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Abstract—Each semiconductor technology generation brings
us closer to the imminent processor architecture heat wall,
with all its associated adverse effects on system performance
and reliability. Temperature hotspots not only accelerate the
physical failure mechanisms such as electromigration and di-
electric breakdown, but furthermore make the system more
vulnerable to timing-related intermittent failures. Traditional
thermal management techniques suffer from considerable per-
formance overhead as the entire processor needs to be stalled or
slowed down to preclude heat accumulation. Given the significant
temporal and spatial variations of the chip-wide temperature, we
propose in this paper a technique that directly targets one of the
resources that is most likely to overheat in current processors,
namely, the register files. Instead of duplicating or physically
distributing the register file, we suggest to attain power density
control through exploiting the extant spatial slack associated with
register file accesses. Based on application-specific access profiles,
a compiler-directed register shuffling strategy is proposed to
deterministically construct the logical to physical register map-
ping in a rotating manner. Simulation results confirm that the
proposed technique attains, within a limited hardware budget
and negligible performance degradation, effective reduction in
peak temperature and hence in the expected fault rates for the
entire chip.

I. INTRODUCTION

Advances in IC fabrication processes have enabled dramatic
numbers of transistors to be integrated on a single chip, in
the process though unfortunately bringing us ever closer to
the imminent processor architecture heat wall. The continuous
scaling of circuit current, clock speed and device density further
lead to significant temperature increases that adversely degrade
the performance and reliability of the chip.

Previous work shows that a higher temperature accelerates
the chemical processes taking place inside the chip, thus
making the system much more vulnerable to various failure
mechanisms such as electromigration, stress migration and
dielectric breakdown [1]. A mere 10 – 15°C rise in the
operating temperature could halve the life span of the circuit
[2]. Meanwhile, temperature hotspots also elevate the amount
of intermittent and transient faults that may occur during exe-
cution. A higher temperature reduces the mobility of the charge
carriers, thus diminishing the switching speed of the transistors.
Negative bias temperature instability (NBTI) and hot carrier
injection (HCI) furthermore cause violations of circuit timing
constraints [3]. As reported in [4], delay fault rates double for
each 10°C increase in temperature. Moreover, as every 20°C
increase in temperature causes a 5-6% increase in Elmore delay
in interconnects, clock skew problems become noticeable for

temperature spatial variations of around 20°C and above [5].
These performance and reliability issues are further worsened
by the positive feedback loop between temperature and leakage
power; not only are the two positively correlated but leakage
current is furthermore exponentially related to temperature,
exacerbating further the effects of the positive feedback.

Traditional packaging and cooling solutions typically need
to target worst case peak temperature, resulting in extremely
expensive packaging solutions as prevailing temperature lev-
els rise (approximately $10 per Watt above 65°C). To keep
the chip-wide temperature within the thermal capacity of the
cooling package, system-level Dynamic Thermal Management
(DTM) techniques become indispensable for both high-end
general purpose processors [6] and low-power embedded cores
[7], [8]. These DTM techniques, such as clock gating [9],
fetch toggling [10], and dynamic frequency and voltage scaling
[6], control worst-case temperature through globally stalling
or slowing down the computation of an overheated core, thus
imposing significant performance deterioration.

Due to its high utilization (accessed 2–3 times per in-
struction) and relatively small area, the register file has been
established as one of the hardware units most likely to overheat
in current processors [6]. This localized “hotspot” can reach
critical temperature levels regardless of average or peak external
package temperature, thus ending up constraining the overall
performance and reliability of the whole chip. More crucially,
due to the fact that 90% of the execution time is spent on
loops where only a small subset of registers is repetitively
accessed, register file accesses also exhibit high asymmetry
during program execution. This asymmetric register utilization
furthermore leads to considerable temperature differentials,
since most of the heat generated within a microarchitectural
block is dissipated vertically to the heat sink rather than
laterally to adjacent blocks [6].

The aforementioned register file access characteristics in-
dicate that the peak temperature within a register file, the
hottest spot of a modern processor, can be effectively controlled
through minimizing the peak power density across the register
file, which in turn can be accomplished through distributing the
accesses uniformly throughout the register file. To achieve this
goal, the register names obtained at the decode stage cannot be
directly used to access the register file, as they would result in
a highly asymmetric access distribution. Instead, we propose
in this paper an iteration-based register shuffling technique
which, through physical remapping of heavily accessed logical
registers prior to local heat buildup, effectively controls the



register file peak temperature. Moreover, to minimize the
hardware overhead and hence the extra power dissipation of
this dynamic remapping support, this register name shuffling
process is deterministically directed by the compiler. A post-
compilation adjustment of the register names allows regularity
to be embedded within register accesses, so that accesses to
each register can be evenly balanced across loop iterations
with no need of any hardware mapping table to keep track of
register usage or register mapping information. This extremely
low hardware overhead therefore enables an easy incorporation
of the proposed technique into low-power embedded processors
to attain temperature control.

The rest of the paper is organized as follows. Section II
briefly reviews the related work. Section III outlines the techni-
cal motivation. Sections IV and V present in detail the proposed
register shuffling scheme and the corresponding implementa-
tion, respectively. The efficacy of the proposed technique is
experimentally verified in section VI. Finally, section VII offers
a brief set of conclusions.

II. RELATED WORK

The adverse impact of operating temperature on system relia-
bility has been studied extensively. Researchers have built both
analytical and experimental models for temperature-induced
fault rate increases, such as delay violations [4], negative bias
temperature instability [3], neutron-induced latchup [11], and
on-chip interconnect [5]. A number of design and modelling
challenges have been summarized in [12].

