
Processor Power Reduction Via Single-ISA
Heterogeneous Multi-Core Architectures

Rakesh Kumar* Keith Farkasy Norman P Jouppiy Partha Ranganathany Dean M. Tullsen*

�Department of Computer Science and Engineering yHP Labs
University of California, San Diego Palo Alto, CA
frakumar,tullseng@cs.ucsd.edu fkeith.farkas,norm.jouppi,partha.ranganathang@hp.com

Abstract— This paper proposes a single-ISA heterogeneous
multi-core architecture as a mechanism to reduce processor
power dissipation. It assumes a single chip containing a diverse
set of cores that target different performance levels and consume
different levels of power. During an application’s execution,
system software dynamically chooses the most appropriate core to
meet specific performance and power requirements. It describes
an example architecture with five cores of varying performance
and complexity. Initial results demonstrate a five-fold reduction
in energy at a cost of only 25% performance.

Index Terms— chip multiprocessor, low-power architecture

I. INTRODUCTION

As processors continue to increase in performance and
speed, processor power consumption and heat dissipation
have become key challenges in the design of future high-
performance systems. For example, Pentium-class processors
currently take well over 100W and processors in the year
2015 are expected to take close to 300W. Increased power
consumption and heat dissipation typically leads to higher
costs for thermal packaging, fans, electricity, and even air
conditioning. Higher-power systems can also have a greater
incidence of failures.

This paper proposes a single-ISA heterogeneous multi-core
architecture to reduce processor power dissipation. Prior chip-
level multiprocessors (CMP) have been proposed using multi-
ple copies of the same core (i.e., homogeneous), or processors
with co-processors that execute a different instruction set. We
propose that for many applications, core diversity is of higher
value than uniformity, offering much greater ability to adapt
to the demands of the application(s). We present a multi-core
architecture where all cores execute the same instruction set,
but have different capabilities and performance levels. At run
time, system software evaluates the resource requirements of
an application and chooses the core that can best meet these
requirements while minimizing energy consumption.

The motivation for this proposal is that different applications
have different resource requirements during their execution.
For example, some applications may have a large amount
of instruction-level parallelism (ILP), which can be exploited
by a core that can issue many instructions per cycle (i.e.,
a wide-issue superscalar CPU). The same core, however,
might be wasted on an application with little ILP, consuming

The authors would like to thank the Semiconductor Research Corporation
who provided part of the funding for this project, and the anonymous reviewers
for helpful suggestions.

Manuscript submitted: 30 Mar. 2003. Manuscript accepted: 7 Apr. 2003.
Final manuscript received 17 Apr. 2003.

significantly more power than a simpler core that is better
matched to the characteristics of the application.

Previous work on power-related optimizations for processor
design can be broadly classified into two categories: (1) work
that uses voltage and frequency scaling of the processor
core to reduce power [3], [7], (2) work that uses “gating”
– the ability to turn on and off portions of the core – for
power management [1], [6], [4]. Our heterogeneous multi-core
architecture does not preclude the use of these techniques and
can potentially address the drawbacks of these techniques to
provide much greater power savings.

One way to implement a heterogeneous multi-core architec-
ture is to take a series of previously implemented processor
cores, modify their interfaces, and combine them into a
single multiprocessor. Given the growth between generations
of processors from the same architectural family, the entire
family can typically be incorporated on a die only slightly
larger than that required by the most advanced core.

In this paper, we consider implications of this single-ISA
heterogeneous architecture, with particular attention to one
example architecture which includes five representative cores
(three in-order cores and two out-of-order cores) from an
ordered complexity/performance continuum.

II. ARCHITECTURE

This section gives an overview of a potential heterogeneous
multi-core architecture and core-switching approach.

The architecture consists of a chip-level multiprocessor with
multiple, diverse processor cores. These cores all execute
the same instruction set, but include significantly different
resources, and achieve different performance and energy ef-
ficiency on the same application. During an application’s
execution, the operating system software tries to match the
applications to the different cores so as to make the best use
of the available hardware while maximizing energy efficiency
for a given performance requirement or goal.

A. Choice of cores.

Our heterogeneous multi-core architecture is based on the
hypothesis that the performance difference between the cores
varies across different workloads. In other words, the “best”
core (defined, for now, as some desired combination of power
and performance) for one application may not be best for
another. One application may benefit greatly from wide issue
and dynamic scheduling, another benefits from neither. Thus,



EV8-

EV6

EV5

EV4

R47
00

Fig. 1. Relative sizes of the cores used in the study

the latter gains nothing from the extra power required for it
to run on a high-performance processor.

