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Abstract—Irregular workloads are typically bottlenecked by
the memory system. These workloads often use sparse data
representations, e.g., compressed sparse row/column (CSR/CSC),
to conserve space at the cost of complicated, irregular traversals.
Such traversals access large volumes of data and offer little
locality for caches and conventional prefetchers to exploit.

This paper presents Prodigy, a low-cost hardware-software co-
design solution for intelligent prefetching to improve the memory
latency of several important irregular workloads. Prodigy targets
irregular workloads including graph analytics, sparse linear al-
gebra, and fluid mechanics that exhibit two specific types of data-
dependent memory access patterns. Prodigy adopts a “best of
both worlds” approach by using static program information from
software, and dynamic run-time information from hardware. The
core of the system is the Data Indirection Graph (DIG)—a pro-
posed compact representation used to express program semantics
such as the layout and memory access patterns of key data
structures. The DIG representation is agnostic to a particular
data structure format and is demonstrated to work with several
sparse formats including CSR and CSC. Program semantics
are automatically captured with a compiler pass, encoded as
a DIG, and inserted into the application binary. The DIG is then
used to program a low-cost hardware prefetcher to fetch data
according to an irregular algorithm’s data structure traversal
pattern. We equip the prefetcher with a flexible prefetching
algorithm that maintains timeliness by dynamically adapting its
prefetch distance to an application’s execution pace.

We evaluate the performance, energy consumption, and tran-
sistor cost of Prodigy using a variety of algorithms from the GAP,
HPCG, and NAS benchmark suites. We compare the performance
of Prodigy against a non-prefetching baseline as well as state-
of-the-art prefetchers. We show that by using just 0.8KB of
storage, Prodigy outperforms a non-prefetching baseline by 2.6×
and saves energy by 1.6×, on average. Prodigy also outperforms
modern data prefetchers by 1.5–2.3×.

Index Terms—DRAM stalls, irregular workloads, graph pro-
cessing, hardware-software co-design, programming model, pro-
grammer annotations, compiler, and hardware prefetching.

I. INTRODUCTION

Sparse irregular algorithms are widely deployed in several

application domains including social networks [65], [76],

online navigation systems [39], machine learning [42], and

genomics [9], [34]. Despite their prevalence, current hardware-

software implementations on the CPUs offer sub-optimal perfor-

mance that can be further improved. This is due to the irregular
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Figure 1. Overview of our design and contributions. Prodigy software
efficiently communicates key data structures and algorithmic traversal patterns,
encoded in the proposed compact representation called the Data Indirection
Graph (DIG), to the hardware for informed prefetching.

nature of their memory access patterns over large data sets,

which are too big to fit in the on-chip caches, leading to several

costly DRAM accesses. Therefore, traditional techniques to

improve memory latency—out-of-order processing, on-chip

caching, and spatial/address-correlating data prefetching [13],

[49], [52], [66], [95], are inadequate.

There is a class of prefetchers [11], [23], [26], [31], [43],

[50], [79], [98] which focuses on linked data structure traver-

sals using pointers. In graph algorithms, for example, these

prefetchers fall short for two reasons. First, graph algorithms

often use compressed data structures with indices instead of

pointers. Second, graph traversals access a series of elements

in a data structure within a range determined by another data

structure. These prefetchers are not designed to accommodate

such complex indirection patterns.

Recently, several prefetching solutions have been proposed

targeting irregular workloads. Hardware prefetchers rely on

capturing memory access patterns using explicit programmer

support [5], [6], learning techniques [77], and intelligent

hardware structures [99]. Limitations of these approaches

include their limited applicability to a subset of data structures

and indirect memory access patterns [6], [15], [99] or high

complexity and hardware cost to support generalization [5],

[77]. While software prefetching [7] can exploit static semantic

view of algorithms, it lacks dynamic run-time information and

struggles to maintain prefetch timeliness.

mailto:talatin@umich.edu


In this paper, we propose a hardware-software co-design

for improving the memory latency of several important irregular

workloads exhibiting arbitrary combinations of two specific

memory access patterns. The goals of this design are threefold:

(a) automatically prefetch all the key data structures expressing

irregular memory accesses, (b) exploit dynamic run-time

information for prefetch timeliness, and (c) realize a low-cost

hardware prefetching mechanism. To this end, we propose a

compact representation called the Data Indirection Graph

(DIG) to communicate workload attributes from software to

the hardware. The DIG representation efficiently encodes the

program semantics, i.e., the layout and access patterns of key

data structures, in a weighted directed graph structure. Fig. 1

presents the overview of our proposal. The relevant program

semantics are extracted through a compile-time analysis,

and this information is then encoded in terms of the DIG

representation and inserted in the application binary. During

run-time, the DIG is used to program the hardware prefetcher

making it cognizant of the indirect memory access patterns of

the workload so it can cater its prefetches accordingly.

Prodigy is a pattern-specific solution that targets two types of

data-dependent indirect memory accesses, which we call single-

valued indirection and ranged indirection. Single-valued

indirection uses data from one data structure to index into

another data structure; it is commonly used to find vertex

properties in graph algorithms. Ranged indirection uses two

values from one data structure as base and bounds to index into

a series of elements in another data structure; this technique

is commonly used to find neighbors of a vertex in graph

algorithms. Based on this observation, we propose a compact

DIG representation that abstracts this information in terms

of a weighted directed graph (unrelated to the input graph

data set). The nodes of the DIG represent the memory layout

information of the data structures, i.e., address bounds and

data sizes of arrays. Weighted edges represent the type of

indirection between data structures. We present a compiler pass

to automatically extract this information and instrument the

binary with API calls to generate the DIG at a negligible cost.

Our results show that the DIG is agnostic to any particular data

representation; it works well for various sparse data formats

including compressed sparse row/column (CSR/CSC).

We design a low-cost hardware prefetcher that can be

programmed using the DIG representation communicated from

software. We store the DIG in prefetcher-local memory to make

informed prefetching choices. The prefetcher reacts to demand

accesses and prefetch fills1 to the L1D cache and issues non-

binding prefetches (i.e., prefetched data placed in the L1D

cache) based on an irregular algorithm’s memory traversal

pattern. To track the progress of the prefetch sequences and

enable non-blocking prefetching, we introduce the PreFetch

status Handling Register (PFHR) file. Additionally, we present

an adaptive prefetching algorithm that selectively drops prefetch

sequences when the core catches up to the prefetcher. We name

1We define a prefetch fill as the cache line brought into the cache as a
response to a prefetch request.
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Figure 2. Reduction in ((a)) memory stalls and ((b)) speedup of different
approaches normalized to a non-prefetching baseline for the PageRank
algorithm on the livejournal data set.

our system ProDIGy as it uses software analysis coupled with

hardware prefetcher using the program’s DIG representation.

We evaluate the benefits of Prodigy in terms of performance,

energy consumption, and hardware overhead. For evaluation,

we use five graph algorithms from the GAP benchmark

suite [16] with five real-world large-scale data sets from [27],

[59], two sparse linear algebra algorithms from the HPCG

benchmark suite [29], and two computational fluid dynamics

algorithms from the NAS parallel benchmark suite [12]. We

compare our design with a non-prefetching baseline, GHB-

based global/delta correlation (G/DC) data prefetcher, and state-

of-the-art prefetchers, i.e., IMP [99], Ainsworth and Jones’ [5],

[6], DROPLET [15], and software prefetching [8].

