
1994 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

Processor Speed Control With Thermal Constraints
Almir Mutapcic, Stephen Boyd, Fellow, IEEE, Srinivasan Murali, David Atienza,

Giovanni De Micheli, Fellow, IEEE, and Rajesh Gupta, Fellow, IEEE

Abstract—We consider the problem of adjusting speeds of mul-
tiple computer processors, sharing the same thermal environment,
such as a chip or multichip package. We assume that the speed
of each processor (and associated variables such as power supply
voltage) can be controlled, and we model the dissipated power of
a processor as a positive and strictly increasing convex function of
the speed. We show that the problem of processor speed control
subject to thermal constraints for the environment is a convex
optimization problem. We present an efficient infeasible-start
primal-dual interior-point method for solving the problem. We
also present a distributed method, using dual decomposition. Both
of these approaches can be interpreted as nonlinear static control
laws, which adjust the processor speeds based on the measured
temperatures in the system. We give numerical examples to illus-
trate performance of the algorithms.

Index Terms—Convex optimization, distributed control,
primal-dual interior-point methods, temperature-aware processor
control.

I. INTRODUCTION

W
E consider a multiprocessor system, in which many
processors share a common thermal environment, e.g.,

many processor cores on a single chip, or processors on sepa-
rate chips in a multichip package. We assume that the speed of
each processor (along with associated variables such as power
supply voltage) can be varied over a range. The speed of each
processor affects its power dissipation, which in turn affects
the overall temperature distribution of the system. The goal is
to adjust the speeds (and associated variables) and to obtain the
maximum total processing capability while respecting limits

Manuscript received September 10, 2008. First published December 22,
2008; current version published September 04, 2009. This work was supported
in part by Focus Center Research Program Center for Circuit and System
Solutions Award 2003-CT-888, in part by Jet Propulsion Laboratory Award
I291856, in part by Precourt Institute on Energy Efficiency, in part by Army
Award W911NF-07-1-0029, in part by National Science Foundation Award
ECS-0423905 and Award 0529426, in part by Defense Advanced Research
Projects Agency Award N66001-06-C-2021, in part by National Aeronautics
and Space Administration under Award NNX07AEIIA, and in part by Air
Force Office of Scientific Research Award FA9550-06-1-0514 and Award
FA9550-06-1-0312. This paper was recommended by Associate Editor N. K.
Jha.

A. Mutapcic and S. Boyd are with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305 USA (e-mail: almirm@stanford.edu;
boyd@stanford.edu).

S. Murali and G. De Micheli are with the Integrated Systems Laboratory
(LSI), Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne,
Switzerland (e-mail: srinivasan.murali@epfl.ch; giovanni.demicheli@epfl.ch).

D. Atienza is with the Embedded Systems Laboratory (ESL), Ecole Poly-
technique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland,, and
also with the Department of Computer Architecture and Automation (DACYA),
Complutense, University of Madrid (UCM), 28015 Madrid, Spain (e-mail:
david.atienza@epfl.ch).

R. Gupta is with the Department of Computer Science and Engineering, Uni-
versity of California, San Diego, CA 92093 USA (e-mail: rgupta@ucsd.edu).

Digital Object Identifier 10.1109/TCSI.2008.2011589

on the temperature at various points in the system. A variation
on this problem is to choose the processor speeds to minimize
the maximum temperature in the system while meeting a given
required total processing capability.

In this paper, we show that the problem of static processor
speed control with thermal constraints can be posed as a convex
optimization problem. We then give two methods to solve the
problem. The first method is an efficient primal-dual interior-
point method, which is extremely fast and can solve a problem
instance with a hundred processors in tens of milliseconds and
can scale to much larger problems. This method can be warm-
started to track the temperature changes due to other thermal
sources beyond our control and therefore can be considered as a
complex nonlinear control law. The second method is based on
solving a dual problem of the (primal) processor speed problem.
The benefit of this approach is that it gives a distributed method,
where each processor adjusts its speed based only on temper-
ature measurements at nearby points. This method too can be
interpreted as a nonlinear feedback control law, which is in ad-
dition distributed.

Processor speed control with power and thermal constraints
has been a topic of extensive research in the last few years,
see, e.g., the surveys [1]–[3] and the references therein. Here,
we briefly discuss some of the results. Several authors have
applied formal control techniques to derive various feedback
control laws for the processor speeds [4]–[9]. In particular,
Donald and Martonosi propose an effective proportional-inte-
gral (PI) controller for thermal management in [3]. Skadron et

al. have implemented a thermal modeling tool for electronic
devices, called HotSpot; using it they provide and simulate a
temperature-aware processor system in [10]. (For more details
and references about thermal modeling, see the Appendix.) A
more general approach of optimization with thermal constraints
described as partial differential equations is given in [11]. Other
approaches for temperature control of systems and devices
can be implemented using fuzzy controllers [12] or thermal
compensation circuits [13], [14]. Pruhs and coauthors formu-
late the processor speed control problems with power, thermal,
and task precedence constraints as scheduling optimization
problems and present heuristic algorithms to solve them [15],
[16]. Recently, the authors in [17] use a variational approach
to derive an analytical optimal solution for a single processor
speed control with thermal constraints. In [18], energy aware
task scheduling in real-time systems is posed as a convex opti-
mization problem and solved using the ellipsoid method. For
some work on using convex optimization for multiprocessor
frequency assignment, and some experimental results, see [19]
and [20].

The main contributions of the present paper are as follows.
We describe the first highly efficient interior-point algorithm,
and the first distributed algorithm (with convergence proof), for

1549-8328/$26.00 © 2009 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

MUTAPCIC et al.: PROCESSOR SPEED CONTROL WITH THERMAL CONSTRAINTS 1995

solving the problem of processor speed control with thermal
constraints. In this paper, we emphasize algorithm and system
aspects of the problem; we do not devote much attention to phys-
ical and circuit-level modeling. In particular, the numerical ex-
amples given in this paper are chosen for simplicity and clarity
and are primarily meant to illustrate the algorithms and their
performance.

We outline the rest of the paper. In Section II, we describe our
power and thermal model and provide the problem formulation.
In Section III, we present a custom infeasible-start primal-dual
algorithm, together with its convergence properties, implemen-
tation details, and some algorithm enhancements. In Section IV,
we describe our dual decomposition method and prove conver-
gence and show how we can recover a primal solution (optimal
processor speeds) from the dual problem solution. In Sections V
and VI, we present some numerical results for the algorithms
and provide a comparison with a decentralized PI controller
method. In Section VII, we list some variations and extensions
of the problem and the proposed algorithms. We conclude the
paper in Section VIII.

II. PROBLEM FORMULATION

A. Power Dissipation Model

We consider processors, sharing the same environment,
where processor operates at speed . For ex-
ample, these could be processor cores collocated on the same
chip or processor chips in a multichip package. Each processor
can change its frequency and possibly also associated variables
such as supply voltage, in order to regulate its speed. The power
dissipation of processor is a function of its speed variable:

(1)

where is a strictly increasing convex
function. (The monotonicity assumption means the faster we
run the processor, the more power it consumes; the convexity
assumption means that the energy efficiency of the processor, in
Joules per operation, decreases with increasing speed.) We also
assume that the functions are differentiable and that

and are well defined. We use and
to denote vectors of processor powers and

speeds. For future reference we define

(2)

where denotes componentwise
application of functions to the vector .

