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Abstract

We propose an empirical method to analyze data from first-price procurements

where bidders are asymmetric in their risk-aversion (CRRA) coefficients and distri-

butions of private costs. Our Bayesian approach evaluates the likelihood by solving

type-symmetric equilibria using the boundary-value method and integrates out un-

observed heterogeneity through data augmentation. We study a new dataset from

Russian government procurements focusing on the category of printing papers. We

find that there is no unobserved heterogeneity (presumably because the job is routine),

but bidders are highly asymmetric in their cost and risk-aversion. Our counterfactual

study shows that choosing a type-specific cost-minimizing reserve price marginally re-

duces the procurement cost; however, inviting one more bidder substantially reduces

the cost, by at least 5.5%. Furthermore, incorrectly imposing risk-neutrality would

severely mislead inference and policy recommendations, but the bias from imposing

homogeneity in risk-aversion is small.
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1 Introduction

This paper proposes a Bayesian method to analyze data from first-price (sealed-bid) procure-

ments (FPP) with bidder-asymmetry in cost and risk-aversion. In particular, we consider a

theoretical model of FPP with exogenous entry and type-symmetric Bayesian Nash Equilib-

rium bidding strategies. Here, a type of bidder refers to a pair of cost density and constant

relative risk-aversion (CRRA) coefficient. For this setting, Campo (2012) identifies the model

primitive (cost densities and CRRA coefficients) and proposes an indirect semiparametric

estimation method. The empirical literature, however, has seldom considered asymmetry in

both cost and risk-aversion. We, therefore, have limited empirical insights on the effects of

asymmetric risk-aversion on procurement outcomes.

The main contribution of this paper is to develop a novel empirical procedure that pro-

duces reliable inference for asymmetric FPPs by combining and extending several state-of-

the-art methods in the literature. First, the procedure explores the posterior distribution

over the space of the model primitive by a Markov chain Monte Carlo (MCMC) algorithm

(Kim, 2015). Second, we model the (procurement-specific) unobserved heterogeneity as ad-

ditional latent components that are distributed jointly with the model primitive under the

posterior so that we can integrate out the latent components via MCMC. This strategy to

get around the difficulty of handling missing variables is known as data augmentation, which

Li and Zheng (2009) and Aryal, Grundl, Kim, and Zhu (2018), among others, use to study

auction markets. Third, we extend the boundary-value method of Fibich and Gavish (2011)

to compute the type-symmetric equilibrium strategies for risk-averse bidders in FPPs and use

it in our MCMC algorithm. Note that the literature has often used the backward-shooting

method of Marshall, Meurer, Richard, and Stromquist (1994) to compute asymmetric bid-

ding strategies, which is, however, shown to be inherently unstable near the boundary of the

support; see Fibich and Gavish (2011). The boundary-value method is reliable everywhere

and, therefore, is more suitable for evaluating likelihoods and conducting policy simulations.

In addition, our Bayesian method provides a natural framework for formal decision-
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making under parameter uncertainty. In particular, we consider the policymaker who wishes

to choose a reserve price to minimize the (expected) procurement cost when there is un-

certainty about the model primitives. Our decision method computes the procurement cost

under a model primitive at a given, possibly type-specific, reserve price, which to our knowl-

edge is the first in the empirical auction literature; see Kotowski (2018) for theoretical

developments on this topic. For this step, we further extend the algorithm of Fibich and

Gavish (2011) to accommodate binding reserve prices and evaluate the procurement cost by

simulating equilibrium bids. The decision method then integrates out the model primitive

by the posterior, resulting in the (posterior) predictive procurement cost at the said reserve

price. Finally, our method selects a reserve price that gives the smallest predictive cost.

This solution is also coherent under the rationality axioms for a decision-maker in Savage

(1954) and Anscombe and Aumann (1963). See also Kim (2013), Aryal and Kim (2013),

Kim (2015), and Aryal, Grundl, Kim, and Zhu (2018) for applications of statistical decision

theory in empirical auction design problems. This paper is the first to conduct such detailed

counterfactual simulations for FPPs with asymmetric costs and risk-aversion.

Using our empirical method, we study a new dataset with FPPs from Russian public pro-

curements conducted in 2014. (Charankevich (2021) investigates a sample of “open auctions”

in the Russian procurements, which is different from the sample of FPPs that we analyze

here.) In Russia, all government units purchase a wide range of goods and services through

public procurements, which accounts for 7% of Russian GDP in 2014. Since the economic

transition beginning in the 1990s, Russia has been revising the procurement system through

several legislative changes and technological innovations to establish transparent competition

among the suppliers to reduce the government expenditure. It is, therefore, critical for the

policymaker to learn the economic fundamentals of the procurement system and evaluate

alternative policy options for further improvements. We illustrate how the policymaker can

achieve the goals applying our method to the data.

The Russian procurement system practices several allocation methods and selects one of
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them, e.g., FPP or “open auctions,” depending on the nature of the project and according to

the relevant federal laws. For example, small projects (reserve price below P500,000) must

use an FPP. In total, there are 102 different categories in FPPs based on different goods

and services. The categories are separate, each with its own market and a different set of

suppliers. We choose one category to analyze by applying a set of selection criteria mostly

concerning the sample size. We divide bidders into three types: type 1 (frequent) bidders

bid in at least 10% of the procurements and type 3 (fringe) bidders only once, and type

2 are the remainders. Among the four categories complying with our selection criteria, we

choose to analyze the category of “printing papers,” as it has the largest sample with 411

procurements. In the “printing papers” category, 1, 171, and 402 unique bidders are of types

1, 2, and 3, and we observe a total of 58, 625, and 402 bids, respectively.

On average, type 1 bidder bids lower than type 2, and type 2 lower than type 3. The

differences in bids may arise because of differences in costs or risk-aversion. The posterior

of the model parameters (model primitive) reveals that the ordering of risk-aversion is the

opposite of the observed bid pattern. In particular, the CRRA coefficient of type 1 (frequent)

bidder is roughly 0.2, whereas the coefficients of type 2 and 3 bidders are respectively 0.8

and 0.9. But, the predictive cost densities suggest that type 1 bidder tends to draw smaller

costs than type 2, and type 2 smaller than type 3. Therefore, the difference between the

cost densities is substantial enough to explain the bid pattern, despite the reversely ordered

risk-aversion. Our analysis also finds no variation in the unobserved heterogeneity, which is

consistent with the job of supplying papers being routine.

Our estimates of the model parameters are coherent with our findings in the counterfac-

tual policy analysis. All bidders, except the most frequent bidder, exhibit high risk-aversion.

So, the policymaker should prefer FPP to second-price procurements (SPP) (Holt, 1980)

and choose a large reserve price in an FPP (Hu, Matthews, and Zou, 2010). In particular,

we find that when a single reserve price is used for all bidders, the current mechanism is

cost-minimizing. Recall also that when bidders are asymmetric, choosing a single reserve
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price would be suboptimal. Although there is no closed-form expression for the reserve prices

as in Myerson (1981) due to risk-aversion, our method allows evaluating the procurement

costs at different type-specific reserve prices. It recommends lowering the reserve price for

type 1 by 4% from the current reserve price, but leaving other types’ prices unchanged. In

that case, however, our method predicts a cost reduction only of 0.2%, suggesting that the

current mechanism is effectively cost-minimizing.

In addition, we consider a scenario where the policymaker may invite an additional bidder

in the spirit of Bulow and Klemperer (1996). For symmetric FPPs, the article implies that

an FPP without a reserve price generates lower expected costs than optimally chosen reserve

price but with one less bidder. We find that this insight holds in our context with bidders

who are asymmetric in both cost densities and risk-aversion. In particular, adding one

bidder of type 1, 2, and 3 reduces the predictive procurement cost by 6.2%, 5.8%, and 5.5%,

respectively. Thus, even one additional fringe bidder substantially lowers the cost.

Moreover, we investigate the implications on the procurement cost and efficiency of incor-

rectly assuming either risk neutrality or an identical CRRA parameter for all bidders. When

one ignores risk-aversion, small bids in the data inflate the left tail of the cost densities, which

then tilts cost-minimizing reserve prices toward zero. As a result, the misspecified model

selects a small reserve price, predicting 14.0% of cost-reduction. But, this result is mislead-

ing because the model with asymmetric CRRAs predicts a 15.2% of increase in the cost

at that price. The misspecified model predicts that the efficient bidder wins with 33.2% of

probability, whereas the model with asymmetric CRRAs predicts that the probability would

be 6.0%. We find that the model with a common CRRA overall approximates our analysis

with asymmetric CRRAs, except for overestimating type 1 bidder’s CRRA coefficient.

Nevertheless, one should not conclude that the model with identical risk-aversion always

approximates the model with asymmetric risk-aversion because the approximation quality

may depend on the model primitive, a priori unknown to the researcher. Our method with

asymmetric CRRAs is not computationally more expensive than the model with a common
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CRRA. Therefore, there is no reason to impose homogeneity in CRRA coefficients. Finally,

our analysis is robust to alternative definitions of bidder types, the prior over the parameter

that indexes the cost densities, and the density specification of unobserved heterogeneity.

The paper proceeds as follows. Section 2 describes our model and its identification. Sec-

tions 3 and 4 present our data and econometric method, respectively. Section 5 discusses the

empirical results and counterfactual analysis. Section 6 concludes with feasible extensions.

The detailed information about data, computational detail, and additional results are in

Supplementary Appendix (Aryal, Charankevich, Jeong, and Kim, 2022a).

2 Model and Identification

Consider a procurement that allocates a project to one of the bidders in the set I with

|I| ≥ 2. Bidders submit their bids simultaneously, and the one with the lowest bid wins the

project at a price equal to her bid, which we refer to as the first-price procurement (FPP).

Let bidder i’s cost be ci, which follows the distribution Fi(·) and is independent of other

bidders’ costs. We make the following assumptions on the cost distributions.

Assumption 1. Bidder i’s cost distribution Fi(·) has a density fi(·) > 0 on the support

[c, c] ⊂ R+, and for two different bidders i 6= j it can be that Fi(c) 6= Fj(c) for some c.

In addition, bidder i exhibits constant relative risk-aversion (CRRA) with coefficient, ηi.

Assumption 2. Bidder i’s utility function is given by Ui(ξ) = ξ1−ηi for consumption ξ ≥ 0

with the parameter ηi ∈ [0, 1), and it can be that ηi 6= ηj if i 6= j.

The CRRA specification has been widely used due to its convenient functional form in the

auction literature, e.g., Bajari and Hortaçsu (2005), Lu and Perrigne (2008), Campo, Guerre,

Perrigne, and Vuong (2011), and Aryal, Grundl, Kim, and Zhu (2018). Such convenience

also allows the boundary-value method of Fibich and Gavish (2011) to accommodate bidder-

specific risk-aversion in this paper, and one may compare the coefficients with previous

estimates due to its prevalence.
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If bidder i wins the procurement at price bi, her utility is (bi− ci)1−ηi under Assumption

2. While the realizations of costs are bidders’ private information, cost distributions and

risk-aversion parameters, {Fi(·), ηi : i ∈ I}, are assumed to be common knowledge. Bidder i

with cost ci chooses bi to maximize her expected utility given everyone else’s bidding strategy.

Suppose all bidders other than bidder i use strictly increasing equilibrium bidding strategies

{βj(·|I) : j 6= i, j ∈ I}. Then bidder i solves

max
b̃i∈R+

{
(b̃i − ci)1−ηi

∏
j∈I\{i}

(1− Fj(β−1j (b̃i|I)))
}
.

Define φj(b|I) := β−1j (b|I), the inverse bidding strategy of bidder j. Then, the optimal bid

bi must satisfy the condition,

1− ηi = (bi − ci)
∑

j∈I\{i}

fj(φj(bi|I))

1− Fj(φj(bi|I))

1

φ′j(φj(bi|I)|I)
, (1)

for all i ∈ I, implying a system of differential equations, which can be numerically solved

with the boundary conditions φi(c|I) = c and φi(bI |I) = c for all i ∈ I.

Since bI = βi(c|I) is unknown, the standard algorithm to solve (1), known as backward-

shooting, starts with a guess of bI and adjusts its guess at each iteration (Marshall, Meurer,

Richard, and Stromquist, 1994). Fibich and Gavish (2011), however, show that the backward-

shooting algorithm is inherently unstable near the boundary and propose the boundary-value

method to overcome the problem. We use their boundary-value method in our empirical

method, where {φj(·|I)} have to be evaluated at data points, including the ones near the

boundary.

Identification. Campo (2012) uses the exogenous variation in the bidder configuration

I to identify the parameters of interest. For completeness, we present the core intuition of

the identification strategy in Campo (2012). Since {φi : i ∈ I} are strictly increasing, the
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bid distribution of bidder i ∈ I is Gi(b|I) = Fi(φi(b|I)). Then, we can rewrite (1) as

ci = bi −
1− ηi∑

j∈I\{i}
gj(bi|I)

1−Gj(bi|I)

, (2)

where gi(·|I) is the density of Gi(·|I). Note that (2) in a procurement with I = {1, 2} gives

bI −
1− η2
g1(bI |I)

= c = bI −
1− η1
g2(bI |I)

,

which gives g1(bI |I)η1−g2(bI |I)η2 = g1(bI |I)−g2(bI |I). Then, the exogenous variation in I

is sufficient for identification. For example, if we observe FPPs with I1 = {1, 2}, I2 = {1, 3},

and I3 = {2, 3}, we identify the CRRA coefficients as


η1

η2

η3

 =


g1(bI1|I1) −g2(bI1|I1) 0

g1(bI2|I2) 0 −g3(bI2|I2)

0 g2(bI3|I3) −g3(bI3|I3)


−1

g1(bI1|I1)− g2(bI1 |I1)

g1(bI2|I2)− g3(bI2 |I2)

g2(bI3|I3)− g3(bI3 |I3)

 ,

where the right-hand side depends only on the bid densities that are directly identified from

the data. Then, by substituting ητ in (2), we identify the cost distributions.

Unobserved Heterogeneity. Bidders may observe some aspects of the project that affect

their costs (and hence their bids), which the researcher does not observe. Let u ∈ R+ denote

such unobserved characteristics.

Assumption 3. 1. ut
i.i.d∼ Fu with density fu > 0 on the support [u, u] ∈ R+ with a

location normalization, e.g., u is known.

2. In procurement t, ut is independent of bidder’s private cost, i.e., ut ⊥ cit, for all bidders.

3. The final cost for bidder i with cit in procurement t is given by coit := ut × cit.

Let F o
i be the distribution of coi for bidder i ∈ I and {βoi : i ∈ I} be the associated bidding

strategies with the unobserved heterogeneity, ut. For cit ∈ [c, c] and ut ∈ [u, u], βoi (utcit|I) =
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ut × βi(cit|I), where βi(c|I) is bidder i’s equilibrium bidding strategy when ut = 1; see Liu

and Luo (2017).

The identification argument combines Campo (2012) with Kotlarski (1966) as in Li and

Vuong (1998) and Krasnokutskaya (2011). We formalize this result below; see its proof in

section S2 of the Supplemental Appendix (S for the appendix, hereafter).

Lemma 1. Under Assumptions 1–3, {Fi, ηi : i ∈ I} and Fu are identified by the data of all

submitted bids {(bit)i∈It} and bidder configurations {It} if every bidder i exogenously enters

the procurement with a strictly positive probability (so, It varies exogenously).

3 Russian Government Procurement

This section describes the institutional background of the government procurements in Rus-

sia, presents the dataset we analyze, and discusses the implications of the reserve price on

our analysis in sections 4 and 5. In particular, the background description here identifies

a few cases where observed bids might not be competitive and justifies the data we study

as equilibrium outcomes after excluding those suspicious cases. It also motivates us to take

cost-minimization as the primary policy objective in counterfactual analysis.

3.1 Institutional Background

All government bodies and public units in Russia purchase goods and services through

government procurements. Examples of potential buyers include federal public authorities,

regional governments, city councils, public hospitals, and schools. Hundreds of goods and

services, e.g., car tires, hardcover textbooks, road maintenance, and printing papers, are

traded via the official platform, “Unified Information System (UIS: zakupki.gov.ru).” (We

use quotation marks to indicate field terms in their closest English translation. Moreover,

procurement here is a general term referring to procuring something unless it comes with a

technical qualifier, e.g., first-price procurement.) The public procurements are economically
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significant; according to the UIS, concluded contracts in 2014 add up to 5.47 trillion RUB

(≈7% of Russian GDP, statistical.com).

Since the economic transition beginning in the 1990s, Russia has been revising the pro-

curement system through several changes in legislation and modernizing it via technical

innovations. Those reforms aim to reduce government spending and improve outcomes by

creating a competitive environment for suppliers; especially by encouraging suppliers’ par-

ticipation as well as eliminating corruption between government agents and suppliers. In

particular, Federal Law No. 94-FZ (21 July 2005) laid a foundation for the current form

of the system. The Law introduced the concept of “maximum (or initial contract) prices”

and prohibited “closed procurements,” i.e., a negotiation inviting a single supplier, except

for special cases such as projects involving state secrets.

Before the Law (94-FZ), the government agent overseeing the procurements had consid-

erable freedom to choose a supplier and set a price. Therefore, the agent (buyer) could set

a high price and select an “insider” (a supplier in collusion) to carry out the project at a

cost lower than the price and share the margin. The legislation mandates that a “maximum

price” must be chosen in such a way that participation of general suppliers is encouraged for

“healthy competition,” and the price can still be justifiable given the nature of the project,

market conditions, and historical data. For example, a buyer should be able to purchase

comparable goods and services at the “maximum price” outside the procurement system.