Fig. 2 presents a highlight of performance benefits of Prodigy

on the PageRank algorithm running on the livejournal

data set [59]. Compared to a non-prefetching baseline, Prodigy

reduces the DRAM stalls by 8.2× resulting in a significant end-

to-end speedup of 2.9× compared to the marginal speedups

observed using a traditional G/DC prefetcher that cannot predict

irregular memory access patterns and DROPLET [15] which

only prefetches a subset of data structures. Section VI presents

further comparisons with [5]–[7], [99]. Across a complete set of

29 workloads, we show a significant average speedup of 2.6×

and energy savings of 1.6× compared to a non-prefetching

baseline. Using our evaluation framework, we further show

that Prodigy outperforms IMP [99], Ainsworth and Jones’

prefetcher [6], and DROPLET [15] by 2.3×, 1.5×, and 1.6×,

respectively. The compact DIG representation allows Prodigy

to achieve high speedups at a mere 0.8KB of hardware storage

overhead. In comparison, by simply scaling the non-prefetching

baseline to use more cores to maximize the memory bandwidth

and achieve similar throughout would require 5× more cores.

Prodigy is a specialized approach for critical memory

latency-bound applications. When a processor is not running

these applications, Prodigy will be turned off. In the age of

dark silicon [35], state-of-the-art hardware frequently employs

specialized accelerators for key applications. With Prodigy’s

low-cost design (0.8KB storage requirement), it is a modest

price to pay for the efficiency it provides.

In summary, we make the following contributions:

• A compact representation of data traversal patterns, called

a DIG (Data Indirection Graph), for irregular workloads
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(b) Data structures and algorithmic traversal 

pattern for a toy graph example

workQueue.enqueue(source)

while workQueue not empty:

  #pragma omp parallel

  for all u : workQueue()

    for w : offsetList(u) to offsetList(u+1)  

      for all v : edgeList(w)

        if !v.visited()

          compare_and_swap

               (v.visited(), 0, 1)

          workQueue.enqueue(v)

        endif

      endfor

    endfor

  endfor

endwhile 

(a) Parallel implementation of 

BFS algorithm

workQueue.enqueue(source)

while workQueue not empty:

  #pragma omp parallel

  for all u : workQueue()

    for w : offsetList(u) to offsetList(u+1)  

      for all v : edgeList(w)

        if !v.visited()

          compare_and_swap

               (v.visited(), 0, 1)

          workQueue.enqueue(v)

        endif

      endfor

    endfor

  endfor

endwhile 

(a) Parallel implementation of 

BFS algorithm

Figure 3. BFS algorithm: (a) pseudo-code for a parallel implementation of
BFS, and (b) a toy example of BFS traversal on a graph stored in a compressed
sparse row (CSR) format.

with any combination of two specific data-dependent

memory access patterns.

• A novel programming model and associated compiler pass

that analyzes the program, extracts key data structures and

algorithmic traversal patterns, and generates instrumented

code to create the DIG representation.

• A low-cost hardware prefetching design that uses this

representation to prefetch data based on an irregular

algorithm’s memory traversal pattern in a timely manner.

• A resulting hardware-software co-designed system with an

average speedup of 1.7× compared to the state-of-the-art

prefetchers; average speedup and energy savings of 2.6×

and 1.6× compared to a non-prefetching baseline at a

negligible storage requirement of 0.8KB.

II. BACKGROUND AND MOTIVATION

In this section, we use breadth-first search (BFS) graph

algorithm as a representative irregular algorithm and discuss

its data structures and algorithmic traversal pattern that leads

to sub-optimal performance on CPUs.

Compressed sparse row (CSR) is a space-efficient technique

for representing a sparse matrix, and it is commonly used to

represent in-memory graph data sets. It uses two arrays to store

a graph: an edge list that stores the non-zero elements of the

graph’s adjacency matrix in a one-dimensional array, and an

offset list that contains the base index/pointer of the edge list

elements for each vertex. For example, consider a graph and

its CSR structure as shown in Fig. 3(b).

Typically, BFS graph traversal uses CSR format to conserve

space by storing non-zero values. BFS traverses all vertices at

the current depth (i.e., distance from the source vertex) before

moving onto the next depth. BFS is a fundamental algorithm,

and is the basis of other graph algorithms (e.g., BC and SSSP).

In addition to the offset and edge lists, BFS also uses two

software arrays called the work queue and the visited list. The

work queue2 stores a set of vertices to be processed in the

future. The visited list keeps track of already processed vertices

to avoid processing them again.

2An alternate implementation of work queue uses dual buffering with two
frontier data structures (current and next); this paper focuses on a sliding
queue based work queue structure that is conceptually same as frontiers.
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Figure 4. Normalized execution time of irregular workloads, without
prefetching, broken down into: no-stall, and stalls due to DRAM, cache,
branch mispredictions, data dependencies, and others. The goal of this work

is to reduce the DRAM stalls (dark blue portion of the bar).

Fig. 3(a) describes the traversal pattern of the BFS algorithm.

We assume that offset list and edge list data structures are

populated in memory. In addition, memory is allocated for

work queue and visited list. As a first step, the source vertex

(source) is pushed onto the work queue. Then, the algorithm

chooses a vertex from the work queue and scans its neighbors

(by indexing into offset list and edge list). If any of the scanned

neighbors has not already been visited, then it is marked visited

and is added to the work queue. A graphical representation of

this traversal is shown in Fig. 3(b).

We observe two major bottlenecks in this algorithm: (a)

data-dependent loads to the offset, edge, and visited lists and

(b) a load-dependent branch instruction. Data-dependent reads

for large-scale graphs are costly latency-wise because of their

massive data footprint and random memory access patterns. Due

to lack of locality, data for most of these loads are not found in

caches. Moreover, control-flow instructions incur high penalty

for two reasons. First, their data-dependent nature makes it

challenging for branch predictors to predict the correct branch

outcomes. Second, as reported by Srinivasan and Lebeck [89],

in the case of an incorrectly predicted branch, much unnecessary

work is performed while waiting for the load operation to

return its data and correct the mispredicted branch. To better

understand this bottleneck, Fig. 4 shows the breakdown of

execution times for various irregular workloads running on an

eight-core machine with three levels of cache hierarchy using

the methodology shown in Section V. The figure clearly shows

that these applications are stalled on DRAM for more than

50% of the time and have non-negligible branch misprediction

stalls.

III. PROPOSED PROGRAMMING MODEL

Prodigy’s novel programming model captures an algorithm’s

semantic behavior, including its data structure layout and

memory access patterns, in a compact graph representation

which is communicated to the hardware. We present two

techniques to construct this representation within the program—

(a) manual code insertion by the programmer, and (b) automatic

code generation using compiler analysis.
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Figure 5. Proposed Data Indirection Graph (DIG) representation—(a) example representation for BFS, (b) data structure memory layout and algorithmic
traversal information captured by a DIG node and a weighted DIG edge respectively; two unique data-dependent indirection patterns supported by Prodigy—(c)
single-valued indirection, and (d) ranged indirection.

A. Data Indirection Graph (DIG): Compact Representation of

Program Semantics

We make the key observation that two specific data-dependent

indirect memory access patterns are used in a wide range

of irregular workloads. Taking this as a foundation, we can

construct combinations of these patterns that span sets of

irregular memory accesses for different algorithms.

