
 Open access  Journal Article  DOI:10.1145/321707.321717

Processor Sharing Queueing Models of Mixed Scheduling Disciplines for Time Shared
System — Source link 

Leonard Kleinrock, Richard R. Muntz

Institutions: University of California, Los Angeles

Published on: 01 Jul 1972 - Journal of the ACM (ACM)

Topics: Processor sharing, Queueing theory, Scheduling (computing) and First-come, first-served

Related papers:

 Feedback Queueing Models for Time-Shared Systems

 Time-shared Systems: a theoretical treatment

 The Queue M/G/1 With Feedback to Lower Priority Queues

 Analysis of SRPT scheduling: investigating unfairness

 Size-based scheduling to improve web performance

Share this paper:    

View more about this paper here: https://typeset.io/papers/processor-sharing-queueing-models-of-mixed-scheduling-
2beyjo67h5

https://typeset.io/
https://www.doi.org/10.1145/321707.321717
https://typeset.io/papers/processor-sharing-queueing-models-of-mixed-scheduling-2beyjo67h5
https://typeset.io/authors/leonard-kleinrock-4r6h19hsmy
https://typeset.io/authors/richard-r-muntz-4dcf9cg2io
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/journals/journal-of-the-acm-buyoi0af
https://typeset.io/topics/processor-sharing-3uzfi0lc
https://typeset.io/topics/queueing-theory-33lgyn8z
https://typeset.io/topics/scheduling-computing-3elthrty
https://typeset.io/topics/first-come-first-served-r5udgk22
https://typeset.io/papers/feedback-queueing-models-for-time-shared-systems-2zfvmirysd
https://typeset.io/papers/time-shared-systems-a-theoretical-treatment-1s44a5s2fi
https://typeset.io/papers/the-queue-m-g-1-with-feedback-to-lower-priority-queues-uagoh2rrnb
https://typeset.io/papers/analysis-of-srpt-scheduling-investigating-unfairness-2tvbwj6xlz
https://typeset.io/papers/size-based-scheduling-to-improve-web-performance-5gfs4yrdr4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/processor-sharing-queueing-models-of-mixed-scheduling-2beyjo67h5
https://twitter.com/intent/tweet?text=Processor%20Sharing%20Queueing%20Models%20of%20Mixed%20Scheduling%20Disciplines%20for%20Time%20Shared%20System&url=https://typeset.io/papers/processor-sharing-queueing-models-of-mixed-scheduling-2beyjo67h5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/processor-sharing-queueing-models-of-mixed-scheduling-2beyjo67h5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/processor-sharing-queueing-models-of-mixed-scheduling-2beyjo67h5
https://typeset.io/papers/processor-sharing-queueing-models-of-mixed-scheduling-2beyjo67h5


Processor Sharing Queueing Models of Mixed Scheduling 

Disciplines for Time Shared Systems 

L. KLEINROCK AND R. R. MUNTZ 

University of California, Los Angeles, California 

ABSTRACT. Scheduling algorithms for time shared computing facilities are considered in terms 

of a queueing theory model. The extremely useful limit of "processor sharing" is adopted, 
wherein the quantum of service shrinks to zero; this approach greatly simplifies the problem. A 

class of algorithms is studied for which the scheduling discipline may change for a given job as 

a function of the amount of service received by that job. These multilevel disciplines form a 
natural extension to many of the disciplines previously considered. 

The average response time for jobs conditioned on their service requirement is solved for. 

Explicit solutions are given for the system M/G/1 in which levels may be first come first served 

(FCFS), feedback (FB), or round-robin (RR) in any order. The service time distribution is 

restricted to be a polynomial times an exponential for the case of RR. 
Examples are described for which the average response time is plotted. These examples 

display the great versatili ty of the results and demonstrate the flexibility available for the 

intelligent design of discriminatory treatment among jobs (in favor of short jobs and against 

long iobs) in time shared computer systems. 

KEY WORDS AND PHRASES : time sharing, operating systems, queues, mathematical models 

CR C A T E G O R I E S :  3.89, 4.39, 5.5 

1. Introduction 

Queueing  models  have  been used successful ly in the  analys is  of t ime  shared  com- 

p u t e r  sys t ems  since the  appe a ra nc e  of t he  first appl ied  p a p e r  in th is  field in 1964 

[1]. A recent  su rvey  of th is  work  is given b y  M c K i n n e y  [2]. One of the  first pape r s  

to  consider  the  effect of feedback  in queueing  sys tems  was due to  Tak£cs  [3]. 

One of t he  goals  in a t ime  shared  c o m p u t e r  sys t em is to  p rov ide  r ap id  response  to  

those  t a sks  which are  i n t e r ac t ive  and  which p lace  f requen t ,  bu t  small ,  d e m a n d s  on 

the  sys tem.  As a resul t ,  the  sys tem schedul ing a lgo r i t hm mus t  iden t i fy  those  

d e m a n d s  which are  small ,  and  p rov ide  t h e m  wi th  p re fe ren t i a l  t r e a t m e n t  over  

l a rge r  demands .  Since we assume t h a t  t he  scheduler  has  no explici t  knowledge  of 

job  process ing t imes,  th is  ident i f ica t ion  is accompl i shed  impl ic i t ly  b y  " t e s t i n g "  

jobs.  T h a t  is, jobs  are  r ap id ly  p rov ided  smal l  a moun t s  of process ing and,  if t h e y  are  

short ,  t h e y  will d e p a r t  r a the r  qu ick ly ;  otherwise,  t h e y  will l inger  while other ,  

newer  jobs  are  p rov ided  this  r ap id  service, etc.,  t hus  p rov id ing  good response to  

smal l  demands .  

Copyright © 1972, Association for Computing Machinery, Inc. 

General permission to republish, but not for profit, all or part of this material is granted, 

provided that reference is made to this publication, to its date of issue, and to the fact that 
reprinting privileges were granted by permission of the Association for Computing Machinery. 

Authors' address: University of California, Computer Science Department, School of Engineer- 

ing and Applied Science, Los Angeles, CA 90024. This work was supported by the Advanced 

Research Projects Agency of the Department of Defense (DAHC-15-69-C-0285). 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972, pp. 464-482. 



Processor Sharing Queueing Models 465 

Generally, an arrival enters the time shared system and competes for the atten- 

tion of a single processing unit. This arrival is forced to wait in a system of queues 

until he is permitted a quantum of service time; when this quantum expires, he is 

then required to join the system of queues to await his second quantum, etc. The 

precise model for the system is developed in Section 2. In 1967 the notion of allow- 

ing the quantum to shrink to zero was studied [4] and was referred to as "processor 

sharing"; in 1966 Schrage [18] also studied the zero-quantum limit. As the name 

implies, this zero-quantum limit provides a share or portion of the processing unit 

to many customers simultaneously; in the case of round-robin (RR) scheduling 

[4], all customers in the system simultaneously share (equally or on a priority basis) 

the processor, whereas in the feedback (FB) scheduling [5] only that  set of customers 

with the smallest attained service share the processor. We use the term processor 

sharing here since it is the processing unit itself (the central processing unit of the 

computer) which is being shared among the set of the customers; the phrase "time 

sharing" is reserved to imply that  customers are waiting sequentially for their turn 

to use the entire processor for a finite quantum. In studying the literature one finds 

that the obtained results appear in a rather complex form and this complexity 

arises from the fact that  the quantum is typically assumed to be finite as opposed 

to infinitesimal. When one allows the quantmn to shrink to zero, giving rise to a 

processor sharing system, then the difficulty in analysis as well as in the form of 

results disappears in large part; one is thus encouraged to consider the processor 

sharing case. Clearly, this limit of infinitestimal quantum 1 is an ideal and can 

seldom be reached in practice due to overhead considerations; nevertheless, its 

extreme simplicity in analysis and results brings us to the studies reported in this 

paper. 

The two processor sharing systems studied in the past are the RR and the FB 

[4, 5]. Typically, the quantity solved for is T(t), the expected response time con- 

ditioned on the customer's service time t; response time is the elapsed time from 

when a customer enters the system until he leaves completely serviced. This measure 

is especially important since it exposes the preferential treatment given to short 

jobs at the expense of the long jobs. Clearly, this discrimination is purposeful since, 

as stated above, it is the desire in time shared systems that  small requests should be 

allowed to pass through the system quickly. In 1969 the distribution for the response 

time in the RR system was found [6]. In this paper we consider the case of mixed 

scheduling algorithms whereby customers are treated according to the RR algo- 

rithms, the FB algorithm, or first come first served (FCFS) algorithm, depending 

upon how much total service time they h~ve already received. Thus, as a customer 

proceeds through the system obtaining service at various rates, he is treated accord- 

ing to different disciplines; the policy which is applied among customers in different 

levels is that  of the FB system as explained further in Section 2. Thus, natural 

generalization of the previously studied processor sharing systems allows us to 

create a large number of new and interesting disciplines whose solutions we present. 

A more restricted study of this sort was reported by the authors in [16]. Here we 

make use of the additional results from [11] to generalize our analysis. 

~This l i m i t i ng  case  is no t  un l ike  t h e  d i f fus ion  a p p r o x i m a t i o n  for  q u e u e s  (see, for  e x a m p l e ,  

Gaver [17]). 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, .July 1972 



466 L. KLEINROCK AND R. R. MUNTZ 

2. The Model 

The model we choose to use in representing the scheduling algorithms is drawn 

from queueing theory. This corresponds to the many  previous models studied [1, 

2, 4-8, 18], all of which may be thought  of in terms of the structure shown in Figure 

1. In  this figure we indicate tha t  new requests enter the system queues upon 

arrival. Whenever the computer ' s  central processing unit (CPU)  becomes free, 

some customer is allowed into the service facility for an amount  of t ime referred to 

as a quantum. If, during this quantum, the total  accumulated service for a customer 

equals his required service time, then he departs  the system; if not, at the end of 

his quantum, he cycles back to the system of queues and waits until he is next 

chosen for additional service. The system of queues may order the customers 

according to a variety of different criteria in order to select the next customer to 

receive a quantum. In  this paper  we assume tha t  the only measure used in evaluat- 

ing this criterion is the amount  of attained service (total service so far received). 

In  order to specify the scheduling algorithm in terms of this model, it is required 

tha t  we identify the following: 

(a) Customer interarrival time distribution. We assume this to be exponential, 

i.e. 

P[interarrival  t ime _~ t] = 1 - e TM, t _> 0, (2.1) 

where ~ is the average arrival rate of customers. 

(b) Distribution of required service time in the CPU. This we assume to be 

arbi t rary  (but  independent of the interarrival  t imes).  We thus assume 

P[service t ime ~ x] = B(x) .  (2.2) 

Also assume 1/~ = average service time. 

(c) Quantum size. Here we assume a processor shared model in which cus- 

tomers  receive an equal but  vanishingly small amount  of service each t ime they are 

allowed into service. For more discussion of such systems, see [4, 6, 7, 18]. 

(d) System of queues. We consider here a generalization and consolidation of 

many  systems studied in the past. In  particular, we define a set of at tained service 

times {ai} such tha t  

0 = a0 < a l  ~ a 2  ~ . . .  < a N  ~aN+l  = oo. (2.3) 

The discipline followed for ~ job when it has attained service, r, in the interval 

a~-I ~ r < a i ,  i - 1, 2, . . .  , N  ~ 1, (2.4) 

. •  SYSTEM OF 
ARRIVALS QUEUES 

CYCLED ARRIVALS 

SERVICE 

FACILITY 

~- DEPARTURES 

FIG. 1. T h e  f e e d b a c k  q u e u e i n g  mode l .  

