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Abstract

Background: The quality of automated gene prediction in microbial organisms has improved steadily over the

past decade, but there is still room for improvement. Increasing the number of correct identifications, both of

genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are

all desirable goals.

Results: With our years of experience in manually curating genomes for the Joint Genome Institute, we developed

a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm).

With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved

translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing

gene-finding methods to demonstrate that it met each of these objectives.

Conclusion: We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.

gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable

asset to automated microbial annotation pipelines.

Background
Microbial gene prediction is a well studied, and some

would say solved, problem, but the truth is that there is

still much room for improvement, especially in under-

standing how translation initiation mechanisms work in

prokaryotes. Existing methods for bacterial and archaeal

gene prediction include the popular Glimmer [1] and

GenemarkHMM [2] packages, both of which are

included at NCBI alongside Genbank [3] annotations

(Prodigal is also included), as well as other methods

such as Easygene [4] and MED [5].

Current gene recognition methods perform relatively

well in low GC content genomes, but the accuracy

drops considerably in high GC content genomes. High

GC genomes contain fewer overall stop codons and

more spurious open reading frames (ORFs). These false

ORFs are often selected by programs instead of real

ORFs in the same genomic region. In addition, the

longer ORFs in high GC genomes contain more poten-

tial start codons, thus leading to a drop in accuracy of

the translation initiation site (or TIS) predictions as well.

Translation initiation site prediction in existing micro-

bial gene-finding tools has not proven to be sufficiently

adequate, and this has motivated a number of tools to

be developed specifically to correct the start calls of cur-

rent methods. These tools include GSFinder [6], TiCO

[7], and TriTISA [8]. It is our view that a single gene

prediction algorithm should be able to match the per-

formance of the above methods, rather than needing to

run two programs to attain the desired level of accuracy

in start predictions.

Finally, most methods tend to predict too many genes.

Although many of the short genes predicted by current

programs that have no existing BLAST [9] hits might be

real, the likelihood is that most are false positives. We

base this assertion on the fact that genome-wide proteo-

mics studies that search the entire set of all potential

ORFs do not identify a significant number of peptides in

these genes [10]. In the construction of a novel algo-

rithm, we determined it would be preferable to sacrifice

some genuine predictions if it meant also eliminating a

much larger number of false identifications.

With the advent of faster sequencing technologies, it

is likely that in the future less time will be spent on fin-

ishing microbial genome sequence. It is also likely that
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researchers will not often be able to curate manually the

gene predictions delivered by automated pipelines. It is

therefore important to improve the current methodolo-

gies to obtain higher quality gene predictions, better

translation initiation site predictions, and a reduction in

the number of false positives.

Implementation
To address these challenges, we constructed a novel

gene-finding algorithm called Prodigal. In designing

the Prodigal algorithm, we decided to use a “trial and

error” approach. We began by building a set of curated

genomes that had been analyzed using the JGI ORNL

pipeline http://genome.ornl.gov/. This pipeline con-

sisted of a combination of Critica [11] and Glimmer

[1], BLAST [9] to locate missing genes and correct

errors, and a final round of manual expert curation.

To this initial set of ten genomes we added Escherichia

coli K12 (both the Genbank file and the Ecogene Veri-

fied Protein Starts data set [12]), Bacillus subtilis, and

Pseudomonas aeruginosa. With these sets in hand, it

became possible to validate or exclude changes to the

algorithm based on whether or not the performance

on the test set of genes increased or decreased, respec-

tively. In the final stages of validating the rules in the

program, we expanded this set to include over 100

genomes from Genbank.

It should be noted that we only used this set to deter-

mine very general rules about the nature of prokaryotic

genes, such as gene size, maximum overlap between two

genes (both on the same strand and on opposite

strands), and RBS motif usage. In addition, we tuned

several constants in the program based on performance

on this data set. This set was also used to exclude ideas

that caused deterioration in performance across many

genomes. (These failed ideas are too numerous to

include in this publication). Because we intended to vali-

date Prodigal’s performance by examining E. coli, B. sub-

tilis, and P. aeruginosa, we also verified that each of

these decisions we made also maximized performance

on the remaining genomes in our set. Changes were not

retained if they were merely “local” improvements to a

subset of genomes, especially not genomes on which we

intended to test the program’s performance.

In order for Prodigal to run in a completely unsuper-

vised fashion, it needed to be able to learn all the neces-

sary properties of the input organism, including start

codon usage (ATG vs. GTG vs. TTG), ribosomal bind-

ing site (RBS) motif usage, GC frame plot bias, hexamer

coding statistics, and other information necessary to

build a complete training profile. To gather statistics

from a finished sequence or set of sequences, the algo-

rithm first had to determine automatically a set of puta-

tive “real” genes on which to train.

Prodigal constructs its training set of genes by exam-

ining the GC frame plot in the ORFs in the genome.

