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This review focuses on the prodrugs used in suicide gene therapy. These prodrugs need to satisfy a number of criteria. They must
be efficient and selective substrates for the activating enzyme, and be metabolized to potent cytotoxins preferably able to kill cells at
all stages of the cell cycle. Both prodrugs and their activated species should have good distributive properties, so that the resulting
bystander effects can maximize the effectiveness of the therapy, since gene transduction efficiencies are generally low. A total of 42
prodrugs explored for use in suicide gene therapy with 12 different enzymes are discussed, particularly in terms of their physioco-
chemical properties. An important parameter in determining bystander effects generated by passive diffusion is the lipophilicity of
the activated form, a property conveniently compared by diffusion coefficients (log P for nonionizable compounds and log D7 for
compounds containing an ionizable centre). Many of the early antimetabolite-based prodrugs provide very polar activated forms
that have limited abilities to diffuse across cell membranes, and rely on gap junctions between cells for their bystander effects. Sev-
eral later studies have shown that more lipophilic, neutral compounds have superior diffusion-based bystander effects. Prodrugs
of DNA alkylating agents, that are less cell cycle-specific than antimetabolites and more effective against noncycling tumor cells,
appear in general to be more active prodrugs, requiring less prolonged dosing schedules to be effective. It is expected that continued
studies to optimize the bystander effects and other properties of prodrugs and the activated species they generate will contribute to
improvements in the effectiveness of suicide gene therapy.

INTRODUCTION

Gene-directed enzyme-prodrug therapy (GDEPT) or
suicide gene therapy is comprised of three components;
the prodrug to be activated, the enzyme (usually nonhu-
man) used for activation, and the delivery system for the
corresponding gene [1]. Most attention to date has been
directed towards development of the vector systems, on
which there is a large literature. This review focuses on the
small molecule prodrugs used in such therapies. Prodrugs
can be considered as comprised of two major domains; a
“trigger” unit that is the substrate for the activating en-
zyme, and an “effector” unit that is activated or released
by this metabolic process, sometimes joined by a defin-
able linker [2] (Figure 1).

As well as being an efficient and selective substrate for
the activating enzyme, the prodrug itself needs to be a sys-
temic agent, metabolically stable and able to diffuse effi-
ciently by paracellular and/or transcellular routes to the
areas in the tumor where the activating enzyme is be-
ing generated. The effector that is activated or released
from the prodrug must be an effective cytotoxin (prefer-
ably able to kill cells at all stages of the cell cycle), but
must also have good bystander effects (an ability to dif-
fuse to and kill neighbouring tumor cells). Most delivery
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Figure 1. Trigger-linker-effector concept for prodrug design.

systems still have very low efficiencies of gene transduc-
tion, and the bystander effect of the effector species is im-
portant in compensating for this [3]. The physicochem-
ical properties that govern these desirable pharmacoki-
netic characteristics of both prodrugs and effectors are
beginning to be understood, and include molecular size,
overall lipophilicity, charge, rate of metabolism, and the
propensity to form reversible or irreversible complexes
with cellular macromolecules.

The next section provides a brief overview of prodrugs
that have been explored for use in GDEPT, and their cor-
responding effectors. These are grouped according to the
activating enzyme, and do not provide extensive details
of relative levels of use but focus on the chemistry of the
prodrugs. Table 1 provides a broad categorization of the
DNA binding of the prodrugs (and their activated forms)
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Table 1. Estimated physicochemical properties governing the bystander effects of GDEPT prodrugs and their principal effectors.

Prodrug Effector

No log Pa DNAb No log Pa DNAb

1a (GCV) −2.07 low 1b −6.70c low

2a (E-GCV) 7.0 low 1b −6.70c low

3a (PCV) −2.03 low 3b −6.71c low

4a (ACV) −1.76 low 4b −6.34c low

5a (VCV) −0.78 low 4b −6.34c low

6a (BVDU) −0.43 low 6b −5.25c low

7a (AZT) −0.58 low 7b −5.46 low

8a (MCT) −1.77 low 8b −6.49c low

9a (5-FC) −1.79c low 9b (5-FU) −2.17c low

10a (MEP) −0.35 low 10b 0.09c low

11a (FAMP) −2.32 low 11b −1.26c low

12a (CPA) 0.23 low 12b −3.95c bondd

13a (IFO) 0.50 low 12b −3.95c bondd

14a 0.34 low 14b (NABQI) 0.38 bondd

15a (4-IM) 0.70 low unknown — bondd

16a (CMDA) −4.67c low 16b 0.05 bondd

17a −3.09c low 17b 1.66 bondd

18a −1.62c low 18b 3.73 bondd

19a ∼ 3.0 high 19b (DOX) 0.34c high

20a (MTX-Phe) 2.74 low 20b (MTX) −0.28 low

21a (IRT) 1.54c low 21b (SN-38) 2.02 low

22a 2.04c high 22b 1.51c bondd

23a (CB1954) 1.28 low 23b −0.34 bondd

24a (SN23862) 2.06 low 24b 2.50 bondd

29a 4.40 medium 29b 4.13 medium

32a 4.55 medium 32b 1.87 bondd

35a (IAA) −0.81c low 35b 1.35 high

36a (FIAA) −1.09c low 36b 1.80 bondd

37a (6-TX) −0.41c low 37b −5.52c low

38a (HM1826) 1.53 high 19b 0.36c high

39a 0.78 high 22b 1.51 bondd

40a 0.78 high 22b 1.51 bondd

41a (5′-DFUR) −0.82 low 9b −2.17c low

42a (SeMET) −3.15c low 42b 0.72d,e low

a Calculated using Advanced Chemistry Development (ACD) Software 5.0 package.

b Estimate (based on structure only) of the level of reversible binding to DNA.

c log D at pH 7 for compounds with ionizable groups.

d Covalent alkylation of DNA.

e Calculated for S analogue.

discussed here, based on the knowledge of their structure.
Most have little or no ability to bind reversibly to DNA,
some are likely to have significant binding constants, and
many (especially the activated forms) can covalently react
with DNA. Since both reversible and irreversible binding

lower the free drug concentration that drives diffusion,
the level of DNA binding can significantly influence the
bystander effect. The lipophilicity of both the prodrug
and the activated drug also has an important influence
on bystander abilities [4]. Table 1 contains log P values
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(n-octanol/water partition coefficents) for the com-
pounds, calculated using the Advanced Chemistry De-
velopment (ACD) 5.0 Software package. These calculated
values are approximations, and can differ substantially
from measured values in some series, but in the absence
of measured values for most of the compounds serve to
at least rank the compounds overall. For those possessing
ionizable centres, log D7 values are used; these take into
account the log P values of the neutral and ionized forms
and the relative proportions of each at pH 7.

PRODRUGS FOR THYMIDINE KINASE (TK)

Introduction

The most prominent GDEPT therapy has been the use
of the herpes simplex type-1 thymidine kinase enzyme
(HSV-Tk) in conjunction with a variety of guanosine-
based prodrugs, compounds originally developed as an-
tiviral (anti-herpes) agents [5, 6]. The enzyme con-
verts these prodrugs very efficiently (much more effi-
ciently than the corresponding endogenous kinases) to
the monophosphates, which are then converted by cellu-
lar enzymes to the toxic triphosphates (Figure 2). These
cause cell death by inhibition of incorporation of dGTP
into DNA, and also by prevention of chain elongation [7].
Fusion proteins of HSV-Tk with green fluorescent pro-
tein showed that enzyme expression was predominantly in
the nucleus of both transduced human and rodent glioma
cells [8]. A study using positron-emission tomography
(PET) showed that the extent of gene expression corre-
lated with therapeutic response in glioma [9].