(The UIS provides protocols and official methods for setting a “maximum price” to handle

different situations.) Section 3.3 below discusses the implications of “maximum price” for

our analysis.

For projects with a “maximum price” above P100,000 (≈$2,600), the procurer must

select a supplier through a competitive procedure. The “maximum price” is then publicly

announced, and any legal entity can participate with no entrance fee. The announcement

should be placed at least four business days before the closing date if the “maximum price”

is below P250,000 (and seven days if above) to prevent buyers from selecting an “insider”
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by setting a tight deadline.

In addition, to improve transparency, by Federal Law No. 44-FZ (1 January 2014),

the UIS publicly announces forthcoming procurements and maintains all procurement data,

e.g., participants’ identities, their offers, and the winner for every procurement, and the UIS

provides a platform to run a procurement. The system practices several allocation methods,

including negotiation and contest, and one of them is “sealed-bid auction” in the field term.

When the latter is implemented, bidders submit their initial documents in a sealed envelope

(or online, but rarely in 2014). In the presence of all participants, then, each bidder makes

a final decision on her bid and, finally, the procurer opens all the bids (Federal Law No.

44-FZ, article 78 of paragraph 3). Note that the procurer, here, is a government agency

running procurements on behalf of buyers, other government agents. The lowest bidder wins

at a price equal to her bid, if not higher than the “maximum price.” The mechanism is,

therefore, the first-price procurement (FPP), where bidders know whom they oppose, and

the “maximum price” plays the role of a reserve price in FPPs.

FPPs are used for cases with a “maximum price” below P500,000, i.e., small projects.

But, the penalty for a supplier in corruption, e.g., “insider,” is P500,000 plus a full reim-

bursement of expenses. The supplier is also publicly marked as “unreliable” for two years.

In addition, the fine for the government agent in corruption is P50,000 with a three-year job

suspension.

Despite all the legal devices to eliminate corruption, a buyer can still invite an “insider”

only. For example, a buyer could deliberately make a typographical error, e.g., replacing

a Cyrillic letter with a similar Latin letter in keywords. Then, only the insider can easily

search for it in the system. Therefore, the cases with only one bidder can be suspicious.

Even when multiple bidders appear in a procurement, there can be corruption. For example,

the agent could invite shill bidders who submit bids with no chance of winning, e.g., bidding

higher than the reserve price. Alternatively, the agent may manipulate submitted bids to

increase the winning probability of the insider. Charankevich (2021) reports evidence of
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bid manipulation by exploring procurement outcomes and non-reported (or missing) bids

in “open auctions,” which can be viewed as an oral-descending procurement. Considering

all these, in our analysis, we exclude observations with only one bidder, bids above reserve

prices, or missing bids to avoid those suspicious cases.

3.2 Data: category “printing papers”

The procurements with FPPs provide an ideal setting to study asymmetry in both cost

densities and risk-aversion for the following reasons. First, bid data from FPPs allow us to

identify the risk-aversion parameters. Second, FPPs are less prone to collusion among the

bidders than oral-descending procurements because bidders do not observe other bidders’

behavior (Robinson, 1985). Third, since FPPs are used for projects with small budgets,

they may attract small firms that are likely to be risk-averse (Herranz, Krasa, and Villamil,

2015). Indeed, the test of Jun and Zincenko (2022) rejects risk-neutrality in favor of risk-

aversion (p-value < 0.0001) for each symmetric FPPs, i.e., type 2 bidders only and type 3

bidders only with types defined below.

Finally, projects with small budgets are homogeneous and frequent, i.e., the bid prepa-

ration cost would be minimal, and the jobs are routine. To this end, we fail to reject the

independence of any two randomly selected bids in the same FPP (p-value > 0.1) via the

test used by Krasnokutskaya (2011) with 1,000 bootstrapped samples. For these reasons,

the procurement-specific unobserved heterogeneity might not be substantial, which section

5 shall confirm from the data.

The UIS provides data on 42,828 FPPs in 2014 across 102 categories of different goods

and services; see section S3.1 for the list of the categories and some statistics. We consider

each category as an independent set of procurements because they are separated by industries

with different sets of suppliers. Now, we explain how we select a category to analyze; see also

section S3.1. In each category, first, we rule out all procurements with one bidder because

they are vulnerable to corruption (section 3.1) and are not even bidding competition. We
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then exclude procurements with missing bids, which may arise due to bid manipulation

(Charankevich, 2021). We also discard the procurements with bids larger than reserve prices

because those bids could be shill bids as discussed or could signal that the reserve prices are

set too low, violating the UIS protocols to select a reserve price.

After excluding these three cases, we group bidders into three types: in each category,

type 1 bidders bid in at least ten percent of the FPPs, type 3 bidders bid once, and type 2

bidders are all the others. We define the bidder types by the participation rate because it

is the only exogenous bidder-specific attribute in the data, besides their identities. (Section

5.3 considers alternative definitions.) Since the identification strategy relies on the variation

in the bid for each type and bidder configuration, we sort out categories with at least 50

bids for each type to estimate the type-specific parameters. Four categories satisfy this

condition. Among them, we analyze the one with the largest sample, which is the category

of “printing papers” with T = 411 procurements. (In the previous version of this paper,

Aryal, Charankevich, Jeong, and Kim (2020) study the four categories separately, where the

other ones have 228, 235, and 305 procurements.)

The category “printing papers” refers to white A4 paper for printing, copying, and faxing.

A typical order specifies A4 white papers in packs of 500 sheets. The paper can vary from

“regular white” of 92-94% (ISO) to “premium white” above 98% (ISO). A standard contract

includes the delivery term that can range from 5 to 30 days and provision for the fulfillment

of incomplete orders and replacement or exchange of damaged goods within 3 to 10 days

after delivery. As mentioned above, any government unit can purchase the products, and

any legal entity that can supply papers may bid in this category.

Now, we document some descriptive statistics of the data from the “printing papers”

category. This category initially has 536 FPPs. Among them, we exclude 114 for having

only one bid, three for missing bids, and eight for bids above the reserve price. Among the

eight bids, five (three) were submitted by bidders who bid once (twice). No bidder repeats

bidding above the reserve price, and no one wins with such a bid. In the sample of 411

13



Figure 1: Bid Data, ‘printing paper’

Panel (a) shows the number of entrants (◦) for the ten frequent bidders and their numbers of wins (×).
Panels (b) to (f) present bid histograms for different numbers of bidders and (g) to (i) for different types of
bidders. All bids are divided by reserve prices. Panels (b) to (i) show the number and [average, standard
deviation] of bids, and (b) to (f) counts bids with the proportion for each type in ( ). At the 1% level, the
KS test rejects the homogeneity in bid distributions between (b) and any of (c) ∼ (f), between (c) and (d),
and for all pairs in {(g),(h),(i)}.

(= 536 − (114 + 3 + 8)) procurements, we have one type 1 bidder who bids 58 times, 171

type 2 bidders with 625 bids, and 402 type 3 bidders. The second and third frequent bidders

appear 33 and 14 times in the data. To assess how the type definition affects our analysis,

in section 5.3 we change the definition of type 1 to include the second frequent bidder and

then to also include the third frequent bidder. The entrance rate dramatically drops only

for the first a few bidders; see the circles in Figure 1(a), suggesting that those bidders may

differ from other bidders, i.e., asymmetry in model primitives. Section 5.3 also considers

alternative type definitions based on how often each bidder wins; see the crosses in Figure

1(a).
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Figure 1(b) shows the histogram of bids from procurements with two bidders. It has

474 bids and (25, 260, 189) of them, i.e., (5, 55, 40)%, are submitted by type (1, 2, 3) bidders,

respectively. The sample mean and standard deviation of the bids are 0.93 and 0.08. Panels

(c)∼(f) similarly show the bid data for procurements with 3 to 6 bidders.

Recall that bidders know their competitors when bidding; see section 3.1. In the data,

bidders appear to use the information on the competition. The bid distributions vary with

the number of bidders, and there is a tendency that the average bid decreases in the number

of bidders. We conduct the Kolmogorov-Smirnov (KS) test against the hypothesis that two

marginal bid distributions are identical. The p values are close to zero for all pairs involving

the two bidder case (b) and for the pair of three bidder case (c) and four bidder case (d),

rejecting the hypothesis of identical distributions. That is, we have some evidence that

bidders appear to behave differently according to the competition level; section S3.2 gives

more evidence. As the number of bidders grows, however, the bid distributions get harder

to distinguish statistically. That might be because the bid weakly converges to the cost with

the competition level. The number of bidders also gets noisier in measuring the competition

because the bidder configuration becomes more variable when bidders are asymmetric.

On average, type 3 bidders bid higher than type 2 and type 2 higher than type 1 (panels

(g)∼(i)). (For any pair of two types, the p-value of the KS test is close to zero.) This pattern

arises if type τ is either more efficient or more risk-averse than type τ + 1. But, the cause of

the pattern cannot be detected by reduced form analysis, motivating a structural approach.

Figure 2 shows the bid histograms for symmetric procurements with only type 2 (3)

bidders in the upper (lower) panels. Note that there is no symmetric procurements with

type 1 bidder, as there is one type 1 bidder. The left and middle panels are for 2 and 3

bidder procurements and the right ones for the rest in the data. As discussed there, we

conduct the KS test and get additional evidence that bidders’ behavior depends on the

competition level, especially for the cases with sufficiently large bid samples.

Although we have excluded the procurements with bids above reserve prices, the high
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Figure 2: Bid Data, Symmetric Procurements, ‘printing paper’

For types 2 (upper) and 3 (lower), the left/middle/right panel shows the histogram of bid data from symmetric
procurements with 2/3/4+ bidders. All bids are divided by reserve prices. Each panel shows the number of
bids and their [average, standard deviation]. For each type [For each number of bidders], the KS test rejects
the distributional homogeneity against the alternative that the bid with the larger number of [of type 2]
bidders is first-order stochastically dominated at the 5% level except for the pair of (b) and (c) [(c) and (f)].

density near the reserve price may still seemingly suggest the presence of shill bids (no

winning chance). According to the data, however, the bid of 0.99 gives a 14% chance of

winning. Hence, the high density does not indicate shill bids. It is, instead, plausible that

bidders’ optimal bids are actually near the reserve price because the reserve price has to be

justifiable as a market price as discussed in section 3.1; see also section 3.3.

Finally, a group of suppliers may collude (not necessarily involving the government agent)

to submit noncompetitive bids. Empirical methods to detect a bidding ring require bidders to

be risk-neutral and a suspicious group of bidders to bid together in many procurements; see

Schurter (2020) and references therein. It is infeasible to study a bidding ring using our data

because even if the currently available methods may extend for risk-aversion, the dropping
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entrance rate in Figure 1(a) does not leave us any group of bidders jointly appearing in

sufficiently many procurements. In particular, among 45 pairs of top ten frequent bidders,

only eight have ever bid in the same procurements, but rarely: type 1 bidder met the

(2, 4, 6, 7, 9)th frequent bidders (5, 1, 1, 7, 4) times, respectively, and the 2nd and 6th bidders

met twice, the 3rd and 5th bidders three times, and the 5th and 10th bidders five times.

3.3 Reserve Price

Recall that the reserve price is set sufficiently high to encourage suppliers’ participation and

yet still justifiable as a market price to purchase comparable goods and services outside

the procurement system. This description has three important implications on our analysis

in the following sections. First, the procurement system does not use the reserve price to

deter any bidder from entering, which alone might validate the reserve price as non-binding.

Second, the description of the reserve price also implies that if a supplier incurred a cost

higher than the reserve price, the cost is too high for the supplier to operate in the market,

even outside the procurements. Hence, we do not consider such an inefficient supplier as a

potential bidder in the procurement, and section 4 specifies the cost densities to have their

support below the current reserve price, i.e., the latter is nonbinding. Third, in our policy

simulations, when no bidder can bid below the counterfactual reserve price, we assume that

the procurer carries out the job at the current reserve price; see section 5.2.

4 Inference Method

A set It of bidders who can beat the reserve price is exogenously given for each procurement

t ∈ {1, . . . , T}. Bidder i ∈ It with type τ(i) ∈ {1, . . . , τ} has the CRRA coefficient ητ(i) and

draws her cost cit from the cost distribution Fτ(i)(·) with density fτ(i)(·) independently of

other bidders. The cost density is strictly positive on [0, 1], corresponding to the bid data

normalized by the reserve price. Let f := {fτ (·) : τ ∈ {1, . . . , τ}}, η := {ητ : τ ∈ {1, . . . , τ}},
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and θ := (f, η). Let βτ(i)(·|θ, It) be the bidding strategy when ut = 1. That is, bidder i bids

bit = βτ(i)(cit|θ, It) ∈ [b(θ, It), 1], where b(θ, It) := βτ(i)(0|θ, It) for all i ∈ It. When ut 6= 1,

bidder i observes her cost utcit ∈ ut× [0, 1] = [0, ut] and bid bit = utβτ(i)(cit|θ, It), which lies

in [utb(θ, It), ut]. We model u1, . . . , ut
iid∼ fu(·) with the support of [u, 1] and u > 0. Note that

ut ≤ 1 reflects the institutional feature that the reserve price does not exclude any bidder.

For estimation, we specify the cost density as

fτ (c) := f(c|ψτ ) :=

{
0.01 + 0.99× exp [φ(c)′ψτ ]∫ 1

0
exp [φ(c̃)′ψτ ] dc̃

}
× 1(c ∈ [0, 1]), (3)

where ψτ ∈ Rk is the vector of parameters and φ(·) is the vector of the k subsequent

Legendre polynomials, defined on [0, 1]. Specifically, the j-th entry in φ(·) is given as φj(c) :=

√
2j + 1 × φ̃j(2u − 1), where φ̃j(x) := dj

dxj
(x2 − 1)j/(2jj!). The uniform component in (3)

with the small weight (0.01) ensures the density is strictly bounded away from zero.

Note that φj has j − 1 extrema; see section S4 for graphs of φj(·) for some js. As k

increases, the density of fτ (c) defined in (3) can approximate more complicated densities,

i.e., the ones with many inflection points. Believing that the true cost densities are smooth,

we put a smaller prior probability on larger j by the prior πψτ (ψτ ) =
∏k

j=1 πj(ψj,τ ) with

ψj,τ ∼ N (0, (2−j)2) for all j ∈ {1, . . . , k}. Since the prior variance of ψj decreases in j, ψj

gets close to zero as j increases, squeezing out the contribution of higher order components.

Hence, cost densities with oscillations are less likely under our prior. Note that (3) is the

uniform density at the prior mean of ψτ .

For the unobserved heterogeneity, we specify fu(·) such that it implies

ut
i.i.d∼ N (1, σ2

u)× 1(ut ∈ [u(σu), 1]), (4)

where the lower bound u(σu) := 1− cu×σu with cu such that Pr(|N (0, 1)| ≤ cu) = 0.99, and

the upper bound is set to 1 because the reserve price is non-binding, larger than the upper

bound of the cost. To ensure that ut is sufficiently larger than zero, we restrict u(σu) ≥ 0.1.
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This restriction implies the upper bound of σu, i.e., σu ≤ σu := (1 − 0.1)/cu. We then use

the uniform prior πσu(σu) ∝ 1(0, σu). For the CRRA parameter, ητ , we use a uniform prior

πη(ητ ) ∝ 1(0, 0.9), which excludes values near 1 to ensure that our computation does not

fail due to the flat utility function, i.e., u(x) = x1−η → 1 as η → 1. We collect the priors by

π(θ, σu) :=
∏τ

τ=1 πψτ (ψτ )πσu(σu)πη(ητ ), where θ := {θτ}ττ=1 with θτ := (ψτ , ητ ) and τ = 3.

Conditional on (ut, θ), the bid bit in procurement t has the density

gτ(i)(bit|ut, θ, It) :=
1

ut
×

f [β−1τ(i)(bit/ut|θ, It)|ψτ(i)]
β′τ(i)[β

−1
τ(i)(bit/ut|θ, It)|θ, It]

× 1(bit/ut ∈ [b(θ, It), 1]), (5)

for which we need to evaluate β−1τ(i). To do so, section S5 modifies the boundary-value

method to accommodate bidders with CRRA utility in FPPs, which Fibich and Gavish

(2011) originally propose for risk-neutral bidders in high-bid auctions.

Then, the posterior density of the latent variables is given as

π(θ, σu, (ut)
T
t=1|z) ∝ π(θ, σu)

T∏
t=1

{
fu(ut|σu)

∏
i∈It

gτ(i)(bit|ut, θ, It)

}
,

where z := ((bit)i∈It , It)Tt=1, including bids and bidder configurations in the dataset. Once

we have the posterior of the structural parameter θ, we are mostly interested in the posterior

moments of important functions of θ. For a measurable function h(θ), its rth posterior

moment is E[h(θ)r|z] :=
∫
h(θ)rπ(θ|z)dθ. The posterior mean (r = 1) is often presented

along with some uncertainty notions such as the posterior standard deviation, for which

r = 2 is also used. To evaluate the moments we first draws θ(1), . . . , θ(M) ∼ πθ(θ|z) by a

standard Markov chain Monte Carlo (MCMC) algorithm; see section S6. Then, we evaluate

the moments by the MCMC draws, i.e., M−1∑M
m=1 h(θ(m))r

a.s−→ E[h(θ)r|z].