With this insight, we propose a graph representation, which

we call a Data Indirection Graph (DIG), to capture the

relationship between data structures for irregular algorithms. In

a DIG, each node represents a data structure (e.g., the visited

list in BFS), and each directed weighted edge represents a data-

dependent access. Fig. 5 shows an example DIG representation

for the BFS algorithm. Nodes of the DIG, which store data

structure information, have the following fields: node_id—

a unique identifier to reference the data structure, and an

address identifier—a method for identifying which part of

the address space belongs to the data structure represented

by the node. For example, the address identifier for an array

are: base_addr—base address of the array, capacity—

number of data elements in the array, and data_size—data

size of each element of the array in bytes.

Edges of the DIG, which store the algorithmic traversal

pattern between data structures have the following fields:

src_base_addr—base address of the source data structure

from which data are read to index into the destination data

structure, dest_base_addr—base address of the data struc-

ture that is indexed into, and edge_type—data-dependent

indirect access pattern from source node to destination node.

As stated before, Prodigy supports two types of indirection

patterns that are abstracted using edge weights of w0 and w1.

Fig. 5(c,d) show these two types of data-dependent indirection

functions supported by our representation, i.e., single-valued

indirection (e.g., indirection between edge list and visited list

for BFS) and ranged indirection (e.g., indirection between offset

list and edge list in BFS). Additionally, we define a special

edge called a trigger edge (w2 in Fig. 5(a)), which is a self-

edge to the data structure triggering prefetches. Trigger edge

contains node_base_addr—data structure base address, and

edge_type—details of prefetch sequence initialization (more

details in Section IV). A trigger edge represents the control

flow specifying the prefetch sequence to initialize.

int BFS(FILE* inputGraph, vtxID source)

{

  Graph g = readGraph(inputGraph);

  queue<vtxID> workQueue(g.numNodes()); 

  vtxID** offsetList = (vtxID**) malloc(g.numNodes()+1);

  vtxID*  edgeList   = (vtxID*)  malloc(g.numEdges());

  vtxID*  visited    = (vtxID*)  malloc(g.numNodes());

  populateDataStructures(g, offsetList, edgeList, visited);

  registerNode(&workQueue,  g.numNodes(),   4,  0);

  registerNode(offsetList,  g.numNodes()+1, 4,  1);

  registerNode(edgeList,    g.numEdges(),   4,  2);

  registerNode(visited,     g.numNodes(),   4,  3);

  registerTravEdge(&workQueue, offsetList,  w0);

  registerTravEdge(offsetList, edgeList,    w1);

  registerTravEdge(edgeList,   visited,     w0);

  registerTrigEdge(&workQueue, w2);

  workQueue.enqueue(source);

  […]
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6:

7:

8: 

9: 

10: 

11:

12:

13:

14: 

15:

16:
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18:

Figure 6. Annotated BFS source code to construct the DIG.

B. Construction and Communication of the DIG

This section discusses how to generate the DIG represen-

tation from software and communicate it to hardware. We

first describe how a programmer can achieve this by manually

inserting simple annotations to the application source code

using our API calls. To reduce the burden on the programmer,

we further propose a compiler analysis and code generation

technique to automatically analyze the application source code,

construct the DIG representation, and instrument the application

binary using the proposed API calls.

1) Using Programmer Annotations: Assuming that the

programmer is cognizant of the key data structures and traversal

algorithms used in the application, they can add simple API

calls in the application source code to construct the DIG

representation. Fig. 6 presents these modifications for BFS,

where three unique API calls are used to annotate the DIG.

registerNode()—register a node of the DIG. This call

writes a node’s information into the prefetcher memory; the

arguments to this call are the base address of this data structure,

total number of elements, size of data elements, and the node

ID. registerTravEdge()—register an edge of the DIG.

This call writes edge information into the prefetcher memory;

the arguments to this call are the addresses of the source and

destination nodes, and the type of indirection (i.e., w0/w1 as

shown in Fig. 5). registerTrigEdge()—register a trigger

edge of the DIG. This call writes the base address of the trigger

data structure into the prefetcher registers. The second argument

(w2) holds information about the type of prefetch to be initiated

(more details in Section IV-C).
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define void @kernel(i64* %0, i64* %1, i64* %2) {

  %10 = call i32 @registerTrigEdge(i64* %0, i32 5)

  %11 = call i32 @registerTravEdge(i64* %0, i64* %1, i32 1)

  [...]

  ; loop

  %16 = getelementptr inbounds i64, i64* %0, i64 %.01

  %17 = load i64, i64* %16, align 4

  %19 = getelementptr inbounds i64, i64* %1, i64 %17

  %20 = load i64, i64* %19, align 4

  [...]

}

define void @main() {

  %3 = call i8* @malloc(i64 4000)

  %4 = call i32 @registerNode(i64* %3, i32 1000, i32 4, i32 0)

  %7 = call i8* @malloc(i64 4000)

  %8 = call i32 @registerNode(i64* %7, i32 1000, i32 4, i32 1)

  [...]

  call void @kernel(i64* %3, i64* %7, i64* %10)

}
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15:

16:
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19:

20:

define void @kernel(i64* %0, i64* %1, i64* %2) {

  %10 = call i32 @registerTrigEdge(i64* %0, i32 5)

  %11 = call i32 @registerTravEdge(i64* %0, i64* %1, i32 1)

  [...]

  ; loop

  %16 = getelementptr inbounds i64, i64* %0, i64 %.01

  %17 = load i64, i64* %16, align 4

  %19 = getelementptr inbounds i64, i64* %1, i64 %17

  %20 = load i64, i64* %19, align 4

  [...]

}

define void @main() {

  %3 = call i8* @malloc(i64 4000)

  %4 = call i32 @registerNode(i64* %3, i32 1000, i32 4, i32 0)

  %7 = call i8* @malloc(i64 4000)

  %8 = call i32 @registerNode(i64* %7, i32 1000, i32 4, i32 1)

  [...]

  call void @kernel(i64* %3, i64* %7, i64* %10)

}
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void main()

{

  int * a = malloc(size);

  int * b = malloc(size);

  [...]  

  kernel(a, b, dst);

}

1:

2:

3:

4: 

5:

6:

7:

void main()

{

  int * a = malloc(size);

  int * b = malloc(size);

  [...]  

  kernel(a, b, dst);

}

1:

2:

3:

4: 

5:

6:

7:

void kernel(int* a, 

int* b, int* dst)

{

  for(int i = 0; i < size; ++i)

    *(dst+i) = b[a[i]];

}

1:

2:

3:

4: 

5:

void kernel(int* a, 

int* b, int* dst)

{

  for(int i = 0; i < size; ++i)

    *(dst+i) = b[a[i]];

}

1:

2:

3:

4: 

5:

(b)(a)

(c)

Figure 7. An example C program (a) and (b), translated into LLVM IR (c)
and instrumented with our API calls to register DIG nodes and edges.

2) Using Compiler Analysis: Identifying indirections in

non-trivial programs (e.g., [16]) can be complicated for the

programmer, often requiring in-depth application knowledge.

Our compiler alleviates this manual work by automatically

identifying these indirections and transforms the program

by annotating it with prefetcher API calls. Our compiler

analyzes the application source code once for annotation

with a negligible cost compared to the graph reordering

approaches [14], [92] that incur significant cost of profiling and

re-organizing the input data set. Node and edge identification

avoids complex interprocedural analysis by performing the

resolution of their relationships during execution. Prefetching

is only triggered for indirections whose edges consist of these

resolved and registered nodes, as seen in Fig. 8(d). This section

describes the operation of our LLVM-based compiler analyses

and transformations.

First, our compiler analysis extracts information required for

node registration from allocations. Apart from conventional

defaults (i.e., malloc), the user can specify custom allocators.