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Processor Sharing Queueing Models 467 

will be denoted as Di • We consider D~ for any given level i to be either: First Come 

First Served (FCFS) ;  Processor Shared-FB,  (FB) ;  or Round-Robin Processor 

Shared (RR) .  The FCFS system needs no explanation, and the FB system gives 

service next to that  customer who so far has least attained service; if there is a tie 

(among K customers, say) for this position, then all K members in the tie get served 

simultaneously (each attaining useful service at a rate of 1/K see/see), this being 

the nature of processor sharing systems. The RR processor sharing system shares 

the service facility among all customers present (say J customers) giving attained 

service to each at a rate of 1/J see/see. Moreover, between intervals, the jobs are 

treated as a set of FB disciplines (i.e. service proceeds in the ith level only if all 

levels j < i are empty) .  See Figure 2. For example, for N = 0, we have the usual 

single level case of either FCFS, RR, or FB. For N = 1, we could have any of nine 

disciplines (FCFS followed by FCFS, . . .  , RR  followed by RR) ;  note tha t  FB 

followed by FB is just a single FB system (due to overall FB policy between levels). 

As an illustrative example, consider the N = 2 case shown in Figure 3. Any new 

arrivals begin to share the processor in an RR fashion with all other customers who 

so far have less than 2 seconds of attained service. Customers in the range of 2 _~ 

r < 6 may get served only if no customers present have had less than 2 seconds of 

service; in such a case, that  customer (or customers) with the least attained ser- 

vice will proceed to occupy the service in an FB fashion until they either leave, 

or reach r = 6, or some new customer arrives (in which case the overall FB rule 

provides that  the RR policy at level 1 preempts). If all customers have r > 6, then 

the "oldest" customer will be served to completion unless interrupted by a new 

arrival. The history of some customers in this example system is shown in Figure 

4. We denote customer n by Cn. Note that  the slope of attained service varies as 

the number of customers simultaneously being serviced changes. We see that  C~ 

requires 5 seconds of service and spends 14 seconds in system (i.e, response time of 

14 seconds). 

So much for the system specification. We may summarize by saying that  we have 

an M/G/1  queueing system 2 model with processor sharing and with a generalized 

multilevel scheduling structure. 

The quanti ty we wish to solve for is 

T(t) = E[response time for a customer requiring a total of t seconds of 

attained service}. (2.5) 

We further make the following definitions: 

T~(t) = E{time spent in interval i [aT-l, a~] for customers requiring a 

total of t seconds of attained service}. (2.6) 

We note that. 

T~(t) = T~(t') for t,t '  ~_ a~. (2.7) 

M/G/1 denotes the single-server queueing system with Poisson arrivals and arbi t rary service 

time distr ibution;  similarly M/M/1  denotes the more special case of exponential  service time 

distribution. One might  also think of our processor sharing system as an infinite server model 

with constant  overall service rate. 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



468 L. KLEINROCK AND R. R. MUNTZ 

DN+I 

aN<r 

t aN~<t 
! 

l a i ~<t 

Di 

a i _ l ~ v < a i  

COMPLETIONS 

COMPLETIONS 

• a i _ l ~ t  

i 
I 
i 

l a 2 ~ t  

D 2 

al~<r<a 2 

COMPLETIONS 
v 

ARRIVALS 

a I <~ t = REQUIRED SERVICE TIME 

t DISCIPLINE D 1 
JOBS WITH 

ATTAINED SERVICE r 

O = a o ~ r < a  1 

COMPLETIONS 

FiG. 2. The multilevel queueing structure with disciplines Di.  

Furthermore, we have, for ak_l < t < ak, that  

k 

T( t )  = ~ T d t ) .  (2.8) 
i = l  

Also we find it convenient to define the following quantities with respect to B( t )  : 

f0 ~ ff  t<x = tdB( t )  + x d B ( t ) ,  
x 

t ~  = t~dB(t) + x ~ d B ( t ) ,  
x 

p<: = X~<~,  

W~ = ~/i<~/2(1 -- p<~). 

Note that  Wz represents the expected work found by a new arrival in the system 

M / G / 1  where the service times are truncated at x. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Processor Sharing Queueing Models 469 

3. Results for Multilevel Queueing Systems 

We wish to find an expression for T(t) ,  the mean system time (i.e. average response 

time) for jobs with service time t such that  ai-i  _~ t ~ ai, i.e. jobs which reach the 

ith level queue and there leave the system. To accomplish this it is convenient to 

isolate the ith level to some extent. We make use of the following two facts. 

(1) By the assumption of preemptive priority of lower level queues (i.e. FB 

discipline between levels) it is clear that  jobs in levels higher than the ith level can 

D 3 = F C F S  

6~7  
COMPLETIONS 

1 6 ~ t  

D 2 = FB 

2~<r<6 
COMPLETIONS 

uJ 
(J 
> 
CC 
uJ 
o0 
¢3 
uJ 
Z 

k- 
k- 

a2 =6 

a t =2  

ARRIVALS 

T 2~<t 

_ I D1 = R R 

r I 0=a°~<T<2 

FIG. 3. Example of N = 2. 

I I 

o'--,-li 
SYSTEM .C. C, 
EMPTY ~' " 

ARRIVALS 

C3 

Ci o C t /  C3 

C I , C y  

c,,J 
/ 

_ _ - -  C j .  - - C ~ /  ' 

I I i i / I I 

10~ 15 ~ 2 0 t J  ~ 25 
C~. C: Ca C, TIME 

J x J ARRIVAL 
DEPARTURES 

FIG. 4. History of customers in example. 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



470 L. K L E I N R O C K  AND R. R. MUNTZ 

be ignored. This follows since these jobs cannot interfere with the servicing of the 

lower levels. 

(2) We are interested in jobs that  will reach the ith level queue and then depart 

from the system before passing to the (i + 1) -th level. The system time of such a job 

can be thought of as occurring in two parts. The first portion is the time from the 

job's arrival to the queueing system until the group at the ith level is serviced for the 

first time after this job has reached the ith level. The second portion starts with the 

end of the first portion and ends when the job leaves the system. It  is easy to see 

that  both the first and second portions of the job's system time are unaffected by the 

service disciplines used in levels 1 through i - 1. Therefore we "can assume any 

convenient disciplines. In fact, all these levels can be lumped into one equivalent 

level which services jobs with attained service between 0 and ai_l seconds using any 

service discipline. 

From (1) and (2) above it follows that  we can solve for T ( t )  for jobs that  leave 

the system from the ith level by considering a two level system. The lower level 

services jobs with attained service between 0 and aN-j, whereas the second level 

services jobs with attained service between ai-~ and a~. Jobs that  would have passed 

to the (i  + 1)-th level after receiving a~ seconds of service in the originalsystem are 

now assumed to leave the system at that  point. In other words the service times are 

truncated at a~. 

3.1 iTH LEVEL DISCIPLINE IS FB. Consider the two level system with the sec- 

ond level corresponding to the i th level of the original system. Since we are free to 

choose this discipline used in the lower level, we can assume that  the FB discipline 

is used in this level as well. Clearly the two level system behaves like a single level 

FB system with service times t runcated at a~. The solution for such a system is 

known [5, 9]: 

T ( t )  = t / ( 1  --  p<t) + IT<t/J2(1 -- p<t)2]. (3.1) 

3.2 iwn LEVEL DISCIPLINE IS FCFS. Consider again the two level system with 

breakpoints at a~_~ and a~. Regardless of the discipline in the lower level, a tagged 

job entering the system will be delayed by the sum of (a) the work currently in both 

levels ( = Wo~) plus (b) any new arrivals to the lower level queue during the interval 

[average T(t)] this job is in the system. These new arrivals form a Poisson process 

with parameter  ~ and their contribution to the delay is a random variable whose 

first and second moments are t<a~--i and ~<,~_~ respectively. 

Thus we have 

and so 

T ( t )  = W~,  + kta,_l  T ( t )  + t 

T ( t )  = (Wa, + t ) / (1  - p<~,_,), (3.2) 

where Wa~ is given by eq. (2.12). It  is also possible to use these methods for solving 

last come first served and random order of service at any level. 

3.3 iT~ LEVEL DISCIPLINE IS RR. In this case, our results are limited in the 

ith interval to service distributions in which 

B ( x )  = 1 - p ( x ) e  -~x, ai-1 < x < a i ,  (3.3) 

p ( x )  = po "-t- p l x  + . "  + pax ~. (3.4) 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Processor Sharing Queueing Models 471 

The service time distribution F ( x )  for this ith interval is then 

~B(ai-1 + x )  --  B(a i -1 )  • 
f ( z )  ] -  1 -- B ( ~ _ ~  = 1 -- q ( x )e  -ax 0 < x < ai - ai-1 

= ( 3 . 3 ' )  

I1  x > al -- ai-1,  

where 

q(x )  = e-~ai- lp(ai-1 + x)  
1 - B(a~-~)  = qo -~ qlx + . . .  + q~x '~. (3 .4 ' )  

Thus we permit in this interval service time distributions of the form: 1 minus a 

polynomial of degree n times an exponential. The analysis of this system appears in 

Ill]; we make use of these results below. Nevertheless, we develop our analysis as 

far as possible for the case of general B ( x )  before specializing to the class given by 

eqs. (3.3) and (3.4). 

We start by considering the two level system with breakpoints at a~_l and a~. 

Consider the busy periods of the lower level. During each such busy period there 

may be a number of jobs that  pass to the higher level. We choose to consider these 

arrivals to the higher level as occurring at the end of the lower level busy period so 

that there is a bulk arrival to the higher level at this time. We also choose to tem- 

porarily delete these lower level busy periods from the time axis. In effect we create a 

virtual time axis telescoped to delete the lower level busy periods. Since the time 

from the end of one lower level busy period to the start  of the next is exponentially 

distributed (Poisson arrivals!), the arrivals to the higher level appear in virtual 

time to be bulk arrivals at instants generated from a Poisson process with parameter 
~,. 

Consider a tagged job that  required t = a~-i + r seconds of service (0 < r _< 

a~ - a~_l). Let  a~ be the mean real time the job spends in the system until its 

arrival (at the end of the lower level busy period) at the higher level queue. Let 

a2(r) be the mean virtual time the job spends in the higher level queue, al can be 

calculated as follows. The initial delay is equal to the mean work the job finds in the 

lower level on arrival plus the a~_~ seconds of work that  it contributed to the lower 

level. Therefore 

Cgl = Wai_  1 -~- ~tai_lOll + ai-1 

and so 

al  = [1/(1 - p<a~_l)]{Wa~_, + a~-l}. (3.5) 

If a2(T) is the mean virtual time the job spends in the higher level, we can easily 

convert this to the mean real time spent in this level. In the virtual time interval 

a2(T) there are an average of ha2(T) lower level busy periods that  have been ignored. 

Each of these has a mean length of t<a~_l/(1 -- P<a~-l)- Therefore, the mean real 

time the job spends in the higher level is given by 

a2(T) -Jr Xa2(r)" t<ai_ , / (1  -- P<a,_,) = a 2 ( T ) / ( 1  -- P<a,_,). (3.6) 

Combining these results we see that  a job requiring t = a~_l + r seconds of service 

has mean system time given by 

T(a~_l + 7) = [1/(1 - -  P<ai_l)]{Wai_l  -~- ai-1 -~ O/2(T)}. (3.7) 

Journal of the Association for Computing Machinery, Voll 19, No. 3, July 1972 



472 L.  K L E I N R O C K  A N D  R.  R .  M U N T Z  

The only unknown quanti ty in this equation is a2(r) .  To solve for a2(r)  we must, 

in general, consider an M / G / 1  system with bulk arrival and RR processor sharing. 

The only exception is the case of RR  at the first level which has only single arrivals. 

Since the higher level queues can be ignored, the solution in this exceptional case is 

the same as for a round-robin single level system with service times truncated at al • 

Therefore, from [8] we have for the first level, 

T( t )  = t / (1  -- P<a,) 0 __~ t < a~. (3.8) 

Let us now consider the bulk arrival R R  system in isolation in order to solve for the 

virtual time spent in the higher level queue a2(v). The service time distribution for 

this bulk arrival system is 

~[B(ai_i -Jr x) - B(a~_l)]/[1 -- B(ai_i)], 0 < x < al -- at_l ,  

F ( x )  

(1,  x ~ a i  - a t - 1 .  