One common power dissipation function is ,
where and . In particular, in the well-known
“cube” model (i.e.,),the power is proportional to the
cube of processor speed [15].

B. Thermal Model

We observe the temperature (in C) at points in the system
and denote the temperature vector as .
The ambient temperature is denoted . We assume
that , since we will always have at least one temperature
measurement at or near each processor.

In this paper, we focus on a steady-state thermal model, which
does not capture any thermal transients. This is justified when
power updates are carried out on a time scale exceeding ten
or so milliseconds, since the thermal time constants for single
chip and multichip packages are in the range of milliseconds
[21]. For faster power updates, a dynamic thermal model will
be needed. The methods in this paper can be extended to handle
such problems, but for simplicity, we focus here on the steady-
state model.

We use a linear model of the form

(3)

where denotes the vector of ones, and
. The matrix maps the vector of processor powers into a

temperature rise vector; is the contribution to the
temperature due to other (uncontrollable or fixed) heat sources.

For future use, we give some properties of the matrix . The
entry has units of C/W and gives the temperature rise at
the point due to 1 W of power dissipated by processor . The
matrix is elementwise nonnegative and, in theory,
is always dense, i.e., . However, it can be very well
approximated by a sparse matrix by truncating small entries to
zero. In this case, the nonzeros in the th column of corre-
spond to the points that are thermally affected by the th pro-
cessor. The matrix can be found by finite-element analysis
(see the Appendix) or by direct measurements in an existing
system, e.g., using the sensors described in [22].

C. Optimization Problem

The total processing capability (throughput) of the system is
given by the sum of the processor speeds

(4)

This is a simple and a common choice for the overall utility
derived by the system. Later, we will comment on the use of
more complex system utility functions. We should also mention
that processor speed itself need not give a good measure of pro-
cessing utility; a more sophisticated utility model would include
cache effects, threading, and other phenomena. For simplicity,
though, we will use a utility based only on processor speeds in
this paper.

The thermal constraint for the system is that no observed tem-
perature in the system can exceed a given maximum temperature

(5)

where denotes componentwise inequality. If there is a tem-
perature sensor at (or in practice, near) each heat source, then

will imply that temperatures everywhere are less or
equal to , by the maximum principle for the heat equation,
which states that the maximum temperature will always be lo-
cated at a point where there is a power (heat) source.

The processor speed control problem is to choose processor
speeds (between the given limits) so as to maximize the overall
system utility, subject to the thermal constraint

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

1996 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

(6)

The problem variables are ; the problem data are
, and

the functions are .
The problem (6) is a convex optimization problem since the

objective is a linear function, and all the constraint functions
are convex; see, e.g., [23, Ch. 4]. To see that the thermal con-
straint (5) is convex, i.e., the components of its left-hand side are
convex functions of , we note that the matrix is nonnegative,
so each entry of is a nonnegative-weighted linear combination
of convex functions, and therefore convex. The problem (6) is
readily solved using standard interior-point methods. Moreover,
by exploiting the particular structure of the problem, we will see
that interior-point methods can solve very large-scale instances
of the problem, very efficiently.

For future use, we define the temperature slack vector

as

(7)

The slack gives the slack or margin in the thermal constraint
. The thermal constraint (5) then means that every

element of is nonnegative, i.e., . Note that is readily
found from the temperature measurements. For future use, we
also define nonnegative slacks between the processor speeds and
the lower and the upper speed limits as

(8)

We finish this section with an important assumption. We as-
sume that problem (6) is strictly feasible, which means that
when all processors operate at minimum speed (i.e.,),
the thermal constraint (5) is satisfied strictly (i.e., with a positive
margin):

(9)

This assumption is just Slater’s condition for the problem (6)
and, among other things, guarantees that strong duality holds;
see [23, Sec. 5.2.3].

III. A PRIMAL-DUAL INTERIOR-POINT METHOD

In this section, we present an infeasible-start primal-dual
interior-point method [23, Sec. 11.7], [24], [25, Ch. 19] to
solve problem (6). The primal-dual interior-point method uses
Newton’s method, applied to a suitably modified form of the
optimality conditions, which we describe shortly.

We start with the optimality conditions for (6). Let
be the dual variables associated with the thermal constraint (5),
and and the dual variables associated
with the lower and the upper speed limits, respectively. The La-
grangian function [see, e.g., [23, Ch. 5] of problem (6) is

The Karush–Kuhn–Tucker (KKT) optimality conditions for the
problem are

A. Primal-Dual Search Direction

Next, we explicitly specify the slack variables in terms of the
speeds and modify the complementary slackness conditions to
obtain

where a centering parameter and a duality measure

are parameters that set the accuracy of the approxima-
tion. (These parameters define a point on the so-called central
path and describe the biased search directions in the primal-dual
methods [24, Ch. 1].) In our case, the duality measure is
defined by

which is the average value of the pairwise product between the
slack and the dual variables. The goal is to reduce this duality
measure as close to zero as possible.

The modified optimality conditions can be compactly written
as

where we require .
The primal-dual search direction is the Newton step for

solving the nonlinear equations .
If denotes the current point, the
Newton step is
characterized by the linear equations

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

MUTAPCIC et al.: PROCESSOR SPEED CONTROL WITH THERMAL CONSTRAINTS 1997

Therefore, we can find the Newton step from

which can be written out explicitly as shown at the bottom of
the page (10), where

B. Primal-Dual Algorithm

At each iteration of the algorithm, we solve the Newton
system (10) to find a new search direction and then choose
the step length, so the inequalities are
strictly satisfied and the duality measure , together with the
primal, dual, and centrality residuals, are properly reduced. It is
important for the progress of the algorithm to balance out these
various aims and as the primal and dual variables approach
optimality, we equally need to drive the residuals to zero.
Our infeasible primal-dual interior-point algorithm for solving
problem (6) loosely follows the IPF algorithm in [24, p. 166],
and it proceeds as follows:

given

Initialize: with ;

while

1) Compute search direction by solving (10).
2) Find a step length using the line search

method described next.
3) Update: .

The line search in step 2 is a standard backtracking line
search, based on the reduction of the duality measure
and norm of the residuals and modified to ensure that

. We denote the current iterate as
and , and the next iterate as

and , i.e.,

With the new dual and slack iterates and , we associate
the new duality measure

We first compute the largest positive step length, not ex-
ceeding one, that gives and , i.e.,

We start the backtracking with and multiply
by until we have

(11)

(12)

where and are the backtracking parameters,
and are residual values and the duality measure
given the initial starting points, respectively. The criteria in (11)
enforce a decrease in the dual and primal residuals, while the
criteria in (12) enforce reduction in the centrality residual and
mandatory decrease in the duality measure.

Common choices for the algorithm and backtracking param-
eters are , and . We take the
tolerance to be .