Ganciclovir (GCV; 1a)

This is the most widely used prodrug for HSV-Tk,
and is well known in its own right as an antiviral agent
[6]. It is a very hydrophilic compound (calculated log P −

2.07; see Table 1). The HSV-Tk enzyme converts this to
the monophosphate (1b) which can then be converted
by cellular enzymes to the toxic triphosphate (Figure 2).
The high cytotoxicity shown by GCV in HSV-Tk trans-
duced cells is suggested to be due to its enhanced ability,
compared to related prodrugs, to incorporate into DNA
without inhibiting progression through the S-phase [10].
In CHO cells, GCV is a potent inducer of chromosome
breaks and sister chromatid exchange at concentrations
well below those required for its gene therapy activity
[11].

The monophosphate effector 1b is more polar than
GCV even as the neutral form (log P = −2.6), but is also
partially ionized to an anionic species, giving a calculated
partition coefficient at pH 7 (log D7) of −6.7 (Table 1). Al-
though this species has very limited ability to cross cell
membranes by passive diffusion, HSV-Tk/GCV therapy
demonstrates bystander effects in a number of models.
Numerous studies have shown this is mediated primar-
ily by gap junctional intercellular communication (GJIC)

[7, 12, 13]. Because extensive gap junction networks are
not common in tumors, a variety of methods to augment
HSV-Tk/GCV therapy have been explored [7]. There is
also extensive evidence of an immunological component
to the bystander effect in vivo, in that along with the re-
gression of HSV-tk transduced tumors, distant nontrans-
duced tumors also show significant effects [14]. A TH1-
based immune response was seen in rat prostate can-
cer models undergoing HSV-Tk/GCV therapy [15], and
a clinical study also showed elevated numbers of periph-
eral T and B cells, enhanced T-cell activation, and elevated
serum levels of interleukin 12 during intracranial GCV
treatment [16].

The major clinical use of GCV in GDEPT has been
in glioblastoma, using direct injection of the tumor with
the vector, followed by systemic administration of pro-
drug. The drug is well-tolerated, but there have been var-
ied reports of its utility, including a recent large multicen-
ter stage-III trial on 248 patients with newly diagnosed,
previously untreated glioblastoma multiforme [17]. This
trial found no benefit in either time to tumor progres-
sion nor overall survival time compared to best available
therapy (surgical resection and radiotherapy), attributed
to the poor rate of delivery of the HSV-tk gene, and pos-
sibly poor delivery of the prodrug across the blood-brain
and blood-tumor barriers.

Another approach to improving therapy with GCV is
the use of mutant enzymes. Several studies have showed
that random [18] or semirandom [19] mutagenesis of
the wild-type enzyme can provide substantial increases in
both in vitro and in vivo activity, allowing lower and less
immunosuppressive doses of GCV to be used. A number
of mutation sites (eg, at Gln-125 and Ala-168) result in
higher Km values for thymidine binding due to loss of H-
bond contacts, and unaltered or even improved binding
for GCV [20, 21]. This results in reduced competition be-
tween prodrug and thymidine at the active site, providing
improved kinetics of conversion of GCV.

Combination therapy with HSV-Tk/GCV and other
agents have also been explored. Some of these, like pro-
teases such as trypsin or collagenase/dispase [22] are de-
signed to improve gene delivery. Others are designed to
complement the effects of the activated drug, such as
stimulation of the immune system with GM-CSF in [23],
which showed increased cure rates in animal models. Ra-
diation therapy has been used both to upregulate promo-
tors to increase gene expression [24] and to enhance the
cytotoxicity of the activated drug [25]. In HSV-Tk trans-
duced mouse RM-1 prostate cancer cells, the combination
of GCV and radiation was additive at low doses of radi-
ation, and possibly synergistic above doses of 8 Gy [26].
Retinoids increase GJIC by induction of connexin expres-
sion, and augment the efficiency of cell killing by GCV in
HSV-YK transduced cell lines [27].

A variety of thymidylate synthase inhibitors, in-
cluding Tomudex, 5-fluorouracil (5-FU) and (E)-5-(2-
bromovinyl)-2′-deoxyuridine (BVDU) show synergistic
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Figure 2. Activation of ganciclovir and analogues by HSV-Tk.

cell killing when used with GCV in clonogenic assay
studies, while a combination of GCV and 5-FU pro-
vided significantly-enhanced survival rates in an sc HT-
29 STK tumor xenograft model in mice [28]. Combina-
tions of GCV and the topoisomerase I inhibitor topote-
can also showed synergistic cell killing in HSV-Tk trans-
duced murine MC38 and human HT-29 colon carcinoma
cell lines in a clonogenic assay, and were superior to GCV
alone in sc tumor xenograft models using the same cell
lines in athymic nude mice [29].

Ganciclovir elaidic acid ester (E-GCV; 2a)

This very lipophilic (log P+7.0) preprodrug of GCV is
more potent than GCV itself in cell cultures (EC50 for E-
GVC around 2 nmol), with a selectivity index (IC50 ratio)
in FM3Atk-/HSV-1tk+ cells of > 2000 fold. Nonspecific
hydrolysis of the ester gives GCV, and both GCV and E-
GCV were converted to the mono-, di-, and triphosphates
of GCV. However, the half-lives of both GCV and its phos-
phate metabolites were much longer (about 50 hours) in
cells treated with E-GCV rather than GCV, suggesting the
possible utility of lipophilic preprodrugs for modulating
pharmacokinetics [30].

Penciclovir (PCV; 3a)

This prodrug is closely related to GVC, with the ether
replaced by a CH2 group, and has similarly low lipophilic-
ity (log P − 2.03). PCV is less genoxic than GCV or
ACV, inducing sister chromatid exchanges only at cyto-
toxic/apoptotic concentrations, and is only weakly clasto-
genic [11]. Treatment of HSV-Tk transformed baby ham-
ster kidney cells with PCV and GCV, but not ACV, in-
duced rapid accumulation of cells in the S-phase and
apoptotic death as measured by the TUNEL assay [31],
and this property, together with the low genotoxicity of
PCV, makes it a relatively safe alternative drug for suicide
gene therapy [32].

Acyclovir (ACV; 4a)

As Zovirax, ACV is the most frequently used antiher-
pes drug. It is closely-related chemically to GCV, but is
slightly more lipophilic (log P − 1.76) due to one less al-
cohol group. ACV is a moderate genotoxin in CHO cells,
inducing chromosomal aberrations and sister chromatid
exchange but only at concentrations much higher than
those achieved in blood plasma in vivo [11]. Comparative
studies have generally shown it to be an effective prodrug
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for HSV-Tk, both less toxic and less potent and (perhaps
surprisingly in view of its higher lipophilicity) with lower
bystander effects. However, in a study using ovarian can-
cer cell lines and comparing ACV and GCV at equal con-
centrations, the former showed equal or higher cell killing
efficacy and bystander effects [33]. In other studies using
U251tk human glioblastoma cells stably expressing HSV-
Tk, ACV gave a lesser cell kill than did GCV (< 1.5 log
compared to > 4 log) [10]. As with GCV, ACV sensitizes
HSV-Tk transduced cells to radiation [34]. Clinical stud-
ies of patients with recurrent ovarian cancer treated with
a replication-deficient HSV-tk gene vector, ACV and the
topoisomerase I inhibitor topotecan showed median over-
all survival comparable to that of patients treated with
conventional chemotherapy [35].