The program begins by traversing the entire input

sequence and examining the bias for G’s and C’s in each

of the three codon positions in each open reading

frame. The highest GC content codon position for an

ORF is considered the “winner”, and a running sum for

that codon position is incremented. Once all ORFs have

been processed, the sums give an approximate measure

of the preference of each codon position for G and C.

The values for each codon position are normalized

around 1 and divided by 1/3. If 2/3 of the codons in

ORFs prefer G or C in the third position, for example,

then the bias score for that position would be 2. We

tried converting this bias to a log score, but this was

found to decrease the quality of the results.

Using this GC bias information, Prodigal constructs

preliminary coding scores for each gene in the genome.

This is done by multiplying the relative codon bias for

each of the three positions by the number of codons in

the putative gene in which that codon position is the

maximal GC frame (in the 120 bp window centered on

that position). We chose 120 bp for the window size

because that is the default window size for GC frame

plot calculation in Artemis [13], and, in the experience

of our manual curators, this default was an optimal set-

ting. So, for example, if an entire gene contains the

most G’s and C’s in its third codon position, the score

for that gene would be the length of the gene multiplied

by our codon bias score for frame 3. If instead this gene

is too long, then the frame plot information should

change in the spurious upstream region. These bases

would be multiplied by a lower GC frame bias score (for

example, for frame 2, which is seldom the highest GC

content frame in real genes). The score S for a given

gene starting at location n1 and ending at location n2

can be given by:

S n n B i l i

i

( .. ) ( )*( ),1 2

1

3





where B(i) is the bias score for codon position i, and l

(i) is the number of bases in the gene where the 120 bp

maximal window at that position corresponds to codon

position i.

With this preliminary coding score measure based on

simple GC codon position statistics, Prodigal scores

every start-stop pair above 90 bp in the entire genome.

(We tried allowing genes smaller than this, but the

number of false positives became problematic.) Prodigal

then performs a dynamic programming [14] across the

whole sequence (or set of sequences) to identify a maxi-

mal “tiling path” of genes to train on. The purpose of
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this dynamic programming method is to force the pro-

gram to choose between two heavily overlapping ORFs

in the same genomic context. In theory, one of these

ORFs should match the preferred GC codon position of

the organism, whereas the other one should not.

Prodigal utilizes the same dynamic programming algo-

rithm both for its preliminary training phase and for its

final gene calling phase. Each node in the dynamic pro-

gramming matrix is either a start codon (ATG, GTG, or

TTG only: the program does not consider nonstandard

starts such as ATA, ATT, or CTG) or a valid stop

codon (specified by the translation table code). In addi-

tion, start and stop nodes are added in each frame at

the edges of the sequence to handle cases where genes

run off the edge of contigs, a common occurrence in

draft and metagenomic sequence data. The connection

of a start node to its corresponding stop node represents

a gene, whereas the connection of a 3’ end to a new 5’

end represents intergenic space. The score of a “gene”

connection is the precalculated coding score for that

gene, whereas the score for an intergenic connection is

a small bonus or penalty based on the distance between

the two genes. Figure 1 illustrates these dynamic pro-

gramming connections in action.

Since dynamic programming cannot go backwards (a

partial solution to a given point must also be a part of

the final solution, prohibiting the concept of past infor-

mation suddenly changing), we need a special set of

rules to handle overlapping genes. Prodigal accomplishes

this by pre-calculating the best overlapping genes in all

three frames for each 3’ end in the genome. So, for

example, for a stop codon at position 15,000, the pro-

gram would look 60 bp upstream of position 15,000 and

locate the highest scoring overlapping gene in each

frame (there may not be one). With this information in

hand, a new type of connection can be established, that

of a 3’ end of one gene to a 3’ end of a second gene on

the same strand. In this case, the 5’ end of the second

gene is implied by the connection, since the best start

has already been calculated. A maximal overlap of 60 bp

is allowed between two genes on the same strand. For

opposite strand overlap, we allow 200 bp overlap

between 3’ ends of genes, but 5’ ends of genes are not

permitted to overlap. These connections are represented

by the 3’ end of a forward gene connecting to the 5’ end

of a reverse gene, wherein the 3’ end of the second gene

is implied (there can be only one stop codon for a given

start). These overlap values were determined by record-

ing overlaps between genes in the Genbank files of our

test set. Although we may merely be encouraging Prodi-

gal’s overlap rules to be similar to previous gene predic-

tors, our manual curators also felt these were reasonable

Figure 1 Pseudocode description of the Prodigal algorithm.
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values for overlap based on their experience examining

finished genomes. Table 1 shows a summary of the dif-

ferent types of dynamic programming connections

allowed in Prodigal.

Once the preliminary dynamic programming algo-

rithm has completed, the next step is to gather statistics

from the putative genes and construct a more rigorous

coding scorer. Prodigal does this in a very simplistic

way, by simply looking at in-frame hexamer coding fre-

quencies for a gene relative to the background. A

lookup table of 4096 values is created, one for each 6-

mer, where the value of a given word w is:

C w G w B w( ) log( ( ) / ( )),

where C is the coding score, G is the percentage

occurrence of that word within our gene training set,

and B is the percentage occurrence of that word across

the entire sequence (irrespective of frames). So, for

example, if a word is twice as likely to occur in a gene

as it is in the background, the score for that word

would be log(2). This corresponds to a 5th-order Markov

model [1,2]. A floor and a ceiling are also established on

this score to handle cases where there is insufficient

data for a given word.

