the absence of cache analysis
is that every instruction fetch and data access misses the cache. If we assume
that one in five instructions is a memory access, this brings the CPI down
drastically: CPI = 20 + 20% ∗ 20 = 25, corresponding to about 20 MIPS. For a
more realistic model, assume that we execute only straight line code, and that
we pack four instructions per cache line. In this case, one in four instructions
will miss the cache, and we allow two instructions in each cache line to be
issued in parallel: CPI = 25% ∗ 20 + 25% ∗ 1 + 50% ∗ 0.5 + 20% ∗ 20 = 9.5,
for about 50 MIPS. Thus, we see that the performance of the machine that can
be assumed in a safe worst case can be an order of magnitude smaller than the
peak performance, effectively wasting the excess processing power.

For comparison, consider a machine that is scalar, runs at 100 Mhz, and has
a two-cycle latency local memory. The CPI will be 2 + 20% ∗ 2 = 2.4, which
translates to about 42 MIPS. This machine will exhibit no variation due to the
cache, so this performance can be relied on, reducing the overdimensioning of
the system. While the peak speed of the processor is only about 4% of the
high-end processor, the worst-case speed (which has to be assumed for a hard
real-time system) is almost the same.

Halang and Colnaric [HC97] argue that due to the complexity of modern
microprocessors, safety-critical real-time control systems are better implemented
using simple and predictable hardware. Several simple processors should be
used, with tasks dedicated to each to avoid sources of unpredictability like in-
terrupts disturbing a computational task. This is a reasonable conclusion.

However, many systems are only partially hard real-time, and a fast average-
case-optimized processor is used in order to maximize the features available
as soft real-time or non-real-time tasks. In such a system, guaranteeing the
behavior of the small hard real-time part requires special measures to minimize
the variability in execution time (for example, critical code could be locked in the
cache). Ideally, the hard real-time work should be off-loaded onto a dedicated
processor, but it is not always possible to build ideal systems. More research
is needed on how to build partially hard real-time systems using components
optimized for average-case performance.

10.4 The Future of WCET Analysis Tools

In the future, we hope to see WCET tools emerge on the mainstream embedded
systems development tools market. The most likely scenario is for such tools to
be bundled with either compiler suites or support tools for real-time operating
systems. The most natural partner is the compiler, since compilers generate
a large amount of information that can be very useful for WCET analysis,
but which is not part of standard object-code formats and thus cannot easily
be communicated to stand-alone tools. Tight integration with a compiler has
many practical advantages.
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Today, there is no market for static WCET analysis tools, since the only
tools available are niche products or research prototypes, and developers are
in general unaware of the potential benefits of using static WCET analysis.
When a market develops, it is possible that the main use for WCET tool will be
for other purposes than scheduling and schedulability analysis, since most real-
time systems are not built using operating systems that really support advanced
schedulability analysis. Timing analysis of DSP kernels and interrupt latencies
can potentially be a much larger market than the analysis of task execution
times for the purpose of scheduling.

The development of ever more complex processors poses a long-term chal-
lenge for static WCET analysis tools, since even the definition and usefulness
of worst-case estimates are problematic given hardware with great enough vari-
ability. When the worst case and average case differ by an order of magnitude,
it is hard to motivate dimensioning a system for a worst case that will probably
“never” occur.

For systems where predictability and guaranteed correctness are important,
we hope that system designers realize that predictability has to be designed in
from the ground up, starting with the hardware design and choice of proces-
sors. The currently available processors for embedded systems are in general
analyzable, since processors are kept simple from the dual constraints of power
consumption and price. Sufficient performance is enough, and few embedded
systems can spare the power and money to use current high-end processors.
An encouraging trend is that several simple processors are used in cases where
more performance is needed, but power consumption still needs to be kept down
[GLN01, Lev01].

It is also a fact that for many real-time applications, the power of a simple
8-bit microprocessor will suffice for the foreseeable future. The number of 32-
bit processors sold is increasing very rapidly, but the number of older 8-bit
processors remain remarkably steady. Many new applications and products
require the use of high-performance processors, but many applications, old and
new, use simpler processors since they do not need the performance of high-end
processors. All in all, the current embedded systems landscape is rather hopeful
for the doability of static WCET analysis.

What is needed today is not so much more research as the practical devel-
opment of useable tool, and that some development tool vendor dares to take
the plunge and test the market for a WCET analysis tool by bringing one to
market. On the demand side, students and real-time software developers need
to be educated about the benefits of WCET analysis and WCET analysis tools,
in order to create a demand for tools.
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[FKL+00] Christian Ferdinand, Daniel Kästner, Marc Langenbach, Florian Martin, Michael
Schmidt, Jörn Schneider, Henrik Theiling, Stephan Thesing, and Reinhard Wil-
helm. Run-Time Guarantees for Real-Time Systems– The USES Approach. In
Proc. of the “Deutschsprachige WCET-Tagung” held at C-Lab in Paderborn in
conjunction with DIPES 2000 (International IFIP Workshop on Distributed and
Parallel Embedded Systems), October 2000. http://www.c-lab.de/wcet2000/.