Note that  the utilization factor for this bulk system is 

p = Xd /u l ,  (3.9) 

where d is the mean number of arrivals in a bulk and 1/u~ is the mean of the distribu- 

tion F ( x ) .  Let us begin by solving for 5. This we do for the general case a~-i, a~. d 

is just the mean number of jobs that  arrive during a low level busy period and require 

more than at-1 seconds of service. Therefore d must satisfy the equation 

5 = XT<~,_,a + [1 -- B(a~_l)]l. (3.10) 

In this equation Xt<~_ 1 is the mean number of jobs that  arrive during the service 

time of the first job in the busy period. Since each of these jobs in effect generates a 

busy period, there are an average of ht<,~_fl arrivals to the upper level queue due to 

these jobs. The second term is just the average number of times that  the first job in 

the busy period will require more than a~-i seconds of service. Clearly then 

d = [1 -- B(a~_l)]/[1 -- P<~-i]- (3.11) 

In [11], an integral equation is derived which defines a2 (T) for the RR bulk arrival 

system; we repeat tha t  equation below: 

' f0 ' 
a2 ( r )  = Xd a2(x)[1 -- F ( x  + r ) ] d x  

P 

+ X5 J, c~2'(x)[1 -- F ( r  - -  
X)] d x  

-1- 1 + b[1 -- F ( r ) ] ,  (3.12) 

where a2' (r )  = do~2( r) /dr ,  and b is the mean number of arrivals with the tagged 

j ob. The solution to this integral equation for the restricted service time distributions 

as given in eqs. (3.3') and (3.4') is also given in [11], and for our problem takes the 

form 

~(,) - 

1 --  Xa ~ 

b ~2,1 ( ~  - -  7m2) '}+1 

Q0(~m)[1 - e -~m~] - Ul~Tm)'~ ~- ~e -~mxl~te~m~ -- 1] 

[Q0(~m) + e-~mXlQl(~m)]%, 
, ( 3 .13 )  

Journal  of the Association for Comuutin~ Machinery. Vol. 19. No. 3 . . h d v  1972 



Processor Sharing Queueing Models 473 

where 

xl = a i  - a / _ 1 ,  ( 3 . 1 4 )  

Qo(x) = (x + f~)~+l - X~ ~ q(k)(0)(x + ~)~-k, (3.15) 
k~0 

Ql(x) = X5 ~ e-~X~q(k)(xl)(x + X) ~-k, (3.16) 

Q2(x) = Qo(x)Qo(-x) - Ql(x)Q~(-x), (3.17) 

and where eq. (3.17) has roots (occurring in pairs) x = -%~,  , ~m for m = 1, 2, • • • , 

n + 1 and the notat ion f(k)(,y) denotes the kth derivative of f with respect to its 

argument evaluated at a value ~. 

in the solution for c~2(T) given in eq. (3.13), we are required to compute b (mean 

number of arrivals with a tagged job).  This we do by first deriving an expression for 

G(z) = ~ P[bulk size = k]z k (3.18) 
k=0 

which is the probabil i ty generating function (z-transform) for the bulk size. Either 

by direct arguments  based upon busy periods or by use of the method of collective 

marks [12], we readily arrive at 

G(z) = [1 -- B(ai-1)]z ~ (~kai-1)J e -Xa i - l [G(z ) ]  J 
j=0 3! 

[fo'i-lj~o (Xt)Je-Xt[G(z)] j dB(t) + B(a i - i )  - ~ -  B ~ ) _ J "  (3.19) 

In eq. (3.19) the first t e rm is conditioned on the assumption tha t  the customer who 

preempts service from those at level i reaches the ith level; the second te rm assumes 

that he does not reach level i. Equat ion (3.19) reduces to 

G ( z )  LI ~r~ ~ l ~ - ~ a ~ _ l [ 1 - ~ ( z ) J  fo a~-~ . . . .  \ ~ i - I / l ~  + e -xt[1-G(z)] dB(t) . (3.20) 

For arbi trary B(x), we c~Imot reduce this last expression any further. Nevertheless, 

we can obtain moments  from it. In particular, from the definition of d, we obtain 

-: Z / ( z )  Iz=i = [1 - B(a~_~) ] / [1  - X~<o,_~], 

which is exactly as o~,~ ained by  more direct arguments  in eq. (3.11). However, we 

are seeking b. For this we must  calculate 

G"(z) [~=1 = [(d)2/(1 -- p<~_l)][2Xa~_~(1 -- p<~,_~) + X2~<~,_~]. (3.21) 

Now since the mean group size ( 1 + b) of a tagged customer's  group is related to the 

bulk size distribution as the mean spread is related to the inter-event distribution 

(namely, the mean spread equals the second moment  of the inter-event interval 

divided by the first moment)  [13], we have 

1 + b = (second moment  of bulk size)/(f irs t  moment  of bulk size) (3.22) 

or  

e r r ( z )  z ~ i "  
b -  G'(z) (3.23) 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



474 L. K L E I N R O C K  AND R. R. MUNTZ 

From eq. (3.20) we get 

27i b = [d/(1 - p<~,_~)][2ka~_~(1 - P<a~_x) + k t  <~_~]. (3.24) 

Having solved for a2(r)  we may now substitute back into eq. (3.7) which solves 

the case when the ith level discipline is R R  and service t ime is of the form given in 

eqs. (3.3') and (3.4').  [Note tha t  for i = 1, the solution given in eq. (3.8) is good 

for any B ( x ) . ]  

I t  is instructive to display the solution for T ( t )  explicitly in a special case for our 

ith level R R  discipline. We choose the multilevel system with M / M / 1  and solve for 

T(a~_~ + r)  after substituting a2(r)  into eq. (3.7). Note for M / M / 1  tha t  q(t )  = 

q0 = 1. Also, from eqs. (3.14)-(3.17),  and choosing ~ = #, 

Qo(x) = x + ~ - kd, (3.25) 

Q~(x) = h~e -~1, (3.26) 

Q~(x) = #~ - 2#~d  + (~d)2(1 - e -2~x~) - x2; (3.27) 

thus the roots of Q~(x) are 

± ~t = ± [ 2 _ 2~kd + (~5)2(1 -- e-2~x~)] i, (3.28) 

/.~i = / u - l ( 1  ; ( 3 . 2 9 )  

thus from these and eq. (3.13), we get 

~(~) - 

1 - -  kd#T ~ 

+ b(# 2 -- 7~2)[(71 + # - kS)(1 - e  - ~ ' )  -- Xde-(Z+vt)~l(e ~ -- 1)] (3.30) 

2~d'y12['y1 + # - -  hd(1 -- e-(,+~l)~,)] 

Also from eqs. (2.9) and (2.10) we obtain 

t<~ = # - 1 ( 1  - -  e - " X ) ,  ( 3 . 3 1 )  

~<~ = 2~-2(1 -- e - ~  -- #xe-~X). (3.32) 

We may  substitute these last two equations into eqs. (3.11) and (3.24) to obtain 

a and b explicitly. Also, we note from eqs. (2.12) and (3.32) tha t  

Wa,_~ = [k(1 - e - ~ ' - ~  - ~a~_le - '~ - ' ) ] /~2[1  - (~ /# ) (1  - e - ~ - ~ ) ] .  (3.33) 

Finally, we may  substitute this expression for W,~_~ and eq. (3.30) which gives (~2(r) 

into eq. (3.7) which gives us the explicit form for T ( r ) .  

4. E x a m p l e s  

In this section we demonstrate  through examples the nature of the results we have 

obtained. Recall tha t  we have given explicit solutions for our general model in the 

case M / G / 1  with processor sharing where the allowed scheduling disciplines within 

a given level may  be FCFS or FB;  if the discipline is RR, it may  be at level 1 and if 

it occurs at level i > 1, must  be of the form given in eqs. (3.3') and (3.4').  

We begin with four examples from the system M / M / 1 .  As mentioned in Section 2, 

we have nine disciplines for the case N = 1. This comes about since we allow any 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Processor Sharing Queueing Models 475 

o n e  o£ three disciplines at level 1 and any one of three disciplines at level 2. As we 

have shown, the behavior of the average conditional response t ime in any particular 

level is independent of the discipline in all other levels; thus we have nine disciplines. 

In Figure 5 we show the behavior of each of the nine disciplines for the system N = 

1. In this case we have assumed ~ = 1, X = 0.75, and al = 2. From eq. (3.1) we see 

that the response t ime for the FB system is completely independent of the values a~ 

and therefore the curve shown in Figure 5 for this response t ime is applicable to all of 

our M / M / 1  cases. Note the inflection point in this curve and tha t  the response t ime 

grows linearly as t --~ ~ [a phenomenon not observable from previously published 

figures but easily seen from eq. (3.1)]. As can be seen from its defining equation, the 

response t ime for FCFS is linear regardless of the level; the R R  system at level 1 is 

also linear, but as we see from Figure 5 and from eq. (3.13) the R R  at levels i > 1 is 

4 0 -  

3 6 -  

32  - 

28 - 

2 4 -  

20 - 

1 6 -  

12  - 

/ 
/ 

/ /  

i l l  

,,:s< 
0 

/ /  FCFS 

81 

0 ! 

0 1 

I ~ ' - - -RR 

~--FCFS 

I I I 
2 3 4 

t 

I I I 
5 6 7 

FIG.  5. R e s p o n s e  t i m e  p o s s i b i l i t i e s  f o r  N = 1, M / M / l ,  tL = 1, ~ = 0 .75 ,  a l  = 2. 

Journal  of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly  1972 



476 L. K L E I N R O C K  AND R.  R .  MUNTZ 

nonlinear. Thus one can determine the behavior of any of nine possible disciplines 

from Figure 5. Adiri and Avi-I tzhak considered the case (FB, RR)  [14]. 

Continuing with the case M / M / l ,  we show in Figure 6 the case for N = 3 where 

D1 = RR,  D2 = FB, D3 = FCFS,  and D4 = RR.  In  this case we have chosen a~ = i 

and ~ = 1, k = 0.75. We also show in Figure 6 the case FB over the entire range 

as a reference curve for comparison with this discipline. Note (in general for M / M / 1 )  

tha t  the response t ime for any discipline in a given level must either coincide with 

FB curve or lie above it in the early par t  of the interval and below it in the latter 

par t  of the interval; this is true due to the conservation law [15]. 

The third example for M / M / 1  is for the i terated structure D i  = FCFS. Once again 

we have chosen ~ = 1, k = 0.75, and ai = i. Also shown in Figure 6 is a dashed 

line corresponding to the FB system over the entire range. Clearly, one may select 

any sequence of FB and FCFS with duplicates in adjacent intervals, and the be- 

40 

32  

28 

A 

I -  

u~ 24  
:E 
m 
p. 

uJ 
cn 
Z 

=°20 
cn 

Ilc 

uJ 

> 
< 

D: = R R  

D2 = FB 

D3 = FCFS 

04 = RR 

FCFS 
/ 

FB (reference) 

RR 

12 

FB 

FIG.  6.  

J I I I I I I 0 
0 1 2 3 4 5 6 7 

t 

R e s p o n s e  t i m e  f o r  a n  e x a m p l e  o f  N = 3,  M / M / 1 , / ~  = i ,  X = 0 .75 ,  a~ = i .  

Journal  of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly  1972 



Processor Sharing Queueing Models 477 

havior for such systems can be found from Figure 7. I t  is interesting to note in the 

general M / G / 1  case with Di = F C F S  tha t  we have a solution for the FB  sys tem 

with finite q u a n t u m  q~ = a~ = a~-z where preempt ion  within a q u a n t u m  is per- 

mitted ! 

Our fourth example is for an M / M / 1  system with Di = R R  and is shown in Figure 

8. Here we use the  explicit form for T(T) derived f rom eqs. (3.7), (3.30), and (3.33). 

We maintain the same value ~ = 1, k = 0.75, a l  = 2,  a2 = 5. 

We leave M / M / 1  now and give two examples for M / G / 1 .  For  the first example we 

choose the system M / E 2 / 1  with N = 1. I n  this system we have 

dB(x) 
- (2~)2xe -~x, x ~_ 0 .  (4.1) 

dx 

40 

36 L Di = FCFS 

32 

28 

24 

L20 

/ 

16~ 

12 

/ 

FIG. 7. 

o l , ~  ,- t t I L I I I 
0 1 2 3 4 5 6 7 

t 

R e s p o n s e  t i m e  fo r  t h e  M / M / 1  i t e r a t e d  s t r u c t u r e ,  t~ = 1, k = 0.75, a l  = i ,  N = ~ .  

