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ABSTRACT  
   

With advances in automatic speech recognition, spoken dialogue systems are assuming 

increasingly social roles. There is a growing need for these systems to be socially 

responsive, capable of building rapport with users. In human-human interactions, rapport 

is critical to patient-doctor communication, conflict resolution, educational interactions, 

and social engagement. Rapport between people promotes successful collaboration, 

motivation, and task success. Dialogue systems which can build rapport with their user 

may produce similar effects, personalizing interactions to create better outcomes.  

This dissertation focuses on how dialogue systems can build rapport utilizing 

acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals 

adapt their acoustic-prosodic features of speech, such as tone of voice or loudness, to one 

another over the course of a conversation. Correlated with liking and