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1 Introduction

Procurement rarely involves considerations based solely on price. Instead, concerns about the quality

of the good or service provided are often important to the final decision. In this paper, we consider

how a buyer who cares about quality should structure his purchasing process when suppliers compete

for a single procurement contract. We ask two questions: First, what does the optimal procurement

mechanism look like? And, second, how well do simpler, empirically relevant, mechanisms perform

relative to a benchmark constructed using the optimal and efficient mechanisms?

When suppliers’ private information about their costs can be captured by a one-dimensional para-

meter, the answer to the first question is well known (Laffont and Tirole, 1987, and Che, 1993).

In addition, Che (1993) provides a partial answer to the second question by showing that a scoring

auction implements the optimal mechanism. In a scoring auction, the buyer announces the way he

will rank different offers, that is, the scoring rule; suppliers submit an offer on all dimensions of the

product, and the contract is awarded to the supplier who submitted the offer with the highest score

according to the scoring rule. This paper extends the analysis of the first question to environments

with multidimensional private information and answers the second question more exhaustively and for

several alternative procedures.

Conducting procurement when factors in addition to price matter involves moving toward what prac-

titioners often refer to as ‘complex procurement.’ Large-scale defense acquisitions are an extreme

example of complex procurement − the product involves many dimensions, with varying degrees of
contractibility, and renegotiation of the contract is expected at many stages. At the other extreme is

the acquisition of basic stationary by a corporation − a pencil is a simple thing and price is the only
factor that matters for the buyer. The mechanisms used in practice to conduct complex procurement

leverage, in varying degrees, the potential competition among suppliers and the scope for flexibility

in product design. When evaluating the performance of simple mechanisms, we consider two popular

examples: a scoring auction and bargaining. We define bargaining as occurring when the buyer ne-

gotiates with potential suppliers one at a time (that is, negotiations with a supplier must irrevocably

break down before another supplier is approached), whereas in an auction the buyer can play suppliers

off against one another. Bargaining tends to allow more flexibility in terms of product design than a

scoring auction, at the cost of lower competition. Our results, in answer to the second question posed

at the start of this paper, suggest that scoring auctions do better than bargaining and that they often

yield a performance close to that of the optimal mechanism. That is, leveraging competition among

suppliers leads to prices that more than compensate for the lower flexibility in product design.

The two distinguishing features of our model are that suppliers’ private information about their cost

structure is multidimensional and that quality is contractible and endogenously determined as part of

the procurement process. The U.S. State Highway Authorities’ procurement for highway repair jobs

illustrates these aspects of the contracting environment.1 For high-density traffic areas, these agencies
1See, for instance, Arizona Department of Transport (2002), Bajari and Lewis (2009) and Herbsman et al. (1995).
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care about the cost of the job and the time required for completion. A contractor may be able to

speed up the job by hiring extra labor, by using some equipment more intensively, or by shifting

some resources from other jobs. Hence, suppliers’ quality (here, the time they need to complete the

job) is not fixed, but endogenous, with increased quality incurring a higher cost. Moreover, this

marginal cost of quality is likely to vary across potential contractors in a way that is not observable to

their competitors. Therefore, it represents one dimension of private information. However, there are

other sources of unobserved cost heterogeneity. These include the contractors’ material costs, existing

contractual obligations and organizational structure, which combine to determine the fixed cost of

undertaking a job at any quality level. Thus, private information is likely to be better captured by a

multidimensional parameter.

We first derive the optimal procurement mechanism in a model where each potential supplier has

private information about two components of her cost structure: her fixed cost and her marginal cost

of providing quality. Costs on each dimension can be high or low, and we allow for any pattern

of correlation between a supplier’s fixed cost and her marginal cost. Across suppliers, costs are

independently distributed. The buyer’s objective is to maximize his expected utility subject to the

suppliers’ participation and incentive compatibility constraints.

The optimal procurement mechanism differs significantly from its counterpart in one-dimensional

environments. It depends finely on the exact parameters of the problem, including the number of

suppliers. Moreover, unlike its one-dimensional counterpart, it is not amenable to implementation by a

simple-looking auction format. The source of these discrepancies can be traced back to the well-known

endogeneity of the direction in which incentive compatibility constraints bind in multidimensional

screening problems.

The fragility of the intuitions gained from one-dimensional models is endemic in research on multidi-

mensional screening and it can leave the economist interested in the application of mechanism design

on unsure footing. In this paper, we take a new approach, using the characterization of the optimal

mechanism to construct a meaningful benchmark to investigate the performance of practical and sim-

pler buying procedures. In doing so, we suggest one way in which results from the multidimensional

screening literature can be used to constructively advance our understanding of mechanisms used in

practice.

This benchmark role plays out at two levels. At the theoretical level, we can compare the allocation

(probabilities of getting the contract and qualities delivered) of the optimal mechanism and that of

any other mechanism of interest to understand their advantages and disadvantages.

At a numerical level, the characterization of the optimal mechanism contributes to solving what is

essentially a free-parameter problem when interpreting numerical comparisons. At first glance, there

are at least two candidates for benchmarking numerical simulations of the performance of simple

mechanisms: the optimal mechanism and the efficient mechanism. Unfortunately, neither of these

candidate benchmarks is useful on its own. To illustrate, suppose that, for some set of parameters, the
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optimal mechanism generates an expected utility for the buyer of 2, while the mechanism of interest

returns 1. This looks like a 50% decrease in revenue. However, by adding 9 to the buyer’s utility

function, we could well generate expected utilities of 11 and 10, respectively. Now the decrease looks

like only 9%. We create a benchmark that is immune to the distortions in the previous example by

looking at the difference between the expected utility generated from the optimal mechanism and the

expected utility from the efficient (buyer-optimal) auction. This difference is the surplus available

to a strategic buyer. We use this measure of ‘strategic surplus’ as our benchmark against which to

evaluate second-best mechanisms. Suppose that the efficient mechanism returns an expected utility

of 0 (or 9). This allows us to conclude that the mechanism of interest captures 50% of the rents

available from being a strategic buyer. This benchmark is both economically meaningful and free

from the influence of (positive) affine transformations of the utility function. The characterization of

the optimal mechanism is crucial to constructing this benchmark.

We apply this new approach to evaluate the performance of scoring auctions and bargaining. Our

motivation for looking at these procedures is twofold. First, Asker and Cantillon (2008) have shown

that scoring auctions dominate price-only auctions, beauty contests and menu auctions. Thus, scoring

auctions are an obvious candidate for a simple second-best procedure. Second, buyers often adopt a

less structured form of negotiation when quality matters and our model of bargaining bounds many

models of negotiation in the literature. In drawing the distinction between an auction and a bargaining

process, we define bargaining as a procedure in which a buyer approaches suppliers sequentially and

cannot return to a supplier once negotiation break down. This means suppliers do not compete directly

against each other, in contrast to auctions.

We characterize the allocations that can be implemented by a scoring auction (Theorem 2) and de-

rive the optimal bargaining mechanism when a buyer bargains with a single supplier (Theorem 3) or

several suppliers sequentially (Theorem 4). By construction, both procedures under-perform relative

to the optimal mechanism. The comparison with the allocation generated by the optimal mechanism

highlights several characteristics of these alternatives. First, scoring auctions can replicate the alloca-

tion probabilities of the optimal mechanism in many cases. Where scoring auctions fall short of the

optimal mechanism is in their inflexibility in terms of qualities. Second, the efficient mechanism can

be implemented by a scoring auction. Thus, scoring auctions can always do weakly better than the

efficient mechanism. Third, bargaining is inherently inefficient and can never replicate the allocation

probabilities of the optimal mechanism. However, we identify two classes of environments where they

can do better than the efficient mechanism thanks to the distortion in production or in allocation

probabilities that they generate.

We further investigate these questions numerically by evaluating the proportion of the strategic surplus

that these simpler procedures capture, across a wide range of environments. To do this, we compute

an upper bound to the expected utility from these procedures by deriving the optimal scoring auction

and the optimal bargaining mechanism. We find that the optimal scoring auction does very well and,

on average, captures more than two thirds of the strategic surplus. By contrast, bargaining does very
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badly and often even worse than the efficient auction, except when the fixed and marginal costs are

highly correlated, or when there is little uncertainty about suppliers’ fixed costs. Because these two

classes of environments are near one-dimensional environments, it seems safe to claim that an efficient

auction generally dominates bargaining when private information is multidimensional.

To further explore the reasons behind the poor performance of bargaining and the strong performance

of scoring auctions, we extend our bargaining model to allow the buyer to make an offer to one

supplier after negotiations have failed with all suppliers. This recall feature introduces several new

effects including a potential loss of commitment power by the buyer and, as a result, multiple equilibria.

If we focus on the buyer-optimal sequential equilibrium, we find that the possibility of recall greatly

improves the expected utility of the buyer We interpret this result as underscoring the value of any

competition among suppliers in procurement settings.

Related literature. This paper is related to the literatures on procurement and multidimensional
screening. The literature on procurement is organized around several themes, including the question of

how to take factors other than price into account in the procurement process (Laffont and Tirole, 1987;

Che, 1993; Branco, 1997; Ganuza and Pechlivanos, 2000; Rezende, 2008; de Frutos and Pechlivanos,

2004), the impact of the potential non-contractibility of quality (Klein and Leffler, 1981; Taylor, 1993;

Manelli and Vincent, 1995; Morand and Thomas, 2002; Che and Gale, 2003), and the impact of moral

hazard and renegotiation (Bajari and Tadelis, 2001; Bajari, McMillan and Tadelis, 2008). See Che

(2006) for an overview.

Our paper fits squarely into the first group and we abstract from the other issues. Our contribution

to this literature is twofold. First, we extend prior analyses of optimal procurement to the richer

environment where private information is multidimensional. Laffont and Tirole (1987) and Che (1993)

characterize the optimal buying mechanism when private information is one-dimensional (the marginal

cost of providing quality). Under some regularity conditions, the optimal buying scheme distorts the

quality provided by the suppliers downwards, relative to their first best levels. The optimal level of

distortion is independent of the number of suppliers, a property known as the “separation between

screening and selection” (Laffont and Tirole, 1987). In addition, except for the presence of a reserve

price, the contract is always allocated efficiently. Finally, Che shows that a scoring auction with a

scoring rule that is linear in price implements the optimal scheme. Our analysis shows that these

results depend heavily on the assumption of one-dimensional signals: none of these properties are

robust when we move to a multidimensional setting. Second, we evaluate existing buying procedures

against the benchmark constructed using the optimal and efficient mechanisms. Other papers compare

the performance of different procedures: Dasgupta and Spulber (1989), Che (1993) and Chen-Ritzo

et al. (2005) compare the scoring auction, which turns out to be optimal in their setting, with

price-only auctions; Asker and Cantillon (2008) compare the scoring auction with price-only auctions,

beauty contests, and menu auctions; Manelli and Vincent (1995), Bulow and Klemperer (1996) and

(2009) compare (two different models of) negotiation with auctions. Except for Asker and Cantillon

(2008), these papers are restricted to one-dimensional private information. Moreover, our paper goes
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beyond simply ranking procedures, first, by providing a quantitative assessment of the difference in

expected utility and, second, by identifying environments where these alternative procedures are likely

to perform well.

This paper also contributes to the literature in multidimensional screening. Rochet and Stole (2003)

present a survey of the contracting applications of multidimensional screening. Auction applications

include the optimal multi-unit auction problems studied by Armstrong (2000), Avery and Henderschott

(2000) and Malakhov and Vohra (2009), and the optimal auction with externalities studied by Jehiel

et al. (1999). Unlike contracting environments, our problem involves a resource constraint because the

contract can be allocated to only one supplier. Unlike multi-unit auction environments, quality in our

problem introduces some non-linearity. Hence, none of the existing characterization results applies to

our problem and the method we use to solve for the solution is somewhat different from the methods

used in these papers (even if the underlying principle is the same).

Through our emphasis on second-best mechanisms, our work echoes the research agenda laid out in

Wilson (1993) of identifying simple and robust second-best mechanisms. Our contribution here is in

leveraging the characterization of the optimal mechanism to analyze second-best candidates in auction

environments with multidimensional private information.

2 Model

We consider a buyer who wants to buy an indivisible good for which there are N potential suppliers.

The good is characterized by its price, p, and its quality, q.

Preferences. The buyer values the good (p, q) at v(q)− p, where vq > 0 (we assume that vq(0) =∞
and limq→∞ vq(q) = 0 to ensure an interior solution) and vqq < 0. Supplier i’s profit from selling good

(p, q) is given by p− θi1 − θi2q, where θ
i
1 ∈ {θ1, θ1} and θi2 ∈ {θ2, θ2} (θ1 < θ1 and 0 < θ2 < θ2.). For

future reference, let ∆θ1 = θ1− θ1 and ∆θ2 = θ2− θ2. Given the binomial support of θ1 and θ2, there

are four supplier types: (θ1, θ2), (θ1, θ2), (θ1, θ2), (θ1, θ2), which we denote, for brevity, hH, lH, hL and

lL. We will sometimes use (θ1k, θ2k) to denote supplier type k. For example, (θ1lH , θ2lH) = (θ1, θ2).

Note that the buyer and the suppliers are risk neutral.

Social welfare. Let Wk(q) = v(q)− θ1k − θ2kq, the social welfare associated with giving the contract

to type k with quality q. Define WFB
k = maxqWk(q). Given the single crossing condition, qFBlH =

qFBhH < qFBhL = qFBlL (to save on notation, we will use the short-hand notation q and q to describe the

first-best levels of qualities, q < q).

Our assumptions, thus far, yield an incomplete ordering of types in terms of the first-best levels of

welfare they generate. To simplify the analysis, we restrict attention to the case where WFB
lH < WFB

hL .

The natural ordering of types is, thus, lL Â hL Â lH Â hH. Importantly, the assumption that

WFB
lH < WFB

hL implies ∆θ1 − ∆θ2q < 0, while the sign of ∆θ1 − ∆θ2q remains ambiguous.2 This
2∆θ1 −∆θ2q < 0 follows from noting that v q − θ1 − θ2q = WFB

hL > WFB
lH > v q − θ1 − θ2q
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assumption on the ordering of first best welfares does not affect the method we use (in particular,

Theorems 2, 3 and 4 do not need this assumption). It mainly reduces the number of cases we need to

consider when we characterize the optimal mechanism (Theorem 1). Under this assumption, having

a low marginal cost for delivering a higher-quality product is more important than having a low fixed

cost, at least in the first-best solution. This case includes, as a limit, the case where firms differ only

in their marginal cost parameter, which has been studied by Laffont and Tirole (1987), Che (1993)

and Branco (1997).

Information. Preferences are common knowledge among suppliers and the buyer, with the exception
of suppliers’ types, (θi1, θ

i
2), i = 1, ..., N, which are privately observed by each supplier. Types are

independently and symmetrically distributed across suppliers, in the sense that the probability of

supplier i being of some type is independent of other suppliers’ types, but the ex-ante distribution

of types is the same for all suppliers. Thus, we can write the probability of each type as αk > 0,

k ∈ {hH, lH, hL, lL} . We do not put any restriction on the αk’s, except for the fact that they need
to sum to one. Any pattern of correlation between a supplier’s fixed cost and her marginal cost is

allowed.