To provide an effective platform for a wide variety of
application execution characteristics, the cores on the hetero-
geneous multi-core processor should cover both a wide and
evenly spaced range of the complexity/performance design
space. This initial study considers a design that takes a series
of previously implemented processor cores with slight changes
to their interface – this preserves one of the key advantages
of the CMP architecture, namely the effective amortization of
design and verification effort. For breadth, we include both a
single-threaded version of the EV8 (Alpha 21464), referred to
as EV8-, and the MIPS R4700, a processor targeted at very
low-power applications. To fill out the design space, we also
include the EV4 (Alpha 21064), EV5 (Alpha 21164), and EV6
(Alpha 21264). Core switching is greatly simplified if the cores
can share a single executable, so we assume a variant of the
R4700 that executes the Alpha ISA. Finally, we assume the
five cores have private L1 data and instruction caches and share
a common L2 cache, phase-lock loop circuitry, and pins.

We chose the cores of these off-the-shelf processors due to
the availability of real power and area data for these proces-
sors, except for the EV8 where we use projected numbers.

Figure 1 shows the relative sizes of the cores used in the
study, assuming they are all implemented in a 0.10 micron
technology (the methodology to obtain this figure is described
in the next section). It can be seen that the resulting core
is only modestly (within 15%) larger than the EV8- core by
itself.

For our initial results, we assume only one application runs
at a time on only one core. Because we assume a maximum
of one thread running, the multithreaded features of EV8 are
not needed. Hence, these are subtracted from the model, as
discussed in Section III. In addition, this assumption means
that we do not need more than one of any core type. Finally,
since only one core is active at a time, we implement cache
coherence by ensuring that dirty data is flushed from the
current core’s L1 data cache before execution is migrated to
another core.

This particular choice of architectures also gives a clear
ordering in both power dissipation and expected performance.
This allows the best coverage of the design space for a given
number of cores and simplifies the design of core-switching
algorithms.

B. Switching of workloads between cores.

The second hypothesis in our study is that different cores
have varying energy efficiencies for the same workload. Typ-
ical programs go through phases with different execution
characteristics – the best core during one phase may not be
best for the next phase. This observation motivates the need
to dynamically switch cores in mid execution to take full
advantage of our heterogeneous architecture.

There is a cost to switching cores, so we must restrict the
granularity of switching. One method for doing this would
switch only at operating system timeslice intervals, when
execution is in the operating system, with user state already
saved to memory. If the OS decided a switch was in order, it
would trigger a cache flush to save all dirty cache data to the
shared L2, power up the new core, and signal the new core to
start at a predefined OS entry point. The new core would then
power down the old core and return from the timer interrupt
handler. The user state saved by the old core would be loaded
from memory into the new core at that time, as a normal
consequence of returning from the operating system.

In this work, we assume that unused cores are completely
powered down, rather than left idle. Thus, unused cores suffer
no static leakage or dynamic switching power. This does,
however, introduce a latency for powering a core back up.
We estimate that a given processor core can be powered up
in approximately one thousand cycles of the 2.1GHz clock.
This assumption is based on the observation that when we
power down a processor core we do not power down the phase-
lock loop that generates the clock for the core. Rather, in our
multi-core architecture, the same phase-lock loop generates
the clocks for all cores. Consequently, the power-up time of a
core is determined by the time required for the power buses to
charge and stabilize. In addition, to avoid injecting excessive
noise on the power bus bars of the multi-core processor, a
staged power up would likely be used. Experiments confirm
that switching cores at operating-system timer intervals en-
sures that the switching overhead has virtually no impact
on performance, even with the most pessimistic assumptions
about power-up time, software overhead, and cache cold start
effects.

III. METHODOLOGY

This section discusses the various methodological chal-
lenges of this research, including modeling the power, the real
estate, and the performance of the heterogeneous multi-core
architecture.

A. Modeling of CPU Cores

As discussed earlier, the cores we simulate are roughly
modelled after cores of R4700, EV4 (Alpha 21064), EV5
(Alpha 21164), EV6 (Alpha 21264) and EV8-. EV8- is a
hypothetical single-threaded version of EV8 (Alpha 21464).
The data on the resources for EV8 was based on predictions
made by Joel Emer [2] and Artur Klauser [5], conversations
with people from the Alpha design team, and other reported
data. The data on the resources of the other cores are based
on published literature on these processors.