The pseudocode for this procedure is presented in Fig. 8(a).

Fig. 7(c) shows two node registrations, each using information

from the immediately preceding malloc calls. Next, by

tracking the use of these nodes, it extracts edge information and

detects their associated indirection patterns. Fig. 7(b) contains

a single-valued indirection in the form of a load to b[a[i]]

(line 4), which corresponds to the LLVM IR in lines 6-9 of

Fig. 7(c). As the base addresses of these two arrays form

the edge between the nodes, our pass extracts them and uses

them in the registerEdge() function along with the final

argument that specifies the type of edge being registered—in

this case, a single-valued indirection. Our code generation pass

places the edge registration calls as soon as all the required

arguments have been defined. In Fig. 7, the pointers to the

arrays are passed into the kernel as arguments, allowing edges

to be registered at the start of the function (lines 2-3). Ranged

1 for func in module:

2 for inst in funct:

3 if isInstanceOf(inst, AllocCall):

4 alloc = AllocCall(inst)

5 alloc_info = {alloc.total_size, alloc.num_elems,

alloc.base_ptr}→֒

6 emit(<registerNode(alloc_info)>)

(a)

1 # identify address calculations

2 for func in module:

3 for inst in func:

4 if isInstanceOf(inst, AddrCalc):

5 source_addresses.append(inst.addr)

6

7 # find edge

8 for source_addr in source_addresses:

9 loads = getLoadsUsing(source_addr)

10 for ld in loads:

11 dependent_addr_instr = getAddrCalcsUsing(ld)

12 for target_inst in dependent_addr_instr:

13 if isUsedInLoad(target_inst.addr):

14 emit(<registerTravEdge(source_addr,

target_inst.addr)>)→֒

(b)

1 # identify address calculations

2 # same as in single-valued indirection above

3

4 # find edge

5 for source_addr in source_addresses:

6 addr_calc2 = findAddrCalcWithSameBasePtr(source_addr)

7 if areUsedInBoundsCheck(source_addr,addr_calc2.addr):

8 target_inst = findLoadUsingAddr(source_addr)

9 emit(<registerTravEdge(source_addr,

target_inst.addr)>)→֒

(c)

1 def registerNode(base_ptr, num_elems, elem_size, node_id):

2 # note: the node_table is depicted in Figure 9a

3 node_table.insert({base_ptr, base_ptr + num_elems *
elem_size, node_id})→֒

4

5 def registerTravEdge(src_addr, target_addr, edge_type):

6 # note: The edge_table is depicted in Figure 9c

7 src_base_addr = scan_node_table(src_addr)

8 target_base_addr = scan_node_table(target_addr)

9 if src_base_addr and target_base_addr:

10 edgeTable.insert({src_base_addr, target_base_addr,

edge_type})→֒

11

12 def registerTrigEdge(addr, edge_type):

13 node_base_addr = scan_node_table(addr)

14 if node_base_addr:

15 edge_table.insert({node_base_addr, node_base_addr,

edge_type})→֒

(d)

Figure 8. Pseudocode of Prodigy’s compiler analyses for (a) node identification,
(b) single-valued indirection, (c) ranged indirection, and (d) runtime.

indirection can be identified similarly. For a ranged indirection

from array a to b as shown in Fig. 5(d), we detect the array

accesses (i.e., a[i] and a[i+1]) that control loop bounds for

accessing/indexing into another array b. The pseudocode for

identifying single-valued and ranged indirections is presented

in Fig. 8(b) and 8(c), respectively.

At the final stage, our analysis picks trigger edges using the

set of traversal edges identified previously. If a node from that

set does not have an incoming edge, then it has a trigger edge

(i.e., a self-edge to the trigger node). For example, the address

calculations in lines 6 and 8 in Fig. 7(c) form a traversal edge.

However, because the node with address generation in line 6

does not have any incoming edges, it is designated as a trigger

edge, with its registration inserted in line 2.

The code generated by our compiler pass and the programmer
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Figure 9. Memory structures used in Prodigy—(a) node table, (b) edge index
table, and (c) edge table for storing the DIG representation, (d) prefetch status
handling register (PFHR) file tracking progress for live prefetch sequences
and issuing non-blocking prefetches.

annotations use the same API, presented in Fig. 8(d), and can

complement each other, thus improving the overall accuracy

of our compiler. For example, the programmer can choose to

manually annotate the relevant nodes, and rely on the compiler

to identify edges.

3) Application Hardware Interface: A small SRAM-based

memory unit is used on the hardware prefetcher that is memory

mapped to hold the DIG. Once software generates the DIG

using API calls presented above, these calls are translated into

a set of store operations by a run-time library.

IV. PROPOSED HARDWARE DESIGN

A. Memory Requirements for a DIG

Fig. 9(a-c) show three prefetcher-local memory structures

to store a DIG representation. As described in Section III,

the node table and the edge table store properties of DIG

nodes and edges, respectively. The base address, number of

elements, and data size of each node specified by software

are converted into base and bound addresses by the runtime

library, and then stored into the node table. Because the DIG

captures program semantics from the source code, these tables

store virtual addresses. Additionally, we use an edge index

table to find outgoing edges from a DIG node, which mimics

the software offset list in hardware. To perform prefetching,

Prodigy state machine uses these structures to extract program’s

data structures and traversal information.

B. The Prefetch Status Handling Registers

A typical prefetch sequence for graph workloads can span

four or more data structures. While the prefetcher is waiting

to receive multiple outstanding data requests, it is important

to track which responses belong to which issued requests. In

addition, prefetch opportunities may be lost if the prefetcher

is blocking, i.e., waiting for a whole prefetch sequence to

complete before accepting a new one. To address these

challenges, we introduce a hardware structure called PreFetch

status Handling Register (PFHR) file for Prodigy, which

addresses both of these issues at once. While PFHRs are

analogous to the Miss Status Handling Registers (MSHRs) in

Node0 Node1 Node(N-1)

Node0
D
[i]

Node0
P
[i+j]

Node0
P
[i+k]

Prefetch bounds

[j,k]

Prefetch depth (N)

Indirection type

Figure 10. Prefetching algorithm initiates prefetch sequences between prefetch
bounds j and k and advances a prefetch sequence using software-defined
indirection types. The superscripts denote a demand (D) or a prefetch (P)
access.

non-blocking caches, PFHRs have a unique design because

they also have to track the status of long prefetch sequences in

addition to making their host hardware structure non-blocking.

Fig. 9(d) shows the hardware structure for PFHR file, where

each row has the following entries. Free indicates if a PFHR

is free or occupied. Node ID denotes the DIG node ID

of an outstanding prefetch request. Prefetch trigger

address stores the virtual address from which the prefetch

sequence is initiated. This is used to drop the prefetch sequence

if the demand sequence advances close to the prefetch sequence.

Outstanding prefetch addresses stores the cache

line-aligned physical addresses of outstanding prefetch requests.

Upon a prefetch fill, Prodigy performs a CAM look-up in this

column to find the PFHR that is keeping track of that request.

Offset bitmap stores a bitmap of outstanding prefetch

byte-addresses in a cache line whose address is indicated in

the previous entry.

C. Prefetching Algorithm

The prefetching algorithm has two phases: (a) prefetch

sequence initialization and (b) prefetch sequence advance.

1) Prefetch Sequence Initialization Algorithm: This algo-

rithm dictates actions to perform upon a prefetch trigger event.

A prefetch trigger event occurs when Prodigy observes a

demand load request to a data structure with a trigger edge.