[FLBC01] Scott Friedman, Nicholas Leidenfrost, Benjamin C. Brodie, and Ron K. Cytron.
Hashtables for Embedded and Real-Time Systems. In Proc. IEEE Real-Time
Embedded Systems Workshop, held in conjunction with RTSS 2001, December
2001.

[FMW97] Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying compiler
techniques to cache behavior prediction. In Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems (LCT-RTS’97), 1997.

[Gan01] Jack Ganssle. Really Real-Time Systems. In Proc. Embedded Systems Conference
San Fransisco (ESC SF) 2001, April 2001.

[Gan02] Jack Ganssle. Ada’s slide into oblivion. “Embedded Pulse” Column on
www.embedded.com, January 2002.

[GKO+00] Jeff Gibson, Robert Kunz, David Ofelt, Mark Horowitz, John Hennessy, and
Mark Heinrich. FLASH vs. (Simulated) FLASH: Closing the Simulation Loop.
In Proc. 9th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS00), November 2000.

[GLN01] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing Memory Utiliza-
tion of Real-Time Task Sets in Single and Multi-Processor Systems-on-a-chip. In
Proc. 22st IEEE Real-Time Systems Symposium (RTSS’01), December 2001.

[Gus00] Jan Gustafsson. Analyzing Execution-Time of Object-Oriented Programs Us-
ing Abstract Interpretation. PhD thesis, Department of Computer Systems, In-
formation Technology, Uppsala University, May 2000. DoCS Report 00/115,
www.docs.uu.se/docs/research/reports/.

[Had02] Patric Hadenius. En dator i varje pryl. Forskning och Framsteg, (1/02), January-
February 2002.

[Hal99] Tom R. Halfhill. StarCore Reveals Its First DSP. Microprocessor Report, May
10, 1999.

[Hal00a] Tom R. Halfhill. EEMBC Releases First Benchmarks. Microprocessor Report,
May 1, 2000.

[Hal00b] Tom R. Halfhill. Embedded Market Breaks New Ground. Microprocessor Report,
January 17, 2000.

[HAM+99] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding pipeline
and instruction cache performance. IEEE Transactions on Computers, 48(1),
January 1999.

[Han98] Jim Handy. The Cache Memory Book. Academic Press, 2nd edition, 1998.

[HC97] Wolfgang A. Halang and Matjaz Colnaric. On Safety-Critical Computer Control
Systems. In Proc. Tenth IEEE Symposium on Computer-Based Medical Systems,
June 1997.

[Hei94] J. Heinrich. MIPS R4000 Microprocessor User’s Manual. MIPS Technologies
Inc., 2nd edition, 1994.

[Her98] Stephen A. Herrod. Using Complete Machine Simulation to Understand Com-
puter System Behavior. PhD thesis, Stanford University, February 1998.

[HHWT97] T. A. Henzinger, P-H. Ho, and H. Wong-Toi. HYTECH: A Model Checker for
Hybrid Systems. In Proc. of the 9th International Conference on Computer
Aided Verification, pages 460–463. Springer-Verlag, 1997. LNCS 1254.



126 Bibliography

[Hit95] Hitachi Europe Ltd. SH7700 Series Programming Manual, September 1995.

[HKA+01] Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park, ,
and Jayanth Srinivasan. Variability in the Execution of Multimedia Applications
and Implications for Architecture. In Proc. of the 28th International Symposium
on Computer Architecture (ISCA 2001). ACM Press, July 2001.

[HLS00a] Niklas Holsti, Thomas L̊angbacka, and Sami Saarinen. Using a Worst-Case
Execution-Time Tool for Real-Time Verification of the DEBIE software. In Pro-
ceedings of the DASIA 2000 Conference (Data Systems in Aerospace 2000, ESA
SP-457), September 2000.

[HLS00b] Niklas Holsti, Thomas L̊angbacka, and Sami Saarinen. Worst-Case Execution-
Time Analysis for Digital Signal Processors. In Proceedings of the EUSIPCO
2000 Conference (X European Signal Processing Conference), September 2000.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 2nd edition, 1996. ISBN 1-55860-
329-8.

[HPRA02] Christopher J. Hughes, Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V.
Adve. Rsim: Simulating Shared-Memory Multiprocessors with ILP Processors.
IEEE Computer, 35(2), February 2002.
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