The final coding score for a gene beginning at position

n1 and ending at position n2 can be written as

S n n C w i

i n

n

( .. ) ( ( )),1 2

1

2





where S is the sum of the coding scores (C) for the in-

frame hexamers (the set of words w) in the gene. In addi-

tion, Prodigal modifies this coding score based on infor-

mation about what lies upstream of the selected start. For

example, if a gene 1000..3000 has a score of 500.0, and the

gene 1200..3000 has a score of 400.0, Prodigal modifies the

score of the second gene to be 400-(500-400) = 300. The

reason for this modification is to penalize choosing a trun-

cated version of a gene when a longer, higher-scoring ver-

sion of the same gene could also be chosen. In the

dynamic programming model, this can be thought of as

penalizing a connection to an interior start by subtracting

the difference between the two potential genes. The pur-

pose for this modification is to discourage the truncation

of genes through choosing a gene on the opposite strand

that overlaps with and erases the beginning of the longer

version of the gene, a common occurrence in current

gene-finders. In addition, Prodigal implements a few more

minor tweaks to the coding score, including boosting the

score of particularly long genes (dependent on the GC

content of the organism: ~700 bp or so in low GC, ~1200

or so in high GC) to be minimally positive if the prelimin-

ary coding score is negative.

Once Prodigal has calculated coding potential scores

for every start-stop pair in the genome, the next step is

to create a translation initiation site scoring system from

the training set. The program constructs a background

of ATG, GTG, and TTG frequencies off all start nodes

in the genome. It also builds a background of RBS

motifs based on the Shine-Dalgarno sequence [15].

Unlike many methods, which use a position-weight

matrix or Gibbs sampling method to find motifs, Prodi-

gal begins by assuming that the SD motif will be utilized

by the organism. If this turns out not to be the case, it

runs a more rigorous motif finder. But, to start with, the

program attempts to determine if the SD motif is widely

utilized by the genome in question.

For RBS motifs, Prodigal utilizes a concept of bins,

each of which corresponds to a set of RBS motifs and

spacer distances (the spacer is the distance between the

motif and the translation initiation codon). Table 2

shows the default priority of these bins, from lowest

scoring to highest scoring.

In the initial background, the motif in a higher num-

bered bin takes priority over one in a lower numbered

bin if both are found upstream of a start site. These

bins were rigorously determined by examining the

detailed data set of curated Genbank files (and the Eco-

Gene Verified Protein Starts [12]). Prodigal examines

the initial coding peaks in every open reading frame

(where the coding peak is the highest scoring start-stop

pair for a given stop codon) with a coding score of 35.0

or higher (a somewhat arbitrary threshold chosen that

would include only longer genes, which are more likely

to be real). From these coding peaks, it builds a log-like-

lihood model similar to the coding score, described by:

S n R n B n( ) log( ( ) / ( )),

where S is the score, R is the observed percentage of

this type in our training set, and B is the percentage

Table 1 Dynamic Programming Connections in Prodigal

Left Node Right Node Connection Type Connection Score

5’ forward 3’ forward Gene Start+coding score

3’ reverse 5’ reverse Gene Start+coding score

3’ forward 5’ forward Intergenic Space Distance modifiers

3’ forward 3’ reverse Intergenic Space Distance modifiers

5’ reverse 3’ reverse Intergenic Space Distance modifiers

5’ reverse 5’ forward Intergenic Space Distance modifiers

3’ forward 3’ forward Overlapping Genes Score of 2nd gene

3’ reverse 3’ reverse Overlapping Genes Score of 2nd gene

3’ forward 5’ reverse Opposite Strand Overlap Score of 2nd gene

Table 1 shows the types of dynamic programming connections in the

algorithm. Each end of a gene is a node, and connections between these

nodes represent either genes or the space between genes. The more

complicated connections indicate overlapping genes.

Hyatt et al. BMC Bioinformatics 2010, 11:119

http://www.biomedcentral.com/1471-2105/11/119

Page 4 of 11



occurrence in the background. This method is used

both for start codon usage (ATG, GTG, or TTG) as

well as for the SD bin motif (from the table above).

These scores are summed together and multiplied by a

constant (4.25, corresponding to about 16 bp of coding

score, determined empirically from maximal perfor-

mance on our test set of genomes, and later verified on

a larger set of genomes from Genbank), then added to

the coding score. Prodigal goes through every start-stop

node and performs this calculation, modifying the

default coding score by the quality of its start codon

information. This leads to a new set of “peaks” for the

set of training ORFs. For example, an ATG with a

slightly lower coding score than a TTG in the same

ORF could overtake it with the additional start score

added (assuming the organism uses ATG as a start

codon more than TTG).