Valacyclovir (VCV; 5a)

Valacyclovir is a valine ester preprodrug form of ACV,
which can be given orally. It is relatively lipophilic, al-
though partial ionization of the amine counteracts this to
some extent (log D7 = −0.78). In a clinical study of re-
current ovarian cancer treated with an IP-injected HSV-tk
vector followed by topotecan and either IV ACV or oral
VCV, the levels of ACV and VCV (measured as released
ACV) were similar, suggesting the use of VCV as a cost-
effective alternative in outpatient therapy [36]. Clinical
trials of VCV and a locally-injected replication-deficient
HSV-tk vector in prostate cancer, with [37] or without
[38] concomitant radiation therapy, are in progress.

(E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU; 6a)

This is a potent antiherpes agent recently also used
as a prodrug in gene therapy, and is considerably more
lipophilic than GCV (log P = −0.43). An efficient synthe-
sis has been reported [39]. BVDU exerts its cytotoxic ef-
fect not only by incorporation into replicating DNA, but
also through inhibition of thymidylate synthase. It en-
hances the GCV-induced killing of HSV-Tk transduced
glioma cells [40], although BVDU itself is reported to have
a poor bystander effect, both in vitro [41, 42] and in vivo
[43]. It is a particularly good substrate for the varicella
zoster virus thymidine kinase (VSV-Tk). While GCV was
not toxic in VSV-Tk transduced MCF7, T-47D, and MDA-
MB-435 breast cancer cells, BVDU showed high cytotox-
icity (IC50s 600, 100, and 60 nmol, respectively) and se-
lectivity indices (IC50 ratios of wild-type to VZV-Tk cells
of 400, 750, and 2000, respectively). Bystander effects were
not observed in vitro in MDA-MB-435 cells, but were seen
in 9L rat gliosarcoma cells [44]. BVDU showed radiosen-
sitizing activity in U-251 human glioma cells transduced
with HSV-Tk, giving a sensitization enhancement ratio of
1.9.

Zidovudine (AZT; 7a)

While the anti-AIDS drug AZT is a relatively poor
substrate for HSV-Tk, its antimetabolite-type mechanism
of action is similar to that of the guanosine analogues

antiherpes drugs discussed above, and its lipophilicity is
(log P − 0.58) similar to that of BVDU. Genetic modifi-
cation of HSV-Tk produced mutants with reduced speci-
ficity for thymidine and much greater ability to phospho-
rylate AZT, due to active site mutations that better accom-
modate the azido group of AZT at the expense of thymi-
dine [45].

2′-Exo-methanocarbathymidine (MCT; 8a)

The potent antiviral drug MCT is a substrate for
HSV1-Tk [46], but a better one (12-fold increase in KM)
for the Y101F mutant. Crystal structure studies [47] of
MCT with both enzymes show that the thymine moiety
of MCT binds similarly to deoxythymidine, with the con-
formationally restricted bicyclo[3.1.0]hexane mimicking
the sugar moiety. In MC38/HSV1-Tk murine colon can-
cer cells, MCT had an IC50 of 2.9 µmol (comparable to
that of GCV), and was metabolized to the mono-, di-, and
triphosphates. Treatment of MC38/HSV1-Tk tumors in
C57/BL6 mice at 100 mg/kg twice daily caused complete
inhibition of tumor growth [48].

PRODRUGS FOR CYTOSINE DEAMINASE (CD)

Introduction

After HSV-Tk, the cytosine deaminase gene is the next
most widely studied for GDEPT. The enzyme (CD) en-
coded by this gene catalyzes the conversion of cytosine to
uracil, and is an important member of the pyrimidine sal-
vage pathway in prokaryotes and fungi, but is not present
in multicellular eukaryotes. The crystal structure of E. coli
CD has an αβ-8 barrel structure with similarity (struc-
turally not sequence) to adenosine deaminase, but not to
cytidine deaminase [49]. The enzyme is a hexamer, sta-
bilized by domain swapping between enzyme subunits,
and containing the active site in the mouth of the enzyme
barrel. GDEPT therapy using CD has focused almost en-
tirely on one prodrug, the clinically used antifungal agent
5-fluorocytosine.

5-Fluorocytosine (5-FC; 9a)

5-Fluorocytosine is a relatively hydrophilic (log P −

1.79) antifungal agent with low toxicity in humans, who
lack an endogenous enzyme that can activate it effi-
ciently. However, bacterial and yeast CD enzymes convert
it efficiently to 5-fluorouracil (5-FU) (9b). Studies with
tritiated-5-FC in a human glioblastoma cell line stably
transfected with the E. coli gene for CD showed it entered
the cells relatively slowly by passive diffusion, and showed
rapid efflux, suggesting that transport of this quite hy-
drophilic prodrug may be a limiting factor [50]. The active
form 5-FC is also quite polar (log D7 − 2.29) but is a dif-
fusible species that is itself the single most effective drug
for colon cancer, being converted by cellular enzymes to
the ribosyl monophosphate 5-FdUMP (Figure 3), which
is an irreversible inhibitor of thymidylate synthetase. An
NMR study of 5-FC in sc yeast CD-transfected human
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colorectal carcinoma xenografts in nude mice derived rate
constants of 0.49 min−1 for CD-catalyzed prodrug con-
version and 0.77 min-1 for 5-FU efflux from the tumor
volume [51]. In contrast to GCV, the bystander effects
of CD/5-FC therapy do not depend on gap junctional
intercellular communication (GJIC), and very large ef-
fects are seen with both communication-competent and
-incompetent cells [52], mediated by the diffusion of 5-
FU. It has been suggested that CD/5-FU therapy in solid
tumor models can generate complete cures if only 4% of
the tumor cell mass express the enzyme [53].

CD/5-FC therapy has been studied, usually with the
E. coli enzyme, in a wide variety of cancers, perhaps
most notably colon using the carcinoembryonic antigen
(CEA) promoter [53, 54]. MDA-MB-231 breast carci-
noma cells transfected with E. coli CD were sensitized
1000 fold to 5-FC in culture, with only 10% of the in-
fected cells needed to induce complete cytotoxicity of in
cocultures with noninfected cells. Sc MDA-MB-231 breast
carcinoma xenografts in nude mice [55] and intracranial
human glioma xenografts in scid mice [56] were con-
trolled by an intratumoral dose of an adenovirus encod-
ing E. coli CD and systemic 5-FU. Similar studies have
shown the utility of CD/5-FC in hepatic metastases of
colon carcinoma [57] and prostate cancer [58]. Studies
using Saccharomyces cerevisiae CD, which has a KM for 5-
FC about 22-fold lower than that of E. coli CD show that
this enzyme also shows superior results in sc HT29 hu-
man colon carcinoma xenografts [59], producing about
15-fold more 5-FU in tumors at the same dose of 5-FC
and greater radiosensitization [60]. When 5-FC/CD and
HSV-Tk/GCV therapies were compared in a variety of in
vivo models, both appeared of similar efficacy in hepato-
cellular carcinoma [61], but CD/5-FC was clearly superior
in EBV-associated lymphomas [62], renal cell carcinoma
[63], and colorectal carcinoma [64], attributed to its su-
perior bystander effect.