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



478 L. K L E I N R O C K  AND R. R. MUNTZ 

A 

I - -  

30 

20 

10 

I I I I t 

/ 

FB - ~ / /  

/ / / ~  RR 

__ / 7  

I 
I 

I 
I 

i 
/ 

i I 

R 

I J J i i 
0 1 2 3 4 5 

FIG. 8. Response time for example of D~ = RR, M/M/1, ~ = 1.0, ~ = 0.75, a~ = 2.0, a~ = 5.0. 

We no te  t h a t  the  mean  service t ime  here  is aga in  given by  l / p ;  t he  second moment  

of th is  d i s t r i bu t i on  is 3/2~ 2. W e  calcula te  

/<al = /z -1 - /-t-le-2"al[1 + 2~ai -t- 2(~al)2]- (4.2) 

We choose the  sys tem N = 1 wi th  D1 = R R  and  D2 = F C F S .  F o r  t he  cases a~ = 

1/2~, I/p, 2/~, 4/~ ,  and  ~ wi th  # = 1 and  k = 0.75, we show in F i g u r e  9 the  

behav io r  of th is  sys tem.  

The  las t  example  we use is for the  fol lowing service  t ime  d i s t r ibu t ion :  

b~(x) dB,(z) I 1' 0 _< x < ½, 
- -  - ( 4 . 3 )  

dx (e -2(x-~),  ½ ~ X ,  

as shown in F igure  10. I n  th is  case, [<~ = 9, ~<t = ~, [ = 9, ~ = 9. W e  choose the  

Journal of the A~sociation for Computing Machinery, Vol. 19, No. 3, July 1972 



Processor Sharing Queueing Models 479 

bl (t) 

36 -- 

32 - a = 4//J " - ~ t /  

Di =RR 

28 - D2 = FCFS Z = ~  / 

0 1 2 3 4 5 6 7 

t 

Res ~onse t ime for  RR,  F C F S  in M / E : / 1  wi th  p = 1, ~ = 0.75, and a = ½, 1, 2, 4, ¢~. 

1.0 
. . 1  

Fro. 9. 

0 I I I I 
0 0.5 1.0 1.5 2.0 

t 
FIG. 10. Exa mple  service t ime dens i ty  bl(t). 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



5 .0  

4.0 

FIG.  11. 

FCFS 

A 

I -  

3.0 
I -  
I,li/ 

Z 

r3 
< 

iJJ 
> 
< 

2.0 

1.0 

480 L. K L E I N R O C K  AND R.  R.  MUNTZ 

/ 

/ 

B 

L ~ j ~ F C F S j  I I 
0.5 1.0 1.5 2.0 

Response time for an example of N = 2, ~ = 0.75, service time density = bl(t).  

system D1 = FCFS,  D2 = RR,  and D3 = FCFS with a] = ½, a2 = ~, and k = 0.75. 

The performance of this system is given in Figure 11. 

These examples demonstrate  the broad behavior obtainable from our results as 

one varies the appropriate system parameters .  In all cases the system discriminates 

in favor of the short jobs and against the longer jobs. 

5. C o n c l u s i o n  

Our purpose has been to generalize results in the modeling and analysis of t ime 

shared systems. The class of systems considered was the processor sharing systems 

in which various disciplines were permit ted at different levels of attained service. 

The principal results for M / G / 1  are the following: (1) the performance for the FB 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Processor Sharing Queueing Models 481 

discipline at any level is given by eq. (3.1); (2) the performance for the FCFS 

discipline is linear with t within any level and is given by eq. (3.2); (3) the per- 

formance for the RR discipline at the first level is well known [8] and is given by eq. 

(3.8) ; (4) an integral equation for the average conditional response time for RR at 

any level (equivalent to bulk arrival RR) is given by eq. (3.12) and remains un- 

solved in general; however, for the service distribution given in eqs. (3.3') and 

(3.4'), we have the general solution given in eq. (3.13) as derived in [11]. We further 

note that the average conditional response time at level i is independent of the 

queueing discipline at all other levels. 

Examples are given which display the behavior of some of the possible system 

configurations. From these, we note the great flexibility available in the multilevel 

systems. From the examples in Section 4, we see that  considerable variation from 

previously studied algorithms is possible so long as the number of levels is less than a 

small integer (say 5) ; however, we see that  as N increases, the behavior of the ML 

systems rapidly approaches that  of the pure FB system. 

Examination of the envelope of the multitude of response functions available with 

the ML system has suggested that  upper and lower bounds in system performance 

exist; this in fact has been established and is reported in [19]. 

REFERENCES 

(Note. Reference [10] is not cited in the text.) 

1. KLEINROCK, L. Analysis of a time-shared processor. Naval Res. Logistics Quart. 2, 1 

(March 1964), 59-73. 

2. McKINNEY, J . M .  A survey of analytical t ime-sharing models. Comput. Surv. 1, 2 (June 

1969), 105-116. 

3. TAK~CS, L. A single-server queue with feedback. Bell System Tech. J. 42 (March 1963), 

505-519. 

4. KLEINROCK, L. Time-shared systems: A theoretical t reatment.  J. ACM 14, 2 (Apr. 1967), 

242-261. 

5. COFFMAN, E. G., AND KLEINROCK, L. Feedback queueing models for time-shared sys- 

tems. J. ACM 15, 4 (Oct. 1968), 549-576. 

6. COFFMAN, E. G., JR., MUNTZ, R. R., AND TROTTER, H. Waiting time distributions for 

processor-sharing systems. J. ACM 17, 1 (Jan. 1970), 123-130. 

7. KLEINROCK, L., AND COFFMAN, E. G. Distr ibution of at tained service in time-shared 

systems. J. Comput. Systems Sci. 8 (Oct. 1967), 287-298. 

8. SAKATA, M., NOGUCHI, S., AND OIZUMI, J.  Analysis of a processor-shared queueing model 

for time-sharing systems. Proc. 2nd Hawaii Internat .  Conf. on System Sciences, Jan.  

1969, pp. 625-628. 

SCHRAGE, L . E .  The queue M/G/1  with feedback to lower priority queues. Manag. Sci. 

13, 7 (1967), 466-471. 

CONWAY, R. W., MAXWELL, W. L., AND MILLER, L . W .  Theory of Scheduling. Addison- 

Wesley, Reading, Mass., 1967. 

KLEINROCK, L., MUNTZ, R. R., AND RODEMICH, E. The processor-sharing queueing 

model for time-shared systems with bulk arrivals. Networks J .  1,1 (1971), 1-13. 

COHEN, J.  The Single Server Queue. Wiley, New York, 1969. 

OLIVER, R. M., AND JE~'ELL, W. S. The distribution of spread. Research Report 20, Op. 

Res. Cen., U. of California, Berkeley, Calif., Jan.  25, 1962. 

ADIRI, I., AND AVI-ITZHAK, B. Queueing models for time-sharing service systems. Tech- 

nion, Mimeograph Ser. on Oper. Res., Statist .  and Econ., Technion--Israel  Inst. of Teehnol., 

Haifa, Israel, No. 27. 

9. 

10. 

11. 

12. 

13. 

14. 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



482 L. KLEINROCK AND R. R. MUNTZ 

15. KLEINROCK, L. A conservation law for a wide class of queueing disciplines. Naval Res. 

Logistics Quart. 12, 2 (June 1965), 181-192. 
16. KLEINROCK, L., AND MUNTZ, R. R. Multilevel processor-sharing queueing models for 

time-shared systems. Proc. Sixth Internat.  Teletraffic Congress, Munich, Germany, Aug. 

1970, pp. 341/1-341/8. 
17. GAVER, D. Diffusion approximations and models for certain congestion problems. J. 

Appl. Prob. 5 (1968), 607--623. 
18. SCHRAGE, L . E .  Some queueing models for a time-shared facility. Ph.D. dissertation, 

Dept. of Indust. Eng., Cornell U., Ithaca, N.Y., 1966. 
19. KLEINROCK, L., MUNTZ, R. R., AND HSU, J. Tight bounds on the average response time 

for processor-sharing models of time-shared computer systems. Proc. IFIPS Congress, 

1971 (to be published). 

RECEIVED SEPTEMBER 1970; REVISED AUGUST 1971 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



A Stochastic Model for Message Assembly Buffering with 

a Comparison of Block Assignment Strategies 

GARY D. SCHULTZ 

IBM Research Division, Research Triangle Park, North Carolina 

ABSTRACT. A stochastic model is developed for the process of dynamic buffering for inbound 
messages in a computer communications system. For a specific characterization of message 
traffic, complementary viewpoints--one considering the process as a queueing system, the other 
considering it as a compound process--lead to the same probability generating function. Two 
buffer assignment schemes, both dynamic but differing in binding strategy, are compared in 
terms of optimal buffer size and total buffer pool requirements for a given overflow criterion. 
A simple model of optimal blocking, earlier proposed by Gaver and Lewis, is extended to cover 
both buffer strategies and also heterogeneous message sources. Finally, the derived characteri- 
zation of total storage requirements is compared by numerical example with conservative and 
nonconservative asymptotic treatments of the process. 

KEY W O R D S  A N D  PHRASES: buffer assignment schemes, buffer block binding, computer com- 
munications model, dynamic buffer allocation, geometric binomial distribution, geometric 
Poisson distribution, message assembly buffering, optimal buffer size, Pdlya-Aeppli distribu- 
tion, shared buffer storage 

CR CATEGORIES; 3.81, 4.39, 5.5, 6.29 

Introduction 

A design problem of interest arising in computer communication systems concerns 

the technique employed at the centralized computer facility for buffering inbound 

messages from a number of communication lines. Static assignment of private 

storage to each line for message assembly results in costly and inefficient usage of 

the memory resource by ignoring the stochastic behavior of both message genera- 

tion and message length. Thus it is commonplace for system designers to capitalize 

on the orders of magnitude disparity between computer processing speed and line 

transmission rate and share buffer storage among all the lines by dynamically al- 

locating buffers from a public pool during the message assembly process. 

Such dynamic buffering techniques have the usual characteristic that  the public 

pool is segmented into buffer blocks of equal size. As a message arrives at the com- 

puter, it is assembled by hardware and software intervention into (generally) non- 

contiguous blocks allocated piecemeal from the pool. This scatter assembly of a 

message imposes a storage penalty per block for chaining information to preserve 

the logical integrity of the data structure. 

In this paper we establish means for determining optimal buffer block size and 

Copyright © 1972, Association for Computing Machinery, Inc. 

General permission to republish, but not for profit, all or part of this material is granted, 
provided that reference is made to this publication, to its date of issue, and to the fact that 
reprinting privileges were granted by permission of the Association for Computing Machinery. 

Author's address: IBM Corp., P.O. Box 12275, Research Triangle Park, NC 27709. 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972. pp. 483-495. 



4 8 4  G . D .  SCHULTZ 

total storage requirements for two buffer assignment schemes, both dynamic but 

differing in binding strategy. The differences in strategy roughly typify the varying 

performance constraints imposed by imbedding the line handling function within a 

high supervisory overhead, general purpose control program, or by placing it in a 

low overhead, dedicated subsystem characterized by a special purpose front end 

processor. 

To facilitate comparison, we study the inbound message storage process in vacuo, 

formulating a stochastic model of storage usage with specific distributions imposed 

on message generation and message length. An interesting study of buffering by 

Gaver and Lewis [1] is cited, both because their approach somewhat parallels this 

one and because a simple blocking model they proposed lends itself to generalization 

and extended application here. They considered the low overhead buffering scheme 

in more generality with respect to distributional assumptions, and proposed a buf- 

fer storage performance criterion based on rate of exceeding buffer limits. Here we 

develop a model using more restrictive message traffic assumptions, but carry 

through the analysis of storage overflow without appeal to asymptotic approxima- 

tions based on the central limit theorem. 

Modeling Storage Usage 

Consider a computer facility having M communication lines attached. To develop 

a model of storage usage for message assembly, we make the following assumptions 

about the input process: 

(1) Each of the M lines feeding the computer has identical characteristics, with 

activity on one line being independent of activity on any other. 