To dynamically adapt to changing machine states (e.g., cache

contents), Prodigy initializes multiple prefetch sequences at

once and selectively drops some prefetch sequences.

The role of a trigger edge is to indicate the parameters

to initialize prefetch sequence(s), which include the prefetch

bounds and prefetch direction as shown in Fig. 10. The prefetch

bounds represent a look-ahead distance for prefetching (i.e.,

j) and the number of prefetch sequences to initialize (i.e.,

k − j + 1). Additionally, the data structure traversal direction

can also be defined, i.e., ascending or descending order of

their memory addresses. Intuitively, when the prefetch depth,

i.e., number of nodes on the DIG’s critical path, is high, the

time to traverse an entire path is long. Hence, a small look-

ahead distance is effective to balance data processing and data

fetch times. Similarly, for a short critical path, a large look-

ahead distance is effective. This simple intuition is incorporated

in a heuristic to determine the prefetch look-ahead distance,

where the distance decreases with an increase in the prefetch



depth of up to three. For algorithms traversing through four or

more data structures, a look-ahead distance of one is used. In

practice, we found there was little performance variation when

the look-ahead distance is up to 4× smaller/greater than the

ideal value.

Moreover, to adapt to dynamic data processing speed of the

core, Prodigy uses a feedback from load requests to selectively

drop prefetch sequences. As shown in Fig. 9(d), we store

a trigger address in each PFHR entry to record the starting

address of the prefetch sequence. When the core demands

the trigger address of a live prefetch sequence, we drop the

sequence because the prefetcher can only partially hide the

memory latency. Instead, we choose to hide the full latency of

future load operations by prefetching ahead. This way, dropping

of prefetch sequence(s) helps Prodigy to always run ahead of

the core, and multiple prefetch sequence initialization ensures

the liveliness of some prefetch sequence(s) even if few others

are terminated.

2) Prefetch Sequence Advance Algorithm: Upon servicing

a prefetch, Prodigy reads its data to issue further prefetch

requests using two types of indirection functions, i.e., single-

valued indirection and ranged indirection (see Section III-A).

Single-valued indirection is an indirection type that con-

nects two arrays, where the source array stores indices/pointers

to index into the destination array as shown in Fig. 5(c). This

traversal function is common in irregular algorithms (e.g., graph

algorithms use vertex identifier to index into data storage (e.g.,

visited list for BFS and vertex scores for PageRank)). Notably,

pointers are a special class of this indirection type, where the

address of the destination can be found by using the pointer

itself. With node information stored in the DIG, the prefetcher

can interpret the address as an index (or a pointer) and indexes

into the next array as done in software using the base address

and data size of the next DIG node.

Ranged indirection is an indirection type in which an array

stores pairs of base and bound indices (or pointers) pointing to

a section of another array which is accessed together as shown

in Fig. 5(d). Fundamentally, this access pattern summarizes a

streaming access through a portion of memory specified by

this pair. For example, in CSR/CSC representations, ranged

indirection is used in graph algorithms to find neighbors of a

vertex using offset list and edge list.

D. Hardware Flow of Prodigy

Fig. 11 shows the operation of Prodigy and its interaction

with the rest of the system. The figure shows that the graph

data structures are populated in memory for the BFS algorithm

on an example graph same as Fig. 3. For simplicity, we assume

that a cache line size is a single data block and caches are not

yet populated. Once the prefetcher is programmed, it snoops

on load requests from the core to the L1D and waits for a

demand request within the address ranges of the data structure

with the trigger edge. Similar to the prefetching algorithm,

Prodigy state machine has two phases for issuing prefetches:

prefetch sequence initialization and advance.
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Figure 11. Prodigy operation: (a) prefetch sequence initialization, and (b)
prefetch sequence advance.

Fig. 11(a) shows Prodigy’s operation in the first phase.

Upon observing a load request 1 that falls in the trigger data

structure (i.e., workQueue), a prefetch sequence is initialized.

Based on the prefetch-lookahead distance of (let us assume) 2

communicated via a trigger edge as described in Section IV-C,

Prodigy computes memory address 0x108 (i.e., 0x100+2×4)

to prefetch. Lastly, this address is translated to a physical

address using the TLB and issued for prefetching 2 . A new

PFHR is allocated for tracking this prefetch request.

Fig. 11(b) shows the second prefetching phase, where

demand and prefetch requests are serviced with their data

resident in the cache. Upon receiving the demand request, the

core traverses through other data structures 3 ld 0x124

(0x11c+2×4; using index of 2 and data size of 4). Note that

further load requests do not trigger prefetch sequences until

another access to workQueue. Upon prefetch fills, Prodigy finds

the PFHR entry keeping track of this request using a CAM

look-up. Once identified, a source DIG node corresponding to

this prefetch fill, its outgoing edges, and data indirection type

are found by indexing into the edge and edge index tables.

Using the single-valued indirection w0 and prefetched data,

next prefetch address of 0x12C is computed. Lastly, a prefetch

request is sent 4 by translating its address using the TLB

and a new PFHR is allocated; this process repeats until a leaf

DIG node is encountered. A new PFHR is only allocated for

prefetch addresses belonging to non-leaf DIG nodes.

E. Prodigy in a Parallel Execution Setting

In a multi-core execution, a private instance of Prodigy is

present on each core. Prodigy snoops on the L1D cache to trig-

ger prefetch sequences. Prodigy supports trigger data structures

that are contiguously partitioned across multiple threads in the

virtual address space. Thus, Prodigy supports both statically-

scheduled (OpenMP-static) and dynamically-scheduled or work

stealing-based compilers (OpenMP-dynamic, CILK [36]). With

this contiguous partitioning, Prodigy mostly prefetches the



TABLE I
BASELINE SYSTEM CONFIGURATION.

Component Modeled Parameters

Core 8-OoO cores, 4-wide issue, 128-entry ROB, load/store queue

size = 48/32 entries, 2.66GHz frequency

Cache Hierarchy Three-level inclusive hierarchy, write-back caches, MESI

coherence protocol, 64B cache line, LRU replacement

L1 I/D Cache 32KB/core private, 4-way set-associative, data/tag access

latency = 2/1 cycles

L2 Cache 256KB/core private, 8-way set-associative, data/tag access

latency = 4/1 cycles

L3 Cache 2MB/core slice shared, 16-way set-associative, data/tag access

latency = 27/8 cycles

Main Memory DDR3 DRAM, access latency = 120 cycles, memory

controller queuing latency modeled

correct data for each core; this prevents any significant increase

in NoC/coherence traffic. The only exception is present at the

data structure boundaries, which are rarely accessed. Timeliness

in presence of synchronization is maintained by selectively

dropping prefetch sequences based on each core’s execution

pace.

F. OS Integration

Prodigy works best when the number of user threads does

not exceed the core count. This allows the use of thread affinity

to ensure only one user context is needed in the prefetcher. In

the event that a thread which uses Prodigy is preempted by the

kernel, the prefetching is paused upon thread descheduling. The

data in Prodigy’s prefetcher-local memory structures remains

untouched. This cached data can be used to resume prefetching

when the thread is rescheduled. In the rare event that another

user thread is scheduled that requires the prefetcher, the context

needs to be saved/restored from the prefetcher data structures.

G. Prefetch Throttling Mechanism

While Prodigy focuses on designing a novel prefetching

mechanism, we do not implement a prefetch throttling mecha-

nism because it is out of the scope of this paper. We envision

Prodigy to be used alongside a prefetch throttling mechanism

similar to [88] that can identify and prevent prefetch-induced

cache pollution to further improve performance. We leave

studying the best throttling techniques as future work.