The most expensive part of computing the primal-dual search
direction is solving the linear system (10). Next, we present an
efficient method for solving these equations.

C. Solving the Newton System

The linear system (10) has linear equations in
variables, which can be solved directly for small and

(e.g., using the PLU factorization and the forward/backward
solve steps). However, more efficient solution methods can be
obtained by exploiting structure in the problem, which we do
next.

(10)

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

1998 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

We note that the matrix is highly structured since most
of the blocks are diagonal. We also note that will be a small or
a modest number, probably at most in thousands [26]. (Current
multiprocessor systems have small, no more than a hundred.
For example, Intel has recently demonstrated a prototype multi-
processor system with 80 processor cores [27]). Also recall that
we usually have , which will guide our choice of the
pivoting order during block elimination of the system (10).

We first eliminate the variables
, and to obtain

Next we eliminate the dual variables

to obtain the linear system

(13)

where and are given by

The matrix is a symmetric positive semidefinite
(PSD) matrix (since each of the summation terms is a sym-
metric PSD matrix) and thus the preferred method to solve (13)
is via Cholesky factorization [23, App. C3]. Since is modest
(say, not more than 1000 or so) and is generally dense (even
when is sparse), the cost of solving (13) is flops.
What dominates is forming the matrix , specifically forming
the subcomponent matrix

In the dense case, the cost of forming is flops. When
is sparse, we can exploit the sparsity to form faster [28].

In summary, the flop count per iteration is approximately
when is dense and can be as small as when is sparse.

D. Convergence of the Method

Convergence properties of the primal-dual interior-point
methods as applied to convex optimization problems have
been investigated in numerous works and summarized in [23,
Sec. 11.7], [24], [29]. Various theoretical results have been

shown, such as polynomial-time complexity results for the total
iteration count and the total computational cost, for similar
algorithms. In practice, primal-dual interior-point algorithms
typically converge to a very high accuracy in a few tens of
iterations (between 20 and 100) regardless of the problem
dimensions. In extensive computational experiments with the
primal-dual algorithm described earlier, we found no case
in which more than 36 iterations were required to achieve
accuracy of .

E. Warm-Starting

Suppose that we solve an instance of the processor speed con-
trol problem (6), and subsequently the problem data changes
slightly. For example, changes due to variations in the ex-
ternal (uncontrollable) power sources. In this case, we can reuse
our knowledge of the previous optimal solution to initialize (i.e.,
warm-start) the primal-dual method when solving the perturbed
problem [30], [31]. Extensive numerical tests show that with
warm-starting the number of iterations to achieve ac-
curacy drops down from around 23 to around 2–4 iterations.

We list some applications of the warm-start technique:
1) Efficient Generation of Optimal Tradeoff Curves: We can

efficiently solve the problem as we sweep one parameter
over some range, e.g., computing the optimal tradeoff be-
tween and .

2) Tracking Changes in and : We can recom-
pute the optimal processor speeds as the ambient tempera-
ture or temperature due to other heat sources, change. We
can interpret this tracking of optimal speeds as a compli-
cated nonlinear feedback law, where we reoptimize as the
problem parameters change.

3) Adjusting to Changes in : We can take into account
changes in , which can occur due to variation of the
thermal conductance as a function of temperature. To
model this effect, we can update based on the cur-
rent temperatures, reoptimize processor speeds (using
warm-start), then update again, and so on. In [19],
experimental results show that this iterative procedure
converges quickly (takes about 3–4 reoptimization steps).

IV. DUAL DISTRIBUTED METHOD

In the previous section, we interpreted a warm-starting
primal-dual interior-point method as a complex nonlinear con-
trol law for the processor speed control given the temperature
constraints, which can track changes in the problem data. In
this section, we use the method of dual decomposition applied
to problem (6) to derive a simpler nonlinear feedback law,
which is in addition distributed.

A. Dual Problem

We start by deriving a dual problem for (6). The partial La-
grangian function for maximizing is given by

(14)

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

MUTAPCIC et al.: PROCESSOR SPEED CONTROL WITH THERMAL CONSTRAINTS 1999

where is the th column of and are the dual
variables associated with the thermal constraint (5), as used in
Section III. The dual variable can be viewed as the price
of temperature violation at node . The dual function is

where

(For brevity, we omit the index from the components of vectors
and , and we follow this convention throughout this

section.) The functions are convex, since by definition they
are pointwise maximums of affine functions [23, Ch. 3]. Then
the dual function is also convex since it is a sum of convex
functions with linear terms.

The dual problem is

minimize

subject to (15)

where the optimization variables are the dual variables .
This is a convex optimization problem since it is a minimization
of a convex function over a convex set (positive orthant). Let
denote an optimal solution of the dual problem (15).

Before we proceed to give an algorithm for solving (15), we
will give some properties of the dual function and the func-
tions . We can readily find the value of the function , which
is attained at the optimal solution given by

(16)

The function value is

Because is the unique maximizer of in (14),
it follows that is equal to an optimal solution of the
primal problem (6) given that the strong duality holds, which is
true because of the assumption (9). (For more details, see [23,
Sec. 5.5.5]). In other words, if prices are optimal, they lead to
optimal speeds.

The function is differentiable with

The gradient of the dual function is then given by

which is precisely the temperature slack at each location, eval-
uated for speeds .

B. Distributed Algorithm

We describe a distributed algorithm for solving the dual
problem (15) based on the projected gradient method with
smoothing of the speeds. The given solution method is often
called the dual decomposition method [32]–[34], [35, ch. 6].

In the algorithm, we start with any positive and repeatedly
carry out the update

(17)

where is the step size, and denotes the entrywise
nonnegative part of the vector (i.e., projection onto the non-
negative orthant). The full algorithm proceeds as follows.

given

Initialize: with ; (e.g.,)

repeat

1) Compute processor speeds, given current prices, using
(16), and smooth out.

2) Measure (or compute) temp. slacks at the sensors.

3) Update temperature prices.

The parameter acts to smooth out the sequence of speeds
generated. When , the algorithm reduces to the classical
projected subgradient method for the dual problem. We will
show that for small enough and converge to and ,
respectively. Also note that the temperature slack can have
negative entries during the algorithm execution, but at the op-
timum will be nonnegative.

The given algorithm is completely distributed (decentral-
ized). Each processor updates its speed based on its previous
speed and price information obtained from the neighboring
sensors (i.e., sensors for which its power is affecting their tem-
perature), while each sensor updates its price based on its local
(measured or calculated) temperature slack. We can interpret
the algorithm as a simple nonlinear feedback control law.

The method described here is one of the simplest projected
subgradient dual algorithms. Far more sophisticated methods
are described and analyzed in, e.g., [34], [36], [37].

C. Convergence Proof

In this section, we give a convergence proof for the distributed
algorithm presented in Section IV-B, when the smoothing pa-
rameter is 1. (For an analysis of the algorithm for , see

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

2000 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

[38, Sec. 3.2], [39]). The algorithm is based on the projected
gradient method and a standard result is that the projected gra-
dient method converges for a small enough fixed stepsize ;
see, e.g., [35], [38], [40]. We give the convergence proof here for
completeness, since we can explicitly evaluate the constants and
estimate the rate of the convergence.