(2) Arrival of individual characters belonging to a single message proceeds at a 

constant rate (r characters per second) from start of message (SOM) through end 

of message (EOM). 

(3) Each line experiences alternating periods of activity and inactivity. Consider- 

ing the combined process as comprised of two alternating sequences of independent 

random variables, we describe both by exponential probability distribution func- 

tions with parameters # (activity) and X (inactivity). Thus, mean message trans- 

mission time is 1/#, while the mean time between EOM and SOM is 1/X. 

We are interested in comparing two buffer assignment schemes, described as fol- 

lows. 

Scheme 1. A buffer block is assigned instantaneously at the time of its immediate 

need, e.g. when the first character to enter the block begins to arrive. We call this 

scheme incremental block binding (IBB). 

Scheme 2. One buffer block is preassigned to each line. During an active period, 

a new buffer block is allocated one "block time" prior to its (potential) need, e.g. 

when the first character to enter the most recently assigned buffer block begins to 

arrive. We call this scheme anticipatory incremental block binding (AIBB). 

In general, the IBB scheme is possible where little overhead is incurred for per- 

forming block allocation, while the AIBB scheme characterizes higher overhead 

systems [2]. "Instantaneous" block assignment is, of course, a mathematical 

idealization, but it is realistic when considering the transmission rates of commonly 

used communication lines. Thus, in typical real systems, "high" overhead may en- 

tail only a significant fraction of a single character time. 

Journal  of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly  1972 



Stochastic Model for Message Assembly Buffering 485 

Two approaches which give complementary insights into the process are sug- 

gested. One approach considers the process as a queueing system, while the other 

conceives it as a compound process. In either case we are interested in the process 

in equilibrium; that is, we want the probability distribution for the number of 

storage blocks currently assigned at an arbitrary time, t, to be sufficiently removed 

from a "zero time" so that any initial condition effects (e.g., all lines idle) have 

'<worn off," 

To fix the problem more concretely, Figure 1 shows a possible realization of the 

process. The message time realization of Figure l(a) is contrasted with the equiva- 

lent storage allocation realization of l (b) ,  with both the IBB and AIBB schemes 

shown. Notice that the figure indicates that the storage blocks allocated during 

message assembly are freed in exact synchronism with the occurrence of EOM. 

This simplification is consonant with our intent to isolate the effects on storage 

usage due to buffering strategy from any confounding effects of post-assembly central 

processing unit (CPU) delays and processing. It is equivalent to assuming that the 

CPU pulls out the message immediately on completion of assembly, thereby making 

the allocated blocks again available for assignment. In certain cases, a model of 

EOM 
I 

ACTIVEI A ~ 

s° t 
LINE I f 

I 

A ' I IDLE 
i /  L INE2  I 

: i 
I 

i 2 
AcT,vE,J 

AGE I 

L~TiME-.... 

LINE M 

i t  
(a} POSSIBLE REALIZATION FOR M MESSAGE TIMES 

.... • .... ° ........ .°.. o . , , , ~  ..... . .... L NEI 
LINE 21 . . . . . . . . . . . . . . . . . . . . . . . . . .  t . . . . . . . . . . . . . . . . .  

I 
• i . . .  
• | . . .  

I I ' . -  
A I B B  I:": 

BLOCKS ASSIGNED ~hJ :" " ~  

LINE M ................... 

t 

(b)EQUIVALENT REALIZATION FOR STORAGE BLOCKS ASSIGNED 

FzG. l. Message age versus storage allocation 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



486 G.D. SCHULTZ 

storage usage that  goes beyond the message assembly considerations modeled here 

may also justifiably neglect post-assembly effects. For example, CPU processing 

may be negligible compared to message transmission t ime--a  frequent case in prac- 

tice. Alternatively, post-assembly processing may take place in work space inde- 

pendent of the buffer pool following high priority CPU transfer of the message out 

of the buffer blocks at EOM time. 

From Figure l(b) it is also clear that  the AIBB scheme simply adds M blocks to 

that  required for IBB. Thus, as far as storage usage is concerned, we can develop a 

model for both by treating the IBB scheme and extending it to AIBB in a simple 

fashion. This approach is used in the following derivation. 

I t  is convenient to conceive of the entire process as consisting of M independent 

M / M / 1  queueing systems (Poisson arrivals, exponential service, single server) 

where "service t ime" corresponds to the interval between SOM and EOM (message 

length). By defining each to be a pure loss system with no waiting room at the 

server, we can choose the same parameters (h, tt) as given by our earlier assump- 

tions to get a mathematically equivalent characterization. Since the distribution of 

the time between two consecutive Poisson points (SOMs) is the same as the distri- 

bution of the time between an arbitrary point (e.g. EOM) and the next Poisson 

point (SOM), the lossy aspect upholds the earlier assumption (3) and allows us to 

ignore the unreal possibility of multiple messages queued on a single line. By the 

independence assumption, a one-line model extends easily to the M-line process. 

For an M / M / 1  queueing system with a maximum of one in the system (i.e. the 

one in service), it is known [3] that  in equilibrium: 

Pr {system is idle} 

Pr {system is busy} 

where p = k/#.  

= Pr {zero customers in the system} 

= 1/ (1  + p) 

= p / (1  + p) 

(1) 

(2) 

We can use these results first to derive the equilibrium probability for the "age" 

or elapsed service time of the message (if one) active at an arbitrary time t, and 

then to obtain the probabilities for the number of storage blocks currently assigned 

to the line (using assumption (2)).  Defining the random variables M a ( t )  as the 

message age at time t, and M s ( t )  as the (discrete) number of buffer blocks assigned 

at  time t, we get 

Pr {Ma(t) = 0} = Pr {system idle} = 1/(1 + p) = Pr {M,(t) = 0}. (3) 

The presence of a message of age v > 0 at time t means that  at time t - v the line 

changed from idle to active by the arrival of SOM, and the resulting message has 

length at least as great as v. This is more precisely stated in differential notation as: 

Pr {v < M a ( t )  < v + dr} = Pr {line idle at time t - -  v - -  dr}  

• Pr {SOM occurs in ( t  - v - -  dr ,  t - v)} 

• Pr {message length > v} 

= 1/(1 + p).X d v . e  - ~  (4) 

where the parameters are as defined in assumption (3). To get the probability for 

the number of blocks assigned, we first define buffer block size B = b + c, where 

c is the number of storage spaces needed for chaining and b is the number of spaces 

Journal of the Azmoclation for Computing Machinery, Vol. 19, No. 3. July 1972 



Stochastic Model for Message Assembly Buffering 487 

available to receive message characters. Then, using assumption (2) of constant 

character rate, r, and defining 1/a = b/r, we use eq. (4) to get for y = 1, 2, . . .  , 

Pr {Ms(t) = y} = P R E Y -  1 <  M = ( t ) <  Y-~ 
( a a )  

- 1 ~ p J(~-l)/= e-~v dv 

- P (1 - e-"/~)e -(~-1)~/~. (5) 
l ~ p  

The integration in (5) is a consequence of the fact tha t  exactly y discrete blocks 

are assigned from the instant that  y - 1 have completely arrived through the instant 

that the yth block is completely filled. Notice that  for y = 1, 2, • • • , 

Pr  {Ma(t) = y [ system busy} = (1 - e-~/~)e -(~-1)~/= (6) 

and is zero otherwise. This is the geometric distribution with parameter e -~/=. 

Thus, using eqs. (3) and (5), the probability generating function, P(s) ,  for the 

single-line process is 

1 + ~ P ( 1 - p)  p~-ls~ (p  = e -~/~) 
P ( s )  - 1 +----p ~=~ 1 + p 

= (1 -- ps + ps -- pps ) / (1  + p)(1 -- ps) (7) 

and the probability generating function, H(s ) ,  for the M-line process becomes 

H ( s )  = [P(s)l M [.1 -- ps W ps -- ppslU 

The queueing theory approach has the advantage that  the variables of buffer size, 

message length, and line speed enter naturally into the treatment.  Insights gained 

from a complementary viewpoint, however, permit more natural derivation of the 

desired probability distribution and also provide the basis for discussion, in a later 

section of the paper, of asymptotic processes. 

Viewing the total process in equilibrium, then, as a compound process [4], we can 

relax the assumption on message (SOM) generation, and simply take the event of 

finding a line active as the outcome of a Bernoulli trial, with activity having prob- 

ability Q. In this case, we are interested in the sum SN(t) of a sequence {Xk(t)} of 

mutually independent random variables with the common distribution Pr  {Xk(t) ---- 

i} = f~ and generating function F(s)  = Z f y .  The number N(t )  of terms in the 

sum SN(t) is also a random variable independent of the Xk(t)  with distribution 

Pr {N(t) = n} = g, and generating function G(s) = Zg, s". For the distribution 

hi} of So(t) we get 

M 

~, = Pr {So(t) = i} = ~ e r  {N(t) = n} e r  {X,(t) + . - .  + X , ( t )  = i}. (9) 
n~0 

in terms of our process in equilibrium, we let N(t )  correspond to the number of 

tctive lines, and Xk(t)  correspond to the number of buffer blocks currently assigned 

o the kth active line. To preserve the discrete nature of storage allocation, we 

Lscribe to Xk(t)  the geometric distribution with parameter p. Then 

f ,  = p J - l ( 1 -  p), j = 1 , 2 , . . . ,  (10) 

Journal of the Association for Computing Machinery, Vol. 19, No. 8, July 1979 



488 G.D .  SCHULTZ 

g, = (nM) Q " ( 1 -  Q) M-", n = 0 , 1 , - . - , M .  (11) 

For a fixed n, the distribution of Xi(I) + .. • + X,( t)  is given in Feller's notation 

[4] by {fj}"*, the n-fold convolution of {f~.} with itself, giving 

M 

{h , }  = g.{f,}"*. (12) 
n~0 

With 

and 

F(s) = ~ p~-1(1 -- p)s j - s(1 -- p) 
.i~1 1 - -  ps 

(13) 

G(s) = ~  ( ~ )  Q " ( 1 -  Q)M-"s"= ( 1 -  (14) 

we find the generating function of the sum SN(t) to be 

H(s) = his' = ~ g,[F(s)l" 
i =0 n =0 

s(1 - p ) l  = G(F(s)) = 1 -- Q + Q ~ _~-p-~.j 

[ 1 -  ps - Q W Qs] M 
= 1 p s  ' (15)  

which, with p = e - ' /"  and Q = p/(1 + p), agrees with (8).  

To get the distribution, we make use of eq. (9) to derive for the zero term: 

h0 = P r { N ( t )  = 0} = ( 1 -  Q)M. (16) 

Using (13) we find 

[F(s)] n = (1 - p)%"(1 - ps) -n 

= ( 1 - - P ) " S ' ~ ( ~ n )  ( - p s ) k k ~ o  

= (1--p) 's '~(n+k--  1) k (17) 

Thus 

= - -  p , i _ > n  

and is zero for i < n. Substituting this result, along with that  of eq. (11), into eq. 

(12) we get for i _> 1, 

h, = (1 -- Q)Mp, ~__, . (19) 

Conforming with conventions [5] for other compound processes, we call the distribu- 

tion defined by (16) and (19) the geometric binomial distribution. Knowing H(s) 

.Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Stochastic Model for Message Assembly Buffering 489 

(or, see [4], using G(s) and F ( s ) )  allows us to derive the mean and second and 

third central moments for So(t).  Using conventional notation, where t~', is the rth 

moment (about zero) and ~, is the rth central moment, these are: 

t*l' = M Q / ( 1  - p) ,  (20) 

#2 = M Q ( 1  + p - 0 ) / ( 1  - p)~, (21) 

tt3 = MQ[(2Q - 1 - p ) ( Q  - 1 - p) + 2p]/(1 - p)3. (22) 

Suppose, then, that  the concern is to choose ~ finite buffer pool size such that  for 

given parameters some performance criterion is to be met. An obvious approach 

is to consider the finite storage process to be well characterized by the unconstrained 

process modeled above. In this case, choosing probability of over,flow as a criterion, 

for the idealized process we simply find a storage level whose probability of being 

exceeded matches the overflow criterion. The shortcoming in this matching is 

inherent in the departure of the real, finite storage process from the unconstrained 

mathematical idealization at the storage boundary. In actual systems, all blocks 

assigned to an overflowing message are immediately released at the time of over- 

flow, causing congestion to fall below the critical point. An additional complica- 

tion is the twofold perturbation in the input process at the boundary due to effective 

idleness of the source of the violating message until EOM and the subsequent 

retransmission event. These effects, as well as second order performance criteria 

based on refined analysis of the unconstrained process as treated (asymptotically) 

in [1], are ignored here since they are not crucial to the comparison of buffering 

schemes. For the purposes of the present study, probability of overflow remains an 

apt first order performance criterion. 