We conclude this section with a summary of section S7 that evaluates the performance

of our method using simulated data. We consider three types of bidders, each with a dif-

ferent cost density and CRRA parameter, in FPPs with a substantial variation of bidder

configurations: A ∈ {(11), (111), (22), (222), (33), (333), (12), (13), (23), (123)}. We consider
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two cases: one with a substantial variation in the unobserved heterogeneity, σu > 0, and

the other with no variation σu = 0. For each case, we consider two different sample sizes,

T̃A ∈ {20, 100} for all As. Using those bid data we find that the MCMC traces are stable

and converge quickly, and parameters are accurately estimated. As desired, the posterior of

quantities of interests, such as fτ (·|θ) and fu(·|σ2
u), becomes more precise around the true

values, whether σu > 0 or σu = 0, as the sample size increases.

5 Inference and Counterfactual Results

This section first summarizes the posterior distribution of the parameters of the model

with asymmetric risk-aversion, and discusses the bias from two model misspecifications:

imposing symmetric risk-aversion or ignoring risk-aversion altogether. Then, the section

predicts procurement costs under counterfactual scenarios, and also quantifies the impacts

of model misspecification in terms of procurement costs. Finally, the section concludes with

some sensitivity analysis.

5.1 Posterior Inference

Asymmetric Risk-Aversion. We sample (θ, σu) from the posterior using the data dis-

cussed in section 3, allowing for bidder asymmetry in cost density and risk-aversion. The top

block of Table 1 shows the posterior mean, standard deviation, and a 95% credible interval

(2.5 and 97.5 percentiles) for each CRRA coefficient ητ for τ ∈ {1, 2, 3} and σu.

The estimates suggest that risk-aversion varies across the three types. Type 1 (most

frequent) bidder is the least risk-averse, and type 3 (one-time) bidders are the most risk-

averse. The posterior of η1 has a considerable variation, and its mean is substantially smaller

than the ones of η2 and η3. The distribution of η2 also differs from the one of η3, where

the latter is more precise and (slightly) larger. Formally, the p values of KS test are all

close to zero, rejecting the hypothesis that ητ and ητ̃ follow the identical marginal posterior
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Table 1: Posterior Distributions of CRRA Coefficients and UH Parameters

Posterior Posterior Posterior p-value of KS test
Mean St. Dev. 95% Cred. Int. η1 η2 η3

(1) (2) (3) (4) (5) (6)
Heterogeneous CRRA η1 0.196 0.165 [0.005, 0.596] 0.000 0.000

η2 0.828 0.043 [0.729, 0.893] 0.000
η3 0.891 0.009 [0.867, 0.900]
σu 0.000 0.000 [0.000, 0.000]

Homogeneous CRRA η 0.889 0.009 [0.865, 0.900] 0.000 0.000 0.000
σu 0.000 0.000 [0.000, 0.000]

No CRRA σu 0.066 0.001 [0.064,0.068]

The table shows the posterior distributions of CRRA parameters and the parameter of the distribution of the
unobserved heterogeneity by their posterior means (1), standard deviations (2), and posterior 95% credible
intervals (3). The columns (4) to (6) report the p-values of the KS test against the hypothesis that the two
CRRA coefficients are drawn from the same (posterior) distribution.

distributions for τ 6= τ̃ . Section S8 discusses the use of KS test in Bayesian analysis.

In addition, there is no unobserved heterogeneity, σu ≈ 0, which is consistent with

supplying A4 papers being routine. If present, any measurable variation in the unobserved

heterogeneity should have led to a non-degenerate posterior of ut, even if the parametric

assumption in (4) was incorrect. Section 5.3 also obtains a degenerate posterior of ut with a

more flexible density of ut.

The top panels in Figure 3 show, for each type τ ∈ {1, 2, 3}, the posterior mean of the

cost density (3) at every point c ∈ [0, 1] by a solid line and a 95% credible band around

the predictive density by dotted lines. Bidders are asymmetric in the cost densities. Type

1 (frequent) bidder is more efficient in supplying papers than the other bidders, with type

3 (one-time) bidders being the least efficient. This prediction, especially for types 2 and 3,

is precise, as indicated by the tight credible bands. Moreover, by the KS test, we reject the

hypothesis that the posterior predictive cost distributions are identical for each pair of types;

the relevant p-values are all close to zero. Note that we apply the KS test to cost samples

drawn from the predictive cost densities; see section S8.
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Figure 3: Posterior Predictive Cost Densities

The upper block shows the posterior predictive cost density (solid) and 95% credible band (dotted) for each
type. The middle and lower repeat the exercise by imposing homogeneity in risk-aversion and imposing no
risk-aversion, respectively. The dashed lines are the predictive densities pasted from the upper block.

Homogeneous Risk-Aversion. We analyze the data again but imposing η = ητ for all

τ ∈ {1, 2, 3}. The middle block of Table 1 summarizes the posterior distribution of η, which

precisely predicts that all bidders are highly risk-averse. Note that we reject the hypothesis

that the posterior distribution of the constrained η is identical to the posterior of ητ from

the upper block (heterogeneous CRRA) for each τ ∈ {1, 2, 3}. For this constrained model,

there is no unobserved heterogeneity σu ≈ 0 as with asymmetric risk-aversion above. The

middle panels of Figure 3 show the posterior predictive densities (solid) and 95% credible

bands (dotted), where the dashed lines copy the predictive densities from the upper block for

comparison. Imposing homogeneity in risk-aversion generates a slightly different predictive

cost density for type 1 bidder, but the other types remain the same. The KS test with the

5% level rejects the hypothesis that the predictive cost distribution remains the same under
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the constraint for type 1 bidders.

Risk-Neutrality. We repeat the exercise but restricting ητ = 0 for all τ . Table 1 and

Figure 3 (bottom) suggest that this misspecification induces an overestimation of unobserved

heterogeneity and substantial bias in predicting cost densities; the more risk-averse, the larger

the bias. Once we impose risk-neutrality, smaller bids in our sample must be justified by

other model components, causing the bias pattern as we observe. For all τ ∈ {1, 2, 3}, the

KS test rejects, by p-value ≈ 0, the hypothesis that the cost under ητ = 0 follows the same

predictive distribution as the cost without the constraint.

5.2 Counterfactual Analysis

Russia has constantly been updating the procurement system mainly to reduce government

spending, as we mentioned in section 3.1. We, therefore, evaluate counterfactual scenarios by

predictive procurement costs and investigate implications of misspecified risk-aversion. We

also compute predictive costs and efficiency at other relevant policy options for comparison.

Decision Theoretic Approach. Since we study the policymaker’s decision problem, we

use a statistical decision-theoretic approach; see Berger (1985) for a survey. Note that Kim

(2013) introduces the approach for empirical auction design and Aryal and Kim (2013), Kim

(2015), and Aryal, Grundl, Kim, and Zhu (2018) use or extend for different contexts.

If the policymaker knows θ, he can choose an action ρ ∈ A, e.g., a reserve price, to min-

imize the (expected) procurement cost Λ(ρ, θ). Let ρ∗(θ) := arg minρ∈A Λ(ρ, θ). Choosing

ρ∗(θ) is infeasible, however, as θ is uncertain. The posterior π(θ|z) represents the policy-

maker’s uncertainty about θ, combining his prior and the sample z. Thus, he should choose

ρB(z) := arg min
ρ∈A

{∫
Λ(ρ, θ)π(θ|z)dθ = E[Λ(ρ, θ)|z]

}
. (6)

This is the idea of the Bayesian decision theory and it is similar to the usual expected utility
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theory. Choosing ρB(z), known as a Bayes action, is rational under the axioms of Savage

(1954) and Anscombe and Aumann (1963). A decision rule that maps every data z to ρB(z)

is optimal under a frequentist perspective (Bayes risk principle).

This approach formally considers the structure of the procurement cost and uncertainty

and, therefore, it may incur smaller procurement costs than a ‘plug-in’ method. Since θ

is unknown, the policymaker would choose some ρ 6= ρ∗(θ) in practice. Consider a cost

function that drops sharply before ρ∗(θ) and slowly increases after ρ∗(θ). For this cost

structure, the policymaker must prefer ρlarge > ρ∗(θ) to ρsmall < ρ∗(θ) for the same error,

i.e., ρlarge − ρ∗(θ) = ρ∗(θ) − ρsmall. Especially, if the cost is (almost) flat after ρ∗(θ), then,

ρmax = maxA is (almost) equivalent to ρ∗(θ). The extent to which the policymaker prefers

a large action must depend on the cost structure and amount of uncertainty. For example,

if there is no uncertainty about θ, he would pick ρ∗(θ) regardless of the cost structure.

Alternatively, if the cost is flat after ρ∗(θ) for all θ as in the case with a large number

of bidders, he would choose ρmax. Solution (6) formalizes the idea of making a decision

considering the cost structure and uncertainty. On the other hand, the plug-in approach,

which is first popularized in empirical auctions by Paarsch (1997), chooses ρ∗(θ̂(z)). That

is, the plug-in approach regards the estimate θ̂(z) as the true parameter in the decision

problem, meaning that it ignores parameter uncertainty and the shape of the cost function

(other than the fact that ρ∗(θ) is a minimizer of Λ(ρ, θ).)

After formalizing uncertainty by the data z and maintained assumptions (model and

prior), ρB(z) is certainly the best action. So, no uncertainty notion comes with ρB(z).

Specifically, a credible interval represents uncertainty associated with θ, but ρB(z) is the

action after integrating out θ by π(θ|z). We instead provide a credible interval of procurement

cost at ρB(z) or other notable actions, which is natural because the cost is the outcome of

interest and is still uncertain at ρB(z). This is, however, different from the convention to

construct a confidence interval around the plug-in estimate ρ∗(θ̂(z)) to consider the variation

in random data z in repeated sampling. The confidence interval is designed for testing a
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hypothesis like ρ∗ = 0, which is a decision problem different from the policymaker’s problem.

We explain in section S9 our algorithm to evaluate the predictive procurement cost,

E[Λ(ρ, θ)|z], which integrates out θ and I, respectively, by the posterior and the empirical

distribution of I, considering (stochastic) refinements of I due to binding reserve prices.

Common Reserve Prices. We consider a situation where the policymaker wishes to

choose one reserve price and apply it to all bidders regardless of their types, i.e., ρ1 = ρ2 = ρ3.

Figure 4(a) shows E[Λ(ρ, θ)|z] as a function of ρ (solid line) and its 95 percent credible band

(dashed lines), i.e., the 2.5 and 97.5 percentiles of Λ(ρ, θ) under the posterior at every ρ in

the figure. The three dotted lines show the posterior predictive cost and its credible band if

the policymaker implements the second-price procurements (SPP). When bidders are risk-

averse, bidders bid more aggressively in an FPP than in an SPP. In particular, the figure

shows that the FPP with ρc = (1, 1, 1) results in lower costs than the SPP with the cost-

minimizing reserve price. Panels (b) and (c) show the predictive costs under the models with

homogeneous risk-aversion and no risk-aversion, respectively. When bidders are modeled to

be risk-averse, the predictive cost is minimized at ρc whether or not risk-aversion is type-

specific. When risk-aversion is ignored, however, the method recommends a much smaller

reserve price. This result follows from the fact that the cost densities in Figure 3 (bottom)

falsely predict a large probability of small costs, especially for type 2 and 3 bidders, while

these bidders would draw high costs more likely, Figure 3 (top).

The first block (common ρ) in Table S7 documents that the predictive procurement cost

is 0.843 with a 95% credible interval of [0.835, 0.850] at the cost-minimizing reserve price

ρCB(z) := ρc, where the superscript C indicates that the Bayes action is selected under the

restriction of common reserve price. The table also shows that the efficient bidder wins the

procurement with a 99.2% chance at ρCB(z). This prediction is similar even when risk-aversion

is restricted to be homogeneous. Table S7 also shows that the model with risk-neutrality

selects ρC,RNB (z) := (0.19, 0.19, 0.19) and predicts that the procurement cost would be 0.729
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Figure 4: Counterfactual Analysis, Common Reserve Price

Each panel shows the predictive procurement cost at each reserve price ρ (solid line) along with its 95%
credible band (dashed) for the models with heterogeneous risk-aversion, homogeneous risk-aversion, and no
risk-aversion. Panel (a) also shows the predictive cost under the second-price procurement (dotted).

at ρC,RNB (z), where the superscript RN is for risk-neutrality. That is, this misspecified

model predicts 14.0% ≈ |0.729 − 0.848| ÷ 0.848 of cost-reduction at ρC,RNB (z), where 0.848

is the predictive cost at ρc; see the third block (for comparison) in Table S7. However,

this prediction is misleading: the model with asymmetric CRRAs predicts the procurement

cost of 0.971 at ρC,RNB (z), increasing the cost by 15.2% ≈ |0.971 − 0.843| ÷ 0.843. At

ρC,RNB (z), moreover, the model under risk-neutrality also predicts that the efficient bidder

would win with a 33.2% of chance, but the chance of allocation is only 3.6% under the

model with asymmetric CRRAs. That is, if one ignores risk-aversion, the proposed policy

will substantially increase the procurement cost, and most procurements will fail to find a

supplier.

Type-Specific Reserve Prices. Now, we consider the policymaker who can select type-

specific reserve prices. The second block (type-specific ρ) in Table S7 shows that the model

with asymmetric risk-aversion recommends ρTB(z) = (0.96, 1.00, 1.00), which may screen out

type 1 (most frequent) bidder and this solution, ρTB(z), results in the predictive cost of 0.841,

where the superscript T indicates that the Bayes action is type-specific. But, the cost saving

is marginal relative to the current cost of 0.843 at ρc = (1, 1, 1), suggesting that the predictive

cost is flat in ρ1 around 0.96 near one for (ρ2, ρ3) = (1, 1) and, therefore, any ρ1 near one

26



Table 2: Counterfactual Analysis

Cost Min. Predictive Prob. that Prob. of
Reserve Price Procurement Cost Lowest Wins Transaction, if 6= 1

(1) (2) (3) (4)
Common ρ
Heterogeneous CRRA (1.00, 1.00, 1.00) 0.843 [0.835, 0.850] 0.992 [0.989, 0.996]

Homogenous CRRA (1.00, 1.00, 1.00) 0.845 [0.837, 0.852] 0.994 [0.993, 0.996]
No Risk-Averson (0.19, 0.19, 0.19) 0.729 [0.708, 0.754] 0.332 [0.301, 0.358] 0.333 [0.303, 0.359]

Type-Specific ρ
Heterogeneous CRRA (0.96, 1.00, 1.00) 0.841 [0.834, 0.849] 0.991 [0.989, 0.995]

Homogenous CRRA (1.00, 1.00, 1.00)
No Risk-Averson (0.75, 0.20, 0.20) 0.722 [0.703, 0.747] 0.368 [0.335, 0.392] 0.376 [0.344, 0.401]

For Comparison
Heterogeneous CRRA (0.19, 0.19, 0.19) 0.971 [0.952, 0.987] 0.036 [0.016, 0.059] 0.036 [0.016, 0.059]
Heterogeneous CRRA (0.75, 0.20, 0.20) 0.965 [0.944, 0.980] 0.060 [0.037, 0.087] 0.063 [0.040, 0.091]

No Risk Aversion (1.00, 1.00, 1.00) 0.848 [0.843, 0.851] 0.985 [0.982, 0.988]

Additional Bidder
Type 1 Bidder 0.791 [0.775, 0.804] 0.988 [0.981, 0.996]
Type 2 Bidder 0.794 [0.782, 0.805] 0.996 [0.994, 0.998]
Type 3 Bidder 0.797 [0.784, 0.811] 0.996 [0.993, 0.997]

Column (1) shows the Bayes action, i.e., cost-minimizing reserve price, and columns (2) to (4) show predictive
outcome variables along with 95% credible intervals: the procurement cost, the probability that the bidder
with the lowest cost wins, and the probability that at least one bidder has a cost below the (or her own)
reserve price. Column (4) shows the predictive probabilities only when the prediction is different from one.

would be practically cost-equivalent.

When risk-aversion is restricted to be homogeneous, the method still chooses ρc. However,

ignoring risk-aversion introduces a large bias: the method selects ρT,RNB (z) = (0.75, 0.20, 0.20)

at which it predicts the procurement cost of 0.722 (14.9% ≈ |0.722− 0.848| ÷ 0.848 of cost-

saving), but the model with heterogeneous risk-aversion predicts the cost of 0.965 at ρT,RNB (z)

(14.5% ≈ |0.965− 0.843| ÷ 0.843 of cost increase). Although efficiency is by assumption not

of the first order interest for the policymaker, the efficiency measures predicted with risk-

neutrality are also severely biased: the model with heterogeneous risk-aversion predicts that

roughly 94% of procurements would fail to find a supplier through the mechanism.
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Cost Reduction from Inviting an Additional Bidder. Finally, we consider the case

in which the buyer can invite one additional (genuine) bidder. Bulow and Klemperer (1996)

show that inviting an additional bidder would improve the seller’s revenue more than choosing

a revenue maximizing reserve price in a standard symmetric auction with risk-neutral bidders.

But, it is unclear whether this finding would hold in our asymmetric model with risk-averse

bidders.