The distributed algorithm is given by the repeated updates of
the form

Let be an arbitrary optimal point. Then we have

which comes from the (optimality) condition that
supports at .

We consider the squared distance from the current point to
an optimal point, and we show that this distance decreases with
each iteration. We have

where the inequality comes from the fact that a projection onto
a convex set is contractive, i.e., after projection the distance be-
tween the projected points cannot increase.

Since is a convex function, we always have

(18)

To proceed with the proof, we need to derive a lower bound on
the inner product in (18) and an upper bound for the quantity

.
We obtain the lower bound

where is the smallest singular value of . Defining

(19)

we have

(20)

The upper bound is given by the Lipschitz condition on the
gradient ,

Defining

(21)

where is the largest singular value of , we
have

(22)

Combining the bounds (20) and (22) with the inequality men-
tioned earlier, we get

(23)

which proves the convergence of the algorithm given that the
stepsize satisfies

(24)

The convergence rate is linear with the rate determined by the
constant . This constant is minimized with
the stepsize choice and is equal to .
In practice

(25)

can be very small since it is related to the inverse of the condition
number of and the minimum and maximum slope of
the functions .

V. NUMERICAL EXAMPLE

In this section, we present some numerical results for a syn-
thetic problem instance in order to illustrate performance of the
proposed algorithms: the primal-dual algorithm in Section III
and the distributed algorithm in Section IV. The example is
meant only to illustrate our methods; in particular, it is not meant
to be a realistic model of any real multicore processor.

As our example, we consider a chip with a 10 10 array
of processors and a 55 75 grid of thermal sensors, which
could be actual hardware sensors or nodes in the finite-element
thermal model. Thus, our problem dimensions are and

. The locations of processors and sensors are shown
in Fig. 1. We take C (the ambient temperature

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

MUTAPCIC et al.: PROCESSOR SPEED CONTROL WITH THERMAL CONSTRAINTS 2001

Fig. 1. Locations of processors (squares) and thermal sensors (dots) on the
chip.

Fig. 2. Map of temperature rise due to other uncontrollable sources.

in a closed system environment), C, and we
use the synthetically generated temperature map in Fig. 2 as

. The matrix was generated using the finite-element
model, as described in the Appendix, with thermal conductance

between all the nodes, and thermal conductance
between all boundary nodes and the external environment. We
take and . We take the power functions
to all be the same, , following the well-known
cube speed-power model.

We implemented the algorithms in Matlab and performed nu-
merical simulations on a 2.8-GHz Athlon CPU, with 1 GB of
RAM, running Linux. We used the CVX package [41] to verify
correctness of the results obtained by our algorithms.

A. Comparison With Equal-Speed Scheme

We compare performance of the primal-dual algorithm
versus a simple suboptimal scheme for (6), in which we set
all processor speeds to be equal and increase the speed until
the thermal constraint becomes active. The equal-speed (left)
and optimal (right) temperature distributions are shown in
Fig. 3, together with the values of the system throughput. We
note that the optimal speed allocation achieves about 12%
throughput improvement while respecting the thermal con-
straint. A histogram of the optimal processor speeds is shown

Fig. 3. Top: Temperature distribution with all speeds equal. Bottom: Tempera-
ture distribution with optimal speed allocation.

in Fig. 4, together with the value of the speed chosen for all the
processors when the speeds are all equal.

Fig. 5 shows the optimal tradeoff curve between and the
maximum achievable throughput and , for the op-
timal primal-dual method and the equal-speed scheme, respec-
tively. We note that the optimal scheme considerably outper-
forms the equal-speed scheme for all values of .

B. Performance of the Primal-Dual Method

Fig. 6 shows the plot of the duality measure and the residual
versus the iteration number for a single run of the al-

gorithm. We see that the primal-dual algorithm converges within
35 iterations.

Our simple Matlab implementation requires 2.3 s to solve the
problem, using dense (with all 412 500 entries). We truncated
the entries in with values below 0.15 and then rescaled each
column to have the same column sum as the original matrix.
(This preserves the total temperature rise from each source.)
This results in a sparse matrix with 27680 entries, i.e., a spar-
sity around 6.7%. This results in less than 1.3% error in the com-
puted speeds. The time required to solve the problem, using the
sparse thermal model with , was around 0.7 s. We estimate that

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

2002 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

Fig. 4. Histogram of optimal processor speeds, together with the value of op-
timal equal speed .

Fig. 5. Optimal tradeoff curve for versus (solid curve) and tradeoff
curve between and suboptimal when all speeds are equal (dashed
curve).

Fig. 6. Convergence of the primal-dual method: duality measure and norm
of the residual .

a C implementation of our algorithm would execute in around
0.1 s for the same sparse instance.

Fig. 7. Histogram of the total number of iterations needed for warm-start ini-
tialization (left, darker) versus cold-start initialization (right, lighter).

C. Warm-Starting the Primal-Dual Method

In this section, we experimentally verify some benefits of
the warm-starting technique for the primal-dual method, as de-
scribed in Section III-E.

We first investigate the benefit of warm-starting when the
primal-dual method is used to track changes in the problem data.
We consider the following experiment. Suppose that the uncon-
trollable power sources and the ambient temperature vary %
around their nominal values. We randomly generate 100 in-
stances of these parameters, satisfying the aforementioned setup
and solve the perturbed problems, using both the warm-start and
cold-start techniques. In the warm-start technique, we initialize
each new problem with the solution of the previous problem,
while in the cold-start technique, we initialize the problem with
speeds just above the minimum speed of the processors, e.g.,

.
Fig. 7 shows the histograms of the number of iterations until

each problem is solved within accuracy of . We note
that the warm-start technique performs very well and solves
each instance of the problem within 1–7 iterations (typically
2 iterations), as compared to about 20–25 iterations needed by
the cold-start. These results confirm that the primal-dual method
coupled with warm-starting can act as an effective (though com-
plex) nonlinear control law, which tracks changes in the problem
parameters. Our Matlab implementation can execute the warm-
start optimization in around 100 ms; we estimate that a C im-
plementation would execute in around 10 ms.

As the second experiment, we investigate the use of warm-
starting to efficiently generate optimal tradeoff curves between
competing problem parameters. The optimal tradeoff between

and in Fig. 5 was generated using the warm-starting
technique. The first point was obtained using the cold-start and
then subsequently we used warm-starting to obtain remaining
100 points on the curve. The primal-dual method required 30
iterations to obtain the first point, after which it needed only
about 2–3 iterations for each new point. In our example, the
total tradeoff curve was generated using about 280 total itera-
tions, while the cold-start method required close to 2180 iter-
ations. Therefore, warm-starting can be used to efficiently per-
form tradeoff analysis and explore the problem design space.

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

MUTAPCIC et al.: PROCESSOR SPEED CONTROL WITH THERMAL CONSTRAINTS 2003

Fig. 8. Convergence of the control law with no smoothing ,
and starting from . Top: Primal objective value. Bottom: Maximum
temperature on the chip versus (dashed line).