V. METHODOLOGY

This section describes the simulation infrastructure, algo-

rithms and data sets, and state-of-the-art prefetching systems.

A. Simulation Infrastructure

We use Sniper [20]—a Pin [62] based x86 multi-core

simulator with an interval core simulation model. Sniper has

been validated against several Intel micro-architectures [10],

[20], [21]. We use CACTI [70] to obtain cache access times

for different cache capacities. We use the McPAT [60] model

built into Sniper to model energy consumption. We implement

our compiler analysis techniques using LLVM passes [57]. We

evaluate our approach by modeling a parallel shared memory

system with 8 cores as described in Table I. We run our

workloads end-to-end and report the performance numbers by

TABLE II
REAL-WORLD GRAPH DATA SETS USED FOR EVALUATION.

Graph Number of Number of Size × LLC

vertices edges (in MB) capacity

pokec (po) 1.6M 30.6M 132.0 16.5

livejournal (lj) 4.8M 69.0M 300.0 37.5

orkut (or) 3.1M 117.2M 485.2 60.6

sk-2005 (sk) 50.6M 1930.3M 7749.6 968.7

webbase-2001 (wb) 118.1M 1019.9M 4791.6 598.9

ignoring initialization cost, i.e., reading a graph from a file

and populating data structures. We use the region-of-interest

(ROI) utility from Sniper to only profile the core algorithm.

B. Irregular Workloads

We use unmodified versions of the following workloads and

run through our compiler pass for analysis.

Algorithms. We use five graph algorithms from the GAP

benchmark suite (GAPBS) [16] for evaluation—Betweenness

Centrality (bc), Breadth-First Search (bfs)3, Connected Com-

ponents (cc), PageRank (pr), and Single-Source Shortest

Path (sssp). We also use Sparse Matrix-Vector multiplication

(spmv) and Symmetric Gauss-Seidel smoother (symgs) from

the HPCG benchmark suite [29] as representative sparse

linear algebra applications. Additionally, we use Conjugate

Gradient (cg) and Integer Sort (is) from the NAS parallel

benchmark suite [12] as representative computational fluid

dynamics applications. We choose these algorithms as they

exhibit single-valued and/or ranged indirections.

Data sets. As inputs to the graph algorithms, we use real-

world graph data sets from SNAP [59] and UF’s sparse matrix

collection [27] as shown in Table II. We selected these data sets

as they represent real-world graph data and offer diversity in

total size as well as number of vertices and edges. The primary

reasons for avoiding the use of the graph generators kron

and urand from GAPBS are (a) they are synthetic data sets,

and (b) they are severely bound by synchronization overheads

when evaluated on our simulation infrastructure. Unless shown

individually, results for each graph algorithm is averaged over

all data sets. For non-graph algorithms, we use input generators

from benchmark suites; data set sizes for the linear algebra

and fluid dynamics kernels are 2M×2M, and 33M (for is)

and 75k (for cg), respectively.

VI. RESULTS

A. Design Space Exploration

We perform design space exploration on Prodigy to un-

derstand the trade-off between performance and hardware

complexity. Fig. 12 shows the effect of PFHR file size on

the overall performance normalized to a baseline of 4 registers.

The figure illustrates two key findings. First, there is up to

30% performance difference between the performance-optimal

configuration and the baseline PFHR file size. The performance

3For a fair comparison with prior work, we only use a top-down implemen-
tation of the bfs algorithm.Prodigy can also adapt to direction-optimizing
BFS by re-configuring the DIG during run-time.
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Figure 12. Design space exploration on the PFHR file size. Performance of
each configuration is normalized to 4 entries.
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Figure 13. Classification of LLC miss addresses into potentially prefetchable
and non-prefetchable addresses.

difference is attributed to structural hazards in the PFHR file—

while issuing a prefetch, if the entire PFHR file is busy, the

prefetch is dropped. We choose the size of PFHR file to be 16

for our design since it offers a reasonable trade-off between

performance and storage area requirement. Second, increasing

the number of PFHRs beyond 8 for cc hurts its performance

since the benefits of timely prefetches are overshadowed by

untimely prefetches that pollute the cache system. Dynamically

adapting prefetch aggressiveness according to the usefulness

of prefetched cache lines might help improve the performance

of such workloads.

B. Prefetching Potential

To estimate the potential prefetch coverage of Prodigy,

Fig. 13 evaluates the fraction of LLC misses, for a non-

prefetching baseline, that Prodigy can prefetch. We evaluate

this using DIG-annotated application binaries, disabling the

prefetcher, and classifying LLC miss addresses based on

whether they are within or outside the data structure address

bounds annotated by the DIG. The figure shows that, on average,

96.4% of LLC misses can be prefetched. In other words, ideal

prefetching and caching resources would convert an average

of 96.4% of DRAM accesses into cache hits, which sets the

upper bound for our evaluation.

C. Effect on Performance

Prodigy vs. no-prefetching: Fig. 14 shows the CPI stacks

and speedups of Prodigy across all the workloads normalized

to a non-prefetching baseline. For each workload, the first and

second bars correspond to the CPIs of baseline and Prodigy,

respectively. The figure shows the breakdown of execution time

in terms of no-stalls and stalls because of DRAM and cache

accesses, branch mispredictions, dependent instructions, and

others. Prodigy achieves a significant average speedup of 2.6×

compared to a non-prefetching baseline.

We see that Prodigy gains most of its performance by

decreasing the DRAM stalls by an average of 80.3%. Notably,
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Figure 14. CPI stack comparison and speedup achieved by Prodigy against
a non-prefetching baseline. Left bar: CPI stack of baseline; right bar: CPI
stack of Prodigy normalized to baseline. Lower is better for CPI, higher for
speedup.
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Figure 15. Location of prefetched data in the cache hierarchy when it is
demanded. Blue is better.

the DRAM stall portion of the baseline non-graph workloads

is 88.4% of the overall CPI, leading to substantial savings and

speedups. Assuming that software communicates the correct

workload semantics to the prefetcher, it mostly fetches useful

data. The primary inefficiency stems from issuing untimely

prefetches. We address this challenge by prefetching for the

next few work queue items and dropping prefetch sequences

after detecting that the core has caught up. This heuristic

allows us to avoid cache pollution by modulating the number

of requested cache blocks while also freeing PFHRs for more

useful work if their prefetch sequences would only partially

hide the memory latency. Note that the pr implementation

uses both CSC and CSR graph data structures that achieves a

similar speedup as other algorithms that only use CSR format.

Furthermore, as a result of reduction in DRAM stalls, Prodigy

slightly increases the cache stall portion of the CPI stack.

This is due to converting DRAM accesses into cache hits that

increases the aggregate time spent on cache accesses.

Additionally, mostly for graph workloads, Prodigy reduces

the branch segment of the CPI stack by 65.3% on average

as a side effect of reducing DRAM stalls. This is especially

evident in bfs, pr, and sssp due to the prevalence of load

data dependent branches. For example, in bfs, a vertex is only

added onto the work queue after loading its visited list entry

and verifying that it has not been traversed yet. This finding

is consistent with prior work [89].

Prefetch Usefulness: Fig. 15 classifies the usefulness of

prefetched data into four categories—demanded and resident

in the L1/L2/L3 cache and evicted from the cache hierarchy

without being demanded. The figure shows that data brought

in by 32.9–85.8% of prefetch requests is demanded before

it is evicted, which shows the accuracy of our prefetcher.

On average, our prefetcher achieves an accuracy of 62.7%.