We evaluate the predictive procurement cost at ρc using the posterior with the model

where bidders are heterogeneous in risk-aversion. When the buyer invites a type 1 bidder,

i.e., type 1 bidder is added to all bidder configurations I, our method predicts the cost of

0.791 with a 95% credible interval of [0.775, 0.804]. The predictive procurement cost in this

case is 6.2% (≈ |0.791 − 0.843| ÷ 0.843) smaller than the predictive cost at ρc, the first

row in Table S7, with non-overlapping credible intervals. We have similar results when the

procurer invites a bidder from other types. When the procurer invites one additional type 2

(3) bidder, the predictive cost would be 0.794 (0.797), which is a 5.8 (5.5)% of cost reduction,

with a 95% credible interval of [0.782, 0.805] (of [0.784, 0.811]).

Note that even if a fringe bidder (type 3) is invited, this bidder will lower the procure-

ment cost more than selecting the cost-minimizing reserve price. Hence, we find that the

insight of Bulow and Klemperer (1996) holds for the “printing papers” category of Russian

procurements where bidders are asymmetric in both cost density and risk-aversion.

5.3 Sensitivity Analysis

This subsection examines how sensitive our empirical findings are to the definition of bidder

types and prior specifications. In this subsection, the main specification refers to the one with

heterogeneous risk-aversion outlined in section 4, which gives the estimates in the top block

of Table 1. We then consider six alternative specifications. The first (second) specification

classifies the two (three) most frequent bidders as a type 1 bidder. Recall that the most

(second-most) frequent bidder appears in the data 58 (33) times, but the frequency does not
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change much starting from the third frequent bidder, who appears 14 times; see Figure 1(a).

The type definitions here suggest that bidders’ entry depends on model primitives such

as risk-aversion and cost density. To avoid resorting to any entry model, however, one might

want to alternatively define the types, e.g., by how often they win. In our data, the two most

frequent entrants are also the most frequent (42 and 19 times) winners. Thus, the analysis

remains the same even if one defines type 1 bidder based on the winning rate for the first two

bidders. However, the fourth entrant is the third (8 times) winner. The third specification,

3 Type 1 Bidders (win), defines type 1 bidders as the three most frequent winners. The

winning rate does not drop after that; see Figure 1(a).

The prior variance of ψ of the fourth (fifth) specification is four times smaller (larger)

than the main specification; see the cost density (3) where we introduce ψ. The last one

adopts a more flexible density for the unobserved heterogeneity {ut}. Extending (4), we

specify ut
i.i.d∼ N (µu, σ

2
u) × 1(ut ∈ [u, 1]), where σu > 0, u > 0, and µu ∈ [u, 1) so that the

distribution of unobserved heterogeneity is indexed by a three-dimensional parameter vector

(µu, σu, u). Recall that the main specification indexes fu by a one-dimensional parameter σu

with the restriction of (µu, u) = (1, 1− cu× σu); see (4). Note that we use a flat prior for all

the other parameters such as σu and (η1, η2, η3) in the main specification.

All the six alternative specifications produce predictive cost densities close to the ones

under the main specification; see section S10.1. We test the hypothesis that the predictive

distribution of type 1 bidder’s cost remains the same when we change the definition of type

1 bidder to include the second frequent bidder: Table 3 reports that the associated p-value

is 0.425, and we fail to reject the hypothesis at any conventional level. Similarly, we conduct

the hypothesis testing for other types. Then, we repeat it for the other specifications. In all

cases, we fail to reject the hypothesis that the predictive cost distribution remains the same.

We also consider the predictive distribution of the unobserved heterogeneity {ut}. The

KS test strongly rejects, with p values close to zero, the hypothesis that the predictive

distribution of {u} under the main specification is the same as the distribution under the
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Table 3: Sensitivity Analysis on Latent Variables

Cost {cτ}, type τ = 1, 2, 3 Unobserved Heterogeneity {ut}
KS test, p values KS test Predictive Distribution

Specifications Type 1 Type 2 Type 3 p value mean (stdev) [95% CI]
(1) (2) (3) (4) (5)

(0) Main NA NA 1.000 (0.000) [0.999,1.000]
(1) 2 Type 1 Bidders 0.425 1.000 1.000 0.000 1.000 (0.000) [0.999,1.000]
(2) 3 Type 1 Bidders 0.258 0.999 0.999 0.000 1.000 (0.000) [1.000,1.000]
(3) 3 Type 1 Bidders (wins) 0.194 0.679 0.952 0.000 1.000 (0.000) [1.000,1.000]
(4) Small Prior V (ψ) 0.105 0.789 0.716 0.000 1.000 (0.000) [0.999,1.000]
(5) Large Prior V (ψ) 0.307 0.999 0.952 0.000 1.000 (0.000) [0.999,1.000]
(6) Alternative fu(·) 0.988 1.000 0.988 0.000 1.000 (0.000) [1.000,1.000]

Columns (1) to (3) show the p-values of the KS test against the hypothesis that the predictive cost distribution
remains the same under the alternative specifications (within each type). Column (4) does similarly for the
distribution of the unobserved heterogeneity. Column (5) summarizes the posterior of ut.

alternative specification for each of the six cases; see column (4) of Table 3. The specifica-

tions, however, unanimously predict that {ut} is practically degenerate at one: its mean and

standard deviation are approximately one and zero; see column (5) of Table 3. This is an

example to show that a statistically significant difference can be economically meaningless.

Table 4 summarizes the posterior of the type-specific CRRA coefficients, ητ for τ ∈

{1, 2, 3}. Including the second frequent bidder in type 1 does not change the prediction on

η1, but the third bidder, when classified as type 1, inflates the prediction on η1. However,

that should be natural if the third bidder is similar to type 2 bidders as suggested by the

entrance rate (Figure 1(a)) because type 2 bidders are highly risk-averse. Similarly, the

specification defining the three most winning bidders as type 1 bidder predicts a high η1,

which should also be natural because type 1 bidder includes the fourth frequent entrant, who

is a type 2 bidder with a high risk aversion under the main specification.

The stronger prior on ψ shrinks the prediction on η1 toward zero, but the weaker prior on

{ut} does not substantially change the prediction. The prediction on (η2, η3) is more robust

than η1 because the bid samples of those types are 7 to 10 times larger than type 1. Overall,

all the specifications give qualitatively the same prediction on (η1, η2, η3): type 1 bidders are

the least risk-averse, and the other bidders are highly risk-averse with η2 < η3. Note that
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Table 4: Sensitivity Analysis on Posterior of CRRA Coefficients

Posterior mean (standard deviation) [95% credible interval]
Specifications η1 η2 η3
Main 0.196 (0.165) [0.005,0.596] 0.828 (0.043) [0.729,0.893] 0.891 (0.009) [0.867,0.900]
2 Type 1 Bidders 0.196 (0.152) [0.007,0.548] 0.819 (0.042) [0.736,0.888] 0.891 (0.008) [0.872,0.900]
3 Type 1 Bidders 0.350 (0.176) [0.029,0.692] 0.817 (0.042) [0.725,0.886] 0.892 (0.008) [0.870,0.900]
3 Type 1 Bidders (wins) 0.597 (0.127) [0.331,0.823] 0.865 (0.032) [0.779,0.899] 0.888 (0.012) [0.856,0.900]
Small Prior V (ψ) 0.141 (0.118) [0.005,0.443] 0.798 (0.043) [0.704,0.869] 0.890 (0.010) [0.863,0.900]
Large Prior V (ψ) 0.242 (0.197) [0.006,0.720] 0.842 (0.043) [0.740,0.898] 0.891 (0.008) [0.870,0.900]
Alternative fu(·) 0.202 (0.162) [0.008,0.585] 0.819 (0.041) [0.727,0.887] 0.890 (0.010) [0.858,0.900]

Each column shows the posterior mean of ητ , standard deviation in ( ), and a 95% credible interval in [ ].

the KS test rejects, at any conventional level, the hypothesis that the posterior of ητ under

the main specification equals the posterior of ητ under the alternative specification for each

of the six cases.

However, the statistically significant differences in the posterior distributions of ητ be-

tween the specifications would not be large enough to induce an economically significant

impact on the policymaker’s decision problem. When the policymaker applies a common

reserve price to all bidders, our decision method selects the current reserve price as the cost-

minimizing price under all the specifications, giving similar predictions on the procurement

cost and the likelihood of the lowest bidder winning the procurement; see the upper block of

Table 5. When the policymaker can choose bidder-specific reserve prices, our method selects

different reserve prices for type 1 depending on the specification. As we discussed in the pre-

vious subsection, the predictive cost with the main specification is practically the same for

ρ1 near one at (ρ2, ρ3) = (1, 1). All the alternative specifications produce similar predictive

costs as a function of ρ1 given (ρ2, ρ3) = (1, 1). That is, the method could select any price

ρ1 near one, especially when the cost functions are evaluated by Monte Carlo, but all giving

similar predictions on the outcome variables of interest; see the lower block of Table 5. All

the specifications predict that the current mechanism is effectively cost-minimizing. Finally,

we repeat the counterfactual analysis of inviting one additional bidder for each alternative

specification and obtain predictions on the outcome variables of interest that are similar to
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Table 5: Sensitivity Analysis on Counterfactual Studies

Cost Min. Predictive Probability that
Reserve Price Procurement Cost Lowest Cost Bidder Wins

(1) (2) (3)
Common ρ:
Main Spec (1.00,1.00,1.00) 0.843 (0.004) [0.835, 0.850] 0.992 (0.002) [0.989, 0.996]
2 Type 1 Bidders (1.00,1.00,1.00) 0.843 (0.004) [0.836, 0.850] 0.991 (0.002) [0.988, 0.995]
3 Type 1 Bidders (1.00,1.00,1.00) 0.843 (0.004) [0.836, 0.850] 0.992 (0.002) [0.989, 0.996]
3 Type 1 Bidders (wins) (1.00,1.00,1.00) 0.842 (0.004) [0.834, 0.849] 0.994 (0.002) [0.991, 0.997]
Small Prior V (ψ) (1.00,1.00,1.00) 0.840 (0.004) [0.832, 0.848] 0.992 (0.001) [0.989, 0.994]
Large Prior V (ψ) (1.00,1.00,1.00) 0.844 (0.004) [0.837, 0.850] 0.992 (0.002) [0.989, 0.996]
Alternative fu(·) (1.00,1.00,1.00) 0.843 (0.004) [0.836, 0.851] 0.992 (0.002) [0.990, 0.996]

Type Specific ρ:
Main Spec (0.96,1.00,1.00) 0.841 (0.004) [0.834,0.849] 0.991 (0.001) [0.989,0.995]
2 Type 1 Bidders (0.93,1.00,1.00) 0.841 (0.004) [0.832,0.849] 0.986 (0.001) [0.984,0.989]
3 Type 1 Bidders (0.93,1.00,1.00) 0.843 (0.005) [0.833,0.851] 0.986 (0.002) [0.983,0.989]
3 Type 1 Bidders (wins) (1.00,1.00,1.00) 0.842 (0.004) [0.834,0.849] 0.994 (0.002) [0.991,0.997]
Small Prior V (ψ) (0.95,1.00,1.00) 0.838 (0.004) [0.830,0.846] 0.991 (0.001) [0.988,0.993]
Large Prior V (ψ) (0.95,1.00,1.00) 0.843 (0.004) [0.835,0.850] 0.991 (0.002) [0.988,0.994]
Alternative fu(·) (0.95,1.00,1.00) 0.842 (0.004) [0.833,0.849] 0.991 (0.001) [0.989,0.994]

Column (1) shows cost-minimizing type-specific reserve prices (Bayes actions), and (2) and (3) show the
posterior predictive cost and efficiency, posterior standard deviation in ( ), and a 95% credible interval in [ ].

the prediction under the main specification; see section S10.2.

6 Concluding Remarks

We conclude this paper with a discussion about some possible extensions to our method.

First, one may consider a non-separable unobserved heterogeneity instead of the separable

one as introduced in Assumption 3-3. To be specific, if u is discrete with a finite support

and if bI(u) = βi(c|u, I) is strictly increasing in u for all i ∈ I, the bid distribution for I

with |I| ≥ 3 identifies the conditional bid distribution given u for the given I, following Hu,

McAdams, and Shum (2013). Those identified conditional bid distributions at any u in its

finite support then identify {Fi, ηi} with variation in I following Campo (2012). In our data,

237 procurements out of T = 411, approximately 58%, have only |I| = 2 bidders, and we do

not consider this specification for estimation.
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Second, one may treat bidders’ type as an additional parameter to estimate instead of

fixing a type for each bidder. For example, An (2017) proposes a method to estimate bidder

types. Our sample, however, does not meet its requirement. In particular, every bidder

must appear at least in three different procurements. But, this is not the case in our data,

where 84% of bidders enter once or twice. In our Bayesian setting, alternatively, we may

model each bidder’s membership to a type as a random variable following the Dirichlet prior.

This approach is standard with a range of applications, e.g., Dirichlet process mixture; see

Ferguson (1973) and Escobar and West (1995) among others. If applied here, however, it

would further complicate our method and substantially increase computing time.

Finally, a dataset may contain procurement-specific covariates, xt. We can also adapt

the specification (3) to accommodate xt. In particular, let us use h(·|ψτ ) to denote (3)

and f for the cost density with xt. Let f̃(c|xt, γτ ) be a low-dimensional parametric density

indexed by (xt, γτ ), where γτ is a vector of parameters. For example, f̃(c|xt, γτ ) can be

the exponential density with the mean exp(x′tγτ ). Then, we may specify the CDF of the

cost by F (c|xt, γτ , ψτ ) := H(F̃ (c|xt, γτ )|ψτ ), where H and F̃ are the CDFs of h and f̃ . To

understand this specification, consider its log density, log f(c|xt, γτ , ψτ ) ≈ log f̃(c|xt, γτ ) +

ψ1,τφ1(x̃τ,t) + ψ2,τφ2(x̃τ,t) + · · · , where x̃τ,t := F̃ (c|xt, γτ ). That is, this specification first

approximates the cost density by the parametric family and reduces the error by the ad-

ditional terms. Therefore, if the parametric family offers a good fit, ψτ need not be high

dimensional for a given approximation quality. So, the specification is a parsimonious and

yet flexible representation of the cost density with covariates. This approach has been used

before, e.g., see Kim (2013), Aryal and Kim (2013), Kim (2015), and Aryal, Grundl, Kim,

and Zhu (2018).
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Supplementary Appendix

S1 Roadmap

This supplementary appendix provides additional materials. The order of the contents in

this appendix closely follows the order in the main paper, Aryal, Charankevich, Jeong, and

Kim (2022b).

Section S2 proves Lemma 1 in section 2 in the main paper. Section S3 provides a complete

list of 102 categories, for each of which the section presents some additional statistics. The

section then explains the selection criteria by which we choose the “printing papers” category.

Then, the section documents further evidence that bidders bid depending on the level of

competition for the category.

The next five sections in this appendix discuss details about the computational algorithms

used in our estimation method; see sections 4 and 5 in the main paper. In particular, section

S4 plots graphs of several Legendre polynomial basis functions that we use to specify the cost

densities, and section S5 provides computational details on solving the asymmetric equilibria

and evaluating the likelihood in a Markov chain Monte Carlo (MCMC) method. Section S6

explains the MCMC algorithm that we use, and section S7 presents the estimation results

with simulated data. Section 4 in the main paper has a summary of the findings from this

section. Section S8 discusses how the Kolmogorov-Smirnov (KS) test are used to examine if

multiple MCMC outcomes are drawn from the same (posterior) distribution.

Section S9 discusses the algorithm for counterfactual simulations in section 5.2. Finally,

section S10 provides additional results of sensitivity analysis in section 5.3.

S2 Proof of Lemma 1

Consider any bidder configuration I with |I| ≥ 2, and let G0(· · · |I) be the joint distribution

of bids submitted by bidders in I. Note that G0(· · · |I) is directly identified from the bid data
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generated from procurements with I. By Theorem 1 in Krasnokutskaya (2011), then, we can

identify the marginal bid distribution of bidder i when there is no unobserved heterogeneity,

i.e., Gi(·|1, I), for all i ∈ I and the distribution of the unobserved heterogeneity, Fu(·). By

Lemma 2 in Campo (2012), then, we can identify the risk-aversion coefficient and the cost

distribution for bidder i, {ηi, Fi(·)} using {Gi(·|1, I)}i∈I when I exogenously varies.

S3 Data

This section explains the selection criteria that we use to choose a category to analyze. Then,

we provide additional statistical evidence that bidders in the category “printing papers” bid

depending on the level of competition.

S3.1 Selecting a Category

The Russian government uses the first-price procurement (FPP) (along with several other

allocation methods) to buy goods and services from private bidders. Tables S1 to S4 list all

the 102 categories for which FPPs were used in 2014. Some categories have names that are too

long to fit in the table, in which case their full names appear below the table along with their

identification numbers (ID). It is evident that the categories are in different industries with

separate markets. The tables show the total numbers of procurements, bids, and bidders

in each category in columns (1), (2), and (3), respectively. For example, the second job

category, “educational service,” has 763 procurements in total, where 1,079 bidders submit

a total of 1,607 bids. (As in the paper, we use double quotation marks to indicate field

terms in their closest English translation.) Columns (4), (5), and (6) show the numbers of

procurements with only one bidder, unrecorded bids, and bids larger than the reserve price,

respectively. In the second category, “educational service,” 292 procurements have only one

bidder, two procurements have missing bids, and 14 procurements have at least one bid

larger than the reserve price.