D. Performance of the Distributed Algorithm

In this section, we investigate performance of the distributed
algorithm when used as a simple distributed control law, which
tracks changes in the problem parameters.

We test the algorithm, using the problem setup described at
the beginning of Section V. For our problem instance, we found
constants and , which imply that the
proposed algorithm will converge as long as

. However, extensive numerical experiments suggest that
the algorithm when used with smoothing actually converges for
larger values of , up to around 0.05.

We investigate how well the distributed algorithm tracks
changes in the ambient temperature and the power supplied by
uncontrollable external sources. We introduce the following
event: at iteration , we randomly perturb the ambient
temperature and the powers of the external sources by %
around their initial values. Figs. 8 and 9 show convergence of
the maximum temperature and the system throughput, for the
distributed method with no smoothing and one with
smoothing (where we set), respectively. We
compare the convergence curves versus the optimal values ob-
tained by the primal-dual method. We note that the distributed
algorithm with smoothing reacts very well to the changes,
much better than the standard method without smoothing
(which takes a longtime to converge to the optimal values). In
our computational experiments, we also found that the method
with smoothing was much more robust to more aggressive
stepsizes and initialization from different .

VI. CELL PROCESSOR CASE STUDY

As a more realistic example, we consider the first-genera-
tion cell processor [42], a nine core system jointly developed
by Sony, Toshiba, and International Business Machines Corpo-
ration. The processor features eight Synergistic Processing Ele-

ments (SPEs), to which the workloads are assigned by a Power

Processor Element (PPE). The fastest operation of each core
was clocked at 5.6 GHz with a 1.4 V supply at 56 C under lab-
oratory conditions; however, the cores are commercially usually
run at 3.2 GHz [42].

Fig. 9. Convergence of the control law with smoothing and
starting from . Top: Primal objective value. Bottom: Maximum tempera-
ture on the chip versus (dashed line).

Fig. 10. Cell processor floorplan and thermal contour map during a regular
loading of the processor.

In [43], the authors show that due to an aggressive low-cost
thermal design of the cell processor, the PPE exhibits a thermal
hot spot during standard operation when all the cores ran at 3.2
GHz. Using the setup in [43] and our simplified thermal model
(see the Appendix), we reproduce these results in Fig. 10, which
shows the processor floorplan overlaid with a thermal contour
map. (In this case, the maximum die temperature is 60 C, mea-
sured at the PPE.) As a solution to this uneven processor heating,
the processor implements a sophisticated thermal sensing and
system cooling techniques. Its ten local digital thermal sensors
provide early warnings of any temperature increase, and a linear
thermal sensor measures the die’s global temperature.

A. Speed Assignment for SPEs

We use the centralized method (see Section III) to find an op-
timal speed assignment for the processor, where we set

GHz and GHz based on the data-sheet and take
the power functions to follow the cube speed-power model, i.e.,

. We let C and C (a
safe operating temperature for the given speed limits).

We obtain the optimal speeds

and GHz. The total processing capability of the
processor in the (nominal) equal-speed case is

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

2004 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

Fig. 11. Thermal contour map given an optimal speed assignment for the
processor.

GHz, while the optimal result is
GHz, which is a 19% increase. The resulting temperature pro-
file is shown in Fig. 11. We note that the temperature is now
more evenly distributed across the system. Our methodology
can be used to quickly calculate optimal speed assignment poli-
cies given various operating conditions, thus exploring the per-
formance limits of the processor.

B. Dynamic Thermal Management

We investigate a simple dynamic thermal management of
the processor, using the dual distributed method described
in Section IV. We present some comparative results versus
a decentralized PI control [3], [5], in which individual PI
controllers govern each core, typically selecting the hottest
of the available temperature sensors as the input signal. This
decentralized control was shown to achieve large gains over
suboptimal schemes such as, e.g., the equal-speed scheme. In
particular, we use the decentralized PI controller proposed by
Donald and Martonosi in [3, Sec. 4.1], parametrized by the
proportional gain and the integral term tuned
to give the best performance for the following setup.

We let vary sinusoidally between 5 C and 35 C as

C

where is the iteration number. We use the dual distributed
control law with smoothing and PI controller
to compute processor speeds given the varying such that

C while maximizing the total processing
capability. We initialize both of the methods from

GHz. Since the PI controller does not handle speed constraints
directly, we modify the algorithm to clip the speeds if they go
past their limits.

For comparison purposes, we compute at each itera-
tion, using warm-started centralized method from Section III.
The performance results are shown in Fig. 12. We observe that
the dual-distributed method, after a brief settling time, perfectly
tracks the optimal speed assignments. The PI controller also per-
forms very well; however, at some instances it is up to 8% sub-
optimal to the distributed method (which obtains globally op-
timal performance). In contrast, the PI controller has a faster
settling time and it was tuned not to overshoot , while the
distributed method briefly overshoots by 1.6 C.

Figs. 13 and 14 show processor speed allocations versus the
iteration number for the dual distributed and PI control scheme,

Fig. 12. Dynamic thermal tracking using the dual-distributed method (solid
line) and the PI control law (dash-dotted line). Top: Obtained throughput versus
the optimal value (dashed line). Bottom: Maximum temperatures on the chip
versus (dashed line).

Fig. 13. Processor speeds versus iteration using the dual-distributed algorithm.

respectively. We note that the PI controller due to its decentral-
ized nature does not take into account temperature cross-cou-
pling between cores, while the dual-distributed method han-
dles this cross-coupling through the dual variables and at some
instances switches relative order of core speeds.

We make some final comments, concerning the comparison
of our proposed method and the PI controller in [3]. Our first
comment is that the methods are not as different as they appear,
since our dual-distributed method can be interpreted as a non-
linear feedback control law. Moreover, both methods have a low
computational complexity. One difference is that our method di-
rectly takes into account constraints, whereas [3] handles con-
straints indirectly. On the other hand, historically, decentral-
ized PI control has worked very well in a wide variety of real
applications.

VII. EXTENSIONS

We also list some variations and extensions of the processor
speed control problem (6) and the proposed algorithms. First,
we can easily substitute a nonlinear concave differentiable

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

MUTAPCIC et al.: PROCESSOR SPEED CONTROL WITH THERMAL CONSTRAINTS 2005

Fig. 14. Processor speeds versus iteration using the PI controller.

utility function for the total throughput used
in this paper. For example, we can use a logarithmic utility,

, as is commonly used in economics and
networking. This utility function will achieve proportional fair-
ness, at least when the lower and upper processor speed bounds
are not active. Both the primal-dual and dual decomposition
methods are readily modified to handle such problems.

A second extension is to the case in which active cooling is
used. Here, we have some additional actuators, also within our
control, that can pump heat out of the environment, up to some
given maximum rate. Active cooling can be modeled by adding
the term to the model for , where is an elementwise
nonnegative matrix and is the nonnegative vector of cooling
rates. If there is no cost to using cooling, we would obviously
operate the cooling at maximum rate. But we can subtract a cost
(say, in energy) of using the cooling or limit its total. The result
is still a convex optimization problem.