Note: The 2-by-2 discrete type space considered here is a concession to the practical difficulties of
optimal screening problems in multidimensional environments. Two alternative approaches have been

used in the literature. Armstrong (1996) and Rochet and Choné (1998) solve a nonlinear pricing

problem in a continuous type-space by placing sufficient restrictions on the distribution of types to

pin down ex-ante the direction in which incentive compatibility constraints bind. Another alternative

route is to assume highly multidimensional private information and leverage a law of large numbers

to reduce this multidimensional information into something that converges to one-dimensional private

information (Armstrong, 1999b). An advantage of the 2-by-2 setting is that it does not put restrictions

on the direction of binding IC constraints. This allows us to explore all the economic richness that

multidimensional information introduces. In our conclusions, we discuss the applicability of our results

to richer informational environments.

3 Characterization of the Optimal Mechanism

The buyer’s problem is to find a mechanism that maximizes his expected utility from the procurement

process. For simplicity, we assume that the buyer buys with probability one (that is, we assume non-

exclusion).3 A direct revelation mechanism in this setting is a mapping from the announcements of

all suppliers, {θi1, θi2}Ni=1, into probabilities of getting the contract, the level of quality to deliver and
a money transfer.

Given that the buyer’s preference over quality levels is strictly concave, there is no loss of generality
3Unlike environments with continuous multidimensional types (e.g. Armstrong, 1996), the assumption of non-exclusion

is not particularly restrictive in discrete type environments. It is easy to find parameter values such that all virtual welfares

in the solution are positive, making non-exclusion optimal (this can be seen in expression (6), below).
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in restricting attention to quality levels that are only a function of suppliers’ types. Let qk denote the

quality level to be delivered by a type k supplier. This, together with suppliers’ risk neutrality, implies

that suppliers’ payoffs and thus, behavior, depend only on their expected probabilities of winning and

their expected payment. Let xk be the probability of winning the contract conditional on being type k,

and let mk be the expected payment she receives. Finally, let Uk denote type k’s equilibrium expected

utility. We have: Uk = mk − xk(θ1k + θ2kqk).

With these simplifications and notation, the buyer’s expected utility from the mechanism is given by

F (xk, qk, Uk) = N
X

k∈{hH,lH,hL,lL}
αk(xkWk(qk)− Uk) (1)

The buyer seeks to maximize this expression over contracts (xk, qk, Uk), subject to suppliers’ incentive

compatibility (IC) constraints:

Uk ≥ Uj + xj(θ1j − θ1k) + xjqj(θ2j − θ2k) for all k, j ∈ {hH, lH, hL, lL}, (2)

individual rationality (IR) constraints:

Uk ≥ 0 for all k ∈ {hH, lH, hL, lL}, (3)

and subject to the feasibility constraint that the probability of awarding the contract to a subset of

the types is always less than or equal to the probability of such types in the population:

N
X
k∈K

αkxk ≤ 1− (1−
X
k∈K

αk)
N for all subsets K of {hH, lH, hL, lL} (4)

Finally, non-exclusion imposes that

N
X

αkxk
k∈{hH,lH,hL,lL}

= 1 (5)

Border (1991) guarantees that the feasibility constraint is both necessary and sufficient for the expected

probabilities xk to be derived from a real allocation mechanism. This ensures that the solution to the

maximization problem of (1) subject to (2), (3), (4) and (5) is implementable.

The buyer’s problem has four individual rationality constraints, 12 incentive compatibility constraints

and 15 feasibility constraints. We can simplify them somewhat with the following lemmas:

Lemma 1: Consider the feasibility constraints (4), and define an n-type constraint as a feasibility
constraint with the relevant subset K having n elements. The following statements hold:

i. At most, one 1-type constraint binds; at most, one 2-type constraint binds; and, at most, one

3-type constraint binds.

ii. These binding constraints are nested, in the sense that the type in the binding 1-type constraint

must belong to the binding 2-type constraint, and so on.

The proof of Lemma 1 is in Appendix A. The intuition is as follows. Suppose that, at the solution,

the contract is allocated according to the following order of priority: lL Â lH Â hL Â hH, i.e. give
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the contract to a type lL if there is one, otherwise to a type lH if there is one, and so on. This

means that the ex-ante probability that a lL type gets the contract is the probability that there is at

least one type lL supplier among the N suppliers, i.e., NαlLxlL = 1 − (1 − αlL)
N . Thus the 1-type

constraint binds for lL. It cannot bind for any other types because a binding constraint for another

type would imply that that type has priority over all other types in the allocation, a contradiction.

Next, lL Â lH Â hL Â hH also means that the contract is allocated to a type lL or lH whenever

there is one among the N suppliers. This means that the ex-ante probability of a type lL or lH

winning, N(αlLxlL + αlHxlH), is the probability that there is at least one of these types among the

suppliers, 1 − (1 − αlL − αlH)
N . Thus, the 2-type constraint binds for {lL, lH}, showing that the

binding constraints are indeed nested. Statement (i) of Lemma 1 suggests that it could be the case

that, say, no 1-type constraint binds. This will be the case, for instance, if the order of priority is

lL ∼ lH Â hL Â hH, that is, lL and lH have priority over all the other types, but if there are a lL

type and a lH type, the buyer allocates the contract among them randomly. In this case, no 1-type

constraint binds. Finally, note that the suppliers’ expected probabilities are weakly aligned with their

order of priority in the sense that, if k Â j, then xk > xj but if k ∼ j, then xk T xj .

For future reference, denote the winning probabilities resulting from the efficient allocation (lL Â
hL Â lH Â hH) by xFBk , k ∈ {hH, lH, hL, lL}. Denote the winning probabilities for type lH and hL

resulting from the allocation according to order of priority lL Â lH Â hL Â hH by xmaxlH and xminhL .

Standard manipulation of the incentive compatibility constraints and the individual rationality con-

straints allows us to order the probabilities of winning in a limited way.

Lemma 2: At any solution, xlH ≥ xhH , xlL ≥ xhL and UhH = 0

The key difficulty we face in characterizing the solution to the buyer’s problem is in identifying the set

of binding constraints at the optimum together with the associated partition of the parameter space.

Our approach is to start with the buyer-optimal efficient mechanism. The buyer-optimal efficient

mechanism is the mechanism that implements the efficient allocation in the way most favorable to the

buyer. Efficiency requires that qualities are set such that qlL = qhL = q and qlH = qhH = q, and that

the probabilities are set equal to the first-best probabilities, i.e., xk = xFBk for all k. Efficiency does

not pin down payments to suppliers when private information is discrete. The buyer-optimal efficient

mechanism (which we will simply refer to in the remainder as “the efficient mechanism”) sets payments

to maximize the buyer’s expected utility while satisfying all incentive compatibility constraints. In

practice, only two sets of IC constraints bind at the efficient mechanism, as the next lemma establishes:

Lemma 3: When ∆θ1 > ∆θ2q, IClH,hH , IChL,hH and IClL,hL bind in the efficient mechanism. When

∆θ1 < ∆θ2q IClH,hH , IChL,lH and IClL,hL bind (see Figure 1).

Insert Figure 1 Here
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The proof of Lemma 3 can be found in Appendix A. From this starting point, we progressively adjust

the qualities (the q’s) until the buyer’s utility is maximized conditional on the x’s or until a new IC

constraint binds. If no new IC constraint binds we optimize over the x’s and turn our attention back

to the q’s. If a new IC constraint binds, we adjust the x’s and q’s under the additional constraint

imposed by the new binding IC constraint. In this way, we progressively reach a point where there

is no scope for improvement through either changing the x’s or the q’s. At this point, we will have

reached the global maximum as guaranteed by the next lemma. Moreover, this approach ensures that

we cover the entire parameter space since our starting points cover the whole space. The sketch of

proof of Theorem 1 illustrates this approach in more detail.

Lemma 4: The first order conditions of the Lagrangian of the maximization problem (1) subject to

(2), (3), (4) and (5) are necessary and sufficient for a global maximum.

The proof of Lemma 4 is in Appendix A. It allows us to prove the main result of this section:

Theorem 1: Characterization of the optimal buying mechanism
Define q2hH = argmaxq{WhH(q)− αhL+αlL

αhH
q∆θ2} and q2lH = argmaxq{WlH(q)− αhL+αlL

αlH
q∆θ2}.4

Part I: When ∆θ1−∆θ2q ≥ 0, the probabilities of winning and quality levels in the optimal mechanism
are as given in Table 1.

Part II: When ∆θ1−∆θ2q < 0, the probabilities of winning and quality levels in the optimal mechanism
are as given in Table 2.

Insert Tables 1&2 Here

Sketch of Proof : The full proof of Theorem 1 is very long (18 pages). Here, we provide only a proof
for solutions 1.1.a and 1.1.b to illustrate our approach to deriving the full characterization. The reader

is referred to the online appendix for the full proof.5

Consider the efficient auction. Let Uk,j be the expected utility of a type k pretending she is of type

j. To ensure incentive compatibility, while minimizing suppliers’ rents, suppliers’ expected utilities in

the efficient auction must be set such that Uk = maxj 6=k Uk,j and UhH = 0.

From Lemma 3, we need to consider only two cases. If ∆θ1 − ∆θ2q ≥ 0, the per-supplier buyer’s

expected utility in the efficient auction,
P

k αk[x
FB
k Wk(qk)− Uk], is given by:

αlHx
FB
lH WlH(qlH)− αlHx

FB
hH∆θ1 + αhHx

FB
hHWhH(qhH) + αhLx

FB
hL WhL(qhL)− αhLx

FB
hH qhH∆θ2

+αlLx
FB
lL WlL(qlL)− αlLx

FB
hL ∆θ1 − αlLx

FB
hH qhH∆θ2

(where all qualities are initially equal to the first-best qualities) or, to highlight the virtual welfare

4We use the superscript ‘2’ to differentiate this quality from the first best quality.
5All online materials are avaliable at http://pages.stern.nyu.edu/~jasker/ and http://www.ecares.org/ecantillon.htm
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generated by each supplier:

αlHx
FB
lH WlH(qlH) + αhHx

FB
hH

∙
WhH(qhH)−

αlH
αhH

∆θ1 −
αhL + αlL

αhH
qhH∆θ2

¸
(6)

+αhLx
FB
hL

∙
WhL(qhL)−

αlL
αhL
∆θ1

¸
+ αlLx

FB
lL WlL(qlL)

The rents of suppliers lL and hL depend positively on qhH , and the buyer can increase his expected

utility by decreasing qhH , ideally until

q2hH = argmaxq
{WhH(q)−

αlH
αhH

∆θ1 −
αhL + αlL

αhH
q∆θ2}

Suppose that no new IC constraint binds in the process. (This will be the case if xFBlH [∆θ1 −∆θ2q] >
xFBhH [∆θ1 −∆θ2q2hH ]). Now consider again (6), where we set qhH = q2hH , qlH = q, and qhL = qlL =q.

There is no further scope for improvement by distorting qualities. Furthermore, the virtual welfare of

lL is clearly the largest of all, so that it is optimal to set xlL = xFBlL . However, the relative ranking

of the virtual welfare of lH and hL is unclear. If WhL(q) − αlL
αhL
∆θ1 > WlH(q), the virtual welfare

generated by supplier hL remains larger than that of lH, so the optimal allocation is the first-best

allocation. This is solution 1.1.a.

Suppose, instead, that the virtual welfare associated with lH is larger than that associated with hL,

itself larger than the virtual welfare associated with hH (formally, and referring to (6), WlH(q) >

WhL(q) − αlL
αhL
∆θ1 ≥ WhH(q

2
hH) −

αlH
αhH
∆θ1 − αhL+αlL

αhH
q2hH∆θ2). In this case, the buyer would rather

give the contract to supplier lH than to supplier hL, i.e., he would like to change the order of priority in

the allocation. Increasing xlH while decreasing xhL concurrently (keeping αlHxlH +αhLxhL+αlLx
FB
lL

constant) does not initially affect any of the virtual welfare, and it increases the buyer’s expected

utility. This process continues until either a new IC constraint binds or we have reached the feasibility

constraint for xlH : N
¡
αlHx

max
lH + αlLx

FB
lL

¢
= 1− (αhL + αhH)

N . Suppose that we reach xlH = xmaxlH

before any new IC constraint binds. The qualities and probabilities are then all optimized given

the binding constraints and lemma 4 guarantees that we have reached the global maximum. This

corresponds to solution 1.1.b. Solution 1.1.c. arises if a new IC constraint binds in the process.

Solutions 1.1.d. and 1.1.e. arise when the ordering of virtual social welfares is such that type lH is

preferred to type hH, which, in turn, is preferred to type hL. End of the sketch of the proof.

Tables 1 and 2 present the main features of the solution. The second column describes the probabilities

of winning, and the last four columns describe the qualities at the solution (an interval means that

the optimal level of quality lies in this interval). For instance, Solution 1.2.b has xlL = xFBlL , which

is greater than xhL(< xFBhL ). This is, in turn, greater than xlH
¡
> xFBlH

¢
and xhH = xFBhH . Both qlL

and qhL are at the first best-levels, qhH ∈ (q2hH , q) and qlH ∈ (q2lH , q). Both are distorted below the
first-best level. The conditions that define each solution depend on the resulting binding constraints

and virtual welfares, as summarized in Figures 2 and 3. The value of the objective function and the

value of the control variables at the solution are continuous in the parameters of the model.
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Insert Figure 2 Here

The following patterns emerge from the tables. First, because the conditions delimiting the different

cases depend on the probabilities of winning, the solution depends on the number of suppliers, as well as

on the usual parameters of the environment (distributions of types and cost structure). The dependence

of the optimal scheme on the number of suppliers is typical of multidimensional environments where

the binding IC constraints are endogenous (Palfrey, 1983, Armstrong, 2000, Avery and Hendershott,

2000). No such effect is present in one-dimensional environments (Laffont and Tirole, 1987).

Second, there is some downward distortion in the quality provided by the high marginal-cost suppliers.6

The quality provided by the low marginal-cost suppliers is never distorted.

Third, probabilities of winning are also often distorted relative to the efficient auction. Specifically, the

probabilities of winning of the high marginal-cost suppliers are sometimes distorted upwards, whereas

the probability of winning of low marginal-cost supplier hL is sometimes distorted downwards. This

is because the expected surplus of hL can, in turn, affect the information rents of the lL type (while

lH’s expected surplus may not). As a result, reducing xhL (and hence increasing xlH) decreases the

information rents of lL. Note that the allocation of supplier lL is never distorted.

Insert Figure 3 Here

Putting these last two aspects together − productive and allocative distortions − we find no systematic
“bias against quality” in the two-dimensional model, unlike in the one-dimensional model (Laffont

and Tirole, 1987 and Che, 1993). While the economic conclusions differ, the underlying economic

motivation is the same: reducing suppliers’ rents. The qualities of the high marginal-cost types are

distorted downwards to reduce the low marginal-cost supplier’s benefit from imitating them. As

illustrated in Figures 3 and 4, all binding constraints between suppliers with different marginal costs

are from the low marginal-cost supplier to the high marginal-cost supplier so this “trick” is effective.

This is also the case in the one-dimensional model where the distortion of high-cost types’ quality lowers

the informational rents of the low cost types. Similarly, the reason why supplier hL’s probability of

winning is sometimes below her first-best level is to reduce supplier lL’s rent. In each case, the optimal

level of distortion balances a trade-off between the costs in terms of lost social welfare and the benefits

in terms of reduced rents.