Coexpression of CD together with E. coli uracil phos-
phoribosyltransferase (UPRT), which is absent in mam-
malian cells and which directly converts 5-FU to the 5′-
monophosphate (5′-FdUMP), is synergistic. 9L glioma
cells expressing both enzymes were 375-fold more sen-
sitive to 5-FC than cells transduced with CD alone [65].
Cells expressing both enzymes showed large increases
in 5-FdUMP, 5-fluorouridine triphosphate, incorporation
into RNA and inhibition of thymidylate synthase [66].
Coexpression of both CD and HSV-Tk enzymes was also

shown to be synergistic, both in vitro [68] and in sc rat 9L
glioma tumors in nude mice [67] treated with 5-FC and
GCV. The mechanism appears to be an enhancement of
GCV phosphorylation by HSV-Tk following 5-FC treat-
ment [68].

Combination studies of 5-FC with radiotherapy in
CD-transfected tumors also show sensitization of sc
xenografts of squamous cell carcinoma [69], cholangio-
carcinoma [70] and colon carcinoma [71], using a dose
of 800 mg/kg/day of 5-FC and from 10–50 Gy of tumor
irradiation. Dose-modifying factors of up to 1.5 were ob-
served. A Phase I clinical trial of CD linked to a tumor-
specific erbB2 promotor in breast cancer patients showed
significant levels of expression of the CD gene, restricted
to erbB-2-positive tumor cells, in about 90% of cases [72].

PRODRUGS FOR PURINE NUCLEOSIDE
PHOSPHORYLASE (PNP)

Introduction

The E. coli purine nucleoside phosphorylase (PNP)
is a hexameric enzyme that catalyzes the reversible phos-
phorolysis of 6-amino-2′-deoxyribonucleosides to the free
base and 2′-deoxyribose-1-phosphates, whereas the cor-
responding (trimeric) human enzyme only hydrolyses
6-oxopurine nucleosides. Comparative crystal structures
show that the active-site location and its overall geome-
try are similar for the E. coli and human enzymes, but the
subunit interactions are quite different, with the E. coli
enzyme having more hydrophobic purine- and ribose-
binding sites [73].

6-Methylpurine deoxyriboside (MEP; 10a)

The most widely used prodrug for PNP in GDEPT
is 6-methylpurine deoxyriboside (MEP) (log D7 − 0.35),
which is converted by PNP to more lipophilic (log D7 −

0.09) and highly diffusible metabolite 10b (Figure 4).
This has the potential advantages of being less cell cycle-
specific than most antimetabolites and having excellent
bystander effects. Human ovarian tumors transfected
with E. coli PNP controlled by an SV40 promoter and im-
planted IP were shown to express PNP in only 0.1% of
the cells after 5 days, yet treatment of these with MEP re-
sulted in an average 49% reduction in tumor size and 30%
increase in life span compared with control tumors [74].
A comparison of MEP/PNP and GCV/HSV-Tk therapy
in a PC-3 human androgen-independent prostate cancer
cell line showed that MEP/PNP caused more rapid cell
killing at a 5–10-fold lower input of virus [75]. Against the
same cells as sc tumors in nude mice, both systems showed
comparable activity, holding tumor growth to about 75%
of that of controls after 52 days, and providing about 20%
of long-term survivors [76].

Fludarabine (FAMP; 11a)

Fludarabine (arabinofuranosyl-2-fluoroadenine mono
phosphate), has also been studied as a possible prodrug
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for PNP gene therapy. FAMP showed good activity
against sc D54MG glioma tumor xenografts expressing
E. coli PNP, but was not quite as effective as MEP [77].
Human hepatocellular carcinoma cell lines (HepG2,
Hep3B, and HuH-7) expressing PNP were highly sensi-
tized to FAMP, showing IC50s of < 1 µmol, with excellent
bystander effects (better than those for GCV) [78].
Treatment of PNP-transduced HepG2 and Hep3B cells
with FAMP induced p53 accumulation and the rapid
onset of apoptosis, and caused similar levels of killing in
both p53-positive and negative lines. This independence
of FAMP-induced killing on p53 status suggests that
FAMP/PNP may be superior to GCV/HSV-Tk for gene
therapy of human hepatocellular carcinoma [79].

PRODRUGS FOR CYP ENZYMES

Introduction

Prodrugs for gene therapy based on NADH cyto-
chrome P450 (CYP) enzymes are compounds that are
normally activated primarily by one or more of the
many CYP isozymes [80]. The large number of different
isozymes, and the fact that many drugs and other xenobi-
otics are metabolized by them, makes the potential choice
of prodrugs quite wide. Many of these enzymes are ex-
pressed to greater extent in liver than in tumor cells, so
the primary goal of this strategy is to selectively increase
tumor cell exposure to cytotoxic drug metabolites by tar-
geting expression of the enzymes to tumor cells by gene
vectors. To date, this area has been dominated by only two
prodrugs, the alkylating agents cyclophosphamide and
ifosfamide, but the range of potential compounds is ex-
panding.

Cyclophosphamide (CPA; 12a)

This is the most widely used alkylating agent in
conventional cancer chemotherapy. It is much more

lipophilic than the majority of the antimetabolites dis-
cussed above (log P + 0.23) and works by a different
mechanism. It is converted to the active alkylating agent
phosphoramide mustard (12b) via initial hydroxylation
to 4-hydroxycyclophosphamide (hydroxy-CPA) by CYP
enzymes (primarily CYP2B1) in the liver (tumor cells
generally contain only low levels of enzyme). Hydroxy-
CPA is in equilibrium with the open-chain aldophos-
phamide, which undergoes spontaneous elimination to
give acrolein and phosphoramide mustard (Figure 5a).
Phosphoramide mustard is a DNA cross-linking agent
that kills cells in a largely cell cycle-independent man-
ner, and thus CPA has potential advantages over GCV
and 5-FC, which are cell cycle-specific agents. While phos-
phoramide mustard itself is very polar (log D7 − 3.95),
the more lipophilic intermediate CPA metabolites (pri-
marily hydroxy-CPA) do not require cell-cell contact
for a bystander effect, distributing by passive diffusion
[81, 82]. Early studies with CPA in gene therapy utilized
both retroviral- and adenoviral-mediated transduction of
glioma cells with CYP2B1, and showed that this sensi-
tized them to CPA both in vitro [83] and in vivo [81].
Protection of transduced cells from CPA-induced cyto-
toxicity with the CYP2B1 enzyme inhibitor metyrapone
showed that this sensitization was a direct consequence of
intracellular prodrug activation [81]. Since CYP-catalyzed
drug metabolism is dependent on electron transfer from
the flavoenzyme NADPH-P450 reductase, double trans-
duction of rat 9L glioma cells with both enzymes substan-
tially increased tumor cell killing [84], and inhibitors of
NADPH-P450 reductase inhibited the activation of CPA
by CYP enzymes [85, 86].