Once a new set of peaks has been determined, Prodi-

gal reconstructs the background for both SD motif and

start codon usage. In this iteration and in subsequent

ones, it no longer assumes a higher numbered bin is

better for RBS motifs, and it instead relies on the log

likelihoods calculated in the previous iteration to find

the best upstream motif for a given start site. Prodigal

performs several iterations of this process, moving the

peaks around based on subsequent information until

they no longer move significantly. When the peaks no

longer move, it determines the final set of weights based

on statistics gathered from this final set of putative

“real” start codons.

The end result is a set of log-likelihood weights for

ATG/GTG/TTG information and for each of the above

RBS bins. If the zero bin for RBS motifs, which corre-

sponds to no SD motif, is positive, or if the zero bin is

above -0.5 and the 4-base motif bins are less than 1.0,

then Prodigal determines that this organism does not

use the SD motif strongly, and it runs a more rigorous

motif finder. In examining over 800 finished genomes in

Genbank, we determined about 10% of them did not

use the SD motif strongly. Most of these genomes were

cyanobacteria, chlorobii, or archaea, which seem to use

different translation mechanisms than the more com-

mon SD motif.

If it is found that the organism does not use the SD

motif, Prodigal searches exhaustively for alternative

motifs. It does so by looking at the occurrence of all 3-

mer motifs in the initial set of peaks, and locating all 3-

mers that occur in at least 20% of the high-scoring gene

models. From these motifs, it then performs an iterative

algorithm similar to the above. The bins instead corre-

spond to every word of size 3-6 bp (mismatches allowed

only in the center of 5-6 bp words, just as in the SD

RBS motif table above) with every potential spacer size

(3-4 bp, 5-10 bp, 11-12 bp, and 13-15 bp). All words 3-

6 bp that do not occur frequently enough are combined

in the “no RBS motif” bin. Prodigal then arrives at a

similar set of weights for no RBS motif, as well as for

each 3-6 bp motif that contains the commonly occur-

ring 3 bp motif as a subset. In Aeropyrum pernix, a

strong GGTG motif is located, whereas in many cyano-

bacteria, Prodigal latches onto AT-rich motifs like

TATA and TAAA.

Finally, we added a scoring system to capture informa-

tion in the regions outside those examined by the RBS

scorer (1-2 bp and 15 bp to 45 bp upstream from the

translation start site). This scoring system builds a posi-

tion weight matrix on the whole region. Although this

scoring system is very crude and captures only general

characteristics (AT-richness, simple base preferences,

Table 2 Shine-Dalgarno RBS Motifs in Prodigal

Bin # RBS Motif RBS Spacer

0 None None

1 GGA, GAG, AGG 3-4 bp

2 GGA, GAG, AGG, AGxAG, GGxGG 13-15 bp

3 AGGA, GGAG, GAGG, AGxAGG, AGGxGG 13-15 bp

4 AGxAG 11-12 bp

5 AGxAG 3-4 bp

6 GGA, GAG, AGG 11-12 bp

7 GGxGG 11-12 bp

8 GGxGG 3-4 bp

9 AGxAG 5-10 bp

10 AGGAG, GGAGG, AGGAGG 13-15 bp

11 AGGA, GGAG, GAGG 3-4 bp

12 AGGA, GGAG, GAGG 11-12 bp

13 GGA, GAG, AGG 5-10 bp

14 GGxGG 5-10 bp

15 AGGA 5-10 bp

16 GGAG, GAGG 5-10 bp

17 AGxAGG, AGGxGG 11-12 bp

18 AGxAGG, AGGxGG 3-4 bp

19 AGxAGG, AGGxGG 5-10 bp

20 AGGAG, GGAGG 11-12 bp

21 AGGAG 3-4 bp

22 AGGAG 5-10 bp

23 GGAGG 3-4 bp

24 GGAGG 5-10 bp

25 AGGAGG 11-12 bp

26 AGGAGG 3-4 bp

27 AGGAGG 5-10 bp

Table 2 shows the default bins for the RBS motifs. An ‘x’ in the middle of a

motif indicates a mismatch is allowed. The right column shows the spacer

distance allowed between the translation start and the motif. The leftmost

column indicates the initial “score” assigned to these bins, i.e. higher bins are

better. In subsequent iterations, however, these values may change, and, in

non-SD-using organisms, bin 0 (no RBS) may emerge as the highest scoring.

Hyatt et al. BMC Bioinformatics 2010, 11:119

http://www.biomedcentral.com/1471-2105/11/119

Page 5 of 11



etc.), it was found to be quite effective in some gen-

omes. This generic upstream scoring system is not part

of the iterative algorithm; the data is instead gathered

from the final iteration of the start training.