Lastly, we note that the solution approach differs from that taken in the rest of the literature. The

optimal multi-unit auction problems studied in Armstrong (2000), Avery and Henderschott (2000),

6The finding that quality is only distorted downward is specific to the case WFB
lH < WFB

hL . If WFB
lH > WFB

hL , it is

possible to generate an optimal mechanism in which qhL is distorted above first best. This appears to be the only

significant qualitative distinction between the WFB
lH < WFB

hL and WFB
lH > WFB

hL cases.
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Malakhov and Vohra (2009), and Manelli and Vincent (2007) are linear programming problems. Can-

didates for a solution in a linear programming problem are extreme points. The standard solution

technique is to characterize the parameter space over which these extreme points are, indeed, solu-

tions. Our auction problem is not a linear programming problem but, instead, a concave programming

problem. This is reflected in the solution: both the value of the objective function and the value of

the control variables are continuous in the parameters of the model.

Multidimensional screening models that give rise to concave programming problems are studied by

Dana (1993), Armstrong and Rochet (1999), and Armstrong (1999a), or Laffont, Maskin and Rochet

(1987) and Rochet and Stole (2002) for continuous-type analogues. The standard solution technique

used in these papers is to posit a set of binding constraints and characterize the parameter space over

which the first-order conditions are satisfied given these binding constraints.

Our problem differs from those considered in these papers in two respects. First, we have many

more constraints: on top of the standard four individual rationality and 12 incentive compatibility

constraints that these problems have in their discrete form, the auction aspect of our problem adds 15

feasibility constraints. Moreover, because suppliers’ utility function takes the form mk−xk(θi1+ θi2qk)

where xk and qk interact as a multiplier of θi2, the two instruments at the disposal of the buyer do not

perform a symmetric role as in the models in Dana (1993) and Armstrong and Rochet (1999). The

consequences are twofold. First, the number of “solutions” − i.e., configurations of binding constraints
at the optimum − is larger. This is seen in Tables 1 and 2 (Armstrong and Rochet (1999) have, at
most, six solutions to consider). Second, it is harder to reduce a priori the number of constraints that

are likely to bind. By seeking incremental improvements from the efficient mechanism, our constructive

approach to the characterization of the solution guarantees that we cover the entire parameter space.

4 Scoring Auctions

In practice, implementation of the optimal mechanism requires overcoming at least two significant

challenges. First, implementation requires precise knowledge of the environment. Second, in most

instances, implementation of the optimal mechanism using a simple, easily explained mechanism is

not possible. This limits the extent to which the mechanism can be explained to market participants at

low cost and also limits the buyer’s ability to administer procurement at low cost (since administration

would require, for example, highly skilled staff).

These challenges suggest that, for practical purposes, second-best solutions that are simple and perform

well in a variety of settings are likely to be more useful. Commonly used procedures are obvious

candidates. They include scoring auctions, price-only auctions with minimum quality standards,

beauty contests, menu auctions where suppliers can submit several price-quality offers, and bargaining.

Asker and Cantillon (2008) have shown that scoring auctions yield a higher expected utility to the

buyer than a price-only auction with minimum standards or a beauty contest, and that they dominate
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menu auctions when a second price or an ascending format is used. Hence, our contenders for second-

best procedures are scoring auctions and bargaining. We analyze scoring auctions in this section and

bargaining in the next two sections.

In a scoring auction, the buyer announces a scoring rule that is linear in price, S(p, q) = ev(q)−p (withevq ≥ 0, evqq ≤ 0 and max ev(q)− θi2q admitting a single interior solution), suppliers submit price-quality

bids (p, q), and the winner is the supplier whose bid generates the highest score according to the scoring

rule.7 The winner’s resulting obligation depends on the auction format. In a first-score scoring auction,

the winner must deliver a quality level at a price that matches the score of his bid. In a second-score

scoring auction, the winner must deliver a quality level at a price that matches the second-highest

score submitted. Scoring auctions are increasingly used in public and private procurement and are

supported by several procurement software packages (see, Asker and Cantillon, 2008 for examples and

references).

4.1 Theoretical properties

Scoring auctions put some additional structure on suppliers’ bidding behavior. First, given a scoring

rule ev(q)− p, suppliers choose their bids to maximize the score they generate given their profit target,

π, i.e., they solve max(p,q){ev(q)−p} subject to p−θi1−θi2q = π. Substituting for p inside the maximizer

yields

max
q
{ev(q)− θi1 − θi2q − π} (7)

A property of the solution is that q is independent of π, the profit target, and of θi1, the fixed cost.

Second, a standard incentive compatibility argument establishes that the ordering of suppliers’ winning

probabilities must correspond to their ability to generate a higher score (intuitively, definemaxq{ev(q)−
θi1− θi2q} as the supplier’s type). Thus, a scoring auction will implement a particular allocation if two
conditions hold:

1. [production constraint] Given the scoring rule, suppliers maximize (7) by choosing the level of

quality assigned by the allocation.

2. [ranking constraint] The ranking of maxq{ev(q) − θi1 − θi2q} and, thus, the ranking of the scores
are consistent with the assigned probabilities of winning.

The next Theorem characterizes the set of allocations that can be implemented by a scoring auction.

Theorem 2: An allocation {(xk, qk)}k can be implemented with a scoring auction if and only if (1)
qlH = qhH , qhL = qlL with qlH = qhH < qhL = qlL, (2) αlHxlH + αhLxhL = αlHx

FB
lH + αhLx

FB
hL ,

xhH = xFBhH and xlL = xFBlL , (3) ∆θ1 − ∆θ2qhL ≤ 0 when xhL > xminhL and (4) ∆θ1 − ∆θ2qlH ≥ 0
whenever the allocation is such that xlH > xFBlH .

7Asker and Cantillon (2008) refer to this auction format as a quasilinear scoring auction to emphasize the linearity of

the scoring rule in p.
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Theorem 2 clarifies the constraints that a scoring auction places on the possible allocations. Its proof

can be found in Appendix A. The first condition says that two suppliers with the same marginal cost

of quality must be providing the same level of quality. Moreover, suppliers with a lower marginal cost

of quality must deliver higher levels of quality. These two properties follow from the structure of

(7). The second condition says that, at equilibrium, type lL must win over any other type, and that

type hH must lose against any other type. The reason is that type lL generates the highest value

for maxq{ev(q) − θi1 − θi2q} for any scoring rule and that type hH generates the lowest such value.

The third and fourth conditions follow from the combination of the production constraint and the

ranking constraint. Finally, to prove the sufficiency part of the claim, we construct a scoring rule that

implements the allocation under conditions (1) through (4).

An immediate consequence of Theorem 2 is that the efficient allocation can be implemented by a

scoring auction. Such a scoring auction has a scoring rule that corresponds to the buyer’s preferences

and uses for example a second-score format.8

Theorem 2 also clarifies why scoring auctions cannot, in general, implement the optimal solution. First,

qhH and qlH differ generically in the optimal mechanism. Moreover, the optimal mechanism requires

xhH > xFBhH in several cases. This said, scoring auctions have two potential advantages over the

efficient auction. First, they allow for distortion in production. Second, they allow some distortion in

allocation probabilities in the same direction as the optimal mechanism. The next section investigates

these properties numerically.

4.2 Computational Results

Having identified the constraints that scoring auctions place on allocations, we now turn to the question

of their relative performance. We interpret the difference between the buyer’s expected utility from

using the optimal mechanism and from using the (buyer-optimal) efficient auction as the surplus

available to a strategic buyer. We ask to what extent scoring auctions can capture this surplus.

To answer this question, we first compute an upper bound to the expected utility that scoring auctions

generate by adding the constraints of Theorem 2 onto the initial problem and solving the resulting

program numerically. The resulting expected utility is then compared with the expected utility from

the efficient auction and the expected utility from the optimal mechanism.

Insert Figure 4 Here

Figure 4 shows the results for an environment where v(q) = 3
√
q, θ1 = θ2 = 1, θ2 = 2, N = 2 and

αk = 0.25. The value of ∆θ1 varies along the x-axis. The expected utility from the optimal mechanism
8For the scoring auction to generate as much utility to the buyer as possible, type-specific down-payments must be

included. These down-payments are an artifact of the discrete type space, where allocations only partially pin down

payments. They maintain incentive compatibility and increase the buyer’s utility. Fudenberg and Tirole (1991) provide

details.
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lies above that from the optimal scoring auction, which, in turn, dominates that from the efficient

auction. As the value of ∆θ1 increases, the expected utility decreases in all three mechanisms. This

is to be expected. When ∆θ1 increases, the maximum level of welfare decreases because suppliers’

fixed costs increase. Moreover, fixed costs become relatively more important as a source of adverse

selection. The kink at ∆θ1 = 0.5625 corresponds to the point when the binding incentive compatibility

constraint for type hL in the efficient mechanism switches from IChL,lH to IChL,hH (thus ∆θ1 = ∆θ2q).

The resulting increase in the weight of ∆θ1 in the buyer’s expected utility explains the kink.

As ∆θ1 tends to 0, the source of adverse selection reduces to one dimension, the marginal cost. In this

case, Che (1993) has shown that a scoring auction implements the optimal mechanism. The reason

why the expected utility from the optimal scoring auction does not converge to the expected utility

of the optimal mechanism in our graph is that there is some discontinuity in the optimal scoring

auction at ∆θ1 = 0. As long as ∆θ1 > 0, scoring auctions impose that xlH > xhH (Theorem 2).

This leaves some informational rent to lH and increases the rents of hL and lL relative to the case

where xlH = xhH .When ∆θ1 = 0, suppliers lH and hH are essentially the same. The optimal scoring

auction will, thus, set xlH = xhH and leave no rent to supplier lH.

We replicate this simulation exercise for a range of environments by varying the values for the αk’s

and some of the other parameters of the model. Table 3 reports the results. The third column reports

the average percentage of the strategic surplus captured over the full range of values that ∆θ1 can

take. The fourth column reports the maximum percentage of the surplus that the optimal scoring

auction captures together with the corresponding value of ∆θ1. The fifth column does the same for

the worst relative performance of the optimal scoring auction. Finally, columns 6 and 7 report the

percentage of ∆θ1 values for which the performance of the optimal scoring auction is greater than

80% (column 6) or within ten percentage points of its worst performance (column 7). For the core set

of experiments (experiments 1 through 22), v(q) = aqb with a = 3 and b = 0.5, θ1 = θ2 = 1, θ2 = 2,

N = 2. The bottom part of the table considers other values for a, b, θ2 and θ2. (We keep N = 2 in

all our experiments because this is where the actual choice of mechanisms is likely to matter most).

Figure 5 shows the relative performance of the optimal scoring auction as ∆θ1 changes for selected

probability configurations.

Insert Table 3 Here, Insert Figure 5 Here

The results are as follows. First, in every experiment, there exists a value of ∆θ1 for which the optimal

scoring auction does as well as the optimal mechanism. Second, the point at which this occurs seems

somewhat persistent across environments. Third, the optimal scoring auction captures, on average,

more than two thirds of the strategic surplus, even though this proportion can dip down to 20% for

some values of ∆θ1 in some environments. Fourth, the optimal scoring auction does worst when the

fixed cost and the marginal cost are negatively correlated. We now investigate each of these points in

more detail.
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In every experiment, there exists a value of ∆θ1 for which the optimal scoring auction does as well

as the optimal mechanism. Given Theorem 2, this must happen at parameter values such that there

are binding incentive compatibility constraints directed to both lH and hH from low marginal-cost

suppliers in the optimal scheme (otherwise, there is no chance that the qualities provided by suppliers

lH and hH are the same in the optimal scheme). Inspection of Tables 1 and 2 suggests that the only

candidates consistent with implementation with a scoring auction are solutions 1.1.c., 1.2.a, 1.2.b or

1.2.c. (Recall that scoring auctions require xhH = xFBhH ). Closer inspection of the numerical solution

suggests that the maximum performance of the optimal scoring auction happens when the optimal

mechanism corresponds to either solutions 1.2.a, or 1.2.c.

An inspection of Figure 5 and the results in Table 3 suggests that the optimum is reached at a similar

region in each set of simulations (in particular, this point is always less than 0.5625, the point at

which the binding incentive compatibility constraint for type hL in the efficient mechanism switches

from IChL,lH to IChL,hH). This raises the question of why there and not elsewhere? The top right

panel in Figure 5 suggests that that maximum level of expected utility can be reached for values of

∆θ1 to the right of the dip in revenue. To investigate this, we ran a set of experiments with the

probabilities (40, 40, 10, 10) and (45, 45, 5, 5): experiments 13 and 20. In this setting, the optimal

mechanism corresponds to solution 1.1.d in Table 1. In experiment 13, at ∆θ1 = 0.93375, the optimal

scoring auction captures 99.03% of the available strategic surplus, whereas in experiment 20, at

∆θ1 = 1.02375, this is raised to 99.89%. While it appears that the scoring auction does well in these

regions, it falls short of the optimal mechanism because of the restriction that xhH = xFBhH in the

scoring auction.

It has been noted that the point at which the optimal scoring auction does as well as the optimal scheme

is constant across experiments 1-7 and 14-19. After further inspection, this is an artifact of the common

symmetric structure of these parameter settings. These settings are such that αlL+αhL = αhH +αlH .

A comparison with experiments 8 and 21 illustrates this point: In experiment 6, the probabilities are

such that αlL = αhL > αlH = αhH , resulting in a move in the location of the optimum; experiment 21

makes a similar perturbation, with the additional shock that αlH < αhH .

The optimal scoring auction does very well overall. It captures, on average, more than two thirds of

the surplus, and in 12 of the 19 core experiments reported in Table 3, it captures more than 80% of

the surplus for the majority of the values ∆θ1 can take. This excellent performance seems due to the

relative flexibility that scoring auctions leave in terms of allocation.

Table 3 and Figure 5 also indicate that scoring auctions perform less well in some environments. This

poor performance tends to happen around the point at which there is a kink in the expected utility of

the efficient auction. This coincides with the point at which both incentive compatibility constraints

out of type hL are close to binding in the efficient mechanism (one must bind, and the other is ‘close’ to

binding). As a result, those IC constraints leave little scope for rent extraction before they bind. Given

that the scoring auction is less flexible in the face of these constraints than the optimal mechanism, it
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is not surprising that its relative performance suffers.

Similarly, a negative correlation between the marginal cost and the fixed costs decreases the perfor-

mance of the optimal scoring auction (see experiments 5, 6 and 7). Intuitively, a negative correlation

moves the environment further from the one-dimensional environment for which scoring auctions are

known to do well (Che, 1993). The weight of types lH and hL is large in the total expected utility

of the buyer, and so the gains from distorting quality tend to make qhH far from being first-best. In

light of this, it is noteworthy that the scoring auction does not always perform strongly when types

are positively correlated. In experiments 2 and 3, where types are increasingly correlated, the scoring

auction appears to be doing increasingly well. However, in experiment 4, this trend does not continue.

What is happening here is that the extra flexibility in the optimal mechanism is able to exploit the

environment as it moves toward the one-dimensional case far sooner than the scoring auction. The

relative performance of the scoring auction in experiment 4 reflects a reconfiguration of the optimal

mechanism in the face of the changing environment, rather than any significant change in the scoring

auction itself.