S1



Table S1: All Categories, Number of Procurements, Bids, Bidders, etc

Number (#) of # of procs # of # of bids
procurements, 1 bid only, remaining submitted by
bids, missing bids, procs type (1,2,3)

Category bidders bids > ρ (%) bidders
ID Names (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 car tires 272 609 448 83 0 12 177 (65%) 0 199 293
2 educational services* 763 1607 1079 292 2 14 458 (60%) 0 629 647
3 training courses 211 461 325 81 0 7 123 (58%) 0 162 198
4 construction: other building r 1259 3471 2285 257 1 36 975 (77%) 0 1601 1525
5 metrology services 443 671 372 280 1 27 154 (35%) 0 150 222
6 IT and computer services* 467 897 716 153 0 22 293 (63%) 0 201 493
7 wooden office furniture 209 510 412 47 1 7 154 (74%) 0 141 298
8 M&R cars 290 626 518 65 0 19 206 (71%) 0 146 362
9 garbage collection 278 550 431 100 0 17 166 (60%) 0 145 277

10 system maintenance 1430 2947 1703 298 1 80 1053 (74%) 0 1463 996
11 advanced professional training 719 1363 652 366 2 12 339 (47%) 0 599 360
12 construction: admin and busine 590 1519 1128 129 2 25 439 (74%) 0 553 774
13 Internet and regional network 770 1414 534 315 1 31 427 (55%) 208 526 295
14 other drugs 329 596 218 140 0 8 181 (55%) 55 277 105
15 engineering evaluation and res 701 1775 1204 197 2 21 482 (69%) 0 730 781
16 other design and engineering s 324 907 675 58 1 14 252 (78%) 0 293 504
17 milk 289 585 442 79 0 9 202 (70%) 0 172 314
18 other personal services 685 1500 1256 198 2 21 466 (68%) 0 308 934
19 inventorying and certification 396 1124 558 82 0 12 305 (77%) 95 565 359
20 other workshops and training c 217 432 315 106 1 4 106 (49%) 0 109 206
21 general medical checkup and ex 828 1498 874 446 0 20 366 (44%) 0 620 386
22 other entertaining services 327 722 545 74 0 16 238 (73%) 0 243 364
23 sanitation improvement* 336 814 702 70 0 25 246 (73%) 0 144 528
24 M&R lifting and conveying mac 541 1056 585 163 2 29 349 (65%) 0 518 297

* The name is appended with ‘(other).’ The truncated product names are as below.

4 construction: other building repairing
11 advanced professional training for employees with higher education
12 construction: admin and business buildings, bus and railway stations, airports
13 Internet and regional network services
15 engineering evaluation and research*
16 other design and engineering services
19 inventorying and certification of non-housing stock
20 other workshops and training courses
21 general medical checkup and examination services
24 M&R lifting and conveying machines

For each category, we exclude all the procurements with either one bidder, missing bids,

or bids larger than the reserve prices. Note that some procurements may meet multiple

conditions for exclusion, e.g., when a procurement has only one bidder, this bidder bids

above the reserve price, or the bid is not recorded. Columns (7) and (8) show the numbers

of remaining procurements and their proportion in parentheses, respectively. For example,
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Table S2: All Categories, Number of Procurements, Bids, Bidders, etc. Table continued.

Number (#) of # of procs # of # of bids
procurements, 1 bid only, remaining submitted by
bids, missing bids, procs type (1,2,3)

Category bidders bids > ρ (%) bidders
ID Names (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
25 motor fuel 626 1015 514 294 0 16 319 (51%) 0 399 291
26 out-of-schedule public transpo 398 681 537 167 0 16 220 (55%) 0 186 297
27 office and school plastic supp 221 564 401 41 0 5 176 (80%) 0 224 289
28 medical lab services* 279 438 283 168 0 6 109 (39%) 0 121 144
29 copier P&A 581 1623 1030 93 3 16 471 (81%) 0 756 719
30 computer P&A* 357 862 644 95 3 10 250 (70%) 0 277 452
31 office and school plastic supp 340 932 564 51 2 8 279 (82%) 33 437 377
32 individual car M&R 212 435 371 58 0 11 143 (67%) 0 95 251
33 M&R IT equipment 418 1019 839 87 1 14 318 (76%) 0 262 629
34 A/C equipment 390 1270 911 48 2 18 322 (83%) 0 475 653
35 ground-based vehicles insuranc 389 1125 85 74 1 46 273 (70%) 671 170 40
36 off-the-shelf software and use 316 624 473 103 0 11 202 (64%) 0 174 319
37 lead-free gasoline, sulfur con 314 517 311 147 1 8 158 (50%) 0 178 173
38 advanced professional training 380 575 308 274 1 4 101 (27%) 12 110 163
39 security services 1378 3448 1921 336 3 59 988 (72%) 0 1841 1096
40 subscription for newspapers, m 356 671 130 114 0 15 228 (64%) 229 230 64
41 subscription for domestic news 371 703 121 112 2 20 243 (65%) 254 251 46
42 property and assets evaluation 591 1695 773 133 3 9 446 (75%) 0 1078 445
43 architectural design 211 610 411 50 0 5 156 (74%) 0 279 270
44 construction completion* 1379 3492 2579 327 6 64 994 (72%) 0 1191 1799
45 drivers’ medical examination 751 1138 867 482 1 23 247 (33%) 0 245 353
46 vehicle P&A* 446 969 671 139 1 22 287 (64%) 0 329 436
47 printing paper* 536 1237 641 114 3 8 411 (77%) 58 625 402
48 software 1292 2756 1686 370 0 37 888 (69%) 0 1213 1081
49 desktop computers 337 676 527 105 1 9 225 (67%) 0 188 363
50 snow cleaning 545 1118 796 192 0 26 332 (61%) 0 388 482
51 M&R office equipment 959 2521 1748 171 1 31 758 (79%) 0 1049 1212
52 construction management 202 465 285 49 1 13 142 (70%) 0 216 176

* The name is appended with ‘(other).’ The truncated product names are as below.

26 out-of-schedule public transportation*
27 office and school plastic supplies: binders, briefcases, folders, book covers
31 office and school plastic supplies: paper press, paper cutters, blotting-pads, pen cases, bookmarks, etc.
35 ground-based vehicles insurance
36 off-the-shelf software and user licenses
37 lead-free gasoline, sulfur content ¡ 150 mg/kg
38 advanced professional training for employees with vocational education
40 subscription for newspapers, magazines and other periodical literature
41 subscription for domestic newspapers, magazines, etc.
42 property and assets evaluation services

the “educational service” category has 458 procurements after dropping the three cases, and

the proportion of the remaining procurements is roughly 60 percent (≈ 458÷763). The tables

show that the main reason for us to discard procurements is that there are procurements
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Table S3: All Categories, Number of Procurements, Bids, Bidders, etc. Table continued.

Number (#) of # of procs # of # of bids
procurements, 1 bid only, remaining submitted by
bids, missing bids, procs type (1,2,3)

Category bidders bids > ρ (%) bidders
ID Names (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
53 M&R alarm systems 275 848 578 58 0 6 211 (77%) 23 322 430
54 gasoline 662 1043 576 346 1 23 296 (45%) 0 307 339
55 area cleanup with special equi 233 466 400 78 0 13 147 (63%) 0 97 273
56 land management 367 994 612 82 0 7 278 (76%) 40 487 365
57 road surfacing 211 391 308 70 1 11 136 (64%) 0 106 205
58 special construction works 235 522 376 75 2 12 152 (65%) 0 152 271
59 recreational and entertaining 396 855 632 75 0 17 306 (77%) 0 298 442
60 road construction 233 425 289 81 0 13 144 (62%) 0 146 180
61 wiring* 293 764 615 80 0 19 199 (68%) 0 208 432
62 construction: multi-apartment 249 609 422 80 0 7 164 (66%) 0 219 297
63 door and window installation 239 680 539 34 1 5 199 (83%) 0 192 433
64 road construction 210 354 282 84 0 12 121 (58%) 0 84 173
65 sanitary and epidemiological s 233 339 187 156 1 14 73 (31%) 26 44 104
66 database services* 548 1078 670 117 0 47 385 (70%) 0 464 396
67 entrepreneurial services* 506 1096 921 175 3 24 311 (61%) 0 224 638
68 property inspection 249 974 546 43 2 10 195 (78%) 21 500 353
69 M&R general use equipment and 230 528 458 57 0 14 161 (70%) 0 93 342
70 office and school supplies ret 211 496 366 58 0 9 144 (68%) 15 118 269
71 fire alarm system installation 310 786 540 86 0 13 212 (68%) 0 283 381
72 peacekeeping and public securi 344 813 603 86 2 26 237 (69%) 0 240 425
73 other safety services 218 632 524 48 0 6 164 (75%) 0 158 406
74 firewood 201 337 277 86 0 15 100 (50%) 0 70 147
75 white paper 204 462 323 50 0 4 150 (74%) 17 152 231
76 exhibition and trade show orga 220 488 348 39 0 8 173 (79%) 0 174 256
77 anti-cancer drugs 209 346 73 105 0 3 101 (48%) 107 104 24
78 construction completion works* 257 629 534 42 0 14 203 (79%) 0 132 419

* The name is appended with ‘(other).’ The truncated product names are as below.

55 area cleanup with special equipment
59 recreational and entertaining services*
62 construction: multi-apartment buildings
65 sanitary and epidemiological services
69 M&R general use equipment and machinery*
70 office and school supplies retail services
72 peacekeeping and public security services*
76 exhibition and trade show organization

with only one bidder.

Our first criterion for selecting a category for analysis is that the number of procurements

is at least 200 after excluding all procurements with either only one bidder, missing bids, or

bids above the reserve price. That is, we sort out categories with a reasonably large sample

because the sample size is critical for precise estimation. The second criterion is that at
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Table S4: All Categories, Number of Procurements, Bids, Bidders, etc. Table continued.

Number (#) of # of procs # of # of bids
procurements, 1 bid only, remaining submitted by
bids, missing bids, procs type (1,2,3)

Category bidders bids > ρ (%) bidders
ID Names (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
79 databases 216 430 305 39 0 29 152 (70%) 0 146 188
80 fire alarm system maintenance 494 1676 1115 65 0 21 410 (83%) 0 732 786
81 sewage utility services 1188 2281 1345 453 5 69 677 (57%) 0 1033 653
82 M&R electric equipment* 224 590 492 40 0 11 175 (78%) 0 146 382
83 test of integral mechanical an 242 775 601 55 0 7 183 (76%) 0 256 451
84 general cleaning* 444 1141 807 99 1 15 331 (75%) 0 434 570
85 other healthcare services 340 603 450 185 1 16 144 (42%) 0 155 231
86 other engineering and technica 261 675 495 53 5 5 199 (76%) 0 242 348
87 eggs 339 652 497 123 1 9 208 (61%) 0 171 337
88 special care services 261 453 352 133 0 8 123 (47%) 0 111 196
89 housing rental 269 323 275 217 0 2 51 (19%) 0 54 50
90 demolition 246 761 479 38 5 9 195 (79%) 0 351 324
91 lead-free gasoline, sulfur con 230 376 238 103 0 8 121 (53%) 0 127 131
92 M&R other medical equipment 504 936 561 156 0 13 337 (67%) 0 408 344
93 special safety and security se 214 548 435 46 0 15 155 (72%) 0 144 319
94 M&R special-use equipment* 299 801 650 56 0 15 229 (77%) 0 223 485
95 car rental with driver 293 581 431 85 0 15 199 (68%) 0 198 276
96 M&R heat meters 251 644 416 49 0 5 197 (78%) 0 303 278
97 hardcover textbooks 299 660 221 56 0 9 235 (79%) 72 402 110
98 M&R surgical equipment 480 940 515 139 0 11 330 (69%) 0 483 291
99 anti-viral drugs 219 372 157 111 0 8 102 (47%) 32 134 81

100 other tools, equipment and dev 220 457 349 58 0 3 159 (72%) 0 129 262
101 oxygen 231 350 171 123 1 12 97 (42%) 10 107 88
102 other medical tools and device 272 591 413 63 0 6 203 (75%) 0 227 281

* The name is appended with ‘(other).’ The truncated product names are as below.

83 test of integral mechanical and electrical systems
86 other engineering and technical services
91 lead-free gasoline, sulfur content < 1000 mg/kg
93 special safety and security services

100 other tools, equipment and devices
102 other medical tools and devices

least 60 percent of procurements are not excluded for those three reasons, i.e., column (8)

is larger than or equal to 60 percent. Note that section 3.1 in the main paper explains that

those three cases for exclusion, say columns (4), (5), and (6), are vulnerable to corruption.

If a high proportion of procurements are excluded for those three reasons, it may suggest

that the remaining procurements might not represent the competition in the category.

Within each category, we group bidders into three types for the remaining procurements

as counted in column (7). Type 1 bidders bid in at least 10% of the procurements, type 3
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bidders bid once, and type 2 bidders are all the others. Columns (9), (10), and (11) show the

number of bids submitted by each type in the remaining procurements. The “educational

service” category, for example, does not have any bid submitted by type 1 bidder, but type

2 and 3 bidders bid 629 and 647 times, respectively. It is noticeable that a bidder hardly

appears in more than 10% of the procurements, i.e., it is rare that a bidder frequently enters

the procurements. Therefore, if a bidder does so, it suggests that the bidder can be inherently

different from other bidders, motivating an asymmetric model.

The number of bids for each type is important because the bid variation identifies the

model primitives along with the variation in bidder configuration. Hence, we collect cate-

gories where the number of bids is at least 50 for each type, which is our third criterion to

select a category. Out of all the job categories, only four categories meet the three criteria:

categories with IDs 19, 40, 47, and 97. Among them, we analyze category 47, “printing

papers,” in the paper, as it has the largest number of procurements (T = 411).

S3.2 Additional Details, “Printing Papers”

In the category “printing papers,” the bidder configuration has a rich variation with 32

distinct observed configurations. Table S5 lists the configurations that appear at least ten

times in the data. For each of those frequent configurations, Table S5 shows the sample

average of the normalized bids (bids divided by the reserve price) and associated standard

deviation in parentheses. The numbers in brackets in column (A) for all types are the number

of procurements, and the numbers in brackets in columns (1), (2), and (3) are the number

of bids for each type of bidders, respectively. For example, there are 40 procurements with

two type 2 bidders and one type 3 bidder (223). For this configuration, we have 80 (40) bids

submitted by type 2 (3) bidders. Table S5 also shows that the occurrence rate drops quickly.

For example, the most frequent configuration (22) appears 93 times, but the second most

(33) 61 times, the fifth (222) 26 times, and the ninth (2223) 11 times.

We provide additional evidence that bidders bid differently across different configurations,
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Table S5: Descriptive Statistics for Frequent Bidder Configurations in “printing papers”

Average (Standard Deviation) [Number] of Procurements or Bids
Bidder All Types Type 1 Type 2 Type 3

Configuration (A) (1) (2) (3)
(22) 0.925 (0.077) [93] 0.925 (0.077) [186]

(222) 0.909 (0.072) [26] 0.909 (0.072) [78]
(33) 0.961 (0.063) [61] 0.961 (0.063) [122]

(223) 0.893 (0.088) [40] 0.882 (0.090) [80] 0.916 (0.081) [40]
(23) 0.911 (0.084) [58] 0.893 (0.087) [58] 0.929 (0.077) [58]
(12) 0.922 (0.060) [16] 0.907 (0.066) [16] 0.937 (0.051) [16]

(233) 0.880 (0.098) [21] 0.835 (0.089) [21] 0.902 (0.096) [42]
(122) 0.898 (0.065) [12] 0.866 (0.070) [12] 0.915 (0.057) [24]

(2223) 0.870 (0.087) [11] 0.865 (0.082) [33] 0.884 (0.105) [11]

Each cell shows the sample mean (standard deviation) of the bids for the given bidder configuration. Column
(A) shows the number of procurements in the brackets [ ], and columns (1), (2), and (3) show the number
of bids in the brackets [ ] for each type of bidders.

suggesting that they take into account the level of competition when bidding. Table S6

conducts the KS test against the null hypothesis that the type-specific bid distributions are

identical in procurements with different bidder configurations. We consider the nine frequent

bidder configurations in Table S5. The first row of Table S6 considers the bid distributions

of type 1 bidder. Since type 1 bidder appears only in configurations (122) and (12) among

the ones listed in Table S5, there is only one pair to consider. The second block (type 2)

considers the distributions of bids submitted by type 2 bidders across all the pairs of two

bidder configurations, both involving type 2 bidders. (Both configurations, say A and B,

must have type 2 bidders to compare the bid distribution of type 2 in configuration A and

the bid distribution of type 2 in configuration B.) Similarly, the third block repeats this

exercise for type 3 bidders.