Once Prodigal has start score weights for both start

codon type (ATG/GTG/TTG) and RBS motif/spacer

distance, it then scores every start node in the entire

sequence. The final score for a start node is simply

S n R n T n U n C n( ) . *( ( ) ( ) . * ( )) ( ),   4 25 0 4

in which S is the final score, R is the RBS motif score,

T is the start type score, U is the upstream score, and C

is the coding score. For the RBS weight, Prodigal uses

the SD motif score if it determines that the organism

uses Shine-Dalgarno, the secondary RBS motif score if it

finds a clear-cut secondary motif, and the maximum of

the two systems if neither system located a strong RBS

motif. This latter method was shown to work well in

some genomes such as cyanobacteria and crenarchaea

that tended to have AT-rich upstream regions but still

occasionally used the SD motif for some genes (such as

ribosomal proteins).

A linear combination of the various elements was the

first method we tried, and it worked well enough that

we did not pursue other strategies. It may be that there

exists a better method of integrating the different signals

(perhaps a neural network or some other classifier), but

this will have to be examined in future versions. The

4.25 and 0.4 constants were arrived at by experimenting

with different values and observing the change in results

across our test set of genomes. We chose the values

such that they maximized performance across the entire

set. In order to rule out bias in E. coli, B. subtilis, and P.

aeruginosa, we also verified that the same approximate

constants maximized performance on our set of gen-

omes with those three excluded.

False positive reduction is an important goal in Pro-

digal. In order to reduce the number of overall predic-

tions, Prodigal modifies the above start weight (4.25)

based on the length of the gene. In examination of

numerous genomes, we determined that approximately

250 bp is the point of equilibrium at which a gene

with a positive coding score is equally likely to be a

false positive or a true prediction. Genes less than 250

bp are therefore penalized according to their length

divided by 250. If the start score is greater than 0, it is

reduced to l/250*s, where l is the length of the gene. If

the start score is less than 0, it is instead multiplied by

250/l*s. Finally, for all genes with negative coding

scores, regardless of length, the start score is penalized

by a small amount to prevent genes with moderately

good start scores but bad coding scores from drifting

above zero.

Once the scores have been calculated, the dynamic

programming is performed a second time, using the

more detailed node scores described above for the gene

connections. For intergenic connections, operon dis-

tance provides a stronger weight in the second pass of

dynamic programming. When two genes overlap by 1 or

4 bp, if the second gene lacks an RBS and has a negative

RBS score, the requirement of an RBS is lifted and the

score is increased to 0. In addition, the program adds

small bonuses for distances less than 60 bp, and small

penalties for distances greater than 180 bp. These dis-

tances correspond roughly to observed operon distances

[16]. Although dynamic programming has order n log n,

we limit the valid connections by distance, such that

“long” connections can only be made between the start

of a really long gene and its stop codon. The end result

is that Prodigal must make a connection generally

within 5 kb, so that it must choose a gene in this region,

even if its score is negative. When the dynamic pro-

gramming is complete, however, the program makes a

final sweep through the models and removes any such

genes with negative scores. In addition, the algorithm

makes one final improvement to start calls that proved

to be significant in our test set. When two starts are

separated by a distance of less than 15 bp (determined

empirically from our test set), Prodigal sets the coding

of the two choices to be equivalent and uses only the

start score (based on RBS motif and start type) to deter-

mine which start to choose for the final gene prediction.

The final output of Prodigal consists of a complete list

of gene coordinates and, at the user’s specification, pro-

tein translations and/or detailed information about each

potential start in the genome. Prodigal can be run either

in two steps, with a training phase and a gene prediction

phase, or in a single step where the training is hidden

from the user and only the final genes are printed. A

complete description of the algorithm in pseudocode

can be found in Figure 2.

Prodigal runs very quickly, analyzing a 4 MB genome

in about 20 seconds on a typical workstation. It is also

extremely easy to use relative to other methods, consist-

ing of only a single executable that can be run without

the user needing to supply any organism-specific para-

meters. A web server has also been implemented at

http://compbio.ornl.gov/prodigal/. The latest source

code for Prodigal is available via the same web site, and

version 1.20 has been included as an additional file

[Additional File 1].

Results and Discussion
Assessing the performance of microbial gene-finding

programs remains a difficult task due to the lack of

experimentally verified gene start sets. The EcoGene

Verified Protein Starts set [12] remains the only large
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set of experimentally verified genes and translation

start sites for typical bacteria. In addition, another

large set was produced for two archaea, Halobacterium

salinarum and Natronomonas pharaonis, using a spe-

cial proteomics technique for extracting N-terminal

peptides [17]. In addition to the above sets, numerous

smaller sets exist for other genomes, but most of these

are also atypical genomes such as cyanobacteria and

archaea. Nonetheless, these still provide a set of

experimentally verified genes with which to test the

accuracy of start site and gene predictions. For these

genomes, we relied on the data set from the ProTisa

database of confirmed translation initiation sites [18].

However, some of the genes in the Synechocystis set

were inconsistent with annotations in the Genbank

files, and subsequent manual inspection proved the

Genbank files to be correct. Therefore, we removed

genes from this set, as well as a few genes from the

other genomes, that disagreed with the Genbank anno-

tations. We extracted all sets with more than 50

experimentally determined translation initiation sites,

although we excluded numerous relatives of E. coli

(and other genomes) in ProTisa whose starts were ver-

ified only through similarity search.