Lastly, because the performance of the optimal scoring auction only gives us a bound on the perfor-

mance of scoring auctions more generally, we also investigate the performance of non-optimal scoring

auctions. Specifically, we consider scoring rules that correspond to the true preferences of the buyer

except that they place an arbitrary lower value on quality. For the case of S(p, q) = 0.95v(q) − p for

example and across the core experiments explored in table 3, we find that this naïve scoring auction

captures approximately 60% of the strategic surplus if it leads to a distortion in allocations relative

to the efficient mechanism, whereas the ranking between the naïve scoring auction and the efficient

auction is unclear if both lead to the same allocations (and only differ in the induced qualities).

5 Bargaining

We now turn to bargaining. Our goal in this section is to illustrate the potential costs and benefits

of bargaining in the presence of quality concerns. A first difficulty that we face is in deciding what

bargaining encompasses. Indeed, there are many ways to model bargaining between a buyer and one or

several suppliers. Existing bargaining models include alternating offers between a buyer and a supplier

(e.g. Rubinstein, 1982, Ausubel and Deneckere, 1989), repeated buyer offers to a single supplier (e.g.

Fudenberg and Tirole, 1983) and models where a buyer faces several potential suppliers (e.g. Manelli

and Vincent, 1995, De Fraja and Muthoo, 2000). In this section, we call bargaining any procedure

where suppliers are not put in direct competition with one another. Intuitively, once we allow the

buyer to go back and forth between suppliers in search for the best bargain, we essentially have an

auction. This dividing line is, of course, arbitrary.9 We explore the possibility of recalling a supplier

after the breakdown of discussions in the next section.
9For a different view, see Bulow and Klemperer (1996) and (2009).
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In line with the rest of the paper, we adopt a mechanism design approach (this is in the spirit of

Myerson and Satterthwaite, 1983, Riley and Zeckhauser, 1983, Wang, 1998). Our results then provide

an upper bound to what bargaining can achieve in the environments we consider, independently of the

specific form bargaining takes. When available, we identify a specific procedure that implements the

optimal bargaining mechanism. To ensure comparability with the results in the previous sections, we

assume that the buyer buys for sure and that there is no time discounting.10

We answer the question in two steps. Each step corresponds to a different view of bargaining. First,

we consider a buyer who bargains with a single supplier. We find that a menu of two take-it-or-leave-it

offers implements the optimal bargaining mechanism. Second, we consider a buyer who bargains with

multiple suppliers sequentially. The idea here is that the buyer is free to haggle with each supplier as

much as he wants but once negotiation breaks down, he goes to another supplier and never returns. A

sequence of take-it-or-leave-it offers implements the optimal sequential bargaining mechanism. As in

the previous section, we first highlight the theoretical properties of the optimal bargaining mechanism

before turning to numerical simulations to get a sense of magnitudes.

5.1 Theoretical properties

5.1.1 One buyer - one supplier

Given the agents’ risk neutrality and the convexity of buyer’s preference over quality, we can summarize

any bargaining procedure between a buyer and a supplier by a quality level and an expected payment.

Let (pk, qk) denote the expected payment and the quality level provided by type k in the optimal

direct mechanism. Lemma 5 shows that the price and the quality provided by suppliers in the optimal

mechanism are only a function of their marginal costs. The intuition is that contracts of the form

(p, q) are unable to screen over suppliers’ fixed cost.

Lemma 5: In the optimal direct mechanism, (plL, qlL) = (phL, qhL) and (plH , qlH) = (phH , qhH).

Proof: Consider the outcome for the low marginal cost types. Incentive compatibility requires:

IClL,hL : plL − θ1 − θ2qlL ≥ phL − θ1 − θ2qhL

IChL,lL : phL − θ1 − θ2qhL ≥ plL − θ1 − θ2qlL

Thus, plL − θ2qlL = phL − θ2qhL, and the outcomes lie on an isoprofit locus for suppliers hL and lL,

{(p, q) : plL − θ2qlL = phL − θ2qhL}. Since the buyer has strictly convex preferences, there is a unique
contract on this locus that maximizes his utility. Q.E.D.

From now on, let (pL, qL) and (pH , qH) denote the outcome for the low marginal cost types and the

high marginal cost types respectively. The optimal direct mechanism solves:

max(pL,qL),(pH ,qH)(αlH + αhH)(v(qH)− pH) + (αhL + αlL)(v(qL)− pL)

10As for the optimal mechanism, the requirement that the buyer buy for sure can be perfectly consistent with optimality

if the buyer values the good sufficiently highly. The no discount feature rules out time as a screening device.
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subject to suppliers’ IR and IC constraints. Following standard arguments, supplier hH’s IR constraint

and the downward IC constraint bind:

p1H = θ1 + θ2qH (8)

p1L = p1H − θ2qH + θ2qL (9)

Substituting for p1H and p1L into the objective function yields:

maxqH ,qL(αlH + αhH)(v(qH)− θ1 − θ2qH) + (αhL + αlL)(v(qL)− θ1 − θ2qL −∆θ2qH)

The solution is given by:

q1L = q (10)

q1H = argmax
q

½
v(q)− θ2q −

(αhL + αlL)

(αlH + αhH)
q∆θ2

¾
(11)

We have thus proved:

Theorem 3: The buyer’s maximum expected utility from bargaining with a single supplier is given

by:

V1 = (αhL + αlL)(v(q)− θ1 − θ2q) + (αlH + αhH)max
q

µ
v(q)− θ1 − θ2q −

(αhL + αlL)

(αlH + αhH)
q∆θ2

¶
Clearly, the optimal one-buyer one-supplier bargaining mechanism can be implemented by a menu of

two take-it-or-leave-it offers, {(p1H , q1H), (p1L, q1L)}, given by (8)-(11). Suppliers accept the offer as long
as it meets their individual rationality constraint.

5.1.2 Sequential bargaining

Suppose now that the buyer can bargain with several suppliers in any way he wants, as long as he

does so sequentially. If negotiation with one supplier breaks down and he switches to another supplier,

he cannot return to the initial supplier. The optimal sequential mechanism in this environment solves

a dynamic programming problem. The buyer approaches suppliers one at a time and offers them a

menu of optimal screening contracts that take into account the number of remaining suppliers.

Let Vn describe the continuation value from the optimal sequential mechanism when n suppliers

remain. Clearly, V1 coincides with the buyer’s expected utility from the optimal one-buyer one-supplier

bargaining mechanism. When the buyer faces more than one suppliers, exclusion is optimal, and the

probability of negotiation breakdown (and thus of moving to another supplier) is strictly positive. The

next lemma shows this and that the buyer’s expected utility increases in the number of suppliers he

faces.

Lemma 6: Let Kn be the set of supplier types for whom the buyer’s offers, when n buyers remain,

are acceptable. The buyer’s expected utility from the optimal sequential mechanism increases with the
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number of suppliers. In the optimal sequential mechanism, exclusion is optimal as soon as N > 1 and

|Kn| ≤ |Kn−1| for all n > 1.

Proof : The maximum surplus the buyer can extract from a supplier is v(q)− θ1− θ2q, the maximum

surplus generated by supplier lL. Since αlL < 1, Vn < v(q) − θ1 − θ2q for all n. Whenever the buyer

faces n > 1 remaining suppliers, an available strategy is to offer the contract (p, q), where p = θ1+θ2q

and q = q, that is only accepted by supplier lL. Thus Vn ≥ αlL(v(q)−θ1−θ2q)+(1−αlL)Vn−1 > Vn−1.

This also shows that exclusion is optimal.

Let x be the buyer’s current expected payoff when n suppliers remain and Kn = {lL}, i.e. Vn =

x + (1 − αlL)Vn−1. Similarly, let y be the current expected payoff when Kn = {lL, lH}. The buyer
prefers to make offers only acceptable to Kn = {lL} rather to Kn = {lL, lH} if x + αlHVn−1 > y.

Since Vn is increasing, Kn = {lL} preferred to Kn = {lL, lH} when n suppliers remain, implies

that Kn0 = {lL} preferred to Kn0 = {lL, lH} for all n0 > n. A similar argument establishes that if

Kn = {lL, hL} is preferred to Kn = {lL, lH, hL}, it is also preferred for n0 > n. The same argument

also applies when we replace Kn = {lL, lH} by Kn = {lL, hL}. The claim follows. QED.

Theorem 4: The outcome in the optimal sequential mechanism is a function of the number of re-

maining suppliers. When only one supplier remains, the outcome is described by (8)-(11). When

n > 1 suppliers remain, the outcome takes the form (pnH , q
n
H), (p

n
L, q

n
L) together with the set of supplier

types for whom these contracts are acceptable. This menu of contracts is the one that yields the largest

continuation value among the four described in the following table:

Insert Table 4 Here

Proof: See Appendix A.

As before, the buyer can implement the optimal sequential mechanism with a sequence of menus of

take-it-or-leave-it offers. These offers take the form given in Theorem 4. In the unique sequential

equilibrium, suppliers accept the best offer that is acceptable to them.

Theorem 4 suggests that the optimal sequential mechanism has at least two potential advantages.

First, it can distort production. Second, it can distort the probabilities of winning. For example,

a first-period offer that is acceptable only to suppliers lL and lH distorts the probabilities that lH

wins, xlH , upwards and distorts xhL downwards relative to the probabilities in the efficient auction,

as is sometimes required in the optimal mechanism. However, this comes at the cost of a distortion

in the probabilities of allocating the contract to types lL and hH. Indeed, it is easy to check that

xlL < xFBlL , unless the optimal offer in all rounds but the last is acceptable only to type lL (and recall

from Theorem 1 that xlL = xFBlL always in the optimal mechanism). In addition, xhH > xFBhH in all

cases except if Kn = {lL, lH, hL} for all n > 1.

These costs and benefits of the optimal sequential mechanism are best illustrated for the case of two

suppliers. To do this, we rewrite the expected utility from the efficient auction as
P
Prk VWk, where
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Prk is the probability that the mechanism allocates the contract to a type k supplier and VWk is the

associated virtual welfare. Table 5 summarizes the values that these variables take in the efficient

auction (using Lemma 3):

Insert Table 5 Here

Similarly, the expected utility from the optimal sequential procedure can be written as
PfPrkgVW k

where fPrk is the probability that the optimal sequential mechanism allocates the contract to supplier

k and gVW k is the "resulting" virtual welfare.11 The idea, then, is to compare the Prk’s with the fPrk’s
and the VWk’s with the gVW k’s. The first example illustrates the advantage of being able to distort

qualities.

Example 1: The optimal sequential mechanism always captures a positive proportion
of the strategic surplus when ∆θ1 is sufficiently small. We prove this by showing thatP
Prk VWk <

PfPrkgVW k. When ∆θ1 is small, the main source of adverse selection is marginal

cost, and suppliers lL and hL, and lH and hH, respectively, are very much alike. Consider the strat-

egy that consists of making an offer that is acceptable only to suppliers lL and hL in the first period.

Using theorems 3 and 4, the resulting expected utility is given by:

V2 = (αhL + αlL)W
FB
hL + (αlH + αhH)V1

= αlL(2− αhL − αlL)W
FB
lL

+αhL(2− αhL − αlL)

µ
WFB

hL −
αlL
αhL
∆θ1

¶
+(αlH + αhH)

2

µ
WhH(q

1
H)−

(αhL + αlL)

(αlH + αhH)
∆θ2q

1
H

¶
where we have grouped types lH and hH. Comparing this expression with the second column of Table

6 suggests that VWlL = gVW lL and VWhL = gVWhL. Moreover, PrhL+PrlL = 1− (1−αhL−αlL)
2 =fPrhL+fPrlL = (αhL+αlL)(2−αhL−αlL). Thus, when ∆θ1 is very small, PrlL VWlL+PrhL VWhL 'fPrlLgVW lL +fPrhLgVWhL since VWhL ' VWlL. Turning to the utility contribution of types lH and

hH in the efficient auction, we get, using Table 6 and after some simplifications:

αlH(αlH + 2αhH)W
FB
lH + α2hHW

FB
hH − (αlH + 2αhH)(αhL + αlL)∆θ2q

+((αlH + αhH)(αhL + αlL)− αlHαhH)∆θ1

= (αlH + αhH)
2

∙
WFB

hH −
(αlH + 2αhH)(αhL + αlL)

(αlH + αhH)2
∆θ2q

¸
+(αlH + αhH)(1− αhH)∆θ1

The first term of this expression is strictly less than (αlH + αhH)
2
³
WhH(q

1
H)−

αhL+αlL
αlH+αhH

∆θ2q
1
H

´
given the way q1H is constructed (optimal level of distortion) and the fact that (αlH+2αhH)(αhL+αlL)

(αlH+αhH)2
>

11We write “resulting” because the virtual welfare associated with a given type is not uniquely pinned down in the

sequential mechanism. We exploit this flexibility in the remaining discussion.
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αhL+αlL
αlH+αhH

. The second term becomes negligible as ∆θ1 decreases. Thus, when ∆θ1 is small enough,

the optimal sequential procedure dominates the efficient auction because it is able to distort qualities.

End of example 1.

Another way to view example 1 is to note that as ∆θ1 converges to zero, the environment converges

essentially to the "standard" one-dimensional environment, where the optimal mechanism is such that

lL and hL win over hH and lH and qualities are distorted. The sequential mechanism replicates these

features when K2 = {lL, hL}. In fact, the expected utility from the optimal sequential mechanism

converges to the expected utility from the optimal mechanism as ∆θ1 converges to zero. (Table 6

below provides evidence on this).

In related research, Wang (1998) shows that a menu of take-it-or-leave-it offers implements the optimal

mechanism in a multi-period one-supplier setting with ∆θ1 = 0 and arbitrary discount rates. This is

due to the fact that when θ1 = θ1, time is not needed to screen over types. The buyer only needs to

screen over the variable costs (θ2’s) and quality is a superior instrument to do this. Similarly, in our

setting, as ∆θ1 → 0 competition between suppliers becomes relatively less important for screening in

the optimal mechanism, allowing bargaining to perform comparatively well.

The next example illustrates the advantage provided by the ability to distort allocation probabilities:

Example 2: For large values of ∆θ1, the optimal sequential mechanism can capture a
positive fraction of the strategic surplus. Again, we prove this by comparing

P
Prk VWk andPfPrkgVW k. Consider the period 1 strategy that offers a contract to types lL and lH only. The

resulting expected utility for the buyer is given by:

V2 = αlL(W
FB
lL −∆θ2q∗∗H ) + αlHWlH(q

∗∗
H ) + (1− αlH − αlL)V1

= αlL(2− αlH − αlL)W
FB
lL

+αhL(1− αlH − αlL)(W
FB
hL −

αlL
αhL
∆θ1)

+αlH(2− αlH − αlL)

µ
1

(2− αlH − αlL)
WlH(q

∗∗
H ) +

(1− αlH − αlL)

(2− αlH − αlL)
WlH(q

1
H)

¶
+αhH(1− αlH − αlL)

µ
WhH(q

1
H)−

αlH
αhH

∆θ1 −
(αhL + αlL)

αhH
∆θ2q

1
H −

αlL
αhH(αhH + αhL)

∆θ2q
∗∗
H

¶
=

X
k

fPrkgVW k

Comparing this with the probabilities and the levels of virtual welfare in Table 5, it is clear that

VWlL = gVW lL, V WhL = gVWhL, V WlH > gVW lH and VWhH ≶ gVWhH . Moreover, the sequential

procedure essentially places lH in front of hL in the order of priority in the allocation, resulting in

the following ordering of probabilities: PrlL > fPrlL, PrhL >> fPrhL, PrlH << fPrlH and PrhH < fPrhH .
When αlL

αhL
∆θ1 is large enough, VWhL << VWlH , gVW lH . Thus, this allocation can increase expected

utility. End of example 2

An example of environment where the effects described in examples 1 and 2 arise is the following:

v(q) = 3
√
q, θ1 = θ2, θ2 = 2, αlL = αhH = 0.35, αlH = αhL = 0.15.
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5.2 Computational results

We now explore the performance of bargaining numerically. Because sequential bargaining always does

better than bargaining with a single supplier, we focus on sequential bargaining with two suppliers.