Based on the physical and power consumption characteristics
of each hardware resource, researchers have developed archi-
tectural thermal models, such as the HotSpot [6], for calculating
transient temperature response. Using these models, two types
of architectural Dynamic Thermal Management (DTM) tech-
niques have been proposed to prevent the chip from reaching
critical temperature levels. Temporal techniques slow down heat
accumulation either at fine granularity through fetch toggling
[10], decode throttling [13], frequency and voltage scaling
[6], or at coarse granularity through periodically stopping
the computation to induce cooling [14]. Obviously, slowing
down or stopping the entire computation engenders significant
performance degradation. Spatial techniques, on the other hand,
reduce temperature by shifting computation from a hot resource
to a relatively cool resource, at the granularity of functional
units [15], pipelines [15], execution clusters [16], or even
cores on a single chip [17]. These spatial techniques sizably
reduce the performance overhead associated with temporal
DTM techniques, yet their applicability requires the existence
of spare or underutilized resource copies.

Since the register file is one of the most power-hungry and
overheated resources in current processors, increasing research
attention has also been paid to the design of thermal-aware
register files. Gate level techniques, such as single- or multi-
level banking [18] and bit-partitioning [19], have been proposed
to reduce the power consumed in each register file access and,
hence, the peak temperature. As temperature is determined not
only by power density but furthermore by heat dissipation
speed, researchers have also proposed to either incorporate
an extra register file [6] to increase the average idle time,
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or physically distribute the register file into multiple clusters
[16] to accelerate heat dissipation. Duplication or distribution
of critical resources such as the register file though engenders
sizable increases in chip area, design and wiring complexity,
as well as critical path delay, thus significantly limiting their
applicability.

As the peak temperature is determined by the most fre-
quently accessed registers, thermal-aware register reassignment
techniques [20], [21] have been proposed. Both techniques
reduce the level of asymmetry in register accesses through
mapping the most frequently accessed registers to distinct
register banks. However, as both techniques need to revisit
the NP-hard problem of register allocation, the quality of
the solutions is determined by the quality of their heuristic
algorithms. More crucially, no matter how good the heuristics
are, such techniques cannot completely eliminate the access
asymmetry to each register, since such asymmetry directly
derives from the asymmetric variable utilization of the program.
As a result, these techniques can only attain a coarse-grained
spatial balance, implying that they are only applicable to multi-
bank register files. In contrast, the technique we propose iter-
atively maps a logical destination to distinct physical registers
across loop iterations, thus enabling the attainment of a fine-
grained temporal balance to each individual register without
revisiting the register allocation problem.

III. TECHNICAL MOTIVATION

The design of a dynamic register shuffling process to reduce
the register file peak temperature and, hence, to improve
chip reliability, is motivated by the observation that the code
generated by the compiler exhibits highly asymmetric register
access activity. A traditional register allocation scheme in a
temperature-unaware compiler initially assumes an infinite set
of virtual registers for representation, and subsequently maps
these virtual registers into a fixed number of architectural
registers. The decision regarding which physical registers in
particular are to be allocated, however, does not take into
consideration the access distribution, thus leading to a highly
asymmetric register access activity. Figure 1, which presents the
cumulative register access ratios of a set of SPEC2000 (shown
in the first 4 bars of Figure 1) and mediabench programs (the
second 4 bars), provides experimental confirmation. As can be
seen, both sets of benchmarks exhibit an appreciable amount of
imbalance in that 48% to 71% of the total register accesses are
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to 4 registers. Mediabench programs display a higher amount
of imbalance as compared to SPEC2000 benchmarks. On the
average, a set of 12 out of a total of 32 registers is able to
capture more than 90% of the total register accesses.

The asymmetric register utilization shown in Figure 1 con-
firms that by evenly distributing the accesses to each individual
register within frequently executed loops, the peak power den-
sity and hence the peak temperature can be effectively reduced.
However, such a balancing cannot be directly attained through
an assignment of register names during code generation, as
the access asymmetry directly derives from the asymmetric
variable utilization of the program. This limitation can be
more concretely illustrated by a representative code fragment
presented in Figure 2a, an unrolled loop composed of 13
instructions that accounts for more than 25% of the total
execution time of bzip2. The corresponding control flow and
register access pattern are presented in Figure 2b. As can be
seen, this loop exhibits a quite unbalanced register utilization
as it only accesses 6 (a5, t8–t11, ra) out of 32 general purpose
registers. Among these 6 registers, a5, t9, and t10 are accessed
most frequently. While the compiler may be able to use more
registers by separating multiple definitions of a single register
(a5 and t9) or further unrolling the loop, individual register
accesses would still remain skewed due to the existence of
singly assigned yet frequently referred registers, such as t10.

Since the static register allocation process cannot completely
balance the accesses to each individual register, a dynamic
mapping needs to be established between the encoded regis-
ter names, denoted as the logical registers, and the register
instances in the register file, denoted as the physical registers,
to physically remap heavily accessed logical registers prior to
local heat buildup. This task could be achieved through using a
hardware mapping table, such as the one used in conventional
superscalar processors, to record free physical registers and
redirect register accesses. Unfortunately, such a mapping table
imposes a notable amount of hardware complexity, energy
consumption and performance overhead. More crucially, as the
table needs to be accessed using logical register names at a
frequency no lower than that of register file accesses, this
small hardware unit itself would hence become a temperature
“hotspot” with skewed access distribution. This significant
energy and heat overhead confirms that a temperature-aware
register file should be able to evenly distribute accesses to

each register with no reliance on a hardware mapping table.
Moreover, as no hardware mapping table is used to keep track
of run-time register usage or register mapping information,
regularity needs to be embedded within register accesses so
that the mapping between logical and physical register names
can be controlled in a deterministic manner. Specifically, the
following two tasks need to be accomplished:

• Select a free physical register for each write access with
no dynamic register usage information;

• Redirect each read access to the corresponding physical
register with no dynamic mapping information.