Furthermore, most of these cache hits are found in the L1D
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Figure 16. Percentage of prefetchable main memory accesses (as shown in
Fig. 13) converted to cache hits. Blue is better.
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and Jones’ prefetcher [6], DROPLET [15], IMP [99], and Prodigy (this
work). Higher is better. Ainsworth & Jones and DROPLET are graph-specific
approaches, and hence are omitted from non-graph workloads.

cache, which incurs the lowest latency of the load operations.

Note that since Prodigy benefits from static analysis information

provided by software, the fraction of evicted data can further

be reduced by using an intelligent caching policy (e.g., stream

buffers or scratchpads [1]) since eviction is a consequence

of imperfect timeliness. Fig. 16 shows the percentage of

prefetchable LLC misses (blue portion of the bar in Fig. 13)

that Prodigy converts into cache hits. On average, Prodigy

converts 85.1% of prefetchable LLC misses to cache hits.

Significance of ranged indirection: For graph algorithms,

ranged indirection is responsible for prefetching 35.4–75.9%

(55.3% on average) of all data (not shown because of space

limitation). The fraction of data prefetched using ranged

indirection depends both on the position of indirection types in

a prefetch sequence and the amount of data available to prefetch.

For example, a major source of single-valued indirection in bfs

is at a prefetch depth of four. At this depth, secondary effects,

like squashing of prefetch sequences and PFHR unavailability,

limit prefetching opportunities. Prior work [26], [79], [99]

only prefetch single-valued indirection and fail to capture a

significant prefetching opportunity.

Prodigy vs. hardware prefetchers: Next we compare the

performance of Prodigy with the state-of-the-art hardware

prefetchers including GHB-based G/DC data prefetcher [72],

Ainsworth and Jones’ prefetcher [6], DROPLET [15], and

IMP [99]. Notably, the benefits of different prefetching solu-

tions are highly sensitive to architectural parameters, graph

traversal algorithm and design of their data structures, and input

data sets. Hence, we present a comparison using the parameters

from our simulation framework as well as a comparison with

the best reported results on commonly evaluated algorithms

from each prior work.

Prodigy outperforms the baseline and a GHB-based G/DC

data prefetcher [72] (not shown because of space limitations)

by 2.6× on average. GHB-based G/DC is known to predict

inaccurate prefetch addresses for irregular memory accesses

due to the lack of spatial locality, polluting the cache. There-

fore, when Prodigy is enabled by software, other traditional

prefetchers (e.g., GHB, stride, stream) are disabled.

Fig. 17 shows the performance comparison of various

prefetchers using our simulation framework. Prodigy outper-

forms Ainsworth and Jones’ prefetcher4 [5], [6] by 1.5×. We

have verified with the authors [4] that our implementation

and results are correct. The difference compared to [6] can

be attributed to inaccurate prefetch timeliness. On average,

62.7% of Prodigy’s prefetches are demanded by the core

versus only 44.6% for [6]. Also, unlike Prodigy, initiating

one prefetch sequence in [6] sometimes only partially hides

the memory latency if the core catches up with the prefetcher.

Furthermore, Prodigy is more flexible in that it can adapt

with different combinations of data structures and indirection

patterns, whereas Ainsworth and Jones’ graph prefetcher aims

to prefetch for BFS-like access patterns. While an extension

of [6] is presented in [5], it incurs significant area overhead of

32KB of storage vs. 0.8KB for Prodigy.

Compared to DROPLET [15], Prodigy achieves a 1.6×

speedup on average for two reasons. First, DROPLET only

prefetches a subset of data structures, i.e., edge list and visited

list-like arrays exhibiting single-valued indirection, compared

to Prodigy, which prefetches other graph data structures as

well. Second, we notice that DROPLET MPP misses several

prefetching opportunities because it can only trigger further

prefetches from prefetch requests serviced from DRAM, while

much of the prefetched data are present in the cache hierarchy.

Prodigy achieves an average speedup of 2.3× compared to

IMP5 [99], because IMP can only detect streaming accesses

to data structures that perform A[B[i]] type prefetching and

it only supports up to two levels of indirection. Extending

both DROPLET and IMP to prefetch additional data structures

would require significant effort because they do not support

ranged indirection and DROPLET design is specific to a subset

of graph data structures.

While Prodigy shows a significant speedup over prior work

on our simulation environment, we could not reproduce similar

results reported in the prior publications despite obtaining

evaluation artifacts from the authors. We believe that this

discrepancy is attributed to the difference in simulation environ-

ment, architecture parameters, and benchmark implementations.

To offer better justice to prior work, we also compare Prodigy

with the best reported speedups of hardware prefetchers from

their original publications. Table III shows a comparison of best

reported speedups over a non-prefetching baseline for optimal

algorithm-data set combination for both Prodigy and prior

work. The comparison shows that even compared to the best-

4We used open-sourced artifacts of for the evaluation of [6], and verified
the presented results with the authors [4].

5We used the artifacts provided by the authors for evaluating IMP.



TABLE III
AVERAGE SPEEDUP COMPARISON OVER NO PREFETCHING.∗

Common algorithms Prior work Prodigy

bc,bfs,bc,pr Ainsworth & Jones [6] 2.4× 2.8×

bc,bfs,bc,pr,sssp DROPLET [15] 1.9× 2.9×

bfs,pr,spmv,symgs IMP [99] 1.8× 4.6×
*Best-performing input data sets used as reported in prior work.
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Figure 18. Speedup of Prodigy compared to a non-prefetching baseline on
reordered graph data sets using HubSort [14].

reported speedups, Prodigy still outperforms the state-of-the-art

hardware prefetchers.

Prodigy vs. software prefetching: We compare the perfor-

mance of Prodigy with a software prefetching technique [8] for

indirect memory accesses. To make our evaluation consistent

with [8], we evaluated the performance of software prefetching

on an Intel Broadwell microarchitecture and validated our

results with authors of [3]. Our findings show that for pr,

performing a pure software-based prefetching [8] achieves an

average speedup of 7.6% compared to an average speedup

of 2× for our approach (not shown due to space limitation).

This is because Prodigy benefits from both static analysis

information from software and dynamic run-time information

from hardware to perform efficient prefetching. We do not

report the results on other graph algorithms since we noticed

that the compiler pass of [8] is not able to detect dynamically

allocated array sizes, and conservatively avoids placing prefetch

instructions to prevent faults [3].

Graph reordering: We also evaluate the performance

benefits of Prodigy on reordered graphs using HubSort [14].

Fig. 18 presents the speedup of Prodigy compared to a non-

prefetching baseline (both using graph reordering) for graph

algorithms. The figure shows even after benefiting from added

locality because of graph reordering, irregular memory accesses

can still limit the performance, and Prodigy can further improve

this performance by 2.3× on average.

D. Effect on Energy

Fig. 19 shows the breakdown of energy consumption for

Prodigy normalized to the baseline. Prodigy reduces energy

consumption across all categories with an average reduction

of 1.6×. We primarily attribute the energy reduction to the

static energy savings of the core, cache, and DRAM due to the

reduced workload execution time. Accelerating long-latency

memory operations also saves energy by reducing the number

of instructions executed and memory accesses performed before

recovering from mispredicted branches [89].

E. Overhead Analysis

Prodigy’s hardware consists of a finite-state machine, whose

area is dominated by the storage structures discussed in
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Figure 19. Normalized energy comparison of a non-prefetching baseline (first
bar) and Prodigy (second bar). Lower is better.