Table 6 reports the proportion of the strategic surplus, i.e. the difference between the expected utility

from the optimal mechanism and the expected utility from the efficient auction, that the optimal

sequential mechanism captures with two suppliers. For the simulations, we assume that v(q) = 3
√
q,

θ1 = θ2 = 1, and θ2 = 2. θ1 takes values between 1 to 2.125, which corresponds to the maximum value

permitted by the assumption that WFB
lH < WFB

hL . Negative values indicate that the optimal sequential

mechanism does worse than the efficient auction.

Insert Table 6 Here

On average (i.e., across all possible values of ∆θ1), the optimal sequential mechanism does worse,

and often much worse, than the efficient auction. Hence, it necessarily does worse than the optimal

mechanism and a scoring auction. The poor performance of sequential mechanisms is confirmed by

the small fraction of values for ∆θ1 where the optimal sequential mechanism captures at least 80% of

the strategic surplus (second-to-last column) and where it does better than the efficient auction (last

column).

There are two exceptions to the poor performance of the optimal sequential mechanism. First, and

as suggested by example 1, the optimal sequential mechanism does very well and, in fact, as well as

the optimal mechanism when ∆θ1 = 0 (fourth column in the table). Second, the optimal sequential

mechanism does better overall when there is strong positive correlation between types (experiment 4

in the table). The reason is related to example 2 above: when costs are highly correlated, αlL
αhL

is high,

and the virtual welfare associated with type hL tends to be lower than the virtual welfare associated

with lH. Thus, a contract acceptable only to types lH and lL in the first period reverses the order

of priority of types hL and lH and can increase expected utility. Note, however, that this is not the

end of the story. Indeed, the optimal sequential mechanism does poorly in experiments 17 through

19, even though the ratio αlL
αhL

is high there too. The reason is that a first-period offer acceptable to

types lL and lH also increases the probability that a type lH wins over a type lL. Experiments 17

through 19 illustrate that this is particularly costly in terms of expected utility when αlH > αlL.

6 Recall

Suppose now that the buyer can go back and forth between suppliers at no cost.12 The optimal

mechanism in this case corresponds to the optimal mechanism derived in section 3 and it provides

an upper bound to what the buyer can achieve. Intuitively, allowing the buyer to come back and
12De Fraja and Muthoo (2000) consider a bargaining game between a seller and two potential buyers where the seller

can go back and forth between the two buyers. Switching involves a cost.
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forth between suppliers blurs the distinction between bargaining and auctions. In fact, if bargaining

involves multiple suppliers and no restriction on negotiation with one and the other, auctions can be

seen as special cases of bargaining protocols.

Because this upper bound does not provide much insight about the new effects at play when we allow

the buyer to go back and forth between suppliers, we explore these new effects in a simple stylized

model with two suppliers and one recall stage. In stage 1, the buyer makes a take-it-or-leave-it offer to

supplier 1. If supplier 1 rejects the buyer’s offer, the buyer makes a take-it-or-leave-it offer to supplier

2 in stage 2. Finally, if supplier 2 rejects the offer, the buyer can make one last offer to either supplier

(recall stage). The supplier to whom the offer is made accepts or rejects and this ends the game.

Offers are observed by all.

Relative to the optimal sequential mechanism, two new effects arise. First, recall increases the com-

petition between the two suppliers and thus makes rent extraction easier. Second, recall reduces the

buyer’s commitment power because, with positive probability at equilibrium, he comes back to the

same supplier with a more attractive offer. Suppliers take this into account: they only accept an offer

if it yields a higher payoff than their expected payoff from a recall offer.

In the remainder of this section, we discuss the key theoretical features of the equilibrium in this simple

game and complement them with results from numerical experiments using the same parameters as

earlier. The purpose is to illustrate these two new effects, not to fully characterize the equilibrium.

We use sequential equilibrium as the equilibrium concept (Kreps and Wilson, 1982).

In any candidate equilibrium, the buyer recalls the supplier with the highest updated probability of

having low marginal costs. Let μilL, μ
i
lH , μ

i
hL, μ

i
hH denote the updated probabilities about supplier i’s

type at the beginning of the recall stage, and let πi = μilL+μihL, the updated probability that supplier

i has low marginal costs. The offer the buyer makes to the recalled supplier depends on his updated

beliefs about the supplier’s type. Its derivation follows the steps in section 5.1.1 with the updated

beliefs.13 We denote the resulting offer by (precallL (πi), qrecallL (πi)), (precallH (πi), qrecallH (πi)). We show in

Appendix B that the buyer’s expected utility from recalling supplier i is increasing in πi. Thus, if

π1 > π2, the buyer prefers to recall supplier 1. If π1 < π2, he prefers to recall supplier 2. He is

indifferent otherwise.

This means that we have essentially three categories of equilibrium paths to consider: paths where

the buyer recalls supplier 1 for sure if he reaches the recall stage (i.e. if supplier 1 rejected his offer

in stage 1 and supplier 2 rejected his offer in stage 2), paths where he recalls supplier 2 for sure, and

paths where he mixes at the recall stage. All three categories of paths arise in equilibrium play in

the numerical experiments (we show in Appendix B that on-equilibrium play where the buyer recalls

supplier 2 for sure yields the same expected utility for the buyer as the optimal sequential mechanism).

In stages 1 and 2, the equilibrium specifies the beliefs, the set of supplier types for whom the offer

is acceptable, the menu of optimal screening contracts and the suppliers’ decision rule. The logic for
13We can show that μihH > 0 holds in all equilibria.
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deriving the optimal screening contracts is similar to that in the proof of Theorem 4. In particular,

there are six possible offers to consider in stage 1: offers that are only acceptable to type lL, offers that

are only acceptable to the low marginal cost types (lL and hL), offers that are only acceptable to low

fixed cost types (lL and lH), offers that are acceptable to all but type hH, offers that are acceptable

to all types and offers that are acceptable to none.

The difference with sequential bargaining is that suppliers’ individual rationality constraints are now

endogenous and depend on their expectations about the recall stage. To illustrate, consider any

equilibrium and let δ be the probability that supplier 2 declines the buyer’s offer in stage 2 and σ the

probability that the buyer recalls supplier 1. The offer in the recall stage acts as an outside option for

supplier 1 when he considers his stage 1 offer. Specifically, type lL will accept offer (pL, qL) in stage

1 if and only if

pL − θ1 − θ2qL ≥ δσ(θ1 +∆θ2q
recall
H (π1) + θ2q

recall
L (π1)| {z }

precallL (π1)

− θ1 − θ2q
recall
L (π1))

which yields the following endogenous individual rationality constraint:

IRlL : pL ≥ θ1 + θ2qL + δσ(∆θ1 +∆θ2q
recall
H (π1))| {z }

rent

(12)

Repeating the exercise for other types yields, at stage 1,

IRhL : pL ≥ θ1 + θ2qL + δσ∆θ2q
recall
H (π1) (13)

IRlH : pH ≥ θ1 + θ2qH + δσ∆θ1 (14)

IRhH : pH ≥ θ1 + θ2qH (15)

Compared to the earlier bargaining model, in which supplier 1’s outside option is zero, recall clearly

increases supplier 1’s bargaining power in stage 1. On the other hand, exclusion of supplier 2 in stage

2 is now possible. This reduces supplier 2’s bargaining power.

Another way to look at the effect of recall is that it introduces an additional instrument to screen over

fixed costs. In sequential bargaining, exclusion is the only way for the buyer to screen over supplier 1’s

fixed costs. In the presence of recall, the buyer can screen supplier 1’s fixed costs over stages because

θ1 > θ1 + δσ∆θ1 (compare (12) and (13), and (14) and (15)).14

We now discuss the second effect introduced by recall: the potential reduction of commitment power.

The Coase conjecture has described how repeated interactions with potential suppliers can hurt a

buyer because of the impossibility for the buyer to commit not to buy from a supplier (Coase, 1972).

This commitment problem is not an issue in our case because we impose that the buyer buys anyway,

even when there is no recall. Instead, commitment issues arise in two subtle ways in our setting: first,

14There is an analogy with bargaining over multiple periods of time when there is discounting. Here, δσ plays the role

of an endogenous time discount.
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through the inability of the buyer to commit to a quality level for the high marginal cost types, qrecallH ,

in the recall stage, and second, through the inability of the buyer to commit to recalling supplier 1

with a given probably if he is indifferent between the two suppliers in the recall stage.

Let us first consider the loss of commitment power due to the fact that the buyer cannot commit to

qrecallH in stage 1. Suppose IRlL or IRhL bind in stage 1. Let Pr1 and Pr2 be the probability of a trade

in stage 1 and stage 2 respectively, and let f1, f2 be the expected stage payoffs for the buyer in stages

1 and 2. Finally, let V recall be the buyer’s expected utility in the recall stage. The buyer’s expected

utility from the recall game is given by Pr1 f1 +Pr2 f2 + (1− Pr1−Pr2)V recall. Because IRlL or IRhL

bind in stage 1, f1 is a function of qrecallH (see (13) and (14)). Yet, because qrecallH is chosen in the recall

stage, it is chosen to maximize V recall and not Pr1 f1+Pr2 f2+ (1−Pr1−Pr2)V recall. In other words,
recall can sometimes involve suboptimal choices for qrecallH due to the inability of the buyer to commit.

The second commitment problem arises from the fact that the buyer cannot commit ex-ante to a

specific behavior in the event that he is indifferent at the recall stage. This leads to multiple equilibria

in the recall game, some of which are inferior from the buyer’s perspective. To see this, suppose the

buyer makes an offer that is only acceptable to type lL in stage 1. At the beginning of stage 2, his

continuation payoff depends on his recall strategy. Clearly, if his stage 2 offer is such that π1 6= π2,

then the buyer should recall the supplier for whom πi is highest. If π1 = π2 however (which implies his

stage 2 offer is only acceptable to type lL), his continuation payoff is increasing in σ, the probability

of recalling supplier 1, because this reduces supplier 2’s reservation value. Because any σ is consistent

with sequential equilibrium, there may exist a value of σ, σ∗, such that if σ > σ∗, making an offer

in stage 2 to type lL only is optimal, whereas another strategy is better if σ < σ∗. This leads to the

possibility of multiple equilibria. Of course, if the buyer could commit, he would commit to a value

of σ that selects the better equilibrium. In practice however, he cannot commit since he is indifferent

ex-post between recalling supplier 1 and supplier 2.

Because of the possibility of multiple equilibria, we evaluate bargaining with recall in two steps.15

In a first step, we focus on the sequential equilibrium that generates the highest expected utility for

the buyer when there are multiple equilibria. Table 7 reports the percentage of the strategic surplus

that this equilibrium captures for the same parameters as Table 6. Thus Table 7 serves to illustrate,

from the buyer’s point-of-view, the best-case interaction between the increased competition among

suppliers and the potential lack of commitment regarding qualities that recall introduces. It shows

that the competition effect dominates: relative to the optimal sequential mechanism, the buyer is able

to capture a much larger fraction of the strategic surplus (comparison between Table 6 and Table

7). This dominance is uniform for all values of ∆θ1. On average, bargaining with recall continues to

perform worse than the optimal scoring auction (comparison between Table 3 and Table 7). It can do

better for some values of ∆θ1 however. The last column of Table 7 shows the percentage of values for

∆θ1 for which bargaining with recall does better.

15Code for computing equilibrium and accompanying explanatory text are available online.
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Insert Table 7 Here

In a second step, we focus on the parameters for which multiple equilibria exist. Table 8 shows that

equilibrium multiplicity is pervasive in the recall game. When multiple equilibria exist, the difference

in buyer expected utility between the best and the worst equilibria can represent a large fraction of the

strategic surplus (last two columns). Conditioning on multiple equilibria existing, the third column

gives the percentage of ∆θ1 for which the buyer is worse off in the worst equilibrium of bargaining with

recall than in the efficient mechanism. In seven of the fifteen experiments with multiple equilibria,

the efficient mechanism does better in the majority of cases. In two cases, experiments 4 and 14

the worst equilibria are never worse than the efficient mechanism. Experiments 14 through 16 are

particularly interesting as they suggest that as high fixed cost types become more likely, multiple

equilibria problems may become less important.

Insert Table 8 Here

Taken together the results for the recall game yield two messages. First, even introducing limited

direct competition among suppliers (through the recall stage) can yield great benefits. This echoes

and reinforces the message from the comparison between sequential bargaining and the optimal scoring

auction on the benefit of competition. Second, commitment about allocation decisions is a key issue

and the lack of commitment on this dimension can unravel many of the benefits of competition. Lack

of commitment about qualities, however, appears less problematic.

7 Concluding remarks

In this paper, we have asked how a buyer should optimally structure his buying process when suppliers’

private information is multidimensional and quality is contractible, and how well commonly used

procedures such as scoring auctions and bargaining perform. We have answered the second question by

combining a theoretical analysis of the restrictions that such simpler procedures impose on allocations

with numerical analyses of their performance.

Our main results are that scoring auctions do well and that bargaining does poorly. Our interpretation

of both sets of results, combined with our analysis of how recall changes those results, is that utility

maximization is more about “getting allocation probabilities right” than about distorting qualities.

This is the main reason why scoring auctions do well and bargaining does so poorly. This is also why

the buyer’s loss of commitment regarding allocation in the recall game is more costly than his loss of

commitment regarding qualities.

Because the scoring auction’s “right kind of flexibility in terms of allocation probabilities” and the

generic misallocation of contracts in bargaining are intrinsic features of these procedures and do not
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depend on the number of suppliers, we are confident that the bottom line of our numerical results

extends to more than two suppliers. (Of course, as the number of suppliers goes to infinity, it is

straightforward to show that the expected utility from all procedures converges to the same value,

which is WFB
D - full extraction).

An a priori restrictive assumption in our analysis is the binary structure of private information, and

it is worthwhile to comment on it here. First, we note that the main results concerning the optimal

mechanism (such as the facts that it depends on the number of suppliers, that it involves both produc-

tive and allocative inefficiencies, and that suppliers with the same marginal cost for quality generically

supply different quality levels) are all driven by the endogeneity of the binding incentive compati-

bility constraints. For this reason, we expect them to hold in more general environments. Second,

the generic misallocation in bargaining can only become worse in richer informational environments,

whereas scoring auctions continue to allocate the contract efficiently, conditional on the announced

scoring rule. Thus, under the (reasonable) conjecture that optimal allocation is the first-order issue

in these complex procurement settings, then the dominance of scoring auctions is likely to extend to

these richer environments.