For purposes of assessing gene prediction quality, a

gene call was considered correct if the algorithm identi-

fied the 3’ end of the experimentally verified gene. Table

3 shows the performance of Prodigal relative to the pro-

grams GeneMarkHMM [2], Glimmer 3 [1], Easygene 1.2

[4], and MED 2.0 [5]. GeneMark [2] and Glimmer [1]

predictions for these genomes were downloaded from

NCBI [ftp://ncbi.nih.gov/genomes/Bacteria]. Easygene

[4] predictions were obtained from the Easygene server.

MED predictions were run locally using default para-

meters. The second number for each program indicates

exactly correct genes (where both the translation initia-

tion site and the stop codon are correctly identified). To

assess the quality of the start site correction programs

TiCo [7] and TriTisa [8], we chose to run these pro-

grams as postprocessors to Prodigal. Although this is

different from the published results for these programs

(which were applied to the final Genbank genes), we

view this method as a more accurate way of assessing

the ab initio value of such tools in an annotation

pipeline.

As can be seen in Table 3, Prodigal proved equal or

better at locating genes in every organism with a few

exceptions: Glimmer 3 [1] and EasyGene [4] in P. aeru-

ginosa, and GenemarkHMM [2] in N. pharaonis. Prodi-

gal also performed equal to or better than the other

tools in translation initiation site prediction with a few

exceptions: GenemarkHMM [2] and TriTisa [8] on B.

subtilis, and TiCo [7], TriTisa [8], and EasyGene [4] on

Haemophilus influenzae. Prodigal performs equal or

Figure 2 Illustration of the dynamic programming connections in Prodigal. The red arrows represent gene connections, and the black

arrows represent intergenic connections. (a) 5’ forward to 3’ forward: Gene on the forward strand. (b) 3’ forward to 5’ forward: Intergenic space

between two forward strand genes. (c) 3’ forward to 3’ forward: Overlapping genes on the forward strand. (d) 3’ forward to 5’ reverse: Forward

and reverse strand genes whose 3’ ends overlap. (e) 5’ reverse to 3’ reverse: Intergenic space between two reverse strand genes. (f) 3’ reverse to

5’ reverse: Gene on the reverse strand. (g) 3’ reverse to 3’ reverse: Overlapping genes on the reverse strand. (h) 5’ reverse to 5’ forward:

Intergenic space between two opposite strand genes. (i) 3’ forward to 3’ reverse: Intergenic space between two opposite strand genes.
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better at locating existing genes, while also providing

comparable performance in translation initiation site

prediction to the start correction tools.

The above test set contains many unusual genomes.

Bacillus subtilis is remarkable for its extremely strong

use of the SD motif. Halobacterium salinarum and

Natronomonas pharanois make only limited use of the

SD motif. Aeropyrum pernix contains a different RBS

motif in GGTG. Synechocystis PCC6803, like most cya-

nobacteria, does not seem to use the SD motif at all,

and instead favors AT-rich regions upstream of its

translation start sites. A quick scan of 700 finished gen-

omes in Genbank with Prodigal’s SD-motif routine

revealed that 88% of them used the SD motif. It is our

assertion that E. coli, B. subtilis, and P. aeruginosa from

the table above provide a more typical look at perfor-

mance in the vast majority of sequenced microbial

genomes.

Although Genbank files doubtless contain many

errors, results for these same organisms vs. Genbank

annotations were recorded to capture a “whole genome”

view. Table 4 shows these results. All the genomes in

table 4 have sets of more than 100 experimentally veri-

fied protein starts (in table 3). Although it is likely that

they are still far from perfect, it is an interesting result

nonetheless that Prodigal performed very well compared

to all existing methods. Prodigal’s performances on the

well-studied cyanobacteria Synechocystis PCC6803 and

the highly curated Pseudomonas aeruginosa are particu-

larly interesting, in that the program matches many

more start sites in the Genbank file than the other

methods.

These results cannot be seen as definitive, however, as

it is always possible Prodigal’s algorithm contains a bias

that is shared by whatever methods were used to create

the original Genbank files. In order to rule this bias out,

Table 3 Gene Prediction Performance

Organism %
GC

Verified Prodigal
1.20

Prodigal 1.20
+TriTisa

Prodigal 1.20
+TiCo

GeneMarkHMM
2.6

EasyGene
1.2

Glimmer
3.02

MED 2.0

Escherichia coli K12 50.8 884 884/853
(100%/
96.5%)

884/840
(100.0%/95.0%)

884/843
(100.0%/95.4%)

882/835
(99.8%/94.5%)

880/809
(99.5%/
91.5%)

880/804
(99.6%/
91.0%)

875/810
(99.0%/
91.6%)

Halobacterium salinarum 68.0 550 549/533
(99.8%/
96.9%)

549/525
(99.8%/95.5%)

549/520
(99.8%/94.6%)

548/510
(99.6%/92.7%)