These issues necessitate an easily computable dynamic map-
ping that deterministically controls the renaming process. To
attain this goal, in this paper we propose a compiler-directed
dynamic register shuffling technique to control the logical-to-
physical register mapping on a per iteration basis. By exploit-
ing the fact that no fixed, preordained correspondence exists
between program variables and register names, the compiler
can establish a certain property between the fixed static name
and the iteratively varying dynamic name of a logical register,
thus enabling the hardware to redirect register accesses with no
reliance on a mapping table.

IV. DETERMINISTIC REGISTER SHUFFLING

A. An illustrative example

The fundamental goal of the proposed register shuffling
technique is to evenly balance register accesses across loop
iterations with no reliance on a hardware mapping table.
Accordingly, not only a dynamic logical-to-physical register
mapping needs to be established, but furthermore determinism
needs to be embedded within such a dynamic mapping.

To attain a deterministic register remapping, the proposed
technique exploits the fact that during loop execution, the
physical register used at the preceding iteration becomes free
whenever a new physical register is allocated as the destination
of an instruction. Taking the code fragment presented in Figure
2a as an example, upon a new iteration, if a free register (t12
for example) is used as the destination of instruction 1, the
old destination, t9, becomes free thereafter. As a result, t9 can
be used as the new destination of instruction 2, which in turn
frees up a5, allowing it to be used for instruction 3, and so on
and so forth. This shift in register assignments can be clearly
seen in the i2 column of Figure 2c. Finally, at the end of this
iteration, t11 has been freed, thus allowing it to be used as
the new destination of instruction 1 at the next loop iteration.
The remapping of the destination registers during the first 4
consecutive iterations is summarized in Figure 2c.

It can be seen from the register names presented in Figure
2c that the proposed register remapping process exhibits the
following two properties:

• Across loop iterations, a logical register is sequentially
mapped to all the physical registers before it shuffles back
to the initial mapping.

• Within a single iteration, all the assignments of a single
logical register are mapped to the same physical register,
thus establishing a one-to-one mapping between logical
and physical register names.



The first property indicates that the proposed technique can
effectively balance accesses to individual registers across loop
iterations. Although this technique does not reduce the energy
consumed in each register access, it still effectively prevents
local heat buildup since heavily accessed logical registers, such
as a5, t9 and t10 in the example, are mapped to distinct physical
registers across loop iterations. As temperature takes at least
0.1 million cycles to rise by 0.1 °C [6], this balanced access
activity, achieved at the granularity of loop iterations, enables
an effective reduction of the register file peak temperature.

The second property enables the proposed remapping scheme
to attain access determinism. Specifically, within a single
iteration as a one-to-one mapping is established between logical
and physical register names, the dynamic name of a register
to be completely determined according to the static name and
the loop iteration count, thus eliminating the necessity of a
hardware table to record dynamic register mapping.

B. Destination register name adjustment

At each iteration, the proposed scheme deterministically
remaps the kth logical destination register to the physical
register used as the (k − 1)th destination in the last iteration.
This recursive relationship can be formalized as follows, with
DN(Ri

k) denoting the dynamic name of the kth destination
register at iteration i:

DN(Ri
k) = DN(Ri−1

k−1) = DN(Ri−2
k−2) = ... (1)

Equation (1) illustrates a crucial property of the proposed
register shuffling technique: during loop execution all the
logical destination registers are iteratively mapped to the same
set of physical registers in the same shifting order. The shifting
order of the bzip2 example, represented by the arrows in Figure
2c, is (t9, t12, t11, t10, t8, a5, t9). Moreover, this shifting order
happens to be the reverse of the order in which each logical
register appears as a destination within the loop body.

The reverse-order property indicates that if a fixed offset
has been imposed between any two consecutive yet distinct
destination register names, any two consecutive mappings of a
logical register would also exhibit a fixed offset. More formally,
by imposing a fixed offset of O′ between the static names of
the kth and the (k − 1)th destination registers, the dynamic
name of register Rk at iteration i, denoted as DN(Ri

k), can
be generated through shuffling DN(Ri−1

k ) by a fixed offset of
O. Using V α

O to denote the shuffle of a value V by an offset O
for α times, this fixed-offset relationship can be formalized into
the following equations, with O and O′ being complements in
that (V α

O )α
O′ = V for any positive integers V and α.