The poor performance of bargaining in our paper is in stark contrast with its popularity among

practitioners in complex procurement settings. This might be due to procurement managers’ intrinsic

preference for procedures over which they have control or to objective factors not modelled in this

paper, such as unknown preferences, non-contractibility, renegotiation, or other moral hazard-type

issues. Those objective factors may provide a rationale for using bargaining over scoring auctions in

complex procurement. Studying their impact on the performance of bargaining is a venue for further

research

Alternatively, what is referred to in common speech as bargaining may incorporate elements of com-

petition between suppliers, however loosely structured this competition may be. If this is true, then

the results from the recall game suggest that even introducing a little competition may dramatically

improve the performance of bargaining-like procedures, perhaps justifying the ubiquity of what is

loosely termed negotiation or bargaining.
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Appendix A

Lemma 1: Consider the feasibility constraints

N
X
k∈K

αkxk ≤ 1− (1−
X
k∈K

αk)
N for all subsets K of {hH, lH, hL, lL}

and define an n-type constraint as a feasibility constraint with the relevant subset K having n elements.

The following statements hold:

i. At most one 1-type constraint binds, at most one 2-type constraint binds and at most one 3-type

constraint binds.

ii. These binding constraints are nested, in the sense that the type in the binding 1-type constraint

must belong to the binding 2-type constraint, and so on.

Proof of Lemma 1: The claim relies on the fact that the function f(t) = tN for N ≥ 2 is strictly
convex. There are two generic cases to rule out: two constraints binding with no type in common,

and two non nested constraints binding with some type in common.

Case 1: No overlap. Suppose, towards a contradiction, that the constraint for lH and the constraint

for {hH, hL} bind. Then, from (4), N (αlHxlH + αhHxhH + αhLxhL) = 2− (1− αlH)
N − (1− αhH −

αhL)
N > 1−(1−αlH−αhH−αhL)N since 1+(1−αlH−αhH−αhL) = (1−αlH)+(1−αhH−αhL) and

(1−αlH) and (1−αhH−αhL) lie in (1−αlH−αhH−αhL, 1). That is, (4) is violated for {lH, hH, hL}.
All cases with no overlap are proved in this way.

Case 2: Some overlap. Suppose, towards a contradiction that the constraint for {lH, hH}, and that
for {hH, hL} is binding. Since (4) holds for hH, this means that

N (αlHxlH + αhHxhH + αhLxhL) ≥ 1− (1− αlH − αhH)
N − (1− αhH − αhL)

N + (1− αhH)
N

> 1− (1− αlH − αhH − αhL)
N by convexity

This contradicts (4) for {lH, hH, hL}. All cases with some overlap are proved in this way.
This proves that binding constraints are nested and that they cannot be more than one constraint of

a type to bind. Q.E.D.

Lemma 3 (Binding constraints in the efficient mechanism): When ∆θ1 > ∆θ2q, IClH,hH ,

IChL,hH and IClL,hL bind in the efficient auction. When ∆θ1 < ∆θ2q IClH,hH , IChL,lH and IClL,hL

bind (see Figure 1).

Proof of Lemma 3: Let Uk,j be the expected utility of a type k pretending she is of type j. To

satisfy incentive compatibility, while minimizing suppliers’ rents, suppliers’ expected utilities must be

set such that Uk = maxj 6=k Uk,j . Let UhH = 0 (we can check ex post that this will satisfy supplier hH’s

incentive compatibility constraints).

Claim 1: UhL = max{UhL,hH , UhL,lH}
Proof of claim 1: We simply need to show that UhL,lL < UhL,hH or UhL,lL < UhL,lH . By definition,

UhL,lL = UlL − xFBlL ∆θ1. If UlL = UlL,hL, we get UhL,lL = UhL + (x
FB
hL − xFBlL )∆θ1 < UhL. If instead,
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UlL = UlL,lH , we have UhL,lL = UlH+x
FB
lH ∆θ2q−xFBlL ∆θ1 < UlH+x

FB
lH ∆θ2q−xFBlH ∆θ1 = UhL,lH ≤ UhL

(we can rule out UlL = UlL,hH since it is dominated for supplier lL).

Claim 2: UlH = UlH,hH = xFBhH∆θ1.

Proof of claim 2: We first show that UlH,hH > UlH,hL. By definition, UlH,hL = UhL+x
FB
hL ∆θ1−xFBhL q∆θ2

where UhL = max{UhL,hH , UhL,lH} by claim 1. We consider each case in turn.

(a) If UhL = UhL,hH , then UlH,hL = xFBhH∆θ2q + xFBhL ∆θ1 − xFBhL q∆θ2 and UlH,hH > UlH,hL if and

only if xFBhL (∆θ1 −∆θ2q) − xFBhH (∆θ1 −∆θ2q) < 0. The first term is negative since, by assumption,

WlH(q) < WhL(q). The second term may be positive or negative, but even when it is negative,

xFBhL (∆θ1 −∆θ2q) < xFBhH (∆θ1 −∆θ2q) < 0 since q > q and xFbhH < xFBhL .

(b) If UhL = UhL,lH , then UlH,hL = UlH − xFBlH (∆θ1 − ∆θ2q) + xFBhL (∆θ1 − ∆θ2q) > UlH because

−xFBlH (∆θ1 −∆θ2q) + xFBhL (∆θ1 −∆θ2q) < 0 by a similar argument as in point (b).
We next show that UlH,hH > UlH,lL = UlL−xFBlL ∆θ2q.When UlL = UlL,lH , UlH,lL = UlH+xFBlH ∆θ2q−
xFBlL ∆θ2q < UlH .When UlL = UlL,hL, UlH,lL = UhL+x

FB
hL ∆θ1−xFBlL ∆θ2q < UlH,hL = UhL+x

FB
hL ∆θ1−

xFBhL ∆θ2q. We conclude that UlH = UlH,hH .

Claim 3: UlL = UlL,hL.

Proof of claim 3: When UhL = UhL,lH , UlL,hL = xFBhL ∆θ1−xFBlH ∆θ1+xFBlH q∆θ2+xFBhH∆θ1 > UlL,lH =

xFBlH q∆θ2+xFBhH∆θ1 since x
FB
hL > xFBlH .When UhL = UhL,hH , UlL,hL = xFBhL ∆θ1+xFBhH q∆θ2. Given that

UlL,lH = xFBlH q∆θ2+xFBhH∆θ1, UlL,hL > UlL,lH if and only if xFBhL ∆θ1−xFBlH ∆θ2q > xFBhH (∆θ1−∆θ2q),
which is automatically satisfied when∆θ1−∆θ2q > 0 (indeed, xFBhL ∆θ1−xFBlH ∆θ2q > xFBlH (∆θ1−∆θ2q)
> xFBhH (∆θ1 −∆θ2q)), the only time when UhL = UhL,hH .

This leads us to:

UlH = UlH,hH = xFBhH∆θ1

UhH = 0

UhL = max{UhL,hH , UhL,lH} = max{xFBhH q∆θ2,−xFBlH (∆θ1 −∆θ2q) + xFBhH∆θ1}
UlL = UlL,hL = xFBhL ∆θ1 + UhL

In practice, this generates two cases depending on the sign of ∆θ1 − ∆2q. When ∆θ1 − ∆2q > 0,

UhL,hH > UhL,lH . When ∆θ1 −∆2q < 0, UhL,lH > UhL,hH . Q.E.D.

Lemma 4: The first order conditions of the Lagrangian of the maximization problem (1) subject to

(2), (3), (4) and (5) are necessary and sufficient for a global maximum.

Proof of Lemma 4: Consider the following change of variables: z1k = xk, z2k = xkqk. Let
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eF (z1k, z2k, Uk) = N
P

k αk(z1kWk(
z2k
z1k
)− Uk). The problem becomes:

max
z1k,z2k,Uk

eF (z1k, z2k, Uk) s.t.

Uk ≥ Uj + z1j(θ1j − θ1k) + z2j(θ2j − θ2k) for all k, j ∈ {hH, lH, hL, lL}
Uk ≥ 0 for all k ∈ {hH, lH, hL, lL}

N
X
k∈K

αkz1k ≤ 1− (1−
X
k∈K

αk)
N for all subsets K of {hH, lH, hL, lL}

N
X

k∈{hH,lH,hL,lL}
αkz1k = 1

The constraints are linear in the control variables so the constraint qualification holds and the ob-

jective function is concave.16 The first order conditions of the resulting Lagrangian are thus neces-

sary and sufficient for a global maximum. To prove that the first order conditions of the original

problem are also necessary and sufficient, we need to check that the first order conditions of the

two problems are equivalent. To see this, let G(xk, qk, Uk) gather all constraint terms of the La-

grangian of the original problem, and let eG(z1k, z2k, Uk) gather the constraint terms of the Lagrangian

of the transformed problem. We must show that (x∗k, q
∗
k, U

∗
k ) solves the first order conditions of

maxxk,qk,Uk F (xk, qk, Uk)+G(xk, qk, Uk) if and only if (x∗k, x
∗
kq
∗
k, U

∗
k ) solves the first order conditions of

maxz1k,z2k,Uk
eF (z1k, z2k, Uk) + eG(z1k, z2k, Uk). The first order conditions with respect to Uk are iden-

tical. The first order condition with respect to qk, Fqk(x
∗
k, q

∗
k, U

∗
k ) + Gqk(x

∗
k, q

∗
k, U

∗
k ) = 0, takes the

form

Nαkx
∗
kW

0
k(q

∗
k)−

X
λlx

∗
k(θ2k − θ2l) = 0

(where λl are the Lagrangian multipliers of the constraints). This is equivalent to the first order

conditions of the transformed problem with respect to z2k,

NαkW
0
k(
z2k
z1k
)−

X
λl(θ2k − θ2l) = 0 (16)

as long as x∗k > 0 for all k, a consequence of the non exclusion condition (5). Finally, the first order

condition with respect to xk, Fxk(x
∗
k, q

∗
k, U

∗
k ) +Gxk(x

∗
k, q

∗
k, U

∗
k ) = 0 takes the form:

NαkWk(q
∗
k)−

X
λl[(θ1k − θ1l) + q∗k(θ2j − θ2l)]−N

X
K st k∈K

γKαk = 0 (17)

The first order condition of the transformed problem takes the form:

NαkWk(
z2k
z1k
)−Nαk

z2k
z1k

W 0
k(
z2k
z1k
)−

X
λl(θ1j − θ1l)−N

X
K st k∈K

γKαk = 0

This is equivalent to (17) as soon as (16) holds. QED

16The hessian is block diagonal with each block given by

⎡⎢⎢⎣
αk

z22k
z3
1k
W 00 −αk z2kz2

1k
W 00 0

−αk z2kz2
1k
W 00 αk

W 00

z1k
0

0 0 0

⎤⎥⎥⎦
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Theorem 2: An allocation can be implemented with a scoring auction if and only if (1) qlH = qhH ,

qhL = qlL with qlH = qhH < qhL = qlL, (2) αlHxlH + αhLxhL = αlHx
FB
lH + αhLx

FB
hL , xhH = xFBhH and

xlL = xFBlL , (3) ∆θ1−∆θ2qhL ≤ 0 when xhL > xminhL and (4) ∆θ1−∆θ2qlH ≥ 0 whenever the allocation
is such that xlH > xFBlH .

Proof of Theorem 2: Let Sk(q) = ev(q)− θ1k − θ2kq.We first prove the necessary conditions. Recall

from the discussion in the main text that, in a scoring auction, suppliers select their offers to maximize

the score they generate, given their profit target, {ev(q) − θi1 − θi2q − π}. The solution only depends
on suppliers’ marginal cost, which establishes condition (1) given that θ2lH = θ2hH > θ2hL = θ2lL.

Condition (2) follows from the fact that lL can always generate a strictly higher score than either lH

and hL for all choices of the scoring rule ev(.). Similarly, both lH and hL can always generate a strictly

higher score than hH so they must win against a hH type.

When xhL > xminhL , ShL(qhL) ≥ SlH(qlH), or else lH should have priority over hL in the allocation.

This implies that

ev(qhL)− θ1 − θ2qhL ≥ ev(qlH)− θ1 − θ2qlH , that is,

∆θ1 −∆θ2qhL ≤ ev(qhL)− ev(qlH)− θ2(qhL − qlH)

In addition, incentive compatibility requires that lH generates a higher score by choosing qlH than

qhL, i.e. ev(qhL)− ev(qlH)− θ2(qhL − qlH) ≤ 0

Combining both inequalities yields condition (3). Similarly, when xlH > xFBlH , SlH(qlH) ≥ ShL(qhL),

else hL should have priority in the allocation. This implies ∆θ1 −∆θ2qlH + θ2(qhL − qlH) + ev(qlH)−ev(qhL) ≥ 0. In addition, hL must be generating a higher score by choosing qhL over qlH , i.e. θ2(qhL −
qlH) + ev(qlH)− ev(qhL) ≤ 0. Combining both inequalities yields condition (4).
To prove sufficiency, we construct a scoring rule that implements the intended allocation in a second-

score auction (in a second-score auction, it is a dominant strategy to submit bids generating scores

Sk(qk) = maxq{ev(q)− θ1k − θ2kq}). Consider

ev(q) = υ(q)1{q≤qlH} + υ(qlH)1{q>qlH} + 1{q≥qhL}

For this scoring auction to implement the outcome, two conditions must be satisfied. First, suppliers

must be choosing the assigned qualities when they maximize their scores. Second, the ranking of the

scores must (weakly) correspond to the assigned ranking of types in the allocation.

Given the shape of this scoring rule, the two relevant choices are qlH and qhL. lH prefers qlH to qhL if

and only if υ(qlH)− θ1− θ2qlH ≥ υ(qlH)+ ε− θ1− θ2qhL i.e. ε ≤ θ2(qhL− qlH) (hH’s preferences yield
the same condition). hL prefers qhL to qlH if and only if υ(qlH)+ε−θ1−θ2qhL ≥ υ(qlH)−θ1−θ2qlH , i.e.
ε ≥ θ2(qhL − qlH) (lL’s preferences yield the same condition). Hence, suppliers choose their assigned

qualities if ε satisfies the following inequalities:

θ2(qhL − qlH) ≤ ε ≤ θ2(qhL − qlH), (18)
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which is possible by condition (1). Next, hL generates a higher score if and only if ShL(qhL) =

υ(qlH) + ε− θ1 − θ2qhL ≥ SlH(qlH) = υ(qlH)− θ1 − θ2qlH i.e.

ε ≥ ∆θ1 − θ2qlH + θ2qhL = ∆θ1 −∆θ2qhL + θ2(qhL − qlH) (19)

lH generates a higher score otherwise. Inequalities (18) and (19) are always compatible if ∆θ1 −
∆θ2qhL ≤ 0 holds. When the solution is such that xlH > xFBlH , we need SlH(qlH) ≥ ShL(qhL) :

ε ≤ ∆θ1 − θ2qlH + θ2qhL = ∆θ1 −∆θ2qlH + θ2(qhL − qlH)

instead. It is compatible with (18) if ∆θ1−∆θ2qlH ≥ 0, which is guaranteed by condition (4). Q.E.D.