Applying such a criterion, eqs. (16) and (19) can be used to find a level S, say, 

such that  Pr {Sic(t) > S} < e or, equivalently, Pr {SN(t) < S} >_ 1 - e, where e 

is the performance constraint. This yields the number of blocks required in the finite 

pool to satisfy requirements. For the IBB buffering scheme, the pool consists of 

S. B characters while, for AIBB, (S Jr M) • B characters comprise the pool. 

If buffer pool blocking did not incur a chaining penalty, and if system over- 

head for dynamic block allocation were not at issue, it is obivous that  a one-character 

block size should be chosen to minimize total storage requirements. The fact that  

block size, B = B + c, involves a chaining field which is not available for reception 

of message characters introduces an apparent tradeoff. With too small a block size, 

a large portion of the pool is devoted to space for chaining fields; while with too 

large a block size, the earlier binding of available storage lowers the efficiency of 

storage usage. The latter effect is particularly acute for the AIBB scheme, where an 

available buffer dangles unused an entire "block t ime" (b character times) prior to 

its actual use for incoming characters. Both schemes suffer from an approximate 

additional half block time early binding per allocated character (on the average) 

while the block is being filled. 

Finding a block size that  minimizes overall storage requirements is relatively 

simple. Holding all other parameters fixed, eqs. (16) and (19) are used with b 
n b  

varying. For each b, we can find the smallest n~ such that  S(nb) = ~ i = 0 h l  >_ 

1 - e, where e is the overflow constraint. Multiplying nb by B, or ( n b +  M) by 

B, gives the total buffer pool size in characters for the IBB and AIBB schemes, 

Journal of the Association for Computing Machinery, VoL 19, No. 3, July 1972 



490 G.D. SCHULTZ 

FIG. 2. 

70,000 

60,000 

(/1 

50,000 ,¢ 

U 

W 
_N 
(D 
j 40,000 
0 
0 
0. 
Q 

°w 30,000 
I.i,I 
Z 

20,000 

~ i ~ b o p l  PREDICTED FOR A I B B  

bopt PREDICTED FOR IBB 

J 
AIBBJ" 

.~..,fs././ M= I00 

o~ 

xl'... - I BB """ 

i i 

AIBB " ~ "  

AIBB M=IO , 

Q= .5 
r 

--= 600 

C=4 

E= .01 

I0,000 "%~==:=~_: 

I IBS 
I I i i l 

50 I00 150 200 

b 

Comparisons of required pool sizes and optimal block sizes for the IBB and AIBB 
binding strategies 

respectively. Such a procedure can be used to find the block size that  minimizes 

overall pool size for a given constraint. 

This method has been used to produce the curves shown in Figure 2. The interest- 

ing feature is the difference in sensitivity to block size of the two buffering schemes. 

For both schemes it is unwise to choose too small a block size; however, the AIBB 

method is also rather sensitive in the other direction, while the IBB curves ex- 

perience only mild rise beyond the minimum. This effect, as well as the differences 

in optimal block size, is readily explained by the differences in binding strategies of 

the two approaches. 

Modeling Storage Blocking 

A method of finding "optimal" block size that  avoids the computational disad- 

vantages of the technique described above is given by Gaver and Lewis [1]. We 

Journal of the Association for Computing Machinery, VoL 19, No. 3, July 1972 



8tochastic Model for Message Assembly Buffering 491 

generalize their model here to encompass the AIBB scheme as well as the IBB 

method, and we also extend it by temporarily relaxing the assumption that  all 

lines must be identical. 

Begin by considering an individual line i. Suppose on this line the average message 

length is Ii, while the average line loading, or fraction of time the line is active 

sending characters, is Q~. While the line is inactive, there are ~ storage spaces wasted 

for buffering, where/3 = 0 (IBB) or ~ = b + c (AIBB). While the line is active, 

the number of storage spaces wasted (assignedj but not holding characters) will 

vary according to the current age, or elapsed service time, of an observed inbound 

message. The relationship between average message length, l~, and the average ob- 

served age, denoted m; ,  of an inbound message (both in character times) is apparent 

using results (not dependent on the exponential distribution assumption) from 

[6] for "backward recurrence time," e.g. mi 7( i + z~/li), where ai 2 is the 

variance of message length for line i. In the specific case of the exponential distribu- 

tion, where the mean and standard deviation of message length are equal, m~ = l~. 

During activity, then, the expected number of wasted spaces is equal to the 

scheme-dependent wastage, defined by ~ above, plus the expected wasted spaces 

in the blocks previously filled and the block currently receiving characters. Includ- 

ing the previously filled blocks as well as the block currently receiving characters, 

there are an expected c. I-mi/b"l used for chaining, where [-xq denotes the smallest 

integer greater than or equal to x (the ceiling of x). For m~ large with respect to b, 

this is approximately cm~/b. By the same assumption, there are also on average 

approximately b/2 storage spaces vacant in the buffer block currently being filled. 

Hence the expected wasted space for line i is 

L,(b) = Q~ + -~- + 13 + (1 - Q,)I~. (23) 

Considering all lines, the expected total wasted space is 

M 

i (b)  = ~ L , ( b ) .  (24) 
i ~ 1  

Differentiation with respect to b reveals that  L is minimized at 

~c + [2c~m~Qi/ZQi] ~ (IBB) (25) 
Bopt tc + [2cZm~Q~/(ZQ~ + 2M)] ½ (AIBB) (26) 

where Bopt = C + bo,t • 

For homogeneous lines, i.e. mi = m (because Ii = l and zi = ~) and Qi = Q 

(i = 1, 2, . . .  , M),  we get 

+ [2cml' (roB) (27) 
Bop~ 

+ [2cmQ/(Q + 2)] t (AIBB). (28) 

The result in (27) agrees with that  given by Gaver and Lewis in [1] where a further 

refinement of their model, focussing on loss in the last utilized block and using 

the distribution function of message length, is posed to show the quality of the 

approximation leading to (27). The utility of the above model is illustrated in 

Figure 2, where the optimal block sizes predicted by (27) and (28) are indicated. 

It is interesting to compare the two buffering schemes with respect to CPU over- 

head for chaining operations. Let C i denote the expected chaining overhead (num- 

ber of chaining interrupts) per message for scheme i where the superscript i = 1 

Journal of the ~s,qociation for C o r n n u t l n c ,  M ~ n h ; ~ r ~  V ~ I  10 N.T~ ~ ?,.1..  10~0 



492 G.D. SCHULTZ 

(IBB) or 2 (AIBB).  For each scheme we assume that  the pool is optimally blocked, 
1 2 • 

with bopt and bopt denoting the optimal values found for IBB and AIBB, respectively. 

Then for l, m, c, and Q defined as above: 

C 2 _ [l/bo2pt] + 1 _ 1/[2cmQ/(Q + 2)] t + 1 

C 1 l/bolpt l/[2cm] i 

(2cm ' 
= (Q + ,  z2, (29) 

In the case of the exponential distribution, where l = m, 

C-- i ~ for l >> c. (30) 

Asymptot ic  Processes 

Computational considerations, as evidenced by the complexity of eq. (19), com- 

monly lead modelers to seek approximation by a more tractable asymptotic process. 

I t  is interesting to contrast the results obtainable from the exact forms derived 

earlier for the modeled process with results using asymptotic characterizations. Two 

such approaches, one conservative in approximating storage needs and one non- 

conservative, are as follows. 

A nonconservative approximation results from the assumption that  the M-line 

process can be characterized as asymptotically Gaussian in distribution. From our 

earlier characterization of the M-line process as a compound process, with total 

storage allocated being the random sum of mutually independent random variables, 

we note that,  for M sufficiently large, a central limit theorem effect applies [7]. Thus 

we can simplify computation by choosing a normal distribution, with mean and 

variance the same as for the actual distribution, to characterize the storage process. 

For  a given overflow constraint, e, this approach approximates the total buffer pool 

requirement, T, by (in storage blocks) 

T = /21 ! ~ ~ 1 - ,  ~2 ] (31) 

whe re / a '  and #2 are given by eqs. (20) and (21), and 51-~ is the deviation found 

from a standardized normal distribution table such that  1 - e of the distribution 

lies to its left. 

A conservative approximation, on the other hand, results from the assumption 

that  the number of active lines N ( t )  with distribution given by eq. (11) can be 

asymptotically characterized by the Poisson distribution. Thus, with c~ = M. Q, 

Pr  {Y(t) = n} ~ ~ .  e (32) 

This leads to characterizing the M-line process by the well-studied geometric 

Poisson or Pdlya-Aeppli distribution [5], 1 where eqs. (16) and (19) are replaced by 

h0 = e -G, ( 3 3 )  

p , > 1  

1 The first edition of reference [5] contains incorrect versions of eqs. (36)-(38). 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Stochastic Model for Message Assembly Buffering 493 

TABLE I 

Q M TN/TGB TPA/TGB 

• 1 4 .61 1 . 0 3  

• 1 10 .71  1 . 0 4  

.1 50 .87 1.03 
• 1 100 •91 1 . 0 2  

.5 4 .81 1.15 

.5 10 .88 1.12 

.5 50 .96 1.07 
• 5 100 .98  1 . 0 5  

Q = line loading; M = number of lines; T¢.) = computed 
total storage required using the normal (N), geometric bi- 
nomial (GB) or P61ya-Aeppli (PA) distribution• 

while equivalent forms for (20)-(22)  are 

! 
~1 = a / (1  -- p),  (35) 

~2 = c~(1 + p ) / ( 1  -- p)2, (36) 

~3 = c~(P 2 + 4p --b 1) / (1  -- p)3. (37) 

The existence of a recurrence relation due to Evans [8], 

i h i -  [ 2 ( i -  1 ) p +  a(1  - p)]h i - l+  ( i -  2)p2hi_2 = 0 ( i >  2), (38) 

permits ease of computation. 

Table I gives a flavor for the accuracy of the two approximations compared with 

exact results using the geometric binomial distribution. The figures were computed 

choosing average message length as 600, block size B = 79 (with c = 4), ~ = .01, 

and assuming the IBB scheme. The results in the table show that  for small Q the 

P61ya-Aeppli distribution gives a close approximation even for a small number of 
3/2 • 

lines. Using the conventional ~3/~2 index of skewness, the general behavior of the 

two approximations is easily predicted. 

In general, the normal approximation must be used with caution because it noff- 

conservatively estimates the "tai l"  of a distribution positively skewed like the 

geometric binomial. The P61ya-Aeppli distribution, on the other hand, being even 

more positively skewed, will yield correspondingly pessimistic results for the tail. 

It is interesting to note in passing that  Feller [7] characterizes storage facilities in 

general as reducing to compound Poisson processes. 

Conclusions 

Using a simple model of the message assembly process, a comparison has been made 

between two buffering schemes• The results of the analysis indicate that  for IBB 

the system designer has reasonable latitude in terms of block size, needing only to 

guard against too small a choice. For AIBB, the analysis indicates there is a greater 

sensitivity to larger choices of block size, as well as greater CPU overhead for 

chaining operations than that  for IBB when for each scheme block size is opti- 

mized to reduce total  storage requirements• 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly  1972 



494  G . D .  SCHULTZ 

A scheme intermediate in strategy with respect to IBB and AIBB would have 

obvious appeal for the overhead-encumbered systems. We propose the following. 

Scheme 3. To an inactive line assign a smaller "root" block of size d, say. Upon 

receipt of SOM, allocate a buffer block of (normal) size B from the public pool. 