For each block, i.e., for type τ bidder, columns (1) and (2) show the pair of bidder

configurations under consideration, say configurations A and B, and columns (3) and (4)

show the number of bids submitted by type τ bidders in procurements with configuration A

and the number of bids submitted by type τ bidders in procurements with configuration B,

respectively. We conduct the KS test against the null hypothesis that the bid distribution

of type τ bidders in procurements with configuration A is identical to the bid distribution of
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Table S6: p values for KS test; Homogeneity in Bid Distributions

Bidder Number of KS test p values Fail to reject H0?
Configurations Bids in with Alt. Hypothesis Small No Fringe

A B Config A Config B H1 : A 6= B H1 : A < B Sample Theory Bidders
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Type 1 (122) (12) 12 16 0.357 0.179 Yes

Type 2 (222) (22) 78 186 **0.013 ***0.006
(223) (22) 80 186 ***0.000 ***0.000
(23) (22) 58 186 ***0.003
(12) (22) 16 186 0.627 Yes Yes

(233) (22) 21 186 ***0.000
(122) (22) 24 186 **0.044 **0.022

(2223) (22) 33 186 ***0.000 ***0.000
(223) (222) 80 78 0.124 Yes Yes
(222) (23) 78 58 0.846 Yes Yes
(222) (12) 78 16 0.315 Yes Yes
(233) (222) 21 78 ***0.000
(122) (222) 24 78 0.904 Yes Yes

(2223) (222) 33 78 ***0.002 ***0.001
(223) (23) 80 58 0.338 0.170 Yes
(223) (12) 80 16 *0.074
(233) (223) 21 80 **0.019
(122) (223) 24 80 0.216 Yes Yes Yes

(2223) (223) 33 80 0.195 *0.098
(12) (23) 16 58 0.179 Yes Yes Yes

(233) (23) 21 58 ***0.001 ***0.001
(122) (23) 24 58 0.773 Yes Yes Yes

(2223) (23) 33 58 **0.017 ***0.009
(233) (12) 21 16 ***0.001
(122) (12) 24 16 0.419 0.212 Yes

(2223) (12) 33 16 ***0.004
(122) (233) 24 21 ***0.001

(2223) (233) 33 21 0.480 Yes Yes Yes
(2223) (122) 33 24 **0.017

Type 3 (223) (33) 40 122 ***0.000
(23) (33) 58 122 ***0.001

(233) (33) 42 122 ***0.000 ***0.000
(2223) (33) 11 122 **0.014
(223) (23) 40 58 0.647 0.336 Yes
(233) (223) 42 40 0.782 Yes Yes

(2223) (223) 11 40 0.279 0.140 Yes Yes
(233) (23) 42 58 0.212 0.106 Yes

(2223) (23) 11 58 0.116 *0.058
(2223) (233) 11 42 0.777 Yes Yes Yes

(*,**,***) for the (10, 5, 1) percent significance.

type τ bidders in procurements with configuration B. There are two columns, (5) and (6),

of p values of the KS test. Column (5) is associated with the alternative hypothesis that the
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distributions are not equal (two-sided test). Column (6) is associated with the alternative

hypothesis that the bid in configuration A is smaller than in configuration B (one-sided

test). We consider the second alternative hypothesis only when configuration B is nested in

configuration A and, therefore, type τ bidders would bid lower in configuration A than in B,

as stated in the alternative hypothesis. (No configuration A is nested in configuration B.)

For many cases, p values are sufficiently small to reject the null hypothesis at a con-

ventional significance level. When we fail to reject the null, Table S6 provides possible

explanations in columns (7), (8), and (9). For example, the reason that we do not reject

the null for the pair of configurations (12) and (22) for type 2 bidder might be because the

number of bids from type 2 in configuration (12) is only 16, i.e., the sample is too small.

The table indicates if the sample size is small, i.e., with less than 30 bids, for any of the two

configurations. Moreover, for the pair of (12) and (22), economic theory does not predict in

which configuration type 2 bidders would bid lower. Due to asymmetric risk-aversion, that

statement is true even if type 1 bidder is on average more efficient (smaller costs) than type

2 bidders.

We have three cases for which either of the first two justifications (small sample or no

theory) does not explain the failure of rejecting the null hypothesis: type 2 {(223), (23)},

type 3 {(223), (23)}, and type 3 {(233), (23)}. Note that type 3 (fringe) bidders are in all

those configurations. Recall that we group all bidders bidding only once in type 3 because

there is no bidder-specific information other than how many times they enter. However,

the bidders might have observed bidder-heterogeneity even for those one-time bidders and,

therefore, bid accordingly. This may explain why we fail to reject the null more often for

the pairs with fringe bidders, including the three cases for which the first two explanations

do not apply.

Therefore, the comparison of bid distributions for various pairs of two different bidder

configurations mostly reveals that bidders bid depending on whom they oppose, and they

bid more aggressively in more competitive procurements.
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S4 Graphs of Legendre Polynomials

In this section, we present some basis functions for our specification of the cost densities.

We construct the basis functions by shifting and re-scaling the Legendre polynomials so that

they are defined on the unit interval [0, 1]. Specifically, the j-th entry in φ(·) is given as

φj(c) :=
√

2j + 1× φ̃j(2u− 1), (S7)

where φ̃j(x) := dj

dxj
(x2 − 1)j/(2jj!). Figure S1 shows φj(·) for some j to give an idea about

the shape of the basis functions. Observe that φj has j−1 extrema in the interior. So, as the

number k of basis functions in the cost density increases, the density function specified by

Legendre polynomials can approximate more complicated (i.e., with many inflection points)

densities. An additional advantage of Legendre polynomials is that they form an orthonormal

and orthogonal polynomial system that is complete and has a unique representation of the

cost density. They also have a smaller variance than any non-orthonormal polynomial; see

Szegö (1975).

S5 Computation of Equilibrium Strategies

S5.1 Adaptation of the Boundary-Value Method

We explain how to adapt the method from Fibich and Gavish (2011), which is designed for

asymmetric high-bid auctions to asymmetric low-bid auctions, i.e., procurements. Then, we

extend it to incorporate risk-aversion (CRRA) in the algorithm. For a given FPP, we develop

an associated first-price auction model with valuation distributions {F̃i(·|ψ)}i∈{1,...,n}. For the

auction model, we obtain the equilibrium bidding strategy {β̃i}i∈{1,...,n} using the algorithm of

Fibich and Gavish (2011). Then, we convert the outcome back to the original procurement.

In this section, we fix I = {1, . . . , n} and allow every bidder to be of her own type, which

nests the case where some bidders are of the same type, as a special case. In addition, we

S10



Figure S1: Legendre Polynomials

Notes. Each panel shows a basis function of the Legendre polynomials φj for some j ∈ {1, 2, . . . , 20} that
are re-centered at 0.5 with support [0, 1]. The function φj has j − 1 extrema with support [0, 1], i.e., as j
increases φj becomes more “wavy.”

suppress the dependence of the cost distributions and the (inverse) bidding strategies on the

model parameters when it does not cause a confusion.

Risk-Neutrality

In an FPP, bidder i solves

max
b

(b− ci)
∏
j 6=i

{
1− Fj

[
β−1j (b)

]}
(S8)

where ci ∼ Fi(·) with a compact support of [c, c] and βi is the equilibrium bidding strategy

for the game induced by the FPP. Now consider a (first-price) auction where bidder i’s
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valuation is given as

vi :=
c− ci
c− c

. (S9)

Then, vi ∼ F̃i(·) where F̃i(x) := 1− Fi[c− x(c− c)] for all x ∈ [0, 1] by change of variables.

Bidder i in this associated auction solves

max
b̃

(vi − b̃)
∏
j 6=i

F̃j

[
β̃−1j (b̃)

]
(S10)

where β̃i is the equilibrium bidding strategy for the game induced by the auction. As in

the paper, define the inverse bidding function φ̃i = β̃−1i . Then, the algorithm of Fibich and

Gavish (2011) solves for φ̃i in the system of differential equations (FOCs),

φ̃′i(b) =
F̃i(φ̃i(b))

f̃i(φ̃i(b))

[(
1

n− 1

n∑
j=1

1

φ̃j(b)− b

)
− 1

φ̃i(b)− b

]
, (S11)

for all i ∈ I. Once we obtain {φ̃i}, using the definitions of vi and F̃i in (S9), we can construct

the bidding strategies for the original problem, (S8). Note that (S10) can be rewritten as

max
b

[
c− ci
c− c

− c− b
c− c

]∏
j 6=i

{
1− Fj

[
c− β̃−1j

(
c− b
c− c

)
(c− c)

]}
,

which is equivalent to (S8) if and only if, for all i,

β−1i (b) = c− β̃−1i
(
c− b
c− c

)
(c− c). (S12)

Hence, once we solve (S11), we can construct the equilibrium bidding strategies for (S8).
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Constant Relative Risk Aversion

Now, we consider risk-aversion. Suppose bidders are risk-averse with bidder-specific CRRA

coefficients, {ηi}. Then, we modify the objective function (S8) as

max
b

(b− ci)1−ηi
∏
j 6=i

{
1− Fj

[
β−1j (b)

]}
(S13)

Following the same logic as above for the case of risk-neutrality, we construct the solution

to (S13), which is equivalent to

arg max
b̃

(vi − b̃)1−ηi
∏
j 6=i

F̃j

[
β̃−1j (b̃)

]
= arg max

b̃
(vi − b̃)

∏
j 6=i

F̃j

[
β̃−1j (b̃)

] 1
1−ηi . (S14)

Then, we can apply the method of Fibich and Gavish (2011) to the distribution functions

F̃j(·)
1

1−ηi . Alternatively, we can write the FOC for (S14) as below, which gives a system of

differential equations,

φ̃′i(b) = (1− ηi)

(
F̃i(φ̃i(b))

f̃i(φ̃i(b))

)[(
1

n− 1

n∑
j=1

1

φ̃j(b)− b

)
− 1

φ̃i(b)− b

]
(S15)

for i ∈ I, which is similar to (S11), but the only difference is that the right-hand side of

(S15) is multiplied by a constant (1 − ηi). Thus, by slightly modifying the algorithm of

Fibich and Gavish (2011) we can obtain the equilibrium inverse bidding strategies {φ̃i} for

(S14). Then, we construct the bidding strategies for (S13) via the relationship (S12), and

we evaluate the likelihood using the bidding strategies, as section S5.2 explains.

S5.2 Evaluation of Likelihoods

Following the notation in section 4 of the main paper, let θi = (ψi, ηi) and θ = (θ1, . . . , θn).

Since the paper uses the unit interval for the cost support, here we assume that the support
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is known. Observe that

c− β̃−1i
(
c− bit
c− c

∣∣∣θ) (c− c) = β−1i (bit|θ) = cit = c− vit(c− c), (S16)

where the first equality comes from (S12), the second is the definition of βi, and the third is

from (S9). The most left-hand side and the most right-hand side of (S16) imply that

β̃−1i

(
c− bit
c− c

∣∣∣θ) = vit (S17)

Then the bid density in (5) with ut = 1 can be written, in terms of {F̃i, β̃i}, as

gi(bit|1, θ, I) := f̃

[
β̃−1i

(
c− bit
c− c

∣∣∣θ, I) ∣∣∣ψi]× ∣∣∣ ∂
∂b
β̃−1i

(
c− bit
c− c

∣∣∣θ, I) ∣∣∣
=

(
1

c− c

) f̃
[
β̃−1i

(
c−bit
c−c

∣∣∣θ, I) ∣∣∣ψi]∣∣∣β̃′i [β̃−1i (
c−bit
c−c

∣∣∣θ, I) ∣∣∣θ, I] ∣∣∣ (S18)

for bit such that β̃−1i

(
c−bit
c−c

∣∣∣θ, I) ∈ [0, 1] and gi(bit|1, θ, I) = 0, otherwise. For ut 6= 1, by

Lemma 1, bit = utβi(cit|θ, I)⇐⇒ bit/ut = βi(cit|θ, I), implying that

gi(bit|ut, θ, I) =
1

ut(c− c)

f̃
[
β̃−1i

(
c−bit/ut
c−c

∣∣∣θ, I) ∣∣∣ψi]∣∣∣β̃′i [β̃−1i (
c−bit/ut
c−c

∣∣∣θ, I) ∣∣∣θ, I] ∣∣∣ (S19)

for bit such that β̃−1i

(
c−bit/ut
c−c

∣∣∣θ, I) ∈ [0, 1] and gi(bit|ut, θ, I) = 0, otherwise. This implies

that the support of bit depends on the latent components, (θ, {ut}). We can evaluate the bid

density because we specify f̃i and obtain β̃i as we explained above. Then, we can evaluate

the likelihood. Note that it is necessary to evaluate the likelihood ratio in the algorithm to

simulate the posterior in the next section.
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S6 Posterior Computation

While there are various ways of drawing latent variables from the posterior, we find that

the algorithm we describe below, a variation of Metropolis-within-Gibbs, works well for our

purpose. The MCMC algorithm we use is standard, although there can be many variations.

Our objective here is to introduce an algorithm that works and document what we do for

the posterior inference.

For our empirical application, we consider nine different cases: the main specification

described in section 4, the specification imposing homogeneity in risk-aversion (η = ητ ,∀τ),

the one imposing risk-neutrality (ητ = 0,∀τ), and six other ones for sensitivity analysis; see

section 5.3. Here, we focus on the main specification (the algorithms for other specifications

are similar).

In the mth iteration, our algorithm consists of these steps:

Step 1. For τ = 1, letting θ
(m)
1 := θ

(m−1)
1 = (ψ

(m−1)
1 , η

(m−1)
1 ), we draw a candidate θ̃1 ∼

N (θ
(m−1)
1 ,Ω

(m)
1 ) where Ω

(m)
1 is the tuning parameter (we describe how to choose this

parameter, shortly below), and update θ
(m)
1 = θ̃1 with probability

min

{
π(θ̃1, θ

(m−1)
2 , θ

(m−1)
3 , σ

(m−1)
u , {u(m−1)t }|z)

π(θ
(m−1)
1 , θ

(m−1)
2 , θ

(m−1)
3 , σ

(m−1)
u , {u(m−1)t }|z)

, 1

}
. (S20)

Step 2. Similarly, for τ = 2, we repeat Step (1) by letting θ
(m)
2 := θ

(m−1)
2 = (ψ

(m−1)
2 , η

(m−1)
2 ) and

drawing a candidate θ̃2 ∼ N (θ
(m−1)
2 ,Ω

(m)
2 ) and updating θ

(m)
2 = θ̃2 with probability

min

{
π(θ

(m)
1 , θ̃2, θ

(m−1)
3 , σ

(m−1)
u , {u(m−1)t }|z)

π(θ
(m)
1 , θ

(m−1)
2 , θ

(m−1)
3 , σ

(m−1)
u , {u(m−1)t }|z)

, 1

}
. (S21)

Step 3. Same as before, for τ = 3, letting θ
(m)
3 := θ

(m−1)
3 = (ψ

(m−1)
3 , η

(m−1)
3 ) we draw a candidate
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θ̃3 ∼ N (θ
(m−1)
3 ,Ω

(m)
3 ) and update θ

(m)
3 = θ̃3 with probability

min

{
π(θ

(m)
1 , θ

(m)
2 , θ̃3, σ

(m−1)
u , {u(m−1)t }|z)

π(θ
(m)
1 , θ

(m)
2 , θ

(m−1)
3 , σ

(m−1)
u , {u(m−1)t }|z)

, 1

}
. (S22)

Step 4. To update σu, we let σ
(m)
u := σ

(m−1)
u and draw a candidate σ̃u ∼ qmσu(·|σ(m−1)

u ) and

update σ
(m)
u := σ̃u with probability

min

{
π(θ

(m)
1 , θ

(m)
2 , θ

(m)
3 , σ̃u, {u(m−1)t }|z)

π(θ
(m)
1 , θ

(m)
2 , θ

(m)
3 , σ

(m−1)
u , {u(m−1)t }|z)

×
qmσu(σ

(m−1)
u |σ̃u)

qmσu(σ̃u|σ(m−1)
u )

, 1

}
, (S23)

where the proposal density qmσu(·|·) will be discussed below.

Step 5. To update ut for each t = 1, . . . , T , let u
(m)
t := u

(m−1)
t . Then we draw a candidate

ũt ∼ qmu (·|u(m−1)t ) and update u
(m)
t := ũt with probability

min

{
fu(ũt|σ(m)

u )
∏

i∈It gτ(i)(bit|ũt, θ
(m), It)

fu(u
(m−1)
t |σ(m)

u )
∏

i∈It gτ(i)(bit|u
(m−1)
t , θ(m), It)

× qmu (u
(m−1)
t |ũt)

qmu (ũt|u(m−1)t )
, 1

}
. (S24)

Note also that in Steps (1)-(3), the ratio of the proposal densities is one because of

the symmetry of the Gaussian densities, and it does not appear in any of the acceptance

probabilities: (S20), (S21), and (S22). The acceptance probability can be simplified in

general by canceling the common components on the numerator and denominator. For

example, in Step (4), the posterior odd ratio becomes

π(θ
(m)
1 , θ

(m)
2 , θ

(m)
3 , σ̃u, {u(m−1)t }|z)

π(θ
(m)
1 , θ

(m)
2 , θ

(m)
3 , σ

(m−1)
u , {u(m−1)t }|z)

=
πσu(σ̃u)

πσu(σ
(m−1)
u )

T∏
t=1

fu(u
(m−1)
t |σ̃u)

fu(u
(m−1)
t |σ(m−1)

u )
. (S25)

We iterate M1 = 105 times, but we only keep every thin = 50th draw, so we have 2,000 draws.

Then, to minimize the influence of the initial point we discard the first burn-in = 1, 000

draws and use the second M2 = 1, 000 draws for the posterior inference.

Figure S2 shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
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Figure S2: MCMC traces; The Main Specification

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

of the cost density of type (1,2,3) bidders in the (1st, 2nd, 3rd) row, respectively. The fourth

row shows the MCMC traces of σu and ητ for τ = 1, 2, 3, respectively. Overall, the algorithm

converges before the burn-in iterations. Figures S3 to S9 show similarly but for different

specifications as the figure titles suggest.