Third, we can turn the problem formulation around and min-
imize the maximum temperature subject to obtaining a speci-
fied level of throughput, or some other convex constraint on the
speed variable. This problem can be formulated as the following
optimization problem (in epigraph form):

minimize

subject to

(26)

where the variables are and . The problem data
are ,
the functions , and the speed constraint set , which
specifies the system workload. A simple example, in which a
given throughput is required, is .

This is a convex optimization problem, when the workload
constraint set is defined by a set of linear equalities and convex
inequalities. We can construct an infeasible-start primal-dual in-
terior-point method for (26) similar to the one proposed in this
paper. For more details on solving a particular instance of such
a problem using geometric programming, see [44].

A fourth extension is to the dynamic case. In this paper, we
have ignored the thermal dynamics, assuming that the speed
control takes place on a slower time scale than the thermal time
constant of the system. But the same basic ideas used here for
the static case can be used to handle the case where the system
thermal dynamics are taken into account.

VIII. CONCLUSION

In this paper, we have presented two algorithms for adjusting
speeds of multiple processors subject to common thermal con-
straints. The first algorithm is an efficient implementation of
an infeasible-start primal-dual interior-point method, while the
second one is a distributed method based on dual decomposi-
tion. Both algorithms can be interpreted as nonlinear control
laws that can track changes in the problem data and therefore
can be used for real-time processor speed control in modern
multiprocessor systems. Numerical simulations on the exam-
ples shown (and others) verify that both algorithms perform
well in practice. In the future, we will experimentally verify per-
formance of these algorithms, implemented on a real multipro-
cessor system.

Our final comments concern the question of how the con-
trol laws proposed in this paper might be used in a real mul-
ticore processor. First, it seems to us that unless is substan-
tial (say, tens), the benefits of sophisticated speed control would
not justify the cost. If the methods were deployed, we would
imagine using aggressively simplified thermal models (which
might, indeed, be formed or updated using system identification
[45] in actual operation), which would reduce the computational
burden associated with the control law. This would also bring
the update time down to below the millisecond range, allowing
fast speed updates if needed. We hope that future research will
address these issues.

APPENDIX

Thermal modeling of electronic (and other) devices is a well-
developed field. For example, finite-difference and finite-ele-
ment methods are discussed in [10], [11], [46], [47]; Green’s
function methods are considered in [48]. In this appendix, we
show how the simple thermal model (3) used in this paper can
be derived from the finite-difference method.

The steady-state temperature distribution over a region ,
with boundary isothermal at temperature , is governed by
the Poisson (steady-state heat) equation

for

(27)

Here, is the temperature, is the thermal conductivity,
and is the power density of the heat source(s), at location

. (Here we ignore nonlinear terms in the thermal model,
such as temperature dependence of thermal conductivity.)

We approximate the partial differential equation (27), using
finite-difference discretization with sample points, and a spe-
cial (ground) node, which represents the ambient environment,
assumed to be isothermal, with temperature . Heat flows
along edges of a directed graph (typically a mesh) with
nodes (the sample points and the ground node), and directed
edges between the points. We associate temperatures with the

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

2006 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

nodes, and heat flow with the edges, with positive heat flow
meaning heat flow in the direction of the edge, and negative heat
flow meaning heat flow in the opposite direction. The graph can
represent a 1-D, 2-D, or 3-D physical system and can include
nodes for the substrate, packaging and heat sinks, effects of the
outside environment, and so on.

We let denote the temperature at the th node. Then
the vector gives the (discrete) tem-
perature distribution of the system. We let

denote the powers injected into the nodes (due to the pro-
cessors and other power sources). We have

where gives the distribution of the processor powers
into the nodes, and is the power

injected into the nodes due to other sources. (gives the frac-
tion of the power dissipated by the processor into the node .)
Typically, and are sparse.

With each edge we associate a thermal conductance ,
which is (roughly) the average of over the region between
the nodes connected by the th edge. The thermal conductivity
vector is then .

Let denote the reduced node-incidence matrix for
the graph, defined as

edge goes to node

edge goes from node

otherwise

Each column of describes a directed edge. If the edge goes
between two sample nodes, the column has exactly two nonzero
entries, one and one . If the edge goes to or from the
ground node, the column has only one nonzero entry.

The discrete analog of the steady-state heat equation (27) is
then

(28)

where . The matrix is
a weighted Laplacian matrix and is positive definite when is
full rank (which occurs when the graph, including the ground
node, is connected). We solve (28) to obtain

which has the form (3), with

It is well known that has all positive entries (since
the graph is connected), so the matrix also has all nonnegative
entries.

REFERENCES

[1] S. Irani and K. Pruhs, “Algorithmic problems in power management,”
S1GACT News, vol. 36, no. 2, pp. 63–76, 2005.

[2] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature- aware computer systems: Opportunities
and challenges,” IEEE Micro., vol. 23, no. 6, pp. 52–61, Nov./Dec.
2003.

[3] J. Donald and M. Martonosi, “Techniques for multicore thermal man-
agement: Classification and new exploration,” in Proc. 33rd Int. Symp.

Compt. Archit. (ISCA 2006), 2006, pp. 78–88.
[4] D. Brooks and M. Martonosi, “Dynamic thermal management for high-

performance microprocessors,” in Proc. 7th Int. Symp. High-Perfor-

mance Comput. Archit. (HPCA), Jan. 2001, pp. 171–182.
[5] K. Skadron, T. Abdelzaher, and M. Stan, “Control-theoretic techniques

and thermal-RC modeling for accurate and localized dynamic thermal
management,” in Proc. 8th Int. Symp. High-Performance Comput. Ar-

chit. (HPCA), 2002, pp. 17–28.
[6] E. Rohou and M. Smith, “Dynamically managing processor tempera-

ture and power,” in Proc. 2nd Workshop Feedback-Directed Optimiza-

tion, Nov. 1999, pp. 66–73.
[7] J. Srinivasan and S. Adve, “Predictive dynamic thermal management

for multimedia applications,” in Proc. 17th Int. Conf. Supercomputing

(ICS 2003), Jun 2003, pp. 109–120.
[8] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “A framework for

dynamic energy efficiency and temperature management,” in Proc.

33rd ACM/IEEE Int. Symp. Microarchitecture (MICRO 2000), 2000,
pp. 202–213.

[9] W. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. Irwin,
“Thermal-aware allocation and scheduling for systems-on-chip,” in
Proc. Des. Autom. Test Eur. (DATE 2005), 2005, pp. 898–899.

[10] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp.
94–125, 2004.

[11] K. Ghobadi, “A heat-transfer optimization problem,” Master’s Thesis,
McMaster University, Hamilton, ON, Aug. 2006.

[12] C.-F. Juang and C.-H. Hsu, “Temperature control by chip-imple-
mented adaptive recurrent fuzzy controller designed by evolutionary
algorithm,” IEEE Trans. Circuits Syst I, Reg. Papers, vol. 52, no. 11,
pp. 2376–2384, Nov. 2005.