The use of other CYP isozymes to activate CPA
has been explored. AHH-1 human lymphoblastoid cells
transfected with CYP2C9 were 5-fold sensitized to CPA
compared with the wild-type line (IC50s 0.80 and
4.1 mmol, respectively), and showed a bystander killing
effect. This sensitivity was blocked by the CYP2C9-
specific inhibitor sulfaphenazole. While the sensitivity en-
hancement is not large, CYP2C9 and CPA may possibly
be useful for GDEPT [87]. In a comparative study, 9L-
rat glioma cells were transfected with six different CYP
enzymes; 2B6, 2C8, 2C9, 2C18 (Met385 and Thr385 al-
leles), 2C19, and 3A4 [88]. Greatest sensitization to CPA
was seen with CYP2B6, but CYP2C18-Met was also effec-
tive, despite a very low level of CYP protein expression
(> 60-fold lower than that of 2B6), with substantial fur-
ther increases upon additional transduction with NADH
P450 reductase. In 9L glioma sc tumors transduced with
2B6 or 2C18-Met in immunodeficient mice, the best ef-
fects were seen with concomitant expression of NADH
P450 reductase (growth delays of 25–50 days, compared
with 5–6 days). Transduction of HT29 and T47D human
colon carcinoma cells with CYP2B6 using a retroviral vec-
tor (MetXia-P450) sensitized these cells to CPA, and pro-
duced a substantial bystander effect in 3-D multicellu-
lar spheroid models [89]. Treatment of scid mice bearing
400 mm3 sc tumors from 9L glioma cells transduced with
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CYP2B6 and NADHP450 reductase with CPA (140 mg/kg
every 6 days) achieved eradication of 6 out of 8 tumors.
With larger tumors, some resistance to CPA was seen, in-
volving loss of expression of the genes [90].

Ifosfamide (IFO; 13a)

Ifosfamide is also used clinically as a conventional
anticancer drug. It is closely related both chemically
and mechanistically to cyclophosphamide, having similar
lipophilicity (log P+0.50) and releasing the same ultimate
metabolite, phosphoramide mustard (12b) (Figure 5a).
Feline kidney cells transfected with CYP2B1 were sensi-
tized to IFO, and killed via necrotic rather than apoptotic
mechanisms [91]. When these cells also expressed cyto-
sine deaminase, additive killing was seen with combina-
tions of both IFO and 5-FU [92]. CYP2B1-transduced hu-
man embryonic epithelial cells implanted in mice bear-
ing human PaCa-44 pancreatic tumor xenografts sensi-
tized these to IP IFO, resulting in partial or even com-
plete tumor ablation [93]. 9L glioma cells transduced with
CYP2B6 and NADPH P450 reductase were sensitized to
both CPA and the bioreductive drug tirapazamine (TPZ)
to the same extent under both normoxic (20% O2) and
hypoxic (1% O2) conditions [94]. Under hypoxia, both
CPA and TPZ showed bystander effects, which is surpriz-
ingly given the nature of the highly reactive radical inter-
mediate thought to be the active species of TPZ.

Acetaminophen (14a)

The widely used and relatively lipophilic (log P + 0.34)
anti-inflammatory drug acetaminophen is oxidized by
the human CYP1A2 enzyme to the cytotoxic metabolite

N-acetylbenzoquinoneimine (NABQI; 14b) (Figure 5b),
which is the major source of toxicity of this drug. Trans-
fection of H1A2 MZ cells with human CYP1A2 sensi-
tized them to treatment with acetaminophen, with the
generation of a substantial bystander effect (complete
killing of V79 cells in a mixture containing 5% transduced
H1A2 MZ cells) [95]. Similar bystander effects were seen
with transduced SK-OV-3 human ovarian tumor cells and
HCT116 human colon tumor cells, but not with MDA-
MB-361 breast tumor cells. Acetaminophen is thus a pos-
sible prodrug for GDEPT in conjunction with CYP1A2.

4-Ipomeanol (4-IM; 15a)

4-Ipomeanol is a relatively lipophilic furoketone
(log P + 0.70) that is efficiently converted by the rabbit
CYP4B1 enzyme, but not by the corresponding human
isozyme, into toxic DNA-alkylating metabolites of unre-
ported structure [96]. Both rat (9L) and human (U87)
glioma cell lines transduced with rabbit CYP4B1 were
sensitized about 20 fold to 4-IM (IC50s about 2.5 µmol),
with an efficient bystander effect. Cell killing was associ-
ated with DNA fragmentation (TUNEL assays) and exten-
sive protein-DNA crosslinking and single-strand breaks.
In 9L sc tumor xenografts in nude mice, 4-IM induced sig-
nificant growth delays. Similar results were seen in a range
of human hepatocellular carcinoma cell lines (Hep3B,
HuH-7, and HepG2) transduced with rabbit CYP4B1 and
treated with 4-IM, except that bystander effects seemed
to be cell-specific [97]. In a further comparative study
[98], 4-IM treatment of CYP4B1-transduced 9L glioma
cells showed very little bystander effect (much less than
that shown by GVC/HSV-Tk). Thus the utility of 4-IM for
GDEPT needs further clarification.
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PRODRUGS FOR CARBOXYPEPTIDASES (CP)

Introduction

This enzyme, from various species of Pseudomonas
bacteria, and for which there is no mammalian counter-
part, has been investigated for use in gene therapy because
of its ability to cleave glutamate moieties [99]. Because the
substrates for this enzyme are necessarily diacids, it has
been used primarily in ADEPT protocols, where cell ex-
clusion of very polar prodrugs until activation is an added
benefit. However, more recently it has been adapted for
use in GDEPT by being engineered for surface expression
on the cells [100].

4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-
L-glutamic acid (CMDA; 16a)

The very polar (log D7−4.67) “mixed” chloromesylate
mustard CMDA was first studied as a prodrug for ADEPT,
in conjunction with the enzyme carboxypeptidase G2
(CPG2) derived from the bacterium Pseudomonas putida,
which cleaves the glutamate to generate the active car-
boxylic acid species 16b (Figure 6a) [99]. However, stud-
ies with human adenocarcinoma cell lines (A2780 and
SK-OV-3) and human colon carcinoma cell lines (LS174T
and WiDr) that expressed CPG2 internally showed en-
hanced sensitivity to CMDA over control lines (11–16 fold
for WiDr and SK-OV-3, 95 fold for A2780 and LS174T),
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showing these diacids do enter cells [100]. Complete cell
killing was achieved with 4–12% of cells expressing the
enzyme, indicating a substantial bystander effect from
the much more lipophilic (log P + 0.05) released aniline
mustard effector 16b. Nevertheless, later work compar-
ing CMDA with internally-expressed and surface-tethered
CPG2 enzymes in the A2780, SK-OV-3, and WiDr cell
lines showed the latter was superior for activating CMDA
[101]. Lower levels of enzyme and shorter exposures
to prodrug were required for cell killing with surface-
tethered compared to internally-expressed CPG2. The ac-
tivity of CMDA against human MDA-MB-361 breast car-
cinoma xenografts in nude mice correlated with the per-
centage of CPG2-expressing cells, with some cures seen
even with tumors containing 50% wild-type cells, con-
firming a substantial bystander effect [102].

Hydroxy- and amino-aniline mustards
(eg, 17a and 18a)

Because the effector 16b released from CMDA is only
a moderately potent cytotoxin (IC50 65 µm in LS174T hu-
man colon carcinoma cells [103]), more potent effectors
have been sought. Thus the prodrugs 17a and 18a release
effectors (17b and 18b; Figure 6a) that are up to 70-fold
more potent than 16b (IC50s in LoVo colon carcinoma
cells of 1.8 µmol and 0.34 µmol, respectively) [103, 104].
These prodrugs showed IC50 differentials of 12–14 fold
between wild-type and surface CPG2-expressing WiDr
human colon tumor cell lines in culture. The iodomus-
tard glutamate prodrug 18a, already in clinical trial as
a prodrug for ADEPT [105], also showed much greater
IC50 differentials in surface CPG2-expressing MDA-MB-
361 and WiDr cells than did CMDA (70–450 fold com-
pared to 19–27 fold), and was highly effective against the
MDA-MB-361 xenografts in nude mice [106].