Allocate each successive block from the pool when'all but d characters of the cur- 

rently used block have been filled. We refer to this scheme as rooted incremental 

block binding (RIBB). 

The choice of the size d would depend only on the tolerance demanded by worst- 

case overhead considerations, which by the earlier remarks regarding character 

arrival times common to communication lines, implies d ~< B. 

Analytical comparison of RIBB with IBB and AIBB is a simple matter and 

reveals RIBB to have the basic advantages of IBB. Notice that RIBB requires 

M. d more storage than IBB; hence storage usage curves for RIBB are those of IBB 

(cf. Figure 2) displaced upward everywhere, for b > d, by the amount M.d. 

Similarly, in eq. (23), ~ = d for RIBB, giving an optimal block size identical to 

that for IBB (because d is a constant). Thus, for optimal blocking, the CPU chaining 

overhead per message for RIBB is about the same as for IBB. An important feature 

of RIBB is that, like IBB, it is only mildly sensitive to larger choices of block size. 

This permits the system designer to make tradeoffs in favor of lower overall system 

overhead for message assembly without experiencing the heavier storage penalty 

of the AIBB method. 

While the assumption on message length distribution in the paper is somewhat 

restrictive, it is not uncommon for modelers to employ such an assumption. More- 

over, recent results reported by Fuchs and Jackson [9] show that the geometric 

distribution (the discrete distribution analog of the exponential distribution) can be 

reasonably fitted to observed statistics for short average message length systems. 

Similar measurements for longer average message length systems, characterized by 

CPU-to-CPU communication or "remote buffered" terminal usage, are not yet 

available in the literature. 

It is hoped that the closed form result obtained herein and the perspective on 

asymptotic processes will be of use for other models as well as for real world applica- 

tions where the assumptions used are descriptive. 

ACKNOWLEDGMENTS. Thanks and acknowledgment are warmly accorded to 

Professor V. L. Wallace of the University of North Carolina, for whose class an 

earlier version of this work was a course paper. Besides originally suggesting the 

fruitful approach of treating each line as an M/M/1 queue, Dr. Wallace gave 

encouragement and guidance on matters of notation, style, and perspective, 

and pointed out some errors in the description. 

The interest and discussion provided by Dr. J. Spragins of IBM and J. Whitlock 

Jr., of the University of North Carolina are also gratefully acknowledged. 

R E F E R E N C E S  

1. GAVER, D. P., JR., AND LEWIS, P. A . W .  Probabil i ty  models for buffer storage allocation 

problems. J. ACM 18, 2 (Apr. 1971), 186-198. 

2. IBM CORP. IBM System/360 operating system: Basic telecommunications access method. 

IBM Form GC30-2004. 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



Stochastic Model for Message Assembly Buffering 495 

3. SAATY, T . L .  Elements of Queueing Theory with Applications. McGraw-Hill ,  New York, 

1961. 

4. FELLER, W. An Introduction to Probability Theory and Its Applications, Vol. I. Wiley, 

New York, 1957. 

5. JOHNSON, i .  L., AND KOTZ, S. Distributions in Statistics: Discrete Distributions. Houghton 

Mifflin, Boston, 1969. 

6. Cox, D . R .  Renewal Theory. Methuen, London, 1962. 

7. F~LLEH, W. Ann Introduction to Probability Theory and Its Applications, Vol. II. Wiley, 

New York, 1966. 

8. EVANS, D. A. Experimental  evidence concerning contagious distributions in ecology. 

Biometrika 40 (1953), 186-211. 

9. FUCHS, E., AND JACKSON, P . n .  Est imates of distributions of random variables for certain 

computer communications traffic models. Comm. ACM 13, 12 (Dec. 1970), 752-757. 

RECEIVED APRIL 1971; REVISED SEPTEMBER 1971 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



An Approach for Finding C-Linear 

Complete Inference Systems 

JAMES R. SLAGLE 

National Institutes of Health, Department of Health, Education and Welfare, Bethesda, Maryland 

ABSTRACT. An inference system is C-linear complete if it is linear (ancestry filter) complete 

with top clause C, where C is in the original set of clauses and has suitable satisfiability prop- 

erties. C-linear completeness is important for two reasons: (1) set-of-support refutation com- 

pleteness is a corollary of C-linear refutation completeness, and previous computer experiments 

have indicated that the set-of-support strategy is efficient ; (2) the search for a C-linear deduc- 
tion can be naturally represented by a goal tree, and good techniques are known for searching 

such trees. A theorem is proved which provides a fairly general approach which, when given 

only a ground complete inference system, often yields a (nonground) C-linear complete system. 

This approach can be combined with a previously presented approach whose object is to re- 
place some of the axioms of a given theory by a refutation complete system. The object of the 

combined approach is to replace some of the axioms by a C-linear refutation complete system. 

The approach of this paper is applied to six combinations of four inference rules. The rules 

are ordinary resolution, paramodulation, and two rules which respectively replace the transi- 

t ivi ty  axiom for ~ and the set membership axiom. C-linear refutation complete systems are 

found from the six combinations. For the case of resolution alone, the stronger C-linear deduc- 

tion (consequence-finding) completeness is obtained. 

KEY WORDS AND PHRASES : theorem-proving, completeness theorems, inference systems, linear 

deduction, linear refutation, inference rules, resolution principle, paramodulation, transit ivity 

axiom, set membership axiom, artificial intelligence, deduction, refutation, mathematical 

logic, predicate calculus. 

CR CATEGORIES: 3.60, 3.64, 3.66, 5.21 

1. Introduction 

T h e  purposes  of p r o g r a m m i n g  a c o m p u t e r  to  p rove  theo rems  concern  ar t i f ic ial  

in te l l igence [9], deduc t ion ,  m a t h e m a t i c s ,  a n d  m a t h e m a t i c a l  logic. See [10] for a 

discussion.  The  reso lu t ion  pr inc ip le  [8] is an  inference rule used in a u t o m a t e d  

t heo rem-p rov ing .  Wos  et al.  [15, 16], Al len  and  L u c k h a m  [1], a n d  o thers  have  

wr i t t en  proof- f inding  p r o g r a m s  e m b o d y i n g  t h e  reso lu t ion  pr incip le .  A l though  qui te  

general ,  these  p r o g r a m s  have  been  so slow t h a t  t h e y  have  p r o v e d  on ly  a few theo-  

rems of a n y  in te res t .  

As  a s tep  in coping wi th  th is  p rob lem,  a p rev ious  p a p e r  [10] p re sen ted  a fa i r ly  

genera l  a p p r o a c h  which,  when g iven  the  ax ioms of some special  t heory ,  of ten yields  

comple te ,  va l id ,  efficient ( in t ime)  rules cor responding  to  some of the  given axioms.  

T h e  p resen t  p a p e r  t akes  a n o t h e r  s tep.  A t he o re m is p roved  which p rov ides  a fa i r ly  

Copyright © 1972, Association for Computing Machinery, Inc. 

General permission to republish, but not for profit, all or part  of this material is granted, 
provided that reference is made to this publication, to its date of issue, and to the fact that 

reprinting privileges were granted by permission of the Association for Computing Machinery. 

Author's address: Heuristics Laboratory, Division of Computer Research and Technology, 

National Institutes of Health, Bethesda, MD 20014. 

Journal of the Association for Computing Machinery. Vol. 19, No. 3, July 1972, pp. 496-516. 



An Approach for Finding C-Linear Complete Inference Systems 497 

general approach which, when given only a g round  complete inference system, 

often yields a (nonground)  C-linear complete system. The  object  of the approach  

obtained by  combining these two approaches  is to replace some of the axioms by  a 

C-linear refuta t ion complete system. I n  Sections 6 th rough  8 the approach  de- 

veloped in Sections 3 th rough  5 is applied to six combinat ions  of four inference 

rules. Previously,  only two of these systems (resolution [5, 6] and resolution with 

paramodulation [3]) had  been proved  C-linear complete.  

C-linear completeness is impor t an t  for two reasons. First,  the search for a C-linear 

deduction can be na tura l ly  represented by  a goal tree, and good techniques are 

known for searching such trees [9]. Second, set-of-support  refuta t ion completeness 

is a corollary of C-linear refuta t ion completeness, and previous compute r  experi- 

ments [16] have indicated tha t  the set-of-support  s t ra tegy  is efficient. We mean 

set-of-support refuta t ion completeness in the sense of Wos et al. [16] and not  in 

the stronger sense of Slagle [ l l] .  The  difference is discussed in [18]. Table  I is a key 

to symbols used in this paper.  

2. Clauses, Deductions, and Refutations 

We start with a vocabu la ry  of individual  variables, funct ion symbols,  and predicate  

symbols. Terms,  atoms,  and literals are in t roduced next. (See [8, 9] for a full de- 

TABLE I. KEg TO SYMBOLs 

Symbol Meaning(s) Symbol Meaning(s) Symbol Meaning(s) 

a atom, (inference) 
rule 

b branch, constant, 
rule 

c constant, rule 
d deduction 
e expression 
f function 
g function 
h index for integer 
i index for integer 
j index for integer 
k literal 

m nonnegative integer 
n nonnegative integer 
p positive integer 
q integer 
r (inference) rule 
s term 
t term 

u term 
v term 
w individual variable 
x individual variable 
y individual variable 
z individual variable 

A clause 
B clause 
C clause 
D clause 
E clause, there exists 
F function which maps 

a countable set of 
clauses into a 
countable set of 
clauses, literal 
form, clause form, 
functionally re- 
flexive axiom 

G function which 
maps a countable 
set of clauses into 
a countable set of 
clauses 

H functionally re- 
flexive axiom 

J inference system 
P predicate symbol 
Q countable set of 

clauses 
R set of rules 
S countable set of 

clauses 
T countable set of 

clauses 
W list 

u most general unifier 
0 substitution 
r substitution 

contained in or equal 
(for sets), less than 
or equal (for order- 
ing) 

C is a member of 
(~ is not a member of 
U union 

not 
iff if and only if 

yields 

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



498 JAMES R. SLAGLE 

seription.) A clause is a finite disjunction of zero or more literals. When convenient, 

we regard a clause as the set of its literals. In  particular,  the order and multiplicity 

of the liter~ls in a disjunction is irrelevant. To facilitate matters ,  we take similar 

liberties with the nomenclature later, but  what  is meant  will always be clear from 

the context. The (individual) variables in a clause are considered to be universally 

quantified. We shall regard a set of clauses as synonymous with a conjunction of 

all those clauses. By a substitution, we mean a substi tution of (not necessarily 

ground) terms for variables. A clause C1 subsumes a clause C~ if there is a substi- 

tution 0 such tha t  C10 ~ C2 • An mgu (most  general unifier) t~ for a set of expres- 

sions is a substi tution with the proper ty  tha t  for any two members  el and e2 of the 

set, el~ = e~,  and there is no more general substi tut ion with this property.  When 

C is obtained by applying the inference rule r to C~, • • • , C~, we shall say tha t  we 

have the inference C~, , .  • , Cp ~ C by r. We assume tha t  every premise C~, • • • , Cp 

is relevant in the inference. The symbol F- may  be read "yields." A deduction 

may  be viewed as consisting of zero or more inferences. 

Definitions. I f  C is a clause with literals k~ and ks which have an mgu #, then 

( C - k l ) t ~  is an immediate factor of C. The factors of C are given by the following: 

C is a factor of C, and an immediate  factor of a factor of C is a factor of C. Factoring 

is the rule by which C yields a factor. I t  is assumed tha t  factoring is a member  of 

every set of rules used in this paper.  

Definitions. ( E l ,  • • • , E~) is a list. I t  is called an ordered n-tuple when we want 

to emphasize the n. 

Definition. ( E l ,  . . "  , E,~)*(En+i , . . .  , En+,~) = ( E l ,  . . .  , En+~). 

Definitions. Let S be a set of clauses, and let R be a set of inference rules. A 

deduction by R from S of a clause D is a list (C1, . . .  , Cp, Cp+l, . . .  , Cp+.) of 

clauses such tha t  

(1) p > 0, 

(2) n >_ o, 

(3) { C 1 , . . . , C p }  ~ S, 

(4) for every j = 1, • • • , n, there is a set Sj of clauses which precede Cp+j in the 

list and there is a rule rj in R such tha t  S~ ~- Cp+~ by  r~, 

(5) the last clause in the list is D. 