In the remainder of this subsection, we provide additional details to execute the MCMC

algorithm. First, we discuss the tuning parameters for Steps 1, 2, and 3. For these steps,

we employ the normal densities as a proposal density, i.e., we draw θ̃τ ∼ N (θ
(m)
τ ,Ω

(m)
τ )

where Ω
(m)
τ is the tuning parameter. For the first ten draws, i.e., 500 iterations, we set

Ω
(m)
τ := Ω0, the identity matrix multiplied by 10−5. For the next 990 draws, we set Ω

(m)
τ to

be the sample covariance of {θ(·)τ } up to that point multiplied by 2.38 and divided by the

dimension of θτ with 95% of probability and set Ω
(m)
τ := Ω0 with 5% of probability. This
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Figure S3: MCMC traces; The Specification with Homogeneous CRRA

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

way, the algorithm automatically adjusts the tuning parameters. For more on this adaptation

scheme, see Haario, Saksman, and Tamminen (2001) and Haario, Saksman, and Tamminen

(2005), among others. Then, we stop adapting the tuning parameter at the 1,000th draw

to make sure the sequence after the 1,000th draw to the end is a Markov chain. Note that

since the normal proposal densities are symmetric, we do not consider the ratio of proposal

densities to compute the acceptance rates; (S20), (S21), and (S22).

Second, the proposal function for Step 4 explicitly considers the support of ut. This im-

proves computational efficiency because, then, the algorithm would not propose a candidate

outside the support, which is surely rejected. The support of ut depends on σu; see section

4. In particular, we can show that for all t, (1 − u
(m−1)
t )/cu ≤ σ̃u ≤ σu = 0.9/cu. So, in

Step 4, we draw σ̃u from a normal distribution that is truncated so that it has the relevant
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Figure S4: MCMC traces; The Specification with Risk Neutrality

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

support;

σ̃u ∼ N
(
σ(m−1)
m , (0.01)2

)
× 1

(
σ̃u ∈

[
σ(m)
u , σu

])
where σ

(m)
u := maxt

{
1−u(m−1)

t

2.5758

}
. Then, qmσu(·|σ(m−1)

u ) is accordingly defined to be the trun-

cated normal density, which is used in the acceptance rate (S23). We note that at each

iteration m, the lower bound σ
(m)
u has to be re-computed because it depends on {u(m−1)t }Tt=1.

Third, we introduce the proposal function for Step 5. To improve the efficiency of the

algorithm, we draw candidates for u
(m)
t from the proposal density with the known support.

That is, we draw

ũt ∼ N
(
u
(m−1)
t , (0.01)2

)
× 1

(
ũt ∈

[
u(σ(m)

u ), 1
])
,
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Figure S5: MCMC traces; The Specification with Alternative Type 1 (top 2)

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

where u(σu) = 1− cuσ̃u; see equation (4) in the main paper. The truncated normal density

defines qmu (·|u(m−1)t ) accordingly, which we use in the acceptance rate (S24).

Fourth, we now describe the initial values we use to start the algorithm. The bid density

(S19) has a compact support that depends on the unknown parameter θ and the unobserved

heterogeneity ut. So, it is important to find ({ψ(0)
τ , η

(0)
τ }3τ=1, u

(0)
1 , . . . , u

(0)
T ) at which the like-

lihood is nonzero. We initially set ψ
(0)
τ = (0, . . . , 0) ∈ Rk, with k = 5 for all τ = 1, 2, 3, i.e.,

the cost distributions are all U [0, 1] at the initial value, where U [a, b] denotes the uniform

distribution over [a, b]. We choose k = 5 because it is computationally feasible and yet large

enough to flexibly model the densities, i.e., the predictive densities are smooth and the high

order terms of Legendre polynomials would have little contribution. We also set η
(0)
τ = 0

for all τ . Then, we find {u(0)t } for all t so that the initial likelihood is not zero. For each
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Figure S6: MCMC traces; The Specification with Alternative Type 1 (top 3)

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

t = 1, . . . , T , u
(0)
t must satisfy the inequality

b(θ(0), It) ≤
bit

u
(0)
t

≤ 1, (S26)

where b(θ(0), It) = βτ (0|θ(0), It) for all τ , the lower bound of the equilibrium bid under θ(0)

if ut = 1. For all i ∈ It, the inequality (S26) gives an interval of admissible values of u
(0)
t .

For any bit, (S26) implies

bit ≤ u
(0)
t ≤

bit
b(θ(0), It)

. (S27)

Since the inequality (S27) has to be satisfied by all bidders in It, we have the bound for u
(0)
t
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Figure S7: MCMC traces; The Specification with Alternative Prior, Small Variance of ψ

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

as below.

max
i∈It
{bit} ≤ u

(0)
t ≤ min

i∈It

{
bit

b(θ(0), It)

}
. (S28)

If the interval above is well defined, i.e., the lower bound is smaller than the upper bound,

max
i∈It
{bit} ≤ min

i∈It

{
bit

b(θ(0), It)

}
, (S29)

then we draw u
(0)
t ∼ U

[
maxi∈It{bit},mini∈It

{
bit

b(θ(0),It)

}]
. If this can be done for all t =

1, . . . , T , we start the MCMC algorithm (steps 1 to 5) above to explore the posterior. How-

ever, we may not have (S29) as we desire for some t. Even if (S29) is violated just at one
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Figure S8: MCMC traces; The Specification with Alternative Prior, Large Variance of ψ

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

t, the bid density (S19) is zero, and so is the likelihood. If this happened, one should try

other initial values. For example, the earlier version of the paper, which considers several

job categories, tries a new η
(0)
τ by increasing it by 0.1 and repeat the procedure here until

it finds an initial value with a nonzero likelihood, whenever the inequality condition is not

satisfied at η
(0)
τ . For the “printing papers” category, however, (S29) is satisfied for all t at

the (first) initial values θ(0) suggested above. We set σ
(0)
u = σu.

Fifth, the boundary-value method requires a benchmark bidder in each distinct I, and

the method might fail to converge (or takes a long time) depending on the choice of the

benchmark bidder, in which case Fibich and Gavish (2011) suggest using another bidder as

a benchmark. In our computation, we compute L1 distance between two outcome functions,

which will become the bidding strategy at convergence, for each bidder in subsequent itera-
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Figure S9: MCMC traces; The Specification with Alternative fu(ut)

The (1st, 2nd, 3rd) row shows the shows MCMC traces of the mean, standard deviation, skewness, and kurtosis
of the cost density of type (1,2,3) bidders, respectively. The fourth row shows the MCMC traces of σu and
ητ for τ = 1, 2, 3.

tions of the boundary-value algorithm. When the maximum of the L1 distances (of all bidders

in I) falls below a prespecified tolerance level (we use a tight tolerance, tol = 1e-10), we

consider the algorithm converges. If the maximum does not fall before the prespecified max-

imum number of iterations (we use MaxIter = 100), we rerun the boundary-value algorithm

with setting another bidder to be the benchmark. If it happens for all bidders for any of the

configurations in the data, the MCMC algorithm rejects the candidate and consider another

candidate in the next MCMC step.

Finally, the boundary-value method of Fibich and Gavish (2011) also requires a starting

value whenever it is called in the MCMC algorithm. For the first MCMC iteration, we use

the bidding strategy associated with the symmetric model where bidders’ are risk-neutral

and draw costs from U(0, 1). For the rest of MCMC iterations, we use the bidding strategies
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from the previous MCMC iteration as the initial point to start the boundary-value method in

the next MCMC iteration. This approach reduces computing time because two subsequent

MCMC draws tend to be close each other and, therefore, the starting point should be near

the solution.

S7 Estimation with Simulated Data

In this section, we consider a simulation exercise to evaluate the performance of our method.

We generate two datasets of different sizes and use them to separately estimate the param-

eters. Then we compare the posterior distributions to verify that they are well supported at

the true parameter and that the posterior distribution from the larger of the two samples

is more condensed around the parameter than the posterior from the smaller sample. The

main objective of this exercise is to illustrate that our method correctly captures unobserved

heterogeneity in procurements if there is a such variation in the data generating process.

In congruence with empirical application, we choose a data-generating process with 3

types of bidders, each with a different cost density and CRRA parameter. Bidders submit

bids in FPPs, where the variability of the bidder configuration is substantial. We consider ten

different bidder configurations: A ∈ {(11), (111), (22), (222), (33), (333), (12), (13), (23), (123)} ,

and simulate T̃A ∈ {20, 100} for each configuration A, i.e., T = T̃A × 10 procurements, from

the data-generating process:

f1(c) = 0.1 · 1(c ∈ [0, 1]) + 0.9 · beta(c; 1, 4), η1 = 0.7;

f2(c) = 0.1 · 1(c ∈ [0, 1]) + 0.9 · beta(c; 1, 3), η1 = 0.4;

f3(c) = 0.1 · 1(c ∈ [0, 1]) + 0.9 · beta(c; 2, 4), η1 = 0.1,

where beta(·;α, β) is the Beta density of cost with parameters (α, β) and fu(·|σu) is defined

in Equation (4) of the main text with variance σu = 0.1. That is, we simulate two bid
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Figure S10: Predictive Cost Densities and True Densities, Simulated Sample

Each panel shows the predictive cost densities (in solid blue lines) along with the its 2.5 and 97.5 percentiles
(in dashed blue lines) and the true density (in red line). The upper and lower panels are associated with the
sample of size 200 and 1000 procurements, respectively. The left, middle, and right panels are for type 1, 2,
and 3 bidders, respectively.

samples with sizes of T = 200 and 1, 000. For each of them, we apply our method to explore

the posterior distribution of the model primitives.

The estimation results from this simulation exercise are presented in Figures S10, S11,

and S12. Figure S10 displays the posterior predictive densities (plain lines) of the cost for

each type along with the point-wise 95% credible band (dashed lines) and the true cost

densities (red lines), and Figure S11 shows the histograms of the risk-aversion parameters

drawn from the posterior. The cost densities and the CRRA parameters are estimated

accurately, and the estimates become more precise and coalesce around the true value as the

sample size increases.

Figure S12 displays the pointwise posterior mean of fu(·|σu) (in plain) with a 95% credible
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Figure S11: Posterior of Risk-Aversion Coefficients, Simulated Sample

Each panel displays the histogram of the posterior mean of CRRA parameters, with true values {η01 , η02 , η03} =
(0.7, 0.4, 0.1). The (upper, lower) panels are associated with the sample of size (200, 1000) procurements.
The left, middle, and right panels are for type 1, 2, and 3 bidders.

interval constructed by pointwise 2.5 and 97.5 percentiles (dashed lines), and the true density

of the unobserved heterogeneity (red line). The posterior means are accurate, and as the

sample size grows, the posterior becomes more coalesced around the true density.

As a robustness check, moreover, we repeat the exercise above but restricting ut to be one

for all procurements, i.e., no unobserved heterogeneity (σu = 0), as in our empirical findings

of section 5.1. We find that our method correctly converges to the true model primitives as

before, including the degenerate distribution of u, i.e., σu ≈ 0.
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Figure S12: Density of the Unobserved Heterogeneity, Simulated Sample

Notes. The figures display the posterior density fu(·|σu), for T = 200 and T = 1, 000. Each point along the
blue plain line denotes pointwise posterior mean of the density, and the blue dashed-lines denote the 2.5 and
97.5 percentiles. The true density is in the red.

S8 Kolmogorov-Smirnov Test on MCMC Samples

To examine whether multiple MCMC samples are random draws from the same (posterior)

distribution, the Bayesian literature often employs a frequentist hypothesis test; see, for

example, χ2-test in chapter 4 of Geweke (2005) and Kolmogorov-Smirnov (KS) test in chapter

12 of Robert and George (2004). If the draws in the samples are independent, we can

apply the frequentist methods without any modifications to test the null hypothesis that

the samples are drawn from the identical distribution. Since MCMC draws are serially

correlated, however, one needs to make some adjustment of the samples. The most common

approach in the Bayesian literature is to use thinned subsamples. For example, Brooks,

Giudici, and Philippe (2003) and Robert and George (2004) employ thinned MCMC samples

to conduct the KS test to examine whether two MCMC samples follow the same posterior

distribution. Recall that a thinned subsample collects every thinth draw in the original

MCMC sample, e.g., θ(1·thin), θ(2·thin), θ(3·thin), . . .. That is, every two consecutive draws,

θ(m·thin) and θ((m+1)·thin), in the thinned subsample are separated by thin iterations. So,

the serial correlation should be small for a large thin. For thinned subsamples, therefore,

the p-value of a frequentist hypothesis testing would approximate the theoretical p-value.
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We consider the approximation here to be by nature similar to the frequentist convention

to approximate the sampling distribution of the test statistics by its asymptotic distribution

because both require the sample size to grow to infinity so that one can use a larger thin.

Following the literature, we use thinned MCMC samples to conduct the KS test in the

paper. As section S6 describes, we collect every 50th(= thin) draw in all our MCMC

samplings and use the second half of them for all statistical inference we conduct, including

computation of p values of KS test in section 5; see, for example, Tables 1 and 3.

For most cases, we apply the KS test to the samples of parameters drawn from the

posterior distribution, e.g., we draw the CRRA coefficients (η1, η2, η3) from the posterior

and apply the KS test to see if they are distributionally different across the bidder types in

Table 1. However, the comparison of predictive costs in sections 5.1 and 5.3 may require some

additional clarification, because predictive costs are not directly drawn from the posterior.

Recall that the posterior predictive cost density of type τ ∈ {1, 2, 3} is given as

fτ (c|z) =

∫
Rk
f(c|ψτ )π(θ, σu, (ut)

T
t=1|z)dψτ , (S30)

where ψτ ∈ Rk is included in θ. We evaluate (S30) by M−1∑M
m=1 f(c|ψ(m)

τ ), which almost-

surely converges to (S30) as M grows. Note that Figure 3 in the main paper plots those

predictive cost densities for τ ∈ {1, 2, 3} and for each different specification of risk aversion.

We supplement the graphical comparisons in Figure 3 by statistical evidence based on KS

test results. To do so, for each specification of utility functions, (heterogeneous CRRA,

homogeneous CRRA, and No CRRA), we draw a sample of (c
(m)
τ )Mm=1 from (S30), where

c
(m)
τ ∼ f(c|ψ(m)

τ ) and (ψ
(m)
τ )Mm=1 are drawn from the posterior, π(θ, σu, (ut)

T
t=1|z), and we

apply the KS test to these samples.

Such statistical evidence might not add much information when the two densities we

compare look clearly different from each other in the graphs, like in the example of the

predictive cost densities with heterogeneous risk aversion (top panels in Figure 3 or the
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dashed lines in the middle and bottom panels) and the densities with no risk aversion (bottom

panels). Nevertheless, the test results should help the researcher conclude whether the

distributions under comparison are identical when they look similar, like in the case of the

predictive cost densities with heterogeneous risk aversion and the predictive cost densities

with a common risk aversion coefficient (middle panels).

Our sensitivity analysis in section 5.3 provides additional examples where the test re-

sults are useful. We obtain the predictive cost densities for each alternative specification

and compare them against the ones under the main specification. The cost densities un-

der alternative specifications are almost identical to the ones under the main specification,

especially for type 2 and type 3 bidders; in Figures S13 and S14. However, there is some

slight difference for cases like type 1 bidder under small prior. For all cases, however, we find

no evidence against the hypothesis of identical distributions at any conventional significance

level; therefore, we conclude that the predictive cost densities are robust for the specifications

we consider.

S9 Algorithm for Policy Simulations

For the policy analysis in section 5.2, we need to evaluate the predictive procurement cost

at a counterfactual reserve price ρ, for which this section develops our algorithm.

S9.1 Case with a Given Bidder Configuration

For the moment, we consider the case where a one-dimensional reserve price ρ is applied

to all the bidders in a given set Ĩ regardless of their types. Here, we construct a model

for the first-price auction that maps to the FPP with ρ using the equivalence relationship

similar to the relationship between (S13) and (S14). In particular, we compute the expected

procurement cost in the FPP from the seller’s expected revenue in the auction, which we

evaluate by simulating bid data in the associated auction.
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Due to the bid data normalization in the paper, the cost lies in [c, c] = [0, 1], i.e., (S9)

simplifies to vi = 1− ci. Then, vi follows F̃i(x) = 1− Fi(1− x), where Fi(x) is the CDF of

ci for all i ∈ Ĩ. In addition, the reserve price in the data, i.e., the current reserve price, is

ρc = c = 1. This reserve price in the associated auction is then ρ̃c = 1 − ρc = 0. Similarly,

for any counterfactual reserve price ρ in the procurement, the reserve price in the associated

action is ρ̃ = 1− ρ.

The objective functions (S8) and (S10) imply that βi(ci) = 1 − β̃i(vi), where {βi}i∈I

and {β̃i}i∈I are the bidding strategies in the procurement and auction, respectively, with

vi = 1 − ci. Therefore, the procurement cost is mini∈Ĩ{βi(ci)} = 1 −maxi∈Ĩ{β̃i(vi)} at the

current reserve price, for realized costs {ci}i∈Ĩ . If ρ < 1, the procurement cost is

min
i∈Ĩ
{βi(ci; ρ)1(ci ≤ ρ) + ρc · 1(ci > ρ)} = 1−max

i∈Ĩ

{
β̃i(vi; ρ̃)1(vi ≥ ρ̃)

}
, (S31)

where the equilibrium strategies indicate the dependence on the reserve prices. To simplify

the expressions, we suppress the dependence of the strategies on the bidder configuration and

the model primitives – the parameters for the distribution functions and CRRA coefficients.