Anthracycline glutamates

Prodrugs of anthracycline topoisomerase inhibitors
such as doxorubin with glutamate residues directly at-
tached to the glycoside nitrogen were not substrates for
CPG2, so analogues with a 4-benzylcarbamate spacer
group were investigated [107]. These prodrugs (eg, 19a)
undergo 1,6-elimination following cleavage of the gluta-
mate by CPG2 to release doxorubicin (19b) (Figure 6b).
MDA-MB-361 breast cancer cell lines expressing CPG2
intracellularly or tethered to the outer cell membrane
showed about a 10-fold IC50 differential compared to
wild-type cells [107].

Methotrexate α-peptides (MTX-Phe; 20a)

Methotrexate-α-peptides (eg, MTX-Phe; 20a) are
prodrugs of methotrexate (MTX; 20b), a potent inhibitor
of dihydrofolate reductase, and a widely used anticancer
drug. Unlike MTX, the prodrugs are poor substrates for
the reduced folate carrier, and thus not taken up by cells,
but can be cleaved to methotrexate by carboxypeptidase
A1 (CPGA) (Figure 6c) [108]. This endogenous enzyme is

normally inactive until trypsin proteolysis of its propep-
tide, but a mutant form (CPAST3), activated by ubiqui-
tously expressed intracellular propeptidases, has similar
prodrug activating properties [109]. Tumor cells retro-
virally transfected with a cell surface tethered version of
CPAST3 were highly sensitized to MTX-Phe, which also
showed an efficient bystander effect (complete cell kill
with < 10% of the cells transduced).

PRODRUGS FOR CARBOXYLESTERASE (CE)

Introduction

The group of enzymes known as carboxylesterases hy-
drolyse esters and some carbamates to their component
acids and alcohols, and are known to activate some clin-
ical anticancer drugs, notably irinotecan [110] and KW-
2189 [111].

Irinotecan (IRT; 21a)

Irinotecan is a lipophilic (log D7 = 1.54) topo I in-
hibitor that has been used widely clinically as an anti-
cancer drug. It is converted to the active form SN-38 (7-
ethyl-10-hydroxycamptothecin, 21b) in humans primar-
ily by carboxylesterase (Figure 7a). However, human CE
is relatively poor at activating IRT, with rabbit liver CE
being 100–1000-fold more efficient [110]. A 549 human
lung adenocarcinoma cells transfected with the human
carboxylesterase gene driven by the CMV promoter were
able to convert IRT to the active metabolite SN-38, which
showed a substantial bystander effect in cell culture [112].
When the construct was injected directly into established
sc A549 tumors in nude mice, treatment with IRT resulted
in 30–40% reductions in tumor size compared with con-
trols. A panel of human tumor cell lines transduced with
rabbit liver CE showed high levels of CE activity, and were
sensitized by 11–127 fold to IRT [110]. This protocol has
been studied as a potential purging method in autologous
stem cell rescue for neuroblastoma. Transfection of neu-
roblastoma cell lines (SJNB-1, NB-1691, and SK-N-SH)
by a replication-deficient adenoviral construct containing
rabbit CE resulted in 100% transfection, and sensitized
the cells to IRT by 20–50 fold [113].

Anthracycline acetals (22a)

The lipophilic doxorubicin acetal (22a) (log D7 +2.04)
is a substrate for CE, which hydrolyses it to an interme-
diate hemiacetal that undergoes immediate cyclization to
the cyclic carbinolamine (22b) (Figure 7b) [114]. These
anthracycline carbinolamines (or more likely the resul-
tant iminium ion; Figure 7b) are known to be extremely
cytotoxic agents (100–1000-fold more potent than dox-
orubicin itself), probably due to covalent interaction with
DNA. However, the system does not appear to have been
evaluated in CE-transfected cell lines, and it is likely that
compounds like 22a are too unstable to act as tumor-
specific prodrugs.
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PRODRUGS FOR NITROREDUCTASE (NTR)

Introduction

Enzymes that metabolize aromatic nitro groups are at-
tractive for GDEPT because of the very large electronic
change that this metabolism generates. Metabolism of a
nitro group (Hammett σp electronic parameter = 0.78)
to the corresponding hydroxylamine 4-electron reduction
product (σp = −0.34) that is normally the major metabo-
lite, or the possible amine 6-electron reduction product
(σp = −0.66) (Figure 1). These are among the largest pos-
sible increases in the electronic effect (∆σ = 1.12 and 1.44)
that can be achieved in a single metabolic step [115], and
this substantial change in electron distribution in the pro-
drug can be exploited in a variety of ways to activate the
effector. Nearly, all GDEPT studies with nitroreductases
have used the nfsB gene product of E. coli, an oxygen-
insensitive flavin mononucleotide (FMN)-containing ni-
troreductase (NTR) [116], with a close sequence ho-
mology to the classical nitroreductase of S. typhimurium
[117]. Crystal structure determinations of NTR show it to
be a homodimer with one FMN per monomer, with two
channels leading into the active site [118]. There are rela-
tively few contacts made with the ligand, which may con-
tribute to its observed broad substrate specificity [119].
NTR efficiently reduces aromatic nitro groups to the hy-
droxylamines in a two-step ping pong bi-bi mechanism
[118]. Four broad classes of prodrugs for NTR have been
studied; dinitroaziridinylbenzamides, dinitrobenzamide
mustards, 4-nitrobenzylcarbamates, and nitroindolines,
and most work has been done with the dinitroaziridinyl-
benzamide CB1954.

CB1954 (23a)

The dinitroaziridinylbenzamide CB1954 (23a) is a rel-
atively lipophilic (log P + 1.54) prodrug that is efficiently
reduced by NTR (kcat = 360 min−1) [117], effecting reduc-
tion of either the 4- or 2-nitro groups to the correspond-
ing hydroxylamines at about equal rates (Figure 8a). Mod-
elling suggests that the small aziridine residue allows the
drug far enough into the binding pocket that both the 2-
and 4-nitro groups have access to the FMN [118]. The 4-
hydroxylamine (23b) is then further metabolized by cellu-
lar acetylation pathways to a cytotoxic DNA interstrand-
crosslinking agent [120] (Figure 8a). CB1954 demon-
strates substantial bystander effects [121], due to the cell-
permeable hydroxylamine metabolite (log P−0.34) [122].
CB1954 shows high selectivity (100–2000 fold) in a vari-
ety of NTR-transfected cell lines, including human ovar-
ian (SKOV-3) [123], colorectal (LS174T), and pancreatic
(SUIT2, BxPC3) [124], with sensitivity correlating closely
with the level of NTR enzyme expression [123].

B1954 also showed excellent bystander effects in vivo,
inducing long growth delays of human hepatocellular car-
cinoma and squamous carcinoma xenografts, even when
only a minority of the tumor cells expressed the enzyme
[125]. Treatment of scid mice with Burkitt lymphoma (Ji-
joye) tumors containing 30% NTR-expressing cells with
CB1954 at 20 mg/kg/day for 10 days also gave growth in-
hibition, suggesting a substantial bystander effect [126].
However, expression of NTR in the luminal cells of
the mammary gland using the ovine β-lactoglobulin
promoter resulted in rapid and selective killing of
this cell population by CB1954 with minimal effects
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Figure 8. (a) Activation of CB1954 by NTR. (b) Activation of SN23862 by NTR.

neighbouring myoepithelial cells, suggesting that the toxic
metabolite does have a finite diffusion range [127].