DN(Ri
k) = DN(Ri−α

k )α
O = SN(Rk)i

O (2a)

SN(Rk) = SN(Rk−α)α
O′ = SN(R0)k

O′ (2b)

According to Equation (2), at iteration i, the dynamic name
of register Rk can be generated through shuffling the corre-
sponding static register name SN(Rk) by an offset of O for
i times, while SN(Rk) should be generated through shuffling
the static name of the 0th destination register SN(R0) by an
offset of O′ for k times. These equations clearly confirm that

TABLE I
THE USE OF THE TWO SHUFFLE FUNCTIONS TO SHIFT REGISTER

NAMES IN THE bzip2 EXAMPLE, B = 1, O = 1, T = 7

Modulo Addition GF(23) Multiplicationa

i0 i1 i2 i3 i4 i5 i6 i0 i1 i2 i3 i4 i5 i6

t9→B 1 2 3 4 5 6 7 1 2 4 3 6 7 5
a5→B1

O′ 7 1 2 3 4 5 6 5 1 2 4 3 6 7
t8→B2

O′ 6 7 1 2 3 4 5 7 5 1 2 4 3 6
t10→B3

O′ 5 6 7 1 2 3 4 6 7 5 1 2 4 3
t11→B4

O′ 4 5 6 7 1 2 3 3 6 7 5 1 2 4

DN(Ri
k) = (SN(Rk) + i)%7 = SN(Rk) ⊗ 2i

SN(Rk) = (SN(R0) − k)%7 = SN(R0) ⊗ 27−k

aThe field generating polynomial of GF (23) is x3 + x + 1.

at each iteration, the dynamic register names can be completely
determined by the compiler.

To effectively balance register accesses while minimizing
the hardware complexity, a light-weight shuffling function is
furthermore necessitated. Given a shuffle window composed of
a set of contiguous physical registers B, B+1, ..., B+T−1, an
effective shuffling function needs to ensure that each logical
destination register Rk will be sequentially mapped to each
physical register within the window before it shuffles back
to the initial mapping. In other words, the shuffling function
needs to establish a one-to-one mapping from V 1

O, V 2
O, ...,

V T
O , the T consecutive dynamic names of register Rk, to the

T distinct values B, B+1, ..., B+T−1, within the shuffle
window. According to this requirement, two shuffle functions,
namely, a modulo addition and a Galois field multiplication,
can be employed to attain a deterministic register shifting, as
summarized in the following equation.

SN(Rk) = Bk
O′ =

{
B ⊗ 2T−(k∗O)%T , T = 2n − 1;

(B − k ∗ O)%T, GCD(O, T ) = 1.
(3)

In modulo T addition, the static register name of Rk is
generated as (B − k ∗ O)%T . The values of the offset O
and the window size T should be relatively prime so as to
ensure the assignment of distinct physical names to different
logic registers within a single iteration. In hardware, this
addition function can be implemented using a j-bit modulo
T adder for each register access port, assuming a total of
2j registers provided in the architecture. On the other hand,
if the value of the window size T equals 2n − 1, a more
efficient shuffle function can be implemented so that Bk

O′=
B⊗2T−(i∗O)%T , with ⊗ denoting the multiplication operators
defined in the extension Galois field of GF (2n). The hardware
implementation of this multiplication function is comparatively
cheaper as no modulo adders but only a limited number of xor
gates are required.

The differences between these two functions are concretely
illustrated in Table I, which shows the mapping of the five
destination registers of the bzip2 example in 7 consecutive
iterations, with B, O and T set to 1, 1, and 7, respectively.

C. Loop-carried dependence preservation

As the new name of each logical destination register can be
determined using Equation (3), the names of source registers
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can be determined accordingly. Since the mapping of a logical
register varies across iterations, read accesses before and after
the first assignment within the loop body should be directed to
distinct physical registers. Specifically, all the read accesses
following the first write operation, as it remaps the logical
register, should be directed to the new allocated physical
register. In contrast, all the read accesses preceding the first
write operation should obtain the value produced at the prior
iteration, thus requiring the compiler to additionally shuffle the
register name by O′.

The aforementioned name adjustment of source registers can
be illustrated more clearly by considering the logical register
a5 in the bzip2 loop presented in Figure 2a. As shown in the
first column of Table I, the name of a5 is adjusted to B1

O′ by
the compiler. Since a5 is remapped by instruction 2, all the
subsequent read accesses to a5 within the loop body should be
directed to B1

O′ . On the other hand, instruction 1, which reads
a5 before it is remapped, should obtain the value produced
at the prior iteration wherein the name of a5 is not B1

O′ but
B2

O′ . Accordingly, the compiler should adjust the name of a5

appearing in instruction 1 by an additional amount of O′ so as
to preserve this loop-carried dependence.

An additional shuffle of O′ to the names of the live-in vari-
ables allows register values to be effectively passed across loop
boundaries during execution. Therefore, semantic correctness
can be naturally guaranteed as long as live-in variables, such
as a5, t8 and t10 in the bzip2 loop, are correctly initialized
prior to entering the loop. This task can be attained simply
through the insertion of extra move instructions to transfer
register values prior to entering the loop. These few register
move instructions, as they are executed quite rarely outside the
loop body, introduce no overhead in practice, neither in terms
of performance nor in terms of energy.

To concretely illustrate the aforementioned name adjustment
policy for destination and source registers, it has been applied
to a non-unrolled version of the bzip2 loop presented in Figure
3. Using the modulo addition in Table I as the shuffle function,
Figure 3 presents the register names in the first two iterations
of the transformed code. As can be seen, the compiler has
globally adjusted register names according to the order in which
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they appear as destinations. The names of adjacent yet distinct
register destinations differ by an offset of O′=−1, while an
extra offset of O′ is added to each live-in read reference shown
in instructions 1, 2, 3, and 4. Meanwhile, a hint is inserted into
instruction 7, the loop branch, so that once the branch is taken,
each register name, except for the read-only register ra, will be
shifted by an additional offset of O=1. Finally, three register
mov instructions have been inserted prior to entering the loop so
as to initialize the live-in registers a5, t8, and t10, respectively.