Such a deduction may  be thought  of as a tree with D as a root (at  the bo t tom) .  

I f  C is at a node at the top of the tree and if b is a branch from tha t  node to the 

root where D is, then b is a CD-branch. The length of a branch is the number  of 

arcs (one less than  the number  of nodes) in it. A refutation is a deduction of the 

empty  (contradictory) clause, []. 

Definitions. The depth in a deduction d of a clause C is defined recursively as 

follows: 

(1) The depth in d of C justified by  being in the original set S is zero. 

(2) The depth in d of C justified by  C~, • • • , C~ t- C is one more than  the maxi- 

m u m  of the depths of C~, . . .  , Cp. 

The depth of a deduction is the depth of its last clause. 

3. Inference Systems, Linear  Deductions, and Linear  Liftability 

In  this and the next section we present three interesting theorems which are used 

to prove the theorem (Theorem 5 of Section 5) which is the basis of our approach. 



An Approach for Finding C-Linear Complete Inference Systems 499 

Definitian. An inference system is an ordered pair  (R, F)  where R is a set of 

(inference) rules, and F is a funct ion which maps  a countable  set of clauses into a 

countable set of clauses. 

We shall sometimes regard R as the inference sys tem (R, F )  where F maps  

each countable set into the e m p t y  set. For  an example of an inference system, let 

R be resolution with pa ramodula t ion  and, for all S, let F be the  {=  }-reflexive 

axioms for S, t ha t  is, Ix =x} and the  funct ional ly reflexive axioms for S [10]. 

Definition. Let  the inference sys tem J = (R, F ) .  A deduction (refutation) by J 
from S is a deduct ion  ( refuta t ion)  by  R from S U F(S). 

An instance of a literal form is a literal. We shall not  bo ther  to define literal form 

formally, bu t  shall content  ourselves with a few examples. Let  a be a variable 

standing for an a tom,  and let s and t be variables s tanding for terms.  The  literal 

form ~ a  s tands for any  negative literal. An  example of an instance of H a  

is uP(x, c, f(x) ). An instance of the literal form se t  is g(x) Cf(c). An instance of 

the literal form k[tl, • • • , tn] is a literal in which t l ,  • • • , tn occur in par t icular  dis- 

tinct locations. Similarly, we shall speak of clause forms. We assume tha t  no vari-  

able in one clause occurs in another .  We are now in a posit ion to  present  a very  

simple and uniform way  to  s tate  ord inary  resolution, paramodula t ion ,  and m a n y  

other inference rules. 

Definition. A g.u.r. (ground uni t  rule) F1,  . . -  , Fp b- Fp+l (where every  vari-  

able occurring in the clause form Fp+~ occurs in at  least one of the  literal forms 

El, . . .  , Fp) is a rule r such t h a t  C1, - - .  , C~ b- Cp+l by  r iff (C1, " "  , Cp,  Cp+l) 

is an instance of (F1,  . . .  , Fp ,  Fp+l) ( respect ively) ,  where Cp+l is a ground clause 

and where C1, . - -  , Cp are g round  unit  clauses. Note  t h a t  we have  t aken  the  

liberty of let t ing a uni t  clause be an  instance of a literal form. The  context  will 

make it clear whether  the  "y ie lds"  symbol  is pa r t  of an  inference or pa r t  of a 

g.u.r. An example of a g.u.r, is s~u, t~u  t- set. 

Definitions. T he  one-literal rule corresponding to  the  g.u.r. F1,  . . .  , Fp t-  F~+i 

is the following rule. F r o m  the  clauses k~ V D1,  • • • , kp V D p ,  where there  are 

most general unifiers #1, • • • , tip, # such t h a t  (k~/ul, • • • , k p ~ )  = (F~, • • • , F~)#,  

infer D ~ i  U . . .  [J Dpt~p U Fp+ltt. Fo r  i = 1, . . .  , p, k~ is the inference literal in 

k~ Y D i .  

In this paper,  the  use of V in k~ Y D~ implies t ha t  k~ is not  in D~. I f  k~ migh t  

have been in D~,  we would have  used tJ. A similar convent ion  is used t h roughou t  

this paper. 

Paramodula t ion [3, 10, 17, 18] is the one-literal rule corresponding to the  g.u.r. 

k[s], s=t ~- k[t]. Semant ic  resolution [11, 12] and,  in part icular ,  hyperresolut ion 

[7] are not  one-literal rules, since more than  one literal in the nucleus clause m a y  

be directly involved in an  inference. F r o m  now on, when we speak of a rule (except 

for factoring),  we shall mean  a one-literal rule corresponding to  some g.u.r. We 

shall use a g.u.r, and  its one-literal rule in terchangeably.  

Next we give two equivalent  definitions of a linear deduct ion.  The  second one 

uses a figure. 

Definition. A CoCn-linear deduction by R from S is a deduct ion W0*(C0)* . . .  * 

W~*(C,) by  R f rom S where 

(1) every member  of W0 is in S, 

(2) Co is in S, 

(3) for j = 1, . - .  , n, Wi  is a list of factors  of clauses which precede C~._1, and,  

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



5 0 0  JAMES.  R .  S L A G L E  

if the j th  inference not counting factoring is Sj ~- Ci by r j ,  every member  of Wj 

is in S j .  

Definitions. A CoCn-linear deduction by R from S is a deduction d by R from S 

where d has the form shown in Figure 1 and where for each j = 0, • • • , n -  1 and 

for each i = 1, . . .  , mi (where mi >_ 0), Cj.i is a factor of either some clause in S 

or some CA where h < j. The branch b consisting of Co, "-" , Cn is the main branch 

of d. The clauses C jl ,  • • • , C~mj are the side clauses to C~. If, for all j and i, the 

justification of Cil is tha t  it is a factor of some clause in S, the CoC~-linear deduc- 

tion by R from S is a CoC,~-input deduction by R from S. In  the following, when we 

say tha t  there is a CoCn-linear ( input)  deduction, we are implicitly saying, if they 

are not already given, that  there is a Co or Cn or both. 

Definition. A rule r is linearly liftable by J if, for any ground inference 

D i , ' "  ,Dp ~- D b y r a n d  for any c l a u s e s C 1 , . . . , C p w h i c h h a v e D ~ , . . . , D p  

as their respective ground instances and for all i = 1, . . .  , p, there is a clause C 

and a CiC-linear deduction by J from {C~, . . .  , Cp} such tha t  D is a ground in- 

stance of C. 

In  what follows, S is a countable set of clauses. Although seldom remarked upon, 

the s tatements  and sometimes the proofs of completeness theorems for automated 

theorem-proving can generally be extended from finite to countable sets [13]. The 

proofs often fail for uncountable sets. 

Definition. A function G tha t  maps countable sets of clauses into countable 

sets of clauses is additive if it maps unit sets into finite sets and, for all S, we have 

G(S) = Uc~G({C}) .  

Definition. F is closed for a set R* of inference rules if F is additive and, for every 

set S of clauses and for every clause D deducible by (R*, F) from S, we have that  

F({D}) _c F(S) .  

Roughly speaking, Theorem 1 states that ,  if F is closed, local linear liftability 

implies global linear liftability for linear deductions. In this paper  we shall often 

pass from an individual to a set without making a formal definition. Thus, when in 

Theorem 1 we say tha t  R* is linearly liftable by J ,  we mean tha t  every r in R* is 

linearly liftable by J .  

THEOREM 1. I f  S' is a set of ground instances of clauses in S, if R* is linearly 

liftable by J = (R*, F), if F is closed for R*, and if there is a C'D'-linear deduction 

by R* from S', then there is a CD-linear deduction by J from S where C' and D' are 

ground instances of C and D respectively. 

Co Col "" C o t  

• C1.1 

x 

x \  ~ n - - l , l  " " " ~n- - l ,m~_l  

C .  

FiG. 1. The form of a CoCn-linear deduction 

Journal  of  the  Assoc ia t ion  for C o m p u t i n g  Machinery .  Yol. 19. No. 3. Ju ly  1972 



An Approach for Finding C-Linear Complete Inference Systems 501 

PROOF. We shall give a procedure which transforms (lifts) the given ground 

[eduction into the required deduction. Each clause E ! whose justification is tha t  

t is in S t is first t ransformed into E in S where E ! is a ground instance of E: Next,  

he procedure works from top to bo t tom along the main branch of the given linear 

[eduction. For j = 0, . . .  , n - l ,  let the justification of C~+1 be the (ground) 

nference C j ,  C~1, " "  , C~m t-- C~+1 by  R*. Since the procedure works from the 

0p down, the set Tj  = {Cj,  C n ,  " ' "  , C~} of the corresponding clauses is known. 

linee F is closed for R*, we have tha t  F(T~) ~ F(S) .  Since R* is linearly liftable 

,y J, there is a CjCj+~-linear deduction by J from Ti where C~+~ is a ground in- 

tance of Cj+~. When the procedure reaches the bo t tom of the given deduction, 

he required linear deduction has been obtained. This completes the proof. 

Input Deductions and Rule Permutability 

:he following theorem could be extended to include semantic resolution (including 

yperresolution) (suitably restricted) in R, but  this would bring us too far away 

tom our main purpose. When no confusion should result, we shall often drop 

,races. Thus in the following theorem, (S--Co) U Co' means ( S - I C 0 } )  U {C0'}. 

'he theorem does not " l i f t ,"  as can be seen from the following example. In  the 

1put deduction P(f(b),  f( f(b) ) ), b=c t- P(f(b),  f( f(c) ) ) by paramodulat ion,  

)(x, f (x))  subsumes P(f(b),  f ( f (b))) ,  but  the corresponding input deduction 

:ould be longer. The extra inference would be a paramodulat ion from the func- 

[onally reflexive axiom, f(y)  = f ( y ) .  

THEOREM 2. I f  there is a CoCn-input deduction by R with main branch b from a 

~t S of ground clauses, then for any subclause Co' of Co there is a Co'Cn'-input de- 

uction by R with main branch b' from S' = (S-Co)  U Co' where Cn' subsumes 

!~ and where b' is no longer than b. 
PROOF. The proof is by induction on the length n of b. The case when n is zero 

trivial. Assume the theorem true for n = 0, • • • , q. Let b have length q + l ,  and 

~t the deduction consist of a CoCq-input deduction of length q from S followed by 

he inference Cq, Cql, " " ,  Cqm ~- Cq+l. By induction there is a Co'Cq'-input 

eduction from S' where the length of the main branch does not exceed q and 

:here Cq' subsumes Cq. There are three cases. If  Cq' does not contain the inference 

feral in Cq, then Cq' subsumes Cq+l and we are done. If  at least one of the Cq~ is 

~0 and, when replaced by  Co' , loses its inference literal, then there is a C0'Co'-input 

eduction from S' where the main branch has length zero and where Co' subsumes 

!q+~. In  the remaining case, none of the inference literals have been lost. Hence, 
! 

~e may infer a clause Cq+~ which subsumes Cq+~. The length of the main branch 

the resulting Co!C!q+~-input deduction from S'  does not exceed q +  1. 

Definitions. r~/~ is (unit) permutable with respect to R if, for every deduction 

onsisting of the inference C1, . "  , Cp ~ Cp+q by  rl over (followed by)  the in- 

~rence Cp+l, • • • , Cp+q ~ C by  r2 where C~, • • • , Cp+q-1 are ground (unit)  clauses, 

here is a Cp+~C'-input deduction by  R from {C~, . . .  , Cp+q_~} where C' subsumes 

!. We shall write u.p. for unit permutable.  

There is no need to prove a nonground version of the following theorem, since 

l is used in the proof of Lemma A, whose proof also uses (ground) Theorem 2. 

THEOREM 3. I f  r~ and r2 are in R and if rl/re is u.p. with respect to R, then rJr2 

s permutable with respect to R. 
PROOF. (The proof is similar to parts  of those for Lemmas 1 through 4 in 