Let us explain the left-hand side of (S31). If bidder i’s cost is less than ρ, she bids βi(ci; ρ).

Otherwise, bidder i bids any number above ρ to avoid winning the procurement; this case

does not need to explicitly appear in (S31) for the procurement cost (a losing bid cannot

be the procurement cost). If some bidders bid below ρ, the procurement cost equals the

minimum of the bids. If no bidder bids below ρ, the buyer purchases similar goods and

services at ρc. The second indicator takes care of that case. This assumption is consistent

with the way by which a reserve price is chosen; see Section 3. The equality holds because

ρc = 1 and βi(ci; ρ)1(ci ≤ ρ) = 1− β̃i(vi; ρ̃)1(vi ≥ ρ̃).

The (expected) procurement cost that we need for policy analysis is the expectation

of the left-hand side of (S31), where the expectation is for {ci}i∈Ĩ , for which we take the
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expectation of the right-hand side, i.e., one minus the seller’s (expected) revenue. That is,

Λ(ρ, θ, I, Ĩ) = 1− E
[
max
i∈Ĩ

{
β̃i(vi; ρ̃)1(vi ≥ ρ̃)

}]
(S32)

where the expectation on the right-hand side of (S32) is the seller’s (expected) revenue of

the associated auction and the third argument I on the left-hand side will become apparent

in the next subsection. Note that we also use notations Λ(ρ, θ) and Λ(ρ, θ, I). The latter is

the procurement cost integrating out Ĩ and the former integrating out both I and Ĩ.

To compute {β̃i(vi; ρ̃)}i∈Ĩ with |Ĩ| ≥ 2, we further extend the algorithm of Fibich and

Gavish (2011). For the case with |Ĩ| ≥ 2, define the rescaled value

vρ̃i :=

(
vi − ρ̃
1− ρ̃

)
1(vi ∈ (ρ̃, 1]) (S33)

and let F̃ ρ̃
i (x) := F̃i((1− ρ̃)x+ ρ̃) for x ∈ [0, 1] be the CDF of vρ̃i and f̃ ρ̃i (·) be its PDF. Then,

vρ̃i has the unit support, which is required for the algorithm of Fibich and Gavish (2011).

Then, the algorithm solves for the inverse bidding strategies {φ̃ρi (·)}i∈Ĩ in the form of (S15)

with F̃ ρ̃
i (·) and f̃ ρ̃i (·) in place of F̃i(·) and f̃i(·), giving the bidding strategies {β̃ρi (·)}i∈Ĩ .

Finally, we have

β̃i(vi; ρ̃) =

 ρ̃+ (1− ρ̃)β̃ ρ̃i (vρ̃i ) if vi ≥ ρ̃

0 otherwise.
(S34)

The discussion so far suggests how to evaluate (S32) via simulation. For any reserve

price ρ and cost densities {Fi} for i ∈ Ĩ, we construct their auction counterparts ρ̃ and {F̃i}.

Then, we draw values {vim}i∈Ĩ ∼
∏

i∈Ĩ F̃i independently for all m ∈ {1, . . . ,M3(Ĩ)}, where

M3(Ĩ) is the number of auctions in the simulation for the bidder configuration Ĩ. Then,

by evaluating (S34) at the drawn values, we compute a set of simulated equilibrium bids.

Then, the average of the M3(Ĩ) simulated winning (maximum) bids consistently estimates
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the expectation in (S32). Let i∗ be the index of the bidder in Ĩ who has the highest value.

1

M3(Ĩ)

M3(Ĩ)∑
m=1

β̃i∗(vi∗m; ρ̃)1(vi∗m ≥ ρ̃)
a.s−→ E

[
max
i∈Ĩ

{
β̃i(vi; ρ̃)1(vi ≥ ρ̃)

}]
. (S35)

Using the simulated bid data, we also evaluate the efficiency measures. That is, we evaluate

the probability of allocation (at least one bidder wins) by

1

M3(Ĩ)

M3(Ĩ)∑
m=1

1(vi∗m ≥ ρ̃)
a.s−→ Pr(at least one bidder wins),

and the probability that the efficient bidder wins by

1

M3(Ĩ)

M3(Ĩ)∑
m=1

1

(
β̃i∗(vi∗m; ρ̃) = max

i∈Ĩ
{β̃i(vim; ρ̃)}

)
1(vi∗m ≥ ρ̃)

a.s−→ Pr(the efficient bidder wins).

Note that these probabilities depend on the model primitives, reserve price, and bidder

configuration.

S9.2 Endogenous Bidder Configuration and Bidder-Specific Re-

serve Price

Up to now, we have considered the case where Ĩ is given and have focused on how we compute

the outcomes for the procurement using the outcomes of the associated auction. Section 5.2

allows Ĩ to be endogenously determined when the procurer chooses a binding reserve price.

From now on, we extend the algorithm to compute Λ(ρ, θ, I) by incorporating the random

Ĩ and bidder-specific reserve price, i.e., ρ = (ρi)i∈I is now a vector (the type-specific case is

nested here.). We do not refer to the associated auction anymore, which is implicit; refer to

the previous subsection.

Let I be the set of bidders that would be exogenously given if the procurement had a non-
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binding reserve price. To evaluate the procurement cost Λ(ρ, θ, I), we simulate M3 sets of

the bidder costs, i.e., {cim}i∈I ∼
∏

i∈I Fi(·), independently for all m ∈ {1, . . . ,M3}. In each

simulated procurement m, bidder i with cim > ρi does not enter the procurement. So, the

binding reserve price ρ and realized costs {cim}i∈I in each m revise the bidder configuration.

To be specific, we denote the revised configuration by Ĩm = Ĩ(I, {ρi}i∈I , {cim}i∈I) = {i ∈

I : cim ≤ ρi}. Since the costs {cim}i∈I are random, Ĩm is random. The support S(I)

of Ĩm is finite because |I| < ∞. Let Q(Ĩ) be the probability of Ĩ ∈ S(I) for a generic

element Ĩ of S(I). We evaluate Q(Ĩ) by its consistent estimate M3(Ĩ)/M3
p−→ Q(Ĩ), where

M3(Ĩ) =
∑M

m=1 1(Ĩ = Ĩm). Note that we used M3(Ĩ) in the previous subsection.

Section 5.2 assumes that Ĩ is commonly known among the bidders in Ĩ. For the cases

with |Ĩ| ≥ 2, let ρe(Ĩ, ρ) := min{ρi : i ∈ Ĩ}. Note that ρe(Ĩ, ρ) is the (scalar-valued)

effective reserve price, which is applied to all the bidders in Ĩ. So, ρe plays the role of ρ in

section S9.1. The reason why ρe(Ĩ, ρ) is the effective reserve price is because all bidders in Ĩ,

by observing Ĩ, learn that a bidder facing ρe(Ĩ, ρ) participated in the procurement, and this

bidder would never bid above ρe(Ĩ, ρ); thus, there is no chance of winning if bidding above

ρe(Ĩ, ρ). So, ρe(Ĩ, ρ) is effectively the (scalar valued) reserve price. For all Ĩ ∈ S(I) such

that |Ĩ| ≥ 2, therefore, the algorithm in section S9.1 evaluates the expected procurement

cost, Λ(ρe(Ĩ, ρ), θ, I, Ĩ), which we consistently estimate by (S35) using the subsample of

M3(Ĩ) simulated procurements with Ĩ . If Ĩ = {i} for i ∈ I, the procurement cost is ρi.

If Ĩ is empty, the procurement cost is ρc. Hence, we compute the expected procurement

expected cost for the given I,

Λ(ρ, θ, I) =
∑
Ĩ∈S(I)

Q(Ĩ)Λ(ρe(Ĩ, ρ), θ, I, Ĩ), (S36)

where we have consistent estimates for all the components on the right-hand side. We observe

the distribution of I in the data z. Therefore, we compute the expected procurement cost
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with unknown I by integrating I out by its empirical distribution. That is,

Λ(ρ, θ) =
∑
I

[
1

T

T∑
t=1

1(I = It)

]
Λ(ρ, θ, I)

=
∑
I


[

1

T

T∑
t=1

1(I = It)

] ∑
Ĩ∈S(I)

Q(Ĩ)Λ(ρe(Ĩ, ρ), θ, I, Ĩ)

 , (S37)

where the second equality uses (S36). We obtain the efficiency measures under (ρ, θ) inte-

grating (I, Ĩ) out, similarly.

S9.3 Additional Note on Policy Simulation

We have three types, ρ = (ρ1, ρ2, ρ3) ∈ R3, and bidder i faces ρτ(i) in all procurements she

enters. Section 5.2 considers two cases: common reserve price and type-specific reserve price.

For the case with a common reserve price, we set ρ1 = ρ2 = ρ3 and consider all reserve prices

ρτ ∈ { 15
100
, 16
100
, 17
100
, . . . , 99

100
, 1}. We evaluate the predictive procurement cost,

1

M2

M2∑
m=1

Λ(ρ, θ(m))
a.s−→ E[Λ(ρ, θ)|z], (S38)

at all ρ, where {θ(m)}M2
m=1 are the MCMC draws from the posterior. This exercise gives Figure

4 in the main paper. We report the reserve price with the smallest (S38) in section 5.2 with

the predictive outcome variables at that reserve price. Note that we obtain the predictive

efficiencies by integrating θ out, similarly.

For the case with type-specific reserve prices, we solve the policymaker’s problem as fol-

lows. Let A1
τ denote the set of equally spaced grid points between ρ1

τ
= 0.2 and ρ1τ = 1

with step size of step1 = 0.2. Then, A1 = A1
1 × A1

2 × A1
3 collects all possible combi-

nations of (ρ1, ρ2, ρ3). Here, the superscript 1 indicates that they are used for the initial

set of grid points. The first iteration solves the optimization problem over A1. At each

sth iteration in the optimization process, we denote the solution by ρ̂s := (ρ̂s1, ρ̂
s
2, ρ̂

s
3) :=
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arg minρ∈As E[Λ(ρ, θ)|z]. Then, we repeat the search by revising the set of reserve prices.

To be specific, we define As+1
τ for each type τ ∈ {1, 2, 3} as the set of grid points be-

tween ρs+1
τ

= max{ρ̂sτ − steps, ρs
τ
} and ρs+1

τ = min{ρ̂sτ + steps, ρsτ} with the equal step

size steps+1 = steps/2 and define As+1 = (As+1
1 × As+1

2 × As+1
3 ) \ As. Then, we solve

the optimization problem over As+1 to find ρ̂s+1 := arg minρ∈As+1 E[Λ(ρ, θ)|z]. We repeat

the search revising the set of reserve prices and reducing the step size by half until the

step size falls below a certain threshold, step. Throughout this procedure, we evaluate the

posterior predictive cost (S38) by the M2 = 1, 000 MCMC draws from the posterior by com-

puting Λ(ρ, θ, I, Ĩ) in (S37) by Monte Carlo with simulation size of M3 = 5, 000. We use

step = 0.005.

S10 Sensitivity Analysis

This section provides additional results from our sensitivity analysis: the graphs of the

predictive cost densities and the counterfactual analysis of inviting one additional bidder

from each type under alternative specifications considered in section 5.3 of the main paper.

S10.1 Predictive Cost Densities

The top panels of Figure S13 show, for each type τ ∈ {1, 2, 3}, the posterior mean of the

cost density at every point c ∈ [0, 1] by a solid line and a 95% credible band around the

predictive density by dotted lines for the specification where the two most frequent entrants

are type 1 bidders. The middle (bottom) panels summarize the results for the cases where

the three most frequent entrants (winners) are type 1 bidders. For comparison, the dashed

lines are the predictive densities under the main specification, pasted from the top panels of

Figure 3 in the main paper.

Figure S14 continues to show the predictive densities under alternative priors and density

specification for the unobserved heterogeneity. The upper and middle panels are associated
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Figure S13: Sensitivity of Cost Densities

The diagrams show the posterior predictive cost density (solid) and 95% credible band (dotted). Each row
corresponds to a different definition of bidder types, and each column corresponds to a type of a bidder. The
dashed lines are the predictive densities under the main specification, pasted from the top panels of Figure
3 in the main paper.

with the cases where the prior variance of ψ is small and large, respectively. The lower panels

are with the alternative specification of the density of the unobserved heterogeneity.

The posterior predictive densities are overall robust. In particular, the predictive cost

densities of type 2 and 3 bidders are not affected by any of those elements that the researcher

selects because the bid samples for those types are pretty large; see sections 3.2 and S3. On

the other hand, the predictive cost density of the type 1 bidder appears to be less robust as

the bid sample of type 1 is small, especially when the alternative prior is directly concerned

about the parameters of the cost densities. Note that the influence of prior disappears as

the sample size increases, as suggested by the Bernstein von-Mises Theorem; see Chapter 10
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Figure S14: Sensitivity of Cost Densities, Figure continued

This figure is a continuation of Figure S13. The upper and middle blocks correspond to the small and
large prior variances of ψ, and the lower one to the alternative specification of the density of unobserved
heterogeneity. Each panel shows the posterior predictive cost density (solid) and 95% credible band (dotted)
for each type. The dashed lines are the predictive densities pasted from the upper block of Figure S13.

of van der Vaart (1998).

However, the way the predictive density depends on those elements are as expected.

Recall from section 4 that the prior mean of the cost density is the uniform distribution

on [0, 1]. When the stronger prior is used (the first row of Figure S14), the predictive cost

density of type 1 is flatter than the one under the main specification (dashed line). On the

other hand, the predictive cost density under the main specification appears to be flatter

than the one under the weaker prior (the second row of Figure S14).

Finally, the distribution of the unobserved heterogeneity is essentially degenerate even

under the more flexible specification. The predictive cost densities are all identical to the
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ones under the main specification (the third row of Figure S14).

S10.2 Inviting One Additional Bidder

Table S7 presents the predictive procurement costs and the probability that the efficient

bidder wins when the procurer invites one additional bidder from each type. Note that

the first block (main specification) reprints the results under the main specification, which

appear in the last block of Table 2 in the main paper for comparison. The table shows the

results under alternative type definitions, prior specifications, and alternative density of the

unobserved heterogeneity.

The predicted outcomes are similar to the ones under the main specification. In particu-

lar, the results are qualitatively the same. Inviting one additional bidder would substantially

reduce the procurement cost and, therefore, be more beneficial to the procurer than optimally

choosing reserve prices. Hence, we find that the insight of Bulow and Klemperer (1996) holds

for the “printing papers” category of Russian procurements where bidders are asymmetric

in cost density and risk-aversion. Moreover, inviting an additional type 1 (3) bidder reduces

the most (least) procurement cost, but the difference is not large. Finally, inviting a type 1

bidder would reduce the most efficiency, but only slightly more than inviting other bidders.
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Table S7: Counterfactual Analysis; Inviting One Additional Bidder

Predictive Prob. that
Alternative Inviting Procurement Cost Efficient Bidder Wins
Specifications One additional (1) (2)
Main Specification Type 1 Bidder 0.791 [0.775, 0.804] 0.988 [0.981, 0.996]

Type 2 Bidder 0.794 [0.782, 0.805] 0.996 [0.994, 0.998]
Type 3 Bidder 0.797 [0.784, 0.811] 0.996 [0.993, 0.997]

2 Type 1 Bidders Type 1 Bidder 0.789 [0.776, 0.801] 0.988 [0.982, 0.995]
Type 2 Bidder 0.793 [0.781, 0.805] 0.995 [0.994, 0.997]
Type 3 Bidder 0.795 [0.784, 0.807] 0.995 [0.993, 0.997]

3 Type 1 Bidders Type 1 Bidder 0.790 [0.776, 0.802] 0.990 [0.984, 0.996]
Type 2 Bidder 0.793 [0.782, 0.803] 0.996 [0.994, 0.998]
Type 3 Bidder 0.797 [0.786, 0.808] 0.996 [0.993, 0.998]

3 Type 1 Bidders (win) Type 1 Bidder 0.780 [0.763, 0.795] 0.993 [0.987, 0.997]
Type 2 Bidder 0.794 [0.782, 0.804] 0.996 [0.994, 0.998]
Type 3 Bidder 0.801 [0.786, 0.813] 0.996 [0.994, 0.998]

Small Prior V (ψ) Type 1 Bidder 0.781 [0.757, 0.800] 0.987 [0.981, 0.996]
Type 2 Bidder 0.787 [0.772, 0.800] 0.996 [0.994, 0.998]
Type 3 Bidder 0.791 [0.776, 0.804] 0.996 [0.993, 0.998]

Large Prior V (ψ) Type 1 Bidder 0.793 [0.774, 0.808] 0.988 [0.980, 0.995]
Type 2 Bidder 0.795 [0.782, 0.806] 0.996 [0.994, 0.998]
Type 3 Bidder 0.801 [0.787, 0.813] 0.995 [0.993, 0.997]

Alternative fu(·) Type 1 Bidder 0.790 [0.771, 0.804] 0.988 [0.981, 0.995]
Type 2 Bidder 0.793 [0.781, 0.803] 0.996 [0.994, 0.998]
Type 3 Bidder 0.797 [0.783, 0.810] 0.996 [0.994, 0.997]

For each specification, this table shows predictive outcome variables along with 95% credible intervals when
the procurer invites one additional bidder from each type. The outcome variables are the procurement cost
and the probability that the bidder with the lowest cost wins.
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