TABLE I

CONFIGURATION OF THE CORES

Processor R4700 EV4 EV5 EV6 EV8-
Issue-width 1 2 4 6 (OOO) 8 (OOO)

I-Cache 16KB, 2-way 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way
D-Cache 16KB, 2-way 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way

Branch Pred. Static 2KB,1-bit 2K-gshare hybrid 2-level hybrid 2-level (2X EV6 size)
Number of MSHRs 1 2 4 8 16

The multi-core processor is assumed to be implemented in
a 0.10 micron technology. The cores have private first-level
caches, and share an on-chip 3.5 MB 7-way set-associative
L2 cache. At 0.10 micron, this cache will occupy an area
just under half the die-size of the Pentium 4. All the Alpha
cores (EV4,EV5,EV6,EV8-) are assumed to run at 2.1GHz.
This is the frequency at which an EV6 core would run if its
600MHz, 0.35 micron implementation was scaled to a 0.10
micron technology. All of the Alpha cores were designed to
run at high frequency, so we assume they can all scale to
this frequency (if not as designed, processors with similar
characteristics certainly could). On the other hand, the R4700
is not designed primarily for high clock rate; thus, we assume
it is clocked at 1 GHz.

Table I summarizes the configurations that were modelled
for various cores. We did not faithfully model every de-
tail of each architecture, but we were most concerned with
modeling the approximate spaces each core covers in our
complexity/performance continuum. However, all architectures
are modelled as accurately as possible, given the parameters
in Table I, on a highly detailed instruction-level simulator. The
various miss penalties and L2-cache access latencies for the
simulated cores were determined using CACTI [11].

Note that while we took care to model real architectures
that have been available in the past, we could consider these
as just sample design points in the continuum of processor
designs that could be integrated into a heterogeneous multiple-
core architecture. These existing designs already display the
diversity of performance and power consumption desired.

B. Modeling Power

Table 2 shows our power and area estimates for the cores.
Power dissipation for all implemented cores is derived from
published numbers, forcing us to start with peak power data
obtained from datasheets and conference publications. While
this basis ensures that our power estimates are high, we believe
that the typical power for each core scales roughly with peak
power. This gives us an adequate yardstick to determine the
initial feasibility of this approach.

To derive the peak power dissipation in the core of a
processor from the published numbers, the power consumed in
the L2-caches and at the output pins of the processor must be
subtracted from the published value. Details of this method-
ology will be described in more detail in later publications.

The second column in Table II summarizes the power
consumed by the cores at 0.10 micron technology. As can
be seen from the table, the EV8- core consumes almost 200
times the power and 80 times the real estate of the R4700
core. CACTI was also used to derive the energy per access of
the shared L2-cache, for use in our simulations.

TABLE II

PEAK POWER AND AREA STATISTICS OF THE CORES

Core Core-power Core-area Power/area
(Watts) (mm�) Watt/mm�

R4700 0.30 2.80 0.11
EV4 1.83 2.87 0.64
EV5 4.43 5.06 0.88
EV6 10.80 24.5 0.37
EV8- 60.11 236 0.26

C. Estimating Chip Area

Table II also summarizes the area occupied by the cores
at 0.10 micron (also shown in Figure 1). The area of the
cores (except EV8-) is derived from published photos of
the dies after subtracting the area occupied by I/O pads,
interconnection wires, BIU (bus-interface unit), L2 cache, and
control logic. Area of the L2 cache of the multi-core processor
is estimated using CACTI.

The die size of EV8 was predicted to be 400 mm� [8].
To determine the core size of EV8-, we subtract out the
estimated area of the L2 cache (using CACTI). We also
account for reduction in the size of register files, instruction
queues, reorder buffer, and renaming tables to account for the
single-threaded EV8-. The area data is then scaled for the 0.10
micron process.

D. Modeling Performance

Benchmark execution is simulated using SMTSIM, a cycle-
accurate, execution-driven simulator that simulates an out-of-
order, simultaneous multithreading processor [10]. SMTSIM
executes unmodified, statically linked Alpha binaries. The
simulator was modified to simulate a multi-core processor
comprising five heterogeneous cores sharing an on-chip L2
cache and the memory subsytem. Because the R4700 does not
execute Alpha binaries, what we are modeling is an R4700-
like architecture targeted to the Alpha ISA.

In all simulations in this research we assume a single
thread of execution running on one core at a time. Switching
execution between cores involves flushing the pipeline of the
“active” core and writing back all its dirty L1 cache lines to
the L2 cache.