A Phase I clinical trial of CB1954 without NTR, ad-
ministered IV on a 3-weekly cycle, determined a rec-
ommended IV dose of 24 mg/m2. Dose-limiting toxici-
ties at 37.5 mg/m2 were diarrhoea and elevation of liver
transaminases, but no marrow suppression or nephrotox-
icity. A Phase I clinical trial of CB1954 in combination
with adenovirus-delivered NTR is in progress in patients
with primary and secondary liver cancer [128].

SN23862 (24a) and analogues

The dinitrobenzamide mustard SN23862 is more
lipophilic than CB1954 (log P = 2.06), and a better sub-
strate for NTR (Kcat1580 min−1) [129]. Unlike CB1954,
only the 2-nitro group is reduced (possibly because the
larger mustard unit restricts drug entry to the active
site of NTR) to give the lipophilic (log P = 2.50) 2-
hydroxylamine (24b) (Figure 8b) [130]. The initial reduc-
tive step fully activates the mustard for DNA crosslink-
ing without further metabolism. While mammalian en-
zymes with nitoreductase activities exist, in rats, the major
endogenous reductive pathway is via the 4-nitro group,
giving the 4-hydroxylamine (25) and ultimately the rela-
tively nonpotent tetrahydroquinoxaline (26) as the major

metabolite (Figure 8b) [131]. SN23862 [132] and other
mustard analogues [133] are also not substrates for en-
dogenous DT diaphorase, increasing their attractiveness
as NTR prodrugs.

A recent study [4] of a series of analogues of 23a

and 24a demonstrated good correlations between the
lipophilicities of the parent prodrugs (measured log P val-
ues) and their bystander effects, measured in both 3-D cell
multilayer cocultures of NTR+ve and NTR-ve V79 and
WiDR cells, and also in mixed NTR+ve/NTR-ve WiDr tu-
mors in nude mice. This study provides quantitative evi-
dence, in a series of close analogues, of the importance of
lipophilicity in determining the level of bystander effect;
analogues with log P values lower than that of CB1954
showed relatively poor bystander effects.

In a series of analogues of SN23862 where the 4-
nitro group was replaced by other substituents of vary-
ing electronic properties, cytotoxicity in UV4 cell cul-
tures, from added NTR enzyme, correlated roughly with
the electron-withdrawing properties of the 4-substituent
[134]. The 2-amino-3, 5-dinitrobenzamide regioisomer
(27a) of SN23862 was also a substrate for NTR, and was
in fact superior, with a kcat of 4540 min−1 [129]. Compar-
ative cell line studies with SN23862 and the regioisomers
27a and 28a in NTR-transfected Chinese hamster-derived
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cell lines showed that regioisomeric changes are per-
mitted, with the all three retaining selective cytotoxic-
ity. Finally, analogues with other leaving groups (bromo-
and iodo-mustards) retain good selectivity for the NTR-
transfected line together with higher potency [135].

4-Nitrobenzyl carbamates

Despite their low reduction potential of around
−490 mV [136], 4-nitrobenzyl carbamates are substrates
for NTR, being reduced to the hydroxylamines which then
undergo spontaneous fragmentation to release an amine-
based effector (Figure 9) [137]. Electron-donating sub-
stituents on the benzyl ring accelerate the fragmentation
step [138]. This system is theoretically very flexible, and 4-
nitrobenzyl carbamates of a number of different classes of
cytotoxic amines have been explored as potential GDEPT
prodrugs [139].

4-Nitrobenzyl carbamate prodrugs (29a, 30a) of DNA
major groove alkylating pyrrolo[2,1-c]benzodiazepines

(29b) [140], and of DNA minor groove alkylating tal-
limustine mustards (30b) [141] showed differential cy-
totoxicity towards cells in culture when cotreated with
NTR plus cofactor NADH, but studies have not been re-
ported in NTR-transfected cell lines. The enediyne pro-
drug (31a) showed moderately selective cytotoxicity (135
fold) in the NTR-transfected WiDr human colon carci-
noma cell line [142]. Nitroheterocyclic carbamate trigger
units have also been reported. The 2-nitroimidazole car-
bamate prodrug (32a) of an amino-duocarmycin effector
(32b) was 20-fold more toxic to NTR-transfected SKOV-3
human ovarian carcinoma cell line over the wild-type
[143], extending the types of trigger units that can be used
for this purpose.

Quinones

Quinones can be excellent substrates for NTR (the kcat

for menadione is 4.2×104 min−1 compared with 360 min−1

for CB1954) [117], but this is not universal; mitomycin
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C is a poor substrate [129]. The quinones EO9 (33a)
and AZQ (34a) (Figure 10) generate DNA-reactive species
when reduced, but were less than three-fold more cyto-
toxic in NTR-transfected V79 cells compared to wild-type
cells [144].

PRODRUGS FOR HORSE-RADISH PEROXIDASE (HRP)

Introduction

HRP is an iron-containing heme peroxidase that is
well known to oxidize a variety of phenols and amines,
including indole-3-acetic acid, without requiring added
hydrogen peroxide as a cofactor. The mechanism of oxi-
dation by HRP has been widely studied, and shown to in-
volve a series of free radical intermediates of varying iron
oxidation levels [145].

Indole-3-acetic acid (IAA; 35a)

Indole-3-acetic acid, a catabolite of tryptophan and
a plant growth hormone, is relatively nontoxic to mam-
malian cells. It is oxidized by HRP, initially to a nitrogen-
centred radical-cation species that rapidly fragments via
a carbon-centred benzyl radical. However, both of these
radical species are extremely short-lived, and unlikely
to account for the observed bystander effects of IAA.
The 3-methylene-2-oxindole (35b) (Figure 10), derived
from the hydroperoxide of the benzyl radical by an un-
clear pathway, has been suggested as the active diffusing
species, able to react with DNA [145]. This is sufficiently
long-lived to generate a bystander effect, and sufficiently
lipophilic (log P + 1.35) to diffuse rapidly by passive diffu-
sion [146]. HRP transfection effectively sensitized human
T24 bladder carcinoma cells to IAA under both normoxic
and anoxic conditions. IAA also elicted a significant, se-
lective enhancement of radiation-mediated cytotoxicity in
T24 cells transiently transfected with the HRP, showing
sensitizer enhancement ratios (SER) ranging from 2.6 to
5.4 [147].

5-Fluoroindole-3-acetic acid (FIAA; 36a)

This prodrug is related to IAA, and despite being less
rapidly oxidized by HRP to the corresponding effector
(36b) (rate constant 3.8 × 102 mol−1sec−1 compared to
3.8×103 mol−1sec−1 for IAA) is more cytotoxic than IAA in
a range of HRP-transfected human and rodent tumor cell
lines [148]. Plasma levels of 1 mmol and tumor levels of
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Figure 11. Activation of 6-thioxanthine by GPT.

200 µmol of FIAA were seen in mice bearing murine car-
cinoma NT tumors, after IP administration of 50 mg/kg
FIAA.