D. Shiftable logical register identification

The proposed register shuffling scheme requires a detailed
examination of register access patterns so as to determine
whether a logical register accessed within the loop body is
shiftable or not. In general, the characteristics of the proposed
register shuffling scheme preclude its application to two types
of logical registers. Firstly, as a logical register is remapped
upon the first assignment, read-only registers, such as ra in the
bzip2 example, become unshiftable. A more complex case is
that of registers exhibiting conditional definitions within the
loop body; as the compiler needs to identify for each read
access the exact iteration at which the value is produced, a
logical register cannot be shuffled if its value is not certifiably
updated at each loop iteration, that is, if it exhibits write
accesses only in conditionally executed basic blocks but read
accesses outside those blocks.

Conditionally defined registers create an issue of nondeter-
ministic loop-carried dependences, which can be illustrated
more clearly through examining the four cases presented in
Figure 4. These four cases share the same control flow yet
exhibit a variety of access patterns to register R1 within the
loop body. In Figure 4a, the write access in basic block
B2 constitutes a conditional definition. However, R1 is still
shiftable since it is read within the same basic block following
such a write access, thus allowing identical register names
to be assigned to both accesses. In Figure 4b, R1 is also
shiftable as the write access in B1 constitutes an unconditional
definition, thus indicating that the read access in B1 should
always obtain the value defined in the preceding iteration.
Similarly, in Figure 4c, while neither of the write accesses in
B2 and B3 is guaranteed to be executed, the two accesses in
conjunction constitute an unconditional definition, thus making
R1 shiftable. In comparison, in Figure 4d, R1 is only written on
the fall-through path of the branch, resulting in the read access



TABLE II
ACCESS PATTERN-BASED REGISTER CLASSIFICATION

Shiftable Unconditionally written
Conditionally written and read on the same path

Unshiftable Read-only
Conditionally written yet unconditionally read

Free Not-accessed, either dead or live

in B1 obtaining a value defined in either the preceding iteration
or an even earlier iteration, depending on the branch outcome.
As a result, for such a read access in B1, the compiler cannot
statically determine the exact iteration at which the value is
produced, resulting in R1 being unshiftable.

An unshiftable logical register does not need to be remapped,
if it is not accessed frequently within the loop body. However,
in the extreme case of an unshiftable register being frequently
accessed, two approaches can be adopted to prevent local heat
buildup. In a hardware-oriented approach, the value of such
a register can be duplicated into a dedicated buffer for access,
instead of the power-hungry register file. In a software-oriented
approach, an extra move instruction can be inserted within
the loop body to make it shiftable. If this register happens
to be a conditionally defined register (for example, R1 in
Figure 4d), such a move instruction can be inserted into the
basic block executed on the other path of the branch (B3 in
Figure 4d). If, on the other hand, the frequently accessed yet
unshiftable register happens to be a read-only register, the extra
move instruction needs to be inserted into an unconditionally
executed basic block.

E. Physical register reallocability analysis

The example presented in Section IV-A indicates that the pro-
posed deterministic shuffling approach requires the existence of
at least one free extra register, such as t12 in Figure 2c, for the
shuffle of the first destination within the loop body. As most
execution hotspots are composed of nested loops consisting of
only a limited number of instructions, the requirement of one
free register can be naturally satisfied since typically only a
subset of registers is accessed during loop execution. The bzip2
example presented in Figure 2a clearly confirms this property
in that only 6 out of the total 32 registers are accessed within
the loop body.

While theoretically the shuffle window only needs to include
one extra free register in addition to the shiftable destination
registers, the search for an increasingly balanced register access
distribution motivates the maximization of the number of free
registers within the shuffle window. A detailed examination
indicates that according to the access pattern, all the logical
registers and hence, the corresponding physical registers, can
be classified into three categories: shiftable, unshiftable, and
not-accessed. For the third type, a physical register not accessed
within the loop body can be directly remapped, if it is not used
to hold a live variable with infinite lifetime across the execution
of the whole loop. As an example, in the bzip2 loop all the not-
accessed registers except for sp are free for remapping. Register
sp, on the other hand, holds its lifetime across the whole loop
as it is directly read after exiting the loop. However, even this
type of not-accessed yet live registers can be freed up through

Loop exitLoop bodyLoop entry
Initialize

Value swapping
Restore

Value reswapping

Fig. 5. Building a shuffle window through swapping register values at
loop entry and exit

employing extra store and load instructions to checkpoint and
restore the original value at loop entries and exits, respectively.
The introduced performance overhead is practically nonexistent
since this checkpointing and restoration process is performed
outside the loop execution.

By checkpointing and restoring live yet not-accessed register
values, all the registers that are not accessed within the loop
body become available for remapping. Accordingly, among the
three classes of registers listed in Table II, both the shiftable
and the free registers are included in the shuffle window, while
only the unshiftable registers need to be placed outside the
shuffle window. The size of the shuffle window therefore can be
maximized, thus enabling the achievement of a more balanced
access distribution and, hence, a further reduction in peak
temperature.

The identified shiftable and free registers may scatter across
the entire register file. As the shuffle window should be
composed of a set of contiguous registers, at the entry and
the exit of each frequently executed loop, some register values
need to be swapped so that the identified shiftable and free
registers can be placed at contiguous positions. This process is
concretely presented in Figure 5. At the loop entry the live-in
register values need to be preserved, implying that unshiftable
registers within the shuffle window need to be swapped out,
while shiftable yet live-in registers outside the window need to
be swapped in. On the other hand, at the loop exit, a register
re-swapping process needs to be performed to preserve the
live-out register values, both within and outside the shuffle
window. Both the register swapping and reswapping processes
are accomplished by the compiler through the insertion of extra
move instructions which, as they are executed outside the loop
body, introduce no overhead in practice.