[13] W. Daasch, C. Lim, and G. Cai, “Design of VLSI CMOS circuits under
thermal constraint,” IEEE Trans. Circuits Syst II, Exp. Briefs, vol. 49,
no. 8, pp. 589–593, Aug. 2002.

[14] D. Ma and C. Zhang, “Thermal compensation method for CMOS
digital integrated circuits using temperature-adaptive DC-DC con-
verter,” IEEE Trans. Circuits Syst II, Exp. Briefs, vol. 53, no. 11, pp.
1284–1288, Nov. 2006.

[15] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to
manage energy and temperature,” in Proc. 45th IEEE Symp. Found.

Comput. Sci. (FOCS 2004), Washington, DC, 2004, pp. 520–529.
[16] K. Pruhs, R. van Stee, and P. Uthaisombut, “Speed scaling of tasks with

precedence constraints,” in Proc. 3rd Workshop Approximation Online

Algorithms, LNCS, 2005.
[17] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang, “An optimal an-

alytical solution for processor speed control with thermal constraints,”
in Proc. 2006 Int. Symp. Low Power Electron. Des., 2006, pp. 292–297.

[18] R. Jejurikar and R. Gupta, “Energy aware task scheduling with
task synchronization for embedded real time systems,” IEEE Trans.

Comput.-Aided Design of Integr. Circuits Syst., vol. 25, no. 6, pp.
1024–1037, Jun. 2006.

[19] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. De
Micheli, “Temperature-aware processor frequency assignment for
MP-SoCs using convex optimization,” in Proc. CODES/ISSS 2007,
Oct. 2007, pp. 111–116.

[20] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and
G. De Micheli, “Temperature control of high-performance multi-core
platforms using convex optimization,” in Proc. DATE 2008, Mar. 2008,
pp. 110–115.

[21] R. Darveaux, I. Turlik, L.-T. Hwang, and A. Reisman, “Thermal stress
analysis of a multichip package design,” IEEE Trans. Compon., Hy-

brids, Manuf. Technol., vol. 12, no. 4, pp. 663–672, Dec. 1989.
[22] P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng, and C.-Y. Chu, “A

fully digital time-domain smart temperature sensor realized with 140
FPGA logic elements,” IEEE Trans. Circuits Syst I: Reg. Papers, vol.
54, no. 12, pp. 2661–2668, Dec. 2007.

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

MUTAPCIC et al.: PROCESSOR SPEED CONTROL WITH THERMAL CONSTRAINTS 2007

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge:
Cambridge University Press, 2004.

[24] S. Wright, Primal-Dual Interior-Point Methods. Philadelphia:
SIAM, 1997.

[25] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. New
York: Springer-Verlag, 2006.

[26] S. Borkar, “Thousand core chips-a technology perspective,” in Proc.

Des. Autom. Conf. DAC 2007, Jun. 2007, pp. 746–749.
[27] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,

D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y.
Hoskote, and N. Borkar, “An 80-Tile 1.28 TFLOPS network-on-chip
in 65 nm CMOS,” in Proc. Int. Solid-State Circuits Conference (ISSCC

2007), , pp. 98–589.
[28] T. Davis, Direct Methods for Sparse Linear Systems. Philadelphia:

SIAM, 2006.
[29] Y. Ye, Interior Point Algorithms: Theory and Analysis. New York:

John Wiley, 1997.
[30] E. Yildirim and S. Wright, “Warm-start strategies in interior-point

methods for linear programming,” SIAM J.Optim., vol. 12, no. 3, pp.
782–810, 2002.

[31] J. Gondzio and A. Grothey, “Reoptimization with the primal-dual inte-
rior point method,” SIAM J. Optim., vol. 13, no. 3, pp. 842–864, 2003.

[32] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear pro-
grams,” Oper. Res., vol. 8, pp. 101–111, 1960.

[33] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.
New York: Springer-Verlag, 1985.

[34] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” MIT Press, Cambridge, MA,
LIDS Tech. Rep. 2753, Mar. 2007.

[35] D. Bertsekas, Nonlinear Programming, 2nd ed. Belmont: Athena
Scientific, 1999.

[36] Y. Nesterov, “Primal-dual subgradient methods for convex prob-
lems,” CORE Discussion Paper 2005/67, 2005 [Online]. Available:
www.core.ucl.ac.be/services/psfiles/dp05/dp2005_67.pdf

[37] A. Nedic, “Subgradient methods for convex minimization,” Ph.D. dis-
sertaion, MIT, Cambridge, 2002.

[38] B. Polyak, “Introduction to optimization,” Optimization Software, Inc.,
New York, 1987.

[39] H. Sherali and G. Choi, “Recovery of primal solutions when using sub-
gradient optimization methods to solve Lagrangian duals of linear pro-
grams,” Oper. Res. Lett., vol. 19, pp. 105–113, 1996.

[40] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course, ser. Applied Optimization. Boston, MA: Kluwer, 2003, vol.
87.

[41] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab Software for Disciplined
Convex Programming, Version 1.1,” Aug. 2007 [Online]. Available:
www.stanford.edu/~boyd/cvx/

[42] O. Takahashi, S. Cottier, S. Dhong, B. Flachs, and J. Silberman,
“Power-conscious design of the Cell processor’s synergistic processor
element,” IEEE Micro., vol. 25, no. 5, pp. 10–18, Sept./Oct. 2005.

[43] D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns, J.
Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy,
D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel,
T. Yamazaki, and K. Yazawa, “The design and implementation of a
first-generation cell processor,” in Proc. IEEE Int. Solid-State Circuits

Conf., Feb. 2005, pp. 184–185.
[44] A. Mutapcic, S. Murali, S. Boyd, R. Gupta, D. Atienza, and G.

De Micheli, “Optimized slowdown in real-time task systems via
geometric programming,” Jul. 2007 [Online]. Available: www.stan-
ford.edu/ boyd/papers/gp_task_slowdown.html

[45] L. Ljung, System Identification: A Theory for the User, 2nd ed. En-
glewood Cliffs, NJ: Prentice Hall, 1998.

[46] C.-H. Tsai and S.-M. Kang, “Cell-level placement for improving sub-
strate thermal distribution,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 19, no. 2, pp. 253–266, Feb. 2000.
[47] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard

cells in 3D ICs using a force directed approach,” in Proc. Int. Conf.

Comput.-Aided Design (ICCAD 2003), Nov. 2003, pp. 86–89.
[48] Y. Zhan and S. Sapatnekar, “High-efficiency Green function-based

thermal simulation algorithms,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 26, no. 9, pp. 1661–1675, Sep. 2007.

[49] O. Semenov, A. Vassighi, and M. Sachdev, “Impact of self-heating ef-
fect on long-term reliability and performance degradation in CMOS
circuits,” IEEE Trans. Devices Mater., vol. 6, no. 1, pp. 17–27, Mar.
2006.

[50] A. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Static and dynamic
temperature-aware scheduling for multiprocessor SoCs,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 9, pp. 1127–1140,
Sep. 2008.