Theorem 4: The outcome in the optimal sequential mechanism is a function of the number of remain-
ing suppliers. When only one supplier remains, the outcome is described by (8)-(11). When n > 1

suppliers remain, the outcome is a menu of optimal screening contracts of the form (pnH , q
n
H), (p

n
L, q

n
L)

together with the set of supplier types for whom these contracts are acceptable. This menu of contracts

is the one that yields the largest continuation value among the four described in the following table:

Table 4: Contracts in the optimal sequential procedure

Kn Offers (pnH , q
n
H) and (p

n
L, q

n
L) Vn (continuation value)

lL (θ1+θ2q,q) αlLW
FB
lL +(1− αlL)V n−1

lL,hL (θ1+θ2q,q) (αlL+αhL)W
FB
hL +(αlH+αhH)V n−1

lL,lH,hL If ∆θ1−∆θ2q> 0: (αlL+αhL)W
FB
hL +αlHW

FB
lH

(θ1+θ2q,q) and (θ1+θ2q, q) +αhHVn−1

If ∆θ1−∆θ2q≤ 0:
(θ1+θ2q

∗
H , q

∗
H) and (θ1+θ2q+∆θ2q

∗
H ,q), with (αlL+αhL)(W

FB
hL −∆θ2q∗H)

q∗H=max
n
∆θ1
∆θ2

, argmaxq {v(q)−θ2q− (αlL+αhL)αlH
∆θ2q}

o
αlHWlH(q

∗
H) + αhHVn−1

lL,lH (θ1+θ2q
∗∗
H , q∗H), (θ1+θ2q+∆θ2q

∗∗
H ,q) αlL(W

FB
lL −∆θ2q∗∗H )+

with q∗∗H=argmax {v(q)−θ2q−
αlL
αlH
∆θ2q} αlHWlH(q

∗∗
H ) + (αhL+αhH)V n−1

Solution possible only if ∆θ1−∆θ2q∗∗H≥ 0
(The first column in the table indicates the set of supplier types who will accept the buyer’s offer when n

suppliers remain, and the third column indicates the buyer’s continuation value, Vn).

Proof: In the last period, the result follows from the derivation in the one-buyer one-supplier case. Let
Kn be the set of supplier types for whom the buyer’s offer is acceptable when n suppliers remain. Given

suppliers’ cost structure, Kn ∈ {{lL}, {lL, lH}, {lL, hL}, {lL, lH, hL}, {lH, hH, hL, lL}}. Lemma 6
rules out Kn = {lH, hH, hL, lL}. We examine the optimal outcome for the other three inclusion sets.
By lemma 5, we can restrict attention to outcome of the form (pH , qH), (pL, qL). The optimal outcome

when Kn = {lL} is trivial.
Kn = {hL, lL}: Only one outcome is offered in this case: (θ1 + θ2q, q). It satisfies the IR constraint

of type hL and the IC constraint of type lL. Type lH (and a fortiori type hH) is excluded because

p = θ1 + θ2q < θ1 + θ2q by assumption.
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Kn = {lH, hL, lL}: The optimal direct mechanism solves max(pL,qL),(pH ,qH){(αhL+αlL)(v(qL)−pL)+
αlH(v(qH) − pH)} subject to type lH’s IR constraint, pH − θ1 − θ2qH ≥ 0, type hL’s IR constraint,
pL − θ1 − θ2qL ≥ 0 and the IC constraint that low marginal types don’t select the contract intended
to the high marginal types, pL − θ2qL ≥ pH − θ2qH . Clearly, lH’s IR constraint binds so that the two

remaining constraints can be expressed as:

IRhL : pL ≥ θ1 + θ2qL

IC : pL ≥ θ1 + θ2qL +∆θ2qH

If ∆θ1 −∆θ2q > 0, IRhL binds and IC is slack at the optimum. The buyer’s expected utility is given

by

(αlL + αhL)
¡
v(q)− θ1 − θ2q

¢
+ αlH

¡
v(q)− θ1 − θ2q

¢
If ∆θ1 − ∆θ2q ≤ 0, the IC constraint binds and IRhL may or may not bind depending on whether

q∗H = argmaxqH{(αhL+αlL)(v(q)−θ1−θ2q−∆θ2qH)+αlH(v(qH)−θ1−θ2qH)} satisfies the condition
that ∆θ1 −∆θ2q∗H ≤ 0. The resulting buyer’s expected utility is given by:

(αlL + αhL)
¡
v(q)− θ1 − θ2q −∆θ2q∗H

¢
+ αlH

¡
v(q∗H)− θ1 − θ2q

∗
H

¢
Kn = {lH, lL}: lH’s IR constraint binds, pH = θ1 + θ2qH and lL’s IC constraint binds, pL = θ1 +

θ2qL +∆θ2qH . The optimal direct mechanism solves maxqL,qH{αlH(v(qH)− θ1 − θ2qH)+ αlL(v(qL)−
θ1 − θ2qL −∆θ2qH), thus qL = q and q∗∗H = argmax{v(q) − θ2q − αlL

αlH
∆θ2q} > q∗H . For this solution

to be feasible we need in addition that hL is indeed excluded, i.e. that pL − θ1 − θ2qL ≤ 0, i.e.

∆θ1 −∆θ2q∗∗H ≥ 0. The buyer’s expected utility is given by

αlL
¡
v(q)− θ1 − θ2q −∆θ2q∗∗H

¢
+ αlH

¡
v(q∗∗H )− θ1 − θ2q

∗∗
H

¢
Q.E.D.
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Appendix B: Supporting results for the recall section

Lemma B1: Suppose μihH > 0 and let V (πi) denote the buyer’s expected utility from the recall stage

when μilL + μihL = πi. Then V (πi) is increasing in πi.

Proof : From the derivation in section 5.1.1 and as long as πi ∈ (0, 1), the buyer’s expected utility
from the recall stage is equal to:

V (πi) = argmax
qH

©
(1− πi)

¡
v(qH)− θ1 − θ2qH

¢
+ πi

¡
v(q)− θ1 − θ2q −∆θ2qH

¢ª
By the envelope theorem,

d

dπi
V (πi) = −

¡
v(qH)− θ1 − θ2qH

¢
+
¡
v(q)− θ1 − θ2q −∆θ2qH

¢
= −

¡
v(qH)− θ1 − θ2qH

¢
+
¡
v(q)− θ1 − θ2q

¢
> 0 by the definition of q. QED

Lemma B2: All sequential equilibria of the recall game in which the buyer recalls supplier 2 for
sure on the equilibrium path, yield the same expected utility to the buyer as the optimal sequential

bargaining mechanism.

Proof : In the proof, we take as given that the buyer will recall supplier 2 for sure if supplier 1 and
supplier 2 both reject his offer in stages 1 and 2 respectively and focus on the subgame starting in

stage 2 after a rejection by supplier 1. In the recall stage, sequential rationality requires that the buyer

makes the offers (precallL (π2), qrecallL (π2), (precallH (π2), qrecallH (π2)) where π2 = μlL+μhL correspond to his

updated beliefs about supplier 2. The proof proceeds through three claims.

Claim 1: In stage 2, the IR constraints of the low marginal costs suppliers are the same and the IR
constraints of the high marginal costs suppliers are the same.

Proof of claim 1: Suppose supplier 2 expects that the buyer will have beliefs μ2lL, μ
2
lH ,.... in the

recall stage (and π2 = μ2lL+μ2hL). Thus he expects the buyer to make the offer (p
recall
L (π2), qrecallL (π2)),

(precallH (π2), qrecallH (π2)). The recall stage offer acts as supplier 2’s outside option when he decides whether

to accept the offer in stage 2. Type lH will accept offer (pH , qH) in stage 2 if and only if

pH − θ1 − θ2qH ≥ θ1 + θ2q
recall
H (π2)| {z }

precallH (π2)

− θ1 − θ2q
recall
H (π2)

which yields pH ≥ θ1+ θ2qH as the IR constraint for type lH. Repeating this exercise for type hH we

have:

pH − θ1 − θ2qH ≥ θ1 + θ2q
recall
H (π2)| {z }

precallH (π2)

− θ1 − θ2q
recall
H (π2)

which also simplifies to pH ≥ θ1+θ2qH . This proves that types hH and lH have the same IR constraint.

The proof for the second part of the claim is identical.
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Claim 2: Taking as given that the buyer recalls supplier 2 for sure in the recall stage, there exists a
continuum of sequential equilibria in the subgame starting at stage 2 where the buyer makes the same

offer in stage 2 and in the recall stage. The continuation value at stage 2 in these equilibria is equal

to V1(αhL + αlL), the expected value from the optimal one-buyer one-supplier bargaining mechanism

defined in theorem 3.

Proof of claim 2: Consider the following strategies by the buyer and supplier 2. In stage 2, the buyer
makes the supplier the offers (p2H , q

2
H), (p

2
L, q

2
L) defined in (8)-(11) which correspond to the optimal

take-it-or-leave-it offers that implement the optimal one-buyer one-supplier bargaining mechanism.

In the recall stage, the buyer makes the offers (precallL (π2), qrecallL (π2), (precallH (π2), qrecallH (π2)) where

π2 = μ2lL + μ2hL correspond to his updated beliefs about supplier 2. If supplier 2 prefers the stage 2

offer over the recall stage offer, he accepts the stage 2 offer. He accepts the recall offer if the recall

offer is preferred. If indifferent, the type αk supplier accepts the offer in stage with probability λk such

that (λlLαlL+λhLαhL)
(λlHαlH+λhHαhH)

= αlL+αhL
αlH+αhH

. If all types, when indifferent, accept with certainty, then beliefs are

such that π2 ≥ αlL + αhL. Supplier 2 accepts the offer in the recall stage.

Clearly, supplier 2’s strategy is optimal and so is the buyer’s recall strategy. If supplier 2 sometimes

accept in the recall stage, these strategies lead to identical offers in both stages given the requirement

that (λlLαlL+λhLαhL)
(λlHαlH+λhHαhH)

= αlL+αhL
αlH+αhH

. If all types accept in stage 2, q2H ≥ qrecallH (π2) given the off-the-

equilibrium beliefs π2 ≥ αlL + αhL if λk = 0 for all k. In both cases, the buyer’s expected payoff is

equal to V1 = (αhL + αlL)(v(q)− θ1 − θ2q) +(αlH + αhH)maxq

³
v(q)− θ1 − θ2q − (αhL+αlL)

(αlH+αhH)
q∆θ2

´
.

The final step is to argue that it is optimal in stage 2 for the buyer to offer the one-shot take-it-or-

leave-it offer defined in (8)-(11). This is the case because this offer yields the same expected utility as

the optimal one-buyer one-supplier bargaining mechanism.

Claim 3: There is no other sequential equilibrium in the subgame starting in stage 2.

Proof of claim 3:
By claim 1, the stage 2 offers are either only acceptable to the low marginal cost types, only the high

marginal cost types, to no types or to all types. We consider these cases in turn:

Case 1: Stage 2 offers are acceptable to all types.

Since the optimal offer made by the buyer is unique conditional on the strategies of supplier 2 described

in claim 2, we consider whether other equilibria exist in which supplier 2 mixes differently when

indifferent (yielding π2 6= αlL+αhL) or where off-equilibrium beliefs are such that π2 < αlL+αhL. Let

(ep2H , eq2H), (ep2L, eq2L) denote the stage 2 offers of the buyer in such hypothetical alternate equilibrium.
(i) Equilibria where all types accept in stage 2 and off-equilibrium beliefs are π2 < αlL + αhL :

In such an equilibrium, qrecallH (π2) > qrecallH (αlL + αhL). This recall offer acts as a constraint on

(ep2H , eq2H), (ep2L, eq2L) leading to an expected utility to the buyer equal to (αlL + αhL)(v(q) − θ1 − θ2q)

+ (αlH + αhH)
³
v(qrecallH (π2))− θ1 − θ2q − (αhL+αlL)

(αlH+αhH)
qrecallH (π2)∆θ2

´
< (αhL + αlL)(v(q) − θ1 − θ2q)

+(αlH + αhH)maxq

³
v(q)− θ1 − θ2q − (αhL+αlL)

(αlH+αhH)
q∆θ2

´
. The buyer is better off not offering an ac-

ceptable contract in stage 2 and waiting until the recall stage to offer the optimal one-shot contract
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(note that, by lemma B1, recall when π2 < αlL + αhL implies recall of supplier two in this alternate

strategy since eπ2 = αlL + αhL > π2). Thus, there cannot be such equilibria.

(ii) Equilibria where some types mix in such a way that π2 6= αlL + αhL.

Consider first equilibrium candidates such that π2 > αlL + αhL. Some low marginal cost types must

be rejecting the stage 2 offer to wait for the recall offer and because, by assumption, the stage 2 offer

is acceptable for them, it must be that they are indifferent. Thus qrecallH (π2) = eq2H must hold. Consider
the buyer’s resulting expected utility:

(λlHαlH + λhHαhH)
¡
v(eq2H)− θ1 − θ2eq2H¢

+(λlLαlL + λhLαhL)
¡
v(eq2L)− θ1 − θ2q

2
L −∆θ2eq2H¢

+((1− λlH)αlH + (1− λhH)αhH)
³
v(qrecallH (π2))− θ1 − θ2q

recall
H (π2)

´
+

((1− λlL)αlL + (1− λhL)αhL)
³
v(qL)− θ1 −∆θ2qrecallH (π2)− θ2qL

´
qrecallH (π2) = eq2H is optimal if (λlLαlL+λhLαhL)

(λlHαlH+λhHαhH)
= ((1−λlL)αlL+(1−λhL)αhL)

((1−λlH)αlH+(1−λhH)αhH) or, in other words, if π
2 =

αlL + αhL, a contradiction.

Consider next equilibrium candidates such that π2 < αlL +αhL. If some low marginal cost types wait

until the recall stage then qrecallH (π2) = eq2H must hold and we reach a contradiction as before. If not, so
that π2 = 0, qrecallH (π2) = q and the individual rationality constraint of low marginal cost types require

that eq2H ≥ q. The buyer’s resulting expected utility is strictly less than V1, his expected utility of the

one-shot game if he does not make any offer in stage 2 and makes the optimal one-shot offer in the

recall game.

Case 2: Stage 2 offer only acceptable to the low (or high) marginal cost types.

This class of potential equilibria can be ignored because by case 1 above and claim 2, the buyer can

obtain the same expected utility as the optimal bargaining mechanism by playing according to the

sequential equilibrium strategies described in claim 2.

Case 3: Stage 2 offer not acceptable to any types.

Trivially, the expected utility from making this offer in stage two reaches the bound set by the optimal

bargaining mechanism since the certainty of recall means that the offers made in the recall stage will

be those corresponding to the optimal bargaining mechanism.