F. Functional Evaluation

We have discussed the proposed deterministic register shuf-
fling technique from three vantage points, namely, the dynamic
shuffling functions, the adjustment of logic register names, as
well as the identification of the shiftable and free registers.
Since the proposed technique only remaps register names
across loop iterations, it can be independently applied on each
execution hotspot, i.e., a frequently executed loop. Due to the
iterative nature and the relatively short static code size of
each loop, the proposed technique delivers maximum benefit
at minimal cost, as only 10% of the code needs to be analyzed



while balanced register accesses for 90% of execution time can
be accomplished.

Compared to the thermal-aware register reassignment ap-
proaches [20], [18], the proposed deterministic register shuf-
fling technique requires no revisitation of the NP-hard register
allocation problem to perform live range reassignment. There-
fore, the adjustment of logic register names can be implemented
as a procedure to be performed subsequent to the conventional
register allocation phase, thus retaining all the concomitant
benefits of the latter. Moreover, a detailed examination indicates
that neither of the two techniques can fully balance the accesses
to each individual register at each loop iteration. Instead, both
techniques attain a relatively coarse-grained access balance,
yet one exploits the spatial domain while the other exploits
the temporal domain. The thermal-aware register reassignment
approaches attain a spatial balance at the granularity of register
sub-banks, thus restricting their applicability solely to multi-
bank register files. In contrast, the proposed technique aims
to attain a temporal balance for each individual register at the
granularity of loop iterations. As temperature takes at least 0.1
million cycles to rise by 0.1 °C [6], this iteratively balanced
access activity thus enables an effective reduction of peak
temperature even for single-bank register files.

As the proposed technique deterministically shuffles register
mapping across iterations, the attainable benefits in terms of
reliability enhancement are maximized when it is applied to
single processor architectures with no explicit register renaming
support. For architectures with pure dynamic register renaming,
such as conventional superscalar processors, a large hardware
mapping table needs to be maintained so as to eliminate pseudo
register name dependences. As this mapping table needs to be
accessed using logical register names at a frequency no lower
than that of register file accesses, it becomes a temperature
“hotspot” with skewed access distribution. In this case, the
proposed technique can be employed to evenly distribute the
accesses to different entries within the mapping table.

Additionally, future computer systems are expected to inten-
sively use multicore architectures, for which thermal induced
reliability aspects have already been identified as a grand
challenge. As such systems typically scale upwards in the
number of cores but not necessarily in the complexity of each
core, the proposed technique despite the possible absence of
the renaming logic, can be employed to effectively reduce
the register file peak temperature for each core and hence, to
improve the reliability of the entire system.

V. IMPLEMENTATION

The implementation of the proposed deterministic register
shuffling technique consists of two collaborative parts, a com-
pilation procedure that embeds regularity into static register
names, as well as a hardware implementation of a shuffling
function that dynamically determines the name of a register at
each iteration.

A. Static register name adjustment

The pseudo-code for adjusting logic register names is out-
lined in Algorithm 1. This procedure only relies on the profiling
information regarding the execution counts of each basic block,

Algorithm 1 Register Name Adjustment
1: for each procedure do
2: for each frequently executed loop do
3: Differentiate shiftable and unshiftable registers;
4: Calculate AveAccessCnt;
5: if AccessCnt(Rj) > AveAccessCnt for a unshiftable Rj

then
6: Insert an extra mov to make Rj shiftable;
7: end if
8: Insert extra store and load to free up not-accessed yet live

registers;
9: T = Ntotal−Nunshiftable, and select B and O thereafter;

10: Order the shiftable destination registers;
11: Globally adjust register names such that the static name of

the kth register SN(Rk) = Bk
O′ ;

12: Shuffle the name of each live-in variable by an extra offset
O′;

13: Insert a hint in the loop branch;
14: Insert extra mov to initialize live-in variables at loop entry

and restore live-out variables at loop exit;
15: end for
16: Globally perform register coalescing outside the renamed

loops to eliminate redundant mov instructions;
17: end for

based on which a set of functions have been developed to
accomplish static register name adjustment. Specifically, each
frequently executed loop is transformed in the following 5
steps:

• Partition shiftable and unshiftable registers (lines 3-7);
• Free up not-accessed yet live registers (line 8);
• Determine shuffle functions (line 9);
• Sequentially adjust names of destination and source reg-

isters (lines 10-13);
• Initialize live-in variables and restore live-out variables at

loop entry and loop exit, respectively (line 14);

As the goal of the register shuffling technique is to preclude
local heat buildup through iterative mapping of a hot logical
register to distinct physical registers, the algorithm inserts extra
move instructions to shuffle a frequently accessed register (line
6), if it is detected to be unshiftable (line 5). These move in-
structions, together with the store and load instructions inserted
for freeing up not-accessed yet live registers (line 8) and the
move instructions inserted for live-in or live-out variables (line
14), constitute the overhead of the proposed technique. As most
of these extra instructions are executed outside the loop body,
the overhead in execution time is negligible. Such overhead
can be further reduced through performing an extra step of
register coalescing [22] on the transformed code (line 16) so
as to eliminate redundant move instructions.

B. Dynamic register name shuffling

Using the code transformation support outlined in Algorithm
1, a deterministic register shuffling process can be accom-
plished during execution, as long as the hardware is informed
by the compiler about the shuffle vector, <B, O, T>, prior to
entering a frequently executed loop.