544/494
(98.9%/
89.8%)

549/478
(99.8%/
86.9%)

531/418
(96.6%/
76.0%)

Natronomonas pharaonis 63.4 321 320/314
(99.7%/
97.8%)

320/314
(99.7%/97.8%)

320/313
(99.7%/97.5%)

321/307
(100%/95.6%)

314/300
(97.8%/
93.5%)

320/304
(99.7%/
94.7%)

315/265
(98.1%/
82.6%)

Bacillus subtilis 43.5 148 148/144
(100%/
97.3%)

148/145
(100.0%/98.0%)

148/144
(100.0%/97.3%)

147/145
(99.3%/98.0%)

144/139
(97.3%/
93.9%)

144/140
(97.3%/
94.6%)

146/142
(98.7%/
96.0%)

Aeropyrum pernix 56.3 131 131/128
(100%/
97.7%)

131/127
(100.0%/97.0%)

131/128
(100.0%/97.7%)

130/123
(99.2%/93.9%)

130/124
(99.2%/
94.7%)

130/121
(99.2%/
92.4%)

131/116
(100%/
88.6%)

Synechocystis PCC6803 47.8 102 102/99
(100%/
97.0%)

102/98
(100%/96.1%)

102/93
(100%/91.2%)

102/92
(100%/90.2%)

101/87
(99.0%/
85.3%)

102/84
(100%/
82.4%)

100/88
(98.0%/
86.3%)

Pseudomonas aeruginosa 66.6 122 118/116
(96.7%/
95.1%)

118/113
(96.7%/92.6%)

118/115
(96.7%/94.3%)

115/105
(94.3%/86.1%)

122/112
(100%/
91.8%)

120/113
(98.4%/
92.6%)

117/113
(95.9%/
92.6%)

Mycobacterium
tuberculosis H37Rv

65.6 62 62/58
(100%/
93.6%)

62/58
(100%/93.6%)

62/57
(100%/91.9%)

61/54
(98.4%/87.1%)

62/58
(100%/
93.6%)

61/55
(98.4%/
88.7%)

60/56
(96.8%/
90.3%)

Haemophilus influenzae 38.2 67 67/66
(100%/
98.5%)

67/67
(100%/100%)

67/67
(100%/100%)

67/65
(100%/97.0%)

67/67
(100%/
100%)

67/65
(100%/
97.0%)

66/65
(98.5%/
97.0%)

Sulfolobus solfataricus 35.8 56 56/51
(100%/
91.1%)

56/49
(100%/87.5%)

56/49
(100%/87.5%)

56/48
(100%/85.7%)

56/51
(100%/
91.1%)

56/49
(100%/
87.5%)

56/50
(100%/
89.3%)

All Genomes — 2443 2437/2362
(99.8%/
96.7%)

2437/2336
(99.8%/95.6%)

2437/2329
(99.8%/95.3%)

2429/2284
(99.4%/93.5%)

2420/2241
(99.1%/
91.7%)

2429/2213
(99.4%/
90.6%)

2397/2123
(98.1%/
86.9%)

Table 3 shows the performance of gene-finding algorithms on ten sets of experimentally verified genes with experimentally verified translation initiation sites.

The first number in each entry indicates the number of 3’ ends of genes correctly identified. The second number in each entry indicates the number of 5’+3’

ends (genes and their correct starts) exactly identified. Beneath these numbers are % representations for each of those values. The final row shows the

performance over the entire set of organisms.
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we examined ATG usage and “leftmost start” usage in

each of the methods, but we could find no obvious bias

shared by Prodigal and Genbank annotations relative to

the other methods. If anything, Prodigal seemed to call

more starts internally and to truncate more genes, than

the other methods. Although the quality of the Genbank

files is impossible to estimate, we included the above

results to demonstrate the concept of “genome-wide”

performance, an important factor in microbial annota-

tion pipelines.

Determining the number of false positives for each

method is an impossible task without knowing the com-

plete set of protein coding genes for each genome.

Instead, we can only measure the number of genes pre-

dicted by each program relative to those retained by

manual curators in the Genbank files. Table 5 shows the

number of genes predicted by each program; the num-

ber in parentheses is normalized around the number of

genes in the Genbank file.

EasyGene [4] predicts fewer genes than all other

methods on every genome, with the one exception of

Pseudomonas aeruginosa; however, Easygene [4] is also

less sensitive than the other programs (as can be seen

in tables 3 and 4). It is likely the program could be

improved on these genomes simply by using a less

stringent R-value threshold, though this would lead to

an increase in the number of genes predicted. Prodigal

predicts equal or fewer genes vs. the remaining meth-

ods (excepting EasyGene) in all cases except Halobac-

terium salinarum vs. Genemark [2], while still

retaining excellent sensitivity in locating genes. The

gaps in B. subtilis and Synechocystis are particularly

noticeable.