[51] T. Rosing, K. Mihic, and G. De Micheli, “Power and reliability man-
agement of SoCs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 15, no. 4, pp. 391–403, Apr. 2007.

Almir Mutapcic received the B.S. degree in
electrical engineering from the University of Mis-
souri-Rolla, in 1999, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, in 2002 and 2008, respectively.

His current research interests include convex opti-
mization and its applications in distributed and robust
optimization.

Stephen P. Boyd (S’82–M’85–SM’97–F’99)
received the A.B. degree (summa cum laude) in
mathematics from Harvard University, Cambridge,
MA, in 1980, and the Ph.D. degree in electrical en-
gineering and computer science from the University
of California, Berkeley, in 1985.

He is currently the Samsung Professor of En-
gineering, in the Information Systems Laboratory,
Electrical Engineering Department, Stanford Uni-
versity, Stanford, CA. He is the author or a coauthor
of Linear Controller Design—Limits of Performance

(Prentice-Hall, 1991), Linear Matrix Inequalities in System and Control Theory

(SIAM, 1994), and Convex Optimization (Cambridge University Press, 2004).
His current research interests include convex programming applications in
control, signal processing, and circuit design.

Prof. Boyd is a Distinguished Lecturer of the IEEE Control Systems Society.
He received an Office of Naval Research Young Investigator Award, a Presi-
dential Young Investigator Award, and the 1992 American Automatic Control
Council (AACC) Donald P. Eckman Award. He has also received the Perrin
Award for Outstanding Undergraduate Teaching in the School of Engineering
and an ASSU Graduate Teaching Award. In 2003, he received the AACC
Ragazzini Education Award.

Srinivasan Murali received the M.S. and Ph.D. de-
grees in electrical engineering from Stanford Univer-
sity, Stanford, CA, in 2007.

He is a research scientist at EPFL, Lausanne,
Switzerland, and CTO of iNoCs, Lausanne, Switzer-
land. His research interests include design of
Networks on Chips, thermal modeling and reliability
of multi-core systems.

Dr. Murali has been actively involved in several
conferences (such as DATE, CODES-ISSS, NoC
symposium, VLSI-SoC) as program committee

member/session chair and is a reviewer for many leading conferences and
journals. He received a best paper award in the DATE 2005 conference and
the EDAA outstanding dissertation award in 2007 for his work on interconnect
architecture design. He has over 30 publications in leading conferences and
journals.

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

2008 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

David Atienza received the M.Sc. degree from
Complutense University of Madrid (UCM), Madrid,
Spain, in 2001, and the Ph.D. degree from the
Inter-University Micro-Electronics Center (IMEC),
Leuven, Belgium, in 2005, both in computer science.

He is currently a Professor and the Director of the
Embedded Systems Laboratory, Ecole Polytechnique
Federale de Lausanne, Lausanne, Switzerland. He is
also an Adjunct Professor in the Computer Architec-
ture and Automation Department, UCM. His current
research interests include design methodologies

high-performance embedded systems and systems-on-chip (SoC), including
new thermal management techniques for multiprocessor SoCs, dynamic
memory management and memory hierarchy optimizations for embedded
systems, novel architectures for logic and memories in forthcoming nanoscale
electronics, networks-on-chip interconnection design, and low-power design of
embedded systems. He is the author or coauthor of more than 100 publications
in prestigious journals and international conferences and an Associate Editor
of Elsevier’s Integration: The VLSI Journal.

Prof. Atienza has been an elected member of the Executive Committee of
the IEEE Council of Electronic Design Automation since 2008. He is an Asso-
ciate Editor in the area of system-level design for the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

Giovanni De Micheli (S’79–M’79–SM’89–F’94) is
currently a Professor and the Director of the Institute
of Electrical Engineering, and the Integrated Systems
Centre, Ecole Polytechnique Federale (EPF), Lau-
sanne, Switzerland. He was a Professor of electrical
engineering at Stanford University. He is the author
of Synthesis and Optimization of Digital Circuits

(McGraw-Hill, 1994) and a coauthor and/or coeditor
of six other books and more than 300 technical ar-
ticles. His current research interests include several
aspects of design technologies for integrated circuits

and systems, such as synthesis, hardware/software codesign and low-power
design, as well as systems on heterogeneous platforms, including electrical,
micromechanical, and biological components.

Prof. De Micheli is a Fellow of the Association for the Computing Ma-
chinery. He has been serving the IEEE in several capacities, namely: the
Division 1 Director (2008–2009), a Cofounder and the President-Elect of the
IEEE Council on Electronic Design Automation (2005–2007), the President
of the IEEE Circuits and Systems (CAS) Society (2003), the Editor in Chief
of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS (1987–2001). He was the Program Chair of the
pHealth and VLSI System-on-Chip conferences in 2006. He was the Program
and the General Chair of the Design Automation Conference in 1996–1997
and 2000, respectively. He has also chaired the Scientific Committee of the
Canadian Society of Endocrinology and Metabolism, Neuchatel, Switzerland.
He was a recipient of the 2003 IEEE Emanuel Piore Award for contributions to
computer-aided synthesis of digital systems.

Rajesh Gupta (S’83–M’85–SM’97–F’04) received
the B.Tech. degree in electrical engineering from
the Indian Institute of Technology, Kanpur, India, in
1984, the M.S. degree in electrical engineering and
computer science from the University of California
(UC), Berkeley, in 1986, and the Ph.D. degree in
electrical engineering from Stanford University,
Stanford, CA, in 1994.

He was a Circuit Designer at Intel Corpora-
tion, Santa Clara, CA, where he was a member
of three successful processor design teams. He is

also a member the Computer Science faculty at the University of Illinois,
Urbana-Champaign, and the UC Irvine. He is currently a Professor and a
Holder of the QUALCOMM Endowed Chair in Embedded Microsystems, in
the Department of Computer Science and Engineering, UC, San Diego. His
current research interests include energy efficient and mobile computing issues
in embedded systems. He is author or coauthor of more than 150 articles on
various aspects of embedded systems and design automation. He is the holder
of four patents on phase-locked loop (PLL) design, data-path synthesis, and
system-on-chip modeling.

Prof. Gupta is a Distinguished Lecturer for the Association for Computing
Machinery’s Special Interest Group on Design Automation (ACM/SIGDA) and
the IEEE Circuits and Systems (CAS) Society. He was the Founding Chair
of the ACM/IEEE Conference on Models and Methods in Codesign (MEM-
OCODE) and the Founding Cochair of the ACM/IEEE/International Federation
of Information Processing (IFIP) Conference on Codesign and System Synthesis
(CODES ISSS). He is the Editor-in-Chief of the IEEE Design and Test of Com-

puters and is a member of the Editorial Boards of the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS and
the IEEE TRANSACTIONS ON MOBILE COMPUTING. He is the Vice President of
Publications of the IEEE Council on Electronic Design Automation (CEDA).
He was a recipient of the Chancellor’s Fellow at the UC Irvine, the UCI Chan-
cellor’s Award for excellence in undergraduate research, the National Science
Foundation CAREER Award, two Departmental Achievement Awards, and a
Components Research Team Award at Intel.

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.