Using the GF (23) multiplication in Table I as the shuffle
function wherein the vector <B, O, T> = <1, 1, 7>, the
circuit presented in Figure 6 can be employed to convert
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Fig. 6. Gate-level logic for translating register names

logical register names to physical register indices for the bzip2
example. As can be seen, during loop execution each logical
register name is multiplied by the value of the offset register.
The offset value is multiplied by 2 whenever a loop branch
is encountered, implemented through shifting the 3-bit LFSR
one bit to the right. Meanwhile, as in this example the shuffle
window is composed of registers from R1 to R7, the most
significant bits of the static encoded register name are used
to differentiate whether the register falls within the shuffle
window. If it is, the register is shiftable, resulting in the use of
the multiplier’s result as the physical register index. Otherwise,
the logical name of the unshiftable register is directly used to
access the register file.

It needs to be noted that the implementation shown in
Figure 6 corresponds to the example shown in Figure 3. The
implementation parameters are for illustrative purposes only,
and can be customized according to the register utilization
characteristic of the application. More concretely, it can be
clearly seen from Figure 6 that the proposed register shuffling
technique requires no hardware mapping table but only a n-
bit GF multiplier and a n-bit 2-to-1 multiplexer for each
register access port, together with a single n-bit LFSR to
record the shuffling offset. Moreover, with the selection of an
appropriate field generating polynomial, GF multipliers can be
efficiently implemented using a small set of AND and XOR
gates. For 3 to 7 bits parallel field multipliers, the cost-effective
polynomial as well as the total gate count and longest path of
the corresponding implementation have been listed in Table III.

The GF multipliers shown in Table III require a size of
2n−1 registers for the shuffle window. In contrast, the modulo
addition can be employed more generally as the shuffling
function for shuffle windows of other sizes. In this case, the
proposed register shuffling technique requires a n-bit modulo
adder, a n-bit comparator, and a n-bit 2-to-1 multiplexer for
each register access port, together with a single n-bit adder
and a n-bit register to calculate and record the shuffling offset.
Although this additional necessitated hardware is more complex
than the xor gate based implementation of the GF multipliers,
it is still negligibly small compared to the mapping tables used
in conventional register renaming techniques.

As both the logic and the physical register names preserve all
the true data dependences within the loop body, the behavior of
the rest of the pipeline, such as the forwarding logic, would not
be affected by the register shuffling process. Moreover, since

TABLE III
THE DESIGN COMPLEXITY OF GF MULTIPLIERS

Window size Field polynomial Gates Longest path

7 regs x3 + x + 1 15 1 AND + 2 XOR
15 regs x4 + x + 1 25 1 AND + 2 XOR
31 regs x5 + x2 + 1 37 1 AND + 2 XOR
63 regs x6 + x + 1 54 1 AND + 3 XOR

127 regs x7 + x + 1 72 1 AND + 3 XOR

register write accesses are typically performed at a later pipeline
stage, the translation of register names can be performed in
parallel with the calculation of the instruction result. Even for
register read accesses, the access latency of the small translation
logic can also be effectively hidden, since in the typical case
cache accesses constitute the longest pipeline stage.

VI. SIMULATION RESULTS

In this section we experimentally evaluate the efficacy of
the proposed register rotation technique in balancing register
accesses, reducing the chip-wide peak temperature, and improv-
ing processor reliability. To evaluate the proposed technique for
different types of applications, a set of experimental studies
have been performed on both the Mediabench [23] and the
SPECint 2000 benchmarks.

A. Register Access Results

The discussions presented in Sections IV-D and IV-E clearly
show that the partition of shiftable/unshiftable registers and,
hence, the effectiveness of the proposed register shuffling
technique are strongly related to register access characteristics.
As a result, the first step in our experimental evaluation is
the examination, for each loop, of the numbers of read-only
registers, conditionally defined yet unconditionally referred reg-
isters, and registers not accessed in the loop. This is achieved
through using ATOM [24] to instrument the assembly code to
identify execution hotspots (i.e., frequently executed loops) and
to generate register usage profiles. The control flow and register
usage information of each loop are analyzed thereafter.

The collected profiling results are presented in Table IV.
Only the profiling results for the selected SPEC 2000 bench-
marks are presented, since these benchmarks exhibit a more
balanced register utilization than the Mediabench [23] programs
due to their relatively larger working sets. For each benchmark,
we report the number of hot loops that have been identified,
their occupancy in the total execution time, as well as six
sets of register usage data. Table IV lists the maximal, the
average, and the minimal number of not-accessed registers and
live not-accessed registers, as well as the maximal and the
average number of read-only, hot read-only, cond-defined, and
hot cond-defined registers. The minimal values are not listed
for the last four sets since these values are always 0.

The results regarding the minimal number of not-accessed
registers indicate that all the hot loops identified by ATOM
have at least 1 free register, thus clearly confirming the wide
applicability of the proposed register shuffling technique. Due
to the small code size, the average number of registers accessed
within a loop body is less than 9. This highly skewed register
utilization clearly confirms the necessity for register shuffling
techniques, such as the one we herein propose, so as to deliver



TABLE IV
THE NUMBER OF HOT LOOPS, THEIR OCCUPANCY IN EXECUTION

TIME, AND REGISTER USAGE INFORMATION

Benchmark art bzip2 mcf twolf

Hot loop # 32 60 29 61
Execution time 79.8% 78.3% 64.8% 71.9%

max 28 29 29 29
Not-accessed # aver 25.34 22.33 23.66 22.56

min 14 13 13 1

max 20 13 13 19
Live not-accessed # aver 10.47 5 3.76 5.98

min 0 0 1 0

Read-only #
max 6 6 7 7
aver 1.91 2.33 2.24 2.02

Hot read-only # max 4 4 3 3
aver 1 1.73 1.14 1.08

Cond-defined #
max 1 3 3 3
aver 0.06 0.17 0.28 0.21

Hot cond-defined #
max 1 1 1 3
aver 0.06 0.03 0.03 0.11

a more balanced access distribution. Meanwhile, Table IV
also shows that on average a loop contains only 2 read-only
registers, and only 1 of them needs to be rotated to prevent
local heat buildup. The number of conditionally defined yet
unconditionally referred registers is even less, as most hot
loops are composed of a limited number of basic blocks. These
values clearly confirm that a highly limited number of extra mov
instructions (less than two on average) would suffice to make
this small set of hot read-only and hot conditionally defined
registers shiftable.