In the future, we hope to improve Prodigal’s recogni-

tion of short genes, atypical genes, translation initiation

mechanisms, and genomes. With a more detailed look

at cyanobacteria and archaea, in general, it should be

possible to build a better start site prediction algorithm

than the one currently in place for non-SD motifs. Also,

identifying laterally transferred genes, genes in phage

regions, proteins with signal peptides, and any other

genes that do not match the typical GC frame bias for

the organism in question, are areas where Prodigal can

improve. We will also seek to develop a version of Pro-

digal to address the rapidly growing metagenomic data

for microbial organisms.

Table 4 Comparison with Genbank Annotations

Organism Genbank Genes with
no Joins

Prodigal
1.20

Prodigal 1.20
+TiCo

Prodigal 1.20
+TriTisa

GenemarkHMM
2.6

Glimmer
3.02

EasyGene
1.2

MED 2.0

Escherichia coli
K12

4268 4118/3823
(96.5%/
89.6%)

4118/3779
(96.5%/88.5%)

4118/3778
(96.5%/88.5%)

4122/3685
(96.6%/86.3%)

4076/3563
(95.5%/
83.5%)

3977/3565
(93.2%/
83.5%)

4102/
3711
(96.1%/
86.9%)

Halobacterium
salinarum

2110 2062/1857
(97.7%/
88.0%)

2062/1809
(97.7%/85.7%)

2061/1790
(97.6%/84.8%)

2042/1676
(96.7%/79.4%)

2054/1609
(97.3%/
76.2%)

2018/1692
(95.6%/
80.2%)

2008/
1469
(95.1%/
69.6%)

Natronomonas
pharaonis

2661 2630/2398
(98.8%/
90.1%)

2630/2358
(98.8%/88.6%)

2630/2348
(98.8%/88.2%)

2624/2251
(98.6%/84.6%)

2622/2220
(98.5%/
83.4%)

2548/2271
(95.7%/
85.3%)

2586/
1953
(97.2%/
73.4%)

Bacillus subtilis 4174 4113/3705
(98.5%/
88.8%)

4113/3678
(98.5%/88.1%)

4113/3679
(98.5%/88.1%)

4136/3713
(99.1%/89.0%)

4102/3569
(98.3%/
85.5%)

3977/3578
(95.3%/
85.7%)

4127/
3596
(98.9%/
86.2%)

Aeropyrum pernix 1699 1670/1430
(98.3%/
84.2%)

1670/1363
(98.3%/80.2%)

1670/1353
(98.3%/79.6%)

1672/1364
(98.4%/80.3%)

1671/1317
(98.4%/
77.5%)

1652/1389
(97.2%/
81.8%)

1689/
1309
(99.4%/
77.1%)

Synechocystis
PCC6803

3171 3146/2587
(99.2%/
81.6%)

3146/2364
(99.2%/74.6%)

3146/2447
(99.2%/77.2%)

3124/2337
(98.5%/73.7%)

3123/2236
(98.5%/
70.5%)

3053/2288
(96.3%/
72.2%)

3126/
2192
(98.6%/
69.1%)

Pseudomonas
aeruginosa

5565 5514/5038
(99.1%/
90.5%)

5514/4885
(99.1%/87.8%)

5514/4821
(99.1%/86.6%)

5484/4698
(98.5%/84.4%)

5491/4705
(98.7%/
84.5%)

5522/4761
(99.2%/
85.5%)

5292/
4539
(95.1%/
81.6%)

Table 4 shows the performance of gene-finding algorithms on seven Genbank files. The first number in each entry indicates the number of 3’ ends of genes

correctly identified. The second number in each entry indicates the number of 5’+3’ ends (genes and their correct starts) exactly identified. Beneath these

numbers are % representations for each of those values. It should be noted that Genbank genes are not experimentally verified; this table is just meant to

provide a snapshot of performance over entire genomes.

Hyatt et al. BMC Bioinformatics 2010, 11:119

http://www.biomedcentral.com/1471-2105/11/119

Page 9 of 11



Conclusions
We developed a new gene-finding program for microbial

genomes called Prodigal. The goals of Prodigal were to

attain greater sensitivity in identifying existing genes, to

predict translation initiation sites more accurately, and to

minimize the number of false positive predictions. The

results of Prodigal were compared to existing methods

for both purely experimentally verified genes as well as

curated Genbank files for a number of genomes. Prodi-

gal’s performance was found to be comparable or better

to existing methods in the prediction of genes while also

predicting fewer overall genes. In the prediction of trans-

lation initiation sites, Prodigal performed competitively

with existing methods. Prodigal is currently already in

use at many institutions, and it has been used to annotate

all finished microbial genomes submitted to Genbank by

DOE-JGI in 2008 and onward (a substantial percentage

of the overall finished microbial genomes at NCBI). It is

run regularly at NCBI alongside GenemarkHMM [2] and

Glimmer [1], and it has also been incorporated into the

Swiss Institute of Bioinformatics microbial genomics

browser [19]. In conclusion, Prodigal should prove to be

a valuable resource for genome annotation of either draft

or finished microbial sequence.

Availability and Requirements
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code for Prodigal.

Click here for file
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