This is the final step in establishing lemma 2B. QED
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Table 1: Probabilities of winning and quality levels when ∆θ1 −∆θ2q ≥ 0
Solution Probabilities of Winning qlL qhL qlH qhH

Condition: xFBhH [∆θ1 −∆θ2q2hH ] ≤ xFBlH [∆θ1 −∆θ2q]
1.1.a xk = xFBk q q q q2hH
1.1.b xlL = xFBlL > xlH = xmaxlH > xhL = xminhL > xhH = xFBhH q q q q2hH
1.1.c xlL = xFBlL > xmaxlH ≥ xlH > xhL ≥ xminhL > xhH = xFBhH q q (q2lH , q) (q2hH , q)

1.1.d xlL = xFBlL > xlH = xmaxlH > xminhL = xhL > xhH > xFBhH q q (q2lH , q) (q2hH , q)

1.1.e xlL = xFBlL > xlH > xhL = xhH > xFBhH q q (q2lH , qhH) (q2hH , q)

Condition: xFBhH [∆θ1 −∆θ2q2hH ] > xFBlH [∆θ1 −∆θ2q]
1.2.a* xk = xFBk q q (q2lH , q) (q2hH , q)

1.2.b* xlL = xFBlL > xFBhL > xhL > xlH > xFBlH > xhH = xFBhH q q (q2lH , q) (q2hH , q)

1.2.c* xlL = xFBlL > xFBhL > xhL = xlH > xFBlH > xhH = xFBhH q q (q2lH , q) (q2hH , q)

Other relevant solutions are 1.1.b, 1.1.c, 1.1.d and 1.1.e
Additional conditions as well as exact values for the variables in the individual solutions are available in a separate appen-

dix posted online. Recall, q2hH = argmaxq{WhH(q)−αhL+αlL
αhH

q∆θ2} and q2lH = argmaxq{WlH(q)−αhL+αlL
αlH

q∆θ2}.
The notation (q2lH , q) in the qlH column means qlH∈ (q2lH , q), (similarly for the qhH column).

* Under the condition that ∆θ1−∆θ2q≥ 0 we can tighten the bound on qhH so that qhH ∈ (q2hH , qlH)

Table 2: Probabilities of winning and quality levels when ∆θ1 −∆θ2q < 0
Solution Probabilities of Winning (x’s) qlL qhL qlH qhH

Condition: xFBhH [∆θ1 −∆θ2q] ≥ xFBlH [∆θ1 −∆θ2q2lH ]
2.1.a xk = xFBk q q q2lH q

2.1.b xlL = xFBlL > xFBhL > xhL = xlH > xFBlH > xhH = xFBhH q q q2lH q

2.1.c xlL = xFBlL > xhL = xFBhL > xFBlH > xlH > xhH > xFBhH q q (q2lH , qhH) (q∗hH , q)

2.1.d xlL = xFBlL > xFBhL > xlH = xhL > xFBlH > xhH > xFBhH q q (q2lH , qhH) (q∗hH , q)

2.1.e xlL = xFBlL > xlH > xhL = xhH > xFBhH q q (q2lH , qhH) (q∗hH , q)

Condition: xFBhH [∆θ1 −∆θ2q] < xFBlH [∆θ1 −∆θ2q2lH ]
The relevant solutions are 1.2.a, 1.2.b, 1.2.c, 2.1.c, 2.1.d and 2.1.e
Additional conditions as well as exact expressions for the variables in the individual solutions are available in a separate ap-

pendix posted online. Recall, q2hH = argmaxq{WhH(q)−αhL+αlL
αhH

q∆θ2} and q2lH = argmaxq{WlH(q)−αhL+αlL
αlH

q∆θ2}.
The notation (q2lH , q) in the qlH column means qlH ∈ (q2lH , q), (similarly for the qhH column).
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Figure 1: binding constraints in the efficient auction
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Figure 2: Binding IC constraints at the solution when ∆θ1 −∆θ2q ≥ 0
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Figure 3: Binding IC constraints at the solution when ∆θ1 −∆θ2q < 0
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Probabilities: Pr(lH) = 25, Pr(hH)= 25, Pr(hL)= 25, Pr(lL)= 25
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Table 3: Percentage of the strategic surplus captured by the optimal scoring auction
Probabilities Average Max ∆θ1 at Min ∆θ1 at % of ∆θ1’s such that percentage is:
αlH αhH αhL αlL maximum minimum >80% of opt. mech. < minimum +10%

Core Parameter Values
1 25 25 25 25 82.5 100 0.248 38.9 0.585 74.1 4.5
2 20 30 20 30 87.4 100 0.248 73.9 0.574 86.6 19.4
3 15 35 15 35 90.1 100 0.248 75.6 0.000 97.5 7.0
4 10 40 10 40 82.3 100 0.248 59.3 1.124 56.7 25.8
5 30 20 30 20 76.1 100 0.248 28.4 0.686 62.2 13.4
6 35 15 35 15 68.5 100 0.248 19.1 0.799 52.7 22.4
7 40 10 40 10 60.4 100 0.248 12.7 0.810 45.7 31.8
8 20 20 30 30 81.2 100 0.180 42.3 0.596 68.2 5.0
9 15 15 35 35 79.6 100 0.124 44.9 0.630 47.3 7.0
10 10 10 40 40 78.6 100 0.068 44.2 0.698 40.8 6.5
11 30 30 20 20 83.5 100 0.315 37.2 0.574 74.1 3.5
12 35 35 15 15 83.9 100 0.383 37.6 0.563 75.6 3.5
13 40 40 10 10 83.6 100 0.450 35.8 0.563 60.2 4.5
14 20 30 30 20 77.9 100 0.248 46.5 0.709 44.8 14.9
15 15 35 35 15 77.8 100 0.248 55.8 0.833 41.3 26.9
16 10 40 40 10 82.1 100 0.248 65.0 0.968 45.5 35.6
17 30 20 20 30 89.2 100 0.248 67.0 0.518 83.6 13.4
18 35 15 15 35 94.8 100 0.248 80.9 0.000 100 20.4
19 40 10 10 40 98.0 100 0.248 84.4 0.000 100 8.9

Extensions
20 45 45 5 5 82.6 100 0.506 20.9 0.000 50.2 2.0
21 15 25 30 30 81.7 100 0.153 53.5 0.038 51.2 7.5
22 16 23 41 20 75.2 100 0.180 46.3 0.821 39.3 13.4

Robustness: a = 1
23 25 25 25 25 82.5 100 0.028 38.9 0.065 74.1 4.5
24 15 35 15 35 90.1 100 0.028 75.6 0.000 97.5 7.0
25 35 15 35 15 68.5 100 0.028 19.1 0.088 52.7 22.4

Robustness: b = 0.7
26 25 25 25 25 0.737 100 0.285 0.429 2.078 49.3 24.9

Robustness: ∆θ2 = 2
27 25 25 25 25 0.751 100 0.180 0.409 0.765 53.2 19.9

Robustness: θ1 = 2
28 25 25 25 25 0.827 100 0.248 0.389 0.585 74.6 4.0

Notes: Each experiment sets the probabilities of each type (ordered αlH , αhH , αhL, αlL), then computes the expected
utility for the optimal mechanism, the efficient auction and the optimal scoring auction for 201 values of ∆θ1 covering
the full range of the parameter values allowed by the model.
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Table 4: Contracts in the optimal sequential mechanism
Kn Offers (pnH , q

n
H) and (p

n
L, q

n
L) Vn (continuation value)

lL (θ1+θ2q,q) αlLW
FB
lL +(1− αlL)V n−1

lL,hL (θ1+θ2q,q) (αlL+αhL)W
FB
hL +(αlH+αhH)V n−1

lL,lH,hL If ∆θ1−∆θ2q> 0: (αlL+αhL)W
FB
hL +αlHW

FB
lH

(θ1+θ2q,q) and (θ1+θ2q, q) +αhHVn−1
If ∆θ1−∆θ2q≤ 0:
(θ1+θ2q

∗
H , q

∗
H) and (θ1+θ2q+∆θ2q

∗
H ,q), with (αlL+αhL)(W

FB
hL −∆θ2q∗H)

q∗H=max
n
∆θ1
∆θ2

, argmaxq {v(q)−θ2q− (αlL+αhL)αlH
∆θ2q}

o
αlHWlH(q

∗
H) + αhHVn−1

lL,lH (θ1+θ2q
∗∗
H , q∗H), (θ1+θ2q+∆θ2q

∗∗
1 ,q) αlL(W

FB
lL −∆θ2q∗∗H )+

with q∗∗H =argmax {v(q)−θ2q− αlL
αlH
∆θ2q} αlHWlH(q

∗∗
1 ) + (αhL+αhH)V n−1

Solution possible only if ∆θ1−∆θ2q∗∗H ≥ 0
(The first column in the table indicates the set of supplier types who will accept the buyer’s offer when n suppliers
remain).

Table 5: Virtual welfares and probabilities in the efficient auction, by type
Type Virtual welfares Probabilities

∆θ1−∆θ2q> 0 ∆θ1−∆θ2q< 0 Prk= Nαkx
FB
k

lL : WFB
lL WFB

lL 1− (1− αlL)
2

hL : WFB
hL − αlL

αhL
∆θ1 WFB

hL − αlL
αhL
∆θ1 (1− αlL)

2−(1− αlL−αhL)
2

lH : WFB
lH WFB

lH +αlL+αhL
αlH

∆θ1−αlL+αhL
αlH

∆θ2q (1− αlL−αhL)
2−(1− αlL−αhL−αlH)

2

hH : WFB
hH − αlH

αhH
∆θ1−αhL+αlL

αhH
q WFB

hH −αlH+αhL+αlL
αhH

∆θ1 α2hH
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Table 6: Percentage of the strategic surplus captured by the optimal sequential procedure∗

Probabilities Average Max ∆θ1 Min ∆θ1 % ∆θ1 % ∆θ1
at max at min s.t. >80% s.t. >0%

1 25 25 25 25 -152.7 100 0 -504.4 0.5625 6.9 20.8
2 20 30 20 30 -78.2 100 0 -279.6 0.5625 7.9 23.8
3 15 35 15 35 -7.2 100 0 -83.6 0.5625 7.9 35.6
4 10 40 10 40 55.9 100 0 39.2 0.5625 8.9 100
5 30 20 30 20 -238.7 100 0 -663.9 0.66375 5.9 18.8
6 35 15 35 15 -365.0 100 0 -942.2 0.7875 5.0 15.8
7 40 10 40 10 -591.8 100 0 -1,446.7 0.9 5.0 13.9
8 20 20 30 30 -126.4 100 0 -404.0 0.5625 5.9 22.8
9 15 15 35 35 -107.6 100 0 -356.2 0.5625 5.9 21.8
10 10 10 40 40 -95.5 100 0 -284.4 0.5625 5.0 18.8
11 30 30 20 20 -198.6 100 0 -746.5 0.5625 6.9 18.8
12 35 35 15 15 -280.2 100 0 -1.302.9 0.5625 6.9 14.9
13 40 40 10 10 -394.1 100 0 -1,961.4 0.5625 6.0 9.9
14 20 30 30 20 -147.2 100 0 -384.1 0.66375 7.9 25.7
15 15 35 35 15 -108.2 100 0 -276.6 0.7875 10.9 32.7
16 10 40 40 10 -46.1 100 0 -164.7 0.9 15.8 40.6
17 30 20 20 30 -129.3 100 0 -411.4 0.5625 5.9 16.8
18 35 15 15 35 -93.9 100 0 -244.8 0.5625 5.0 13.9
19 40 10 10 40 -61.4 100 0 -142.0 0.5625 4.0 13.9

∗Each experiment sets the value of the αk’s (ordered αlH , αhH , αhL, αlL) and computes the expected utility from the
optimal mechanism, the optimal sequential auction and the efficient auction for all the values for ∆θ1 allowed by the
model. Each experiment samples 101 equally spaced values for ∆θ1
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Table 7: Percentage of the strategic surplus captured by the buyer in the best equilibrium
of the recall game*

Probabilities Average Max ∆θ1 Min ∆θ1 % ∆θ1 % ∆θ1 % ∆θ1 s.t.
at max at min s.t. >80% s.t. >0% > scoring

1 25 25 25 25 58.7 100 0 21.4 0.3038 6.9 100 16.8
2 20 30 20 30 63.4 100 0 23.7 0.2813 10.9 100 9.9
3 15 35 15 35 63.9 100 0 43.8 0.2588 21.8 100 6.9
4 10 40 10 40 62.6 100 0 45.1 0.6300 14.9 100 7.9
5 30 20 30 20 46.8 100 0 0.4 0.5625 6.9 100 16.8
6 35 15 35 15 26.5 100 0 -109.9 0.5625 5.9 74.3 14.9
7 40 10 40 10 2.4 100 0 -168.0 0.6750 5.9 66.3 9.9
8 20 20 30 30 59.9 100 0 7.7 03488 7.9 100 17.8
9 15 15 35 35 62.8 100 0 11.4 0.4275 9.9 100 20.8
10 10 10 40 40 64.6 100 0 0.0 56.25 17.8 99.0 18.8
11 30 30 20 20 58.3 100 0 38.8 0.2925 6.9 100 15.8
12 35 35 15 15 57.5 100 0 38.5 0.3600 6.9 100 14.9
13 40 40 10 10 57.0 100 0 37.3 0.4163 6.9 100 12.9
14 20 30 30 20 59.6 100 0 27.9 0.3150 9.9 100 21.8
15 15 35 35 15 64.4 100 0 37.6 0.5625 13.9 100 29.7
16 10 40 40 10 73.0 100 0 48.3 0.5625 30.7 100 38.6
17 30 20 20 30 60.1 100 0 18.3 0.2813 5.9 100 13.9
18 35 15 15 35 62.5 100 0 14.8 0.2588 20.8 100 3.0
19 40 10 10 40 65.1 100 0 10.2 0.2363 27.7 100 3.0

∗Each experiment sets the value of the αk’s (ordered αlH , αhH , αhL, αlL) and computes the expected utility from the
optimal mechanism, the best equilibrium of the game with recall and the efficient auction for all the values for ∆θ1
allowed by the model. Each experiment samples 101 equally spaced values for ∆θ1.
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Table 8: Performance of the least favorable equilibria in the recall game*
Probabilities % of ∆θ1 Conditional on multiple equilibria:

w/ multiple % of ∆θ1 s.t. utility Mean difference: Max difference:
equilibria < efficient mech. best and worst** best and worst

1 25 25 25 25 12.9 7.7 15.1 26.8
2 20 30 20 30 0.0 - - -
3 15 35 15 35 44.6 77.8 70.1 116.2
4 10 40 10 40 34.7 0.0 16.2 27.4
5 30 20 30 20 21.8 31.8 30.0 66.5
6 35 15 35 15 37.6 68.4 53.8 125.7
7 40 10 40 10 56.4 80.7 111.7 209.8
8 20 20 30 30 0.0 - - -
9 15 15 35 35 17.8 100.0 141.8 163.7
10 10 10 40 40 49.5 100.0 196.2 352.5
11 30 30 20 20 16.8 17.6 26.2 64.5
12 35 35 15 15 24.8 28.0 38.8 111.5
13 40 40 10 10 32.7 57.6 64.4 197.0
14 20 30 30 20 6.9 0.0 4.6 8.0
15 15 35 35 15 0.0 - - -
16 10 40 40 10 0.0 - - -
17 30 20 20 30 16.8 29.4 23.3 46.5
18 35 15 15 35 17.8 50.0 37.0 69.7
19 40 10 10 40 17.8 61.1 55.4 99.1

∗Each experiment sets the value of the αk’s (ordered αlH , αhH , αhL, αlL) and computes the expected utility from the
optimal mechanism, the optimal sequential auction and the efficient auction for all the values for ∆θ1 allowed by the
model. Each experiment samples 101 equally spaced values for ∆θ1. ∗∗ “Mean difference: best and worst” describes the
difference in the percentage of strategic surplus captured by the best and worst equilibrium of the recall game. The mean
is over values of ∆θ1 conditional on the existence of multiple equilibria.
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