According to the register usage profiles generated by ATOM,
the new register names are statically determined, based on
which the SimpleScalar toolset [25] is modified to implement
the proposed register shuffling technique on top of an in-order
2-way processor. We furthermore compare the proposed tech-
nique with the thermal-aware register reassignment technique
[20]. Assuming that the register file is composed of 8 sub-
banks, two sets of data are reported, namely, the access dis-
tribution to each individual register and the access distribution
to each sub-bank. The cumulative ratios of the most frequently
accessed registers and sub-banks are shown in Figure 7.

As can be seen, for the four SPEC2000 benchmarks, the
proposed technique can achieve a more balanced access distri-
bution to each individual register as compared to the thermal-
aware register reassignment technique [20]. More concretely,
initially 81% to 94% of all the register accesses are mapped to
12 registers which, in a completely balanced case, should only
capture 12/32 = 37.5% of total accesses. Using static register
reassignment (the top-left quadrant in Figure 7), 64% to 80%
of total accesses are mapped to 12 registers, while using the
proposed register shuffling technique (the top-right quadrant),
only 50% to 60% of total accesses are mapped to 12 registers.

If the access distribution is evaluated at the granularity
of register sub-banks, both techniques can achieve a quite
balanced access distribution in that only 38% to 40% of all
the register accesses are mapped to 12 registers. Compared
to the reassignment [20] technique, the proposed shuffling
technique results, for mcf and twolf, in a slightly elevated
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Fig. 7. Reduction in peak temperature of the entire chip

amount of accesses (less than 2%) hitting the first subbank. This
is because register R0, which cannot be rotated since its value
corresponds strictly to 0, happens to be a frequently accessed
register within several loop bodies. In the reassignment [20]
technique, R0 can be placed into a subbank with a set of “cold”
registers so as to balance the access counts to that subbank.
However, in the proposed technique, these “cold” registers are
iteratively mapped to “hot” logical registers. The increased
amount of accesses thus results in the corresponding subbank
being accessed slightly more frequently than the remaining
subbanks.

B. Temperature Results

Our next step of evaluation focuses on the generation of
temperature profiles. WATTCH [26] is modified to generate
energy profiles of each hardware resource, especially each reg-
ister within the register file. The power consumed by the small
5-bit adder and multiplexer is also included in each register
file access. The aggressive clock gating provided by WATTCH
is used to avoid unnecessary power consumption. Using these
energy profiles, Hotspot [6] is employed to sample the transient
temperature of each hardware resource. This sampling interval
is set to 20,000 instructions, which is substantially less than the
thermal time constant of any hardware resource. An Itanium-
like [27] processor shown in Figure 8 is used as the floorplan
input to Hotspot. The die size is set to 8mm× 8mm, and the
initial temperature is set to 60°C.

The obtained reduction in chip-wide peak temperature is
presented in Figure 9. As can be seen, the proposed register
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file access balancing technique can achieve a reduction of 3.1
to 7.4°C in chip-wide peak temperature. The highest reduction
is achieved in art, while the lowest reduction occurs in mcf.
These temperature results are consistent with the register access
results, since a more balanced access distribution is achieved
in art, as compared to mcf.

The simulation results confirm that by targeting the register
file, one of the most overheated hardware units in a processor,
the proposed technique can effectively reduce the chip-wide
peak temperature during program execution. While the amount
of temperature reduction seems to be insignificant at first sight,
it actually can effectively reduce the fault rate of the entire
chip, since the fault rate doubles for every 10°C increase in
temperature [12]. Meanwhile, previous studies have shown that
a large number of delay violations would occur if the peak
temperature exceeds 85°C [4], [6]. It can be seen from the
results that for most benchmarks, the proposed algorithm can
effectively reduce the peak temperature to below 84°C. On
average, the proposed technique achieves a reduction from
88.8°C to 83.5°C.

VII. CONCLUSIONS

We have presented in this paper a technique for improving
the reliability of an entire chip through reductions in the peak
temperature of the register file, one of the most overheated
modules in a processor. Peak temperature can be effectively
controlled through a register shuffling process that physically
remaps the heavily accessed logical registers before heat gets
locally accumulated. Furthermore, through the exploitation of
application-specific access profiles, the compiler can determin-
istically control the register shuffling process, thus maximizing
peak power reduction within a limited hardware budget and
negligible performance degradation. This highly reduced hard-
ware complexity enables the proposed technique to be easily
incorporated into most embedded processors so as to effectively
reduce peak temperature of the entire chip. Simulation results of
SPEC2000 and mediabench programs furthermore confirm that
the proposed register shuffling technique can achieve a 1.5 to 3
times more balanced access distribution and a reduction of 3.1
to 7.4°C in chip-wide peak temperature. Such a temperature
reduction in turn effectively reduces the amount of run-time
faults, thus improving the reliability of the entire chip.
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