PRODRUGS FOR GUANINE RIBOSYLTRANSFERASE
(XGRPT)

Introduction

The E. coli gpt gene encodes a xanthine-guanine phos-
phoribosyl transferase (XGRPT) that has various xan-
thine and guanine analogues as substrates [149].

6-Thioxanthine (6-TX; 37a)

6-Thioxanthine (37a) is a relatively nontoxic com-
pound (it is a catabolite of the clinically used an-
timetabolite 6-thioguanine), and is a substrate for E. coli
XGRPT, being converted to the toxic ribophosphate (37b)
(Figure 11). Rat C6 glioma cells retrovirally transduced
with E. coli XGRPT were more than 20-fold sensitized to
6-TX (IC50 of 2.5 µmol compared to > 50 µmol) [149].
It showed only a weak bystander effect in mixed cocul-
tures [150], which is not unexpected in view of the very
hydrophilic (log D7 − 5.52), charged nature of the phos-
phorylated active species 37b. The prodrug was moder-
ately active in intracerebral C6 glioma xenografts in nude
mice, with an 80% reduction in intracerebral tumor vol-
ume and a 28% increase in mean survival, following in-
tratumoral injection of 6-TX [150].

PRODRUGS FOR GLYCOSIDASE ENZYMES

Introduction

Glycosidase enzymes have been used mostly in
ADEPT, because their very hydrophilic sugar-bearing sub-
strates show slow cell uptake. However, as with the case
of the CPG2 enzyme, studies with secreted forms of β-
glucuronidase and β-galactosidase show that these en-
zymes can also be used for GDEPT, in conjunction with
anthracycline-based prodrugs. Both human and E. coli en-
zymes have been used.

HM1826 (38a)

OVCAR-3 cells transfected (using a cationic lipid
transfecting agent) with plasmids encoding E. coli- or hu-
man β-glucuronidase were equally sensitized to both the
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glucuronide prodrug DOX-GA3 and the effector doxoru-
bicin produced from it (Figure 12), suggesting good up-
take and conversion of the prodrug, but the bacterial en-
zyme was more efficient. Studies with mixed cell cul-
tures showed a strong bystander effect [151]. However,
most work has been done using secreted [152] or surface-
tethered [153] forms of the enzymes, with prodrugs such
as HMR1826 (38a). Despite the high DNA binding of the
released doxorubicin effector 19b, moderate to good by-
stander effects were reported in culture and in vivo.

Anthracycline acetals

As noted in “Anthracycline acetals”, anthracycline
carbinolamines such as 22b are extremely potent cyto-
toxins, probably because of their spontaneous conver-
sion to iminium ions that can alkylate DNA. The glu-
curonide and galactosyl prodrugs (39a and 40a, respec-
tively) are substrates for E. coli β-glucuronidase and β-
galactosidase, from which that release the carbinolamine
22b (see Figure 7). In cell culture they were about 104-
and 106-fold more toxic respectively to human A375
melanoma cells in the presence of the enzymes [154, 155]
(see also “Anthracycline acetals”). While this is only a
simple assay (the activating enzymes would need to be
surface-tethered in a GDEPT application because of the
very hydrophilic prodrugs), the very large differential cy-
totoxicity is noteworthy.

PRODRUGS FOR THYMIDINE PHOSPHORYLASE (TP)

Introduction

The endogenous enzyme thymidine phosphorylase
(TP), which is reported to occur to a greater extent
in tumor cells than in normal tissue, is a monomeric
55-kd enzyme that dephosphorylates thymidine and
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Figure 13. Activation of 5′-DFUR by TP.

related pyrimidine antimetabolites such as 5′-deoxy-5-
fluorouridine [156].

5′-Deoxy-5-fluorouridine (5′-DFUR; 41a)

LS174T human colon carcinoma cells transfected
with the human TP gene were up to 40-fold sensitized
to 5′-DFUR, which is converted to 5-FU (10b) by TP
(Figure 13). The degree of sensitization correlated with
the extent of expression of TP, and in the cocultures a by-
stander effect was seen that did not require cell-cell con-
tact [156]. Transfection of PC-9 human lung adenocar-
cinoma cells with platelet-derived endothelial cell growth
factor (identical to human TP) resulted in a 50-fold in-
crease in levels of enzyme expression, and sensitized them
to both 5′-DFUR and tegafur [157]. MCF-7 breast cancer
cells transfected with the TP had up to 165-fold increased
sensitivity to 5′-DFUR (but not to 5-FU) in culture, and
substantial bystander effects [158].

PRODRUGS FOR METHIONINE-α, γ-LYASE (MET)

Introduction

Many tumors are methionine-dependent, and show
elevated levels of methionine synthesis [159]. Thus
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the enzyme methionine-α, γ-lyase, which degrades the
amino acid methionine to ketobutyrate, ammonia,
and methylthiol, has been of therapeutic interest, and
xenografts expressing the MET gene from Pseudomonas
putida grow more slowly than wild-type tumors [160].

Selenomethionine (SeMET; 42a)

Selenomethionine (SeMET) is a relatively toxic and
very polar (log D7 − 3.15) analogue of the natural amino
acid methionine, and is a substrate for MET which con-
verts it to ketobutyrate, ammonia, and the moe lipophilic
methylselenol (42b) (Figure 14). Cells transduced by
the adenovirus-delivered MET gene from Pseudomonas
putida showed up to a 1000-fold increase in sensitivity to
SeMET, and showed a strong bystander effect [160]. The
enzyme converts SeMET to methylselenol, which dam-
ages mitochondria by oxidative stress (production of su-
peroxide and other reactive oxgyen species), resulting in
the release of cytochrome c and activation of the caspase
cascade and apoptosis. SeMET inhibited the growth of
MET-transfected rat hepatoma N1S1 ascites in nude mice,
showing substantial delays in body weight gain due to
growth of the tumor ascites [160].

CONCLUSIONS

There are many issues to be considered in the choice
of prodrugs for a particular activating enzyme. While the
most obvious are the high turnover by the enzyme and
the large differential cytotoxicity between the prodrug and
the activated form, another important early consideration
was to select compounds (eg, GCV, 5-FU, CPA, IRT) that
were already in clinical use. This avoided the regulatory
difficulties associated with the combination of a new ther-
apeutic agent and a new activating technology.

Also of importance is the nature of the cytoxicity of
the activated drug. Most of the early prodrugs released an-
timetabolites that act only on cycling cells. However, clin-
ical solid tumors are slow-growing and contain hypoxic
regions, resulting in considerable proportions of noncy-
cling tumor cells. This requires prolonged dosing with
cell cycle-specific agents to ensure high tumor cell killing.
Thus there has been increasing interest (“Prodrugs for
CYP enzymes,” “Prodrugs for Carboxypeptidases (CP)”,
and “Prodrugs for Nitroreductase (NTR)” sections) in
prodrugs that release DNA cross-linking agents, a class
of cytotoxins that are less cell cycle-specific. The poten-
tial advantage of these compounds is shown by the fact
that single dose protocols can provide curative effects in
tumor xenograft models [4].

Later studies have also drawn attention to the impor-
tance of the maximizing bystander effects, and this review
has focused on the importance of the lipophilicity, charge,
and macromolecular binding of both prodrugs and their
effectors (Table 1). Suicide gene therapy is a promising but
very complex technology, and to be broadly clinically use-
ful will require maximization of the therapeutic proper-
ties of all of the components. We are slowly learning how
to do this for the prodrugs.
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