IV. INITIAL RESULTS

Figure 2 shows results for the SPEC application applu.
Performance and power are modeled for each processor, with
the ratio (IPS��W ) (essentially, the inverse of power-delay
product) shown on the Y axis. The bold line shows the core at
each interval which minimizes the power-delay product over
that interval, with the constraint that we never choose a core
that sacrifices more than 50% performance relative to EV8-



Fig. 2. Oracle switching for best energy-delay – applu. IPS��W varies
inversely with energy-delay product

over an interval. In this figure, four different cores are used
for some interval. Compared to a single-core architecture (e.g.,
one that only contained the EV8- core), this configuration
could ideally reduce the power-delay product by 74% (a nearly
4X improvement in IPS��W ). This comes from a combina-
tion of a 25% performance loss and a 81% energy savings
(that’s a five-fold reduction in energy). Relaxing the (50%)
performance constraint would allow even higher energy-delay
savings, but would make greater performance sacrifices to
do so. More conservative constraints are also possible, of
course – another design point yields a 36% reduction in
energy with a 4% performance loss. It is trivial to adapt
these techniques to optimize other metrics besides power-delay
product (depending on the actual priorities of the architecture
or application), and we have experimented with some of those.
It should be noted that the hardware architecture need not
change for varying power/performance tradeoffs – it is only
necessary for the switching algorithm to change.

V. RELATED WORK

There has been a large body of work on power-related
optimizations for processor design. These can be broadly
classified into two categories: (1) work that uses voltage and
frequency scaling of the processor core to reduce power, (2)
work that uses ”gating” – the ability to turn on and off portions
of the core – for power management.

Voltage and frequency scaling reduces the parameters of
the entire core [3], [7]. While this reduces power, the power
reductions are uniform - across both the portions of the core
that are useful for this workload as well as the portions of
the core that are not. Gating-based power optimizations [1],
[6], [4] provide the option to turn off (gate) portions of the
processor core that are not useful to a workload. For example,
half of the banks in the branch predictor could be turned off
in the example above. However, this kind of gating does not
address the power consumption in driving wires across the
inactive areas of the processor core.

The architecture proposed in this paper addresses the draw-
backs of gating by effectively designing multiple processor

cores each optimized for a particular energy efficiency for a
particular performance.

Several other studies have also identified the differences in
the behavior characteristics across different applications and
different phases between applications [9].

VI. CONCLUSIONS AND FUTURE WORK

This paper seeks to gain some initial insights into the
energy benefits available for a new architecture, that of a
heterogeneous set of cores on a single multi-core die, sharing
the same ISA. To do this, we constrain the problem to a single
application switching among cores to optimize some function
of energy and performance.

We show that a sample heterogeneous multi-core design
with five cores capable of executing the Alpha ISA has the
potential to increase energy efficiency in one benchmark by
a factor of four (by reducing energy by a factor of five, and
performance by only 25%).

We will be fully exploring the design space of a sin-
gle thread utilizing a heterogeneous chip to maximize en-
ergy efficiency, including algorithms and heuristics for thread
movement. We will explore the best configurations of in-
dividual cores, assuming more freedom to alter each core.
We will explore both performance and power implications
of multiple threads running on a multi-core design, including
multithreaded cores.

REFERENCES

[1] D. H. Albonesi. Selective cache-ways: On demand cache re-
source allocation. In IEEE/ACM International Symposium on
Microarchitecture (MICRO-32), 1999.

[2] J. Emer. EV8:the post-ultimate alpha. In PACT Keynote Ad-
dress(http://research.ac.upc.es/pact01/keynotes/emer.pdf, 2001.

[3] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for
dynamic speed-setting of a low-power cpu. In 1st Int’l Conference
on Mobile Computing and Networking, Nov. 1995.

[4] D. Grunwald, A. Klauser, S. Manne, and A. Pleskun. Confidence
estimation for speculation control. In 25th Annual International
Symposium on Computer Architecture, June 1998.

[5] A. Klauser. Trends in high-performance microprocessor design.
In Telematik-2001, 2001.

[6] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Specu-
lation control for energy reduction. In 25th Annual International
Symposium on Computer Architecture, June 1998.

[7] T. Pering, T. Burd, and R. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In Proceedings
of 1998 International Symposium on Low Power Electronics and
Design, Aug. 1998.

[8] J. M. Rabaey. The quest for ultra-low energy computation
opportunities for architectures exploiting low-current devices. In
UC Berkeley Solid State Seminar, Apr. 2000.

[9] T. Sherwood, E. Perelman, G. Hammerley, and B. Calder. Au-
tomatically characterizing large-scale program behavior. In Pro-
ceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems,
Oct. 2002.

[10] D. Tullsen. Simulation and modeling of a simultaneous mul-
tithreading processor. In 22nd Annual Computer Measurement
Group Conference, Dec. 1996.

[11] S. Wilton and N. Jouppi. CACTI: an enhanced cache access
and cycle time model. In IEEE Journal of Solid State Circuits,
Vol 31, No. 5, May 1996.