Section IV-A. These structures include DIG tables (i.e., node

table, edge table, and edge index table) and PFHRs. Although

Prodigy reads data values for prefetching, this is done by

snooping on the data response buses, rather than adding

or sharing ports on the cache. This limits the performance

impact and area overhead. Prodigy might increase the D-TLB

contention, however, this is a known issue for prefetchers

operating in the virtual address space.

We estimate the area overhead in terms of storage area

requirements assuming 48-bit physical and 64-bit virtual

address spaces. We calculate that the largest DIG used by our

workloads has 11 nodes and 11 edges for bc. For a plausible

extension to store larger DIGs, we conservatively assume 16-

entry DIG tables. Moreover, based on Fig. 12, we use 16

PFHRs for our design. Using these parameters, we estimate the

storage requirements of DIG tables and PFHRs to be 0.53KB

and 0.26KB, respectively, totaling to just 0.8KB. Assuming

this storage area to be dominant, we project our prefetcher to

have a negligible area overhead of 0.004% compared to an

entire CPU chip. Compared to Prodigy, other work has area

overheads of 1.4× [99], 2× [6], 9.7× [15], and 40× [5].

In terms of the software overhead, adding one-time prefetch

API calls slightly increases the size of program binaries.

Because these calls are executed only once, they translate

into a negligible dynamic instruction count increase. To add

these API calls, our compiler analysis performs a linear scan

of a program’s static instructions. The average compilation

time added to our benchmarks is less than one second.

F. Discussion on Scalability

Because of the irregular memory access patterns of evaluated

workloads, cores are mostly stalled to receive responses from

the memory system. Based on the baseline memory bandwidth

utilization results and a bandwidth limit of 100GB/s, increasing

the number of cores to around 40 will fully saturate the memory

bandwidth, at which point, the benefits from prefetching will

be limited. Our evaluation shows a more cost-effective design

point where an 8-core system used with Prodigy can saturate

the memory bandwidth while consuming 5× less transistor area

and less static energy compared to a 40-core system without

prefetching.



G. Limitations of Prodigy

A subset of irregular algorithms exhibiting single-

valued/ranged indirection patterns also incorporate additional

run-time information to issue load operations. For example,

triangle counting algorithm in GAPBS [16] intelligently avoids

redundant computation by examining only neighbors with

higher vertex IDs than the source vertex (i.e., branch-dependent

loads). While Prodigy supports prefetching for indirect memory

accesses, it does not account for this additional control-flow

information for prefetching. Similar trends might be observed

for ordered graph algorithms [28], [103] because node priority

is not accounted for prefetching. In such cases, Prodigy

might prefetch inaccurate vertices, and we envision using a

mechanism that disables the prefetcher when it detects cache

thrashing [88]. Additionally, the storage cost of hardware

structures (i.e., DIG tables and PFHR file) was chosen to

fit the needs of the workloads evaluated in this paper. It is

possible that other workloads with more DIG nodes/edges

would require greater storage and PFHR resources. We leave

the study of incorporating additional prefetching information

and larger workload analysis for future work.

VII. RELATED WORK

There is a rich body of work alleviating the memory access

bottleneck for various workloads, especially through prefetch-

ing. This work employs a unique synergy of both hardware and

software optimizations through the novel DIG representation.

We divide the related work in different categories and discuss

how our work is different.

Decouple access execute (DAE) architectures [18], [40],

[48], [63], [84], [85], [90] use decoupled memory access and

execute streams to reduce memory latency and communicate

between them using architectural queues. While we use a

separate prefetching unit for accelerating memory accesses, we

still use a single thread with coupled access and execute streams

with no additional requirement of queues for communication.

Helper threads [22], [24], [25], [47], [102] propose using a

separate thread to speculatively prefetch data to reduce memory

latency of the main thread. Run-ahead execution [30], [71]

and some other architectures [38], [104] utilize additional or

unused hardware resources to prefetch useful data for the main

thread. Helper threads dedicate extra physical cores to perform

prefetching that reduces compute throughput. Unlike Prodigy,

runahead execution has to re-execute instructions after long-

latency load-instructions.

More recently, several graph algorithm-based hardware

prefetchers [5], [6], [15] have been proposed that assume graph

data structure knowledge at hardware and prefetch for accesses

falling in these data structures. Accelerating irregular workloads

using hardware prefetchers [37], [54]–[56], [73], [77], [95], [99]

has been long studied that cover other types of data structures

and memory access patterns containing linked lists, binary

trees, hash joins in application domains such as geometric

and scientific computations, high-performance computing, and

databases. Furthermore, several temporal prefetchers [46],

[93], [95], [96] and non-temporal prefetchers [13], [17],

[52], [53], [64], [82], [86] are also investigated for these

workloads. These approaches however, when applied in the

graph processing context, can either prefetch for a subset of

data structures or incur high complexity and cost for generality.

Given our compact DIG representation, our approach benefits

covering all the data structures having data-dependent indirect

accesses at a negligible hardware cost.

A class of prefetchers [11], [23], [26], [31], [43], [50], [79],

[98] focuses on linked data structure traversals using pointers.

They have limited applicability for graph algorithms, mainly

because of the prevalence of ranged indirection as shown in

the Section VI-C. Prodigy on the other hand, can cover all

types of indirection present in graph algorithms.

Software prefetching [8], [19], [51], [61], [66], [91] is

another technique to reduce the memory latency of both regular

and irregular workloads where data structures are known at

compile-time. However, software prefetching could significantly

increase the size of the application binary and workloads with

dynamically initialized and sized data structures are difficult

to prefetch purely in software. Additionally, direct memory

access (DMA) engines are used to move data around without

explicit CPU instructions. Prodigy that reacts to hardware

events is orthogonal to a DMA engine, which is primarily

software controlled and used for peripheral devices.

Several domain-specific architectures [1], [2], [41], [67]–

[69], [75], [83], [87], [97], [100], [101] have been proposed for

accelerating graph processing applications. These architectures

are orthogonal to our software-aided hardware prefetching

work for CPUs; they either work as stand-alone accelerators, as

near/in-memory processing engines, or as scheduling/intelligent

caching aid to the processor core. Many of these architectures

use some form of hardware prefetching support, and our low-

cost prefetcher can be integrated within these architectures to

further enhance their performance.

Prefetch throttling mechanisms [32], [33], [44], [45],

[53], [58], [74], [78], [80], [81], [88], [94] use dynamic

information such as prefetch coverage/accuracy, cache pollution,

and/or bandwidth utilization to monitor the aggressiveness of

prefetches. These mechanisms can be applied to our approach

to reduce prefetch-induced cache pollution.

VIII. CONCLUSION

This paper presented Prodigy, a hardware-software co-design

approach to improve the memory latency of data-indirect irreg-

ular workloads. We proposed a compact representation, called

the Data Indirection Graph (DIG), that efficiently abstracts

an irregular algorithm’s data structure layout and traversal

patterns. This representation is constructed using static compiler

analysis and code generation techniques, and communicated

to the hardware. A programmable hardware prefetcher uses

this information to cater its prefetches to irregular algorithms’

memory access patterns. This approach benefits from (a) static

program analysis from software to capture the irregular nature

of memory accesses, and (b) dynamic run-time information

from hardware to make adaptive prefetching decisions. We

showed that our system is versatile and works for different



sparse data representations. We evaluated the benefits of our

system using a variety of irregular algorithms on real-world

large-scale data sets and showed a 2.6× average performance

improvement, 1.6× energy savings, and a negligible storage

cost of 0.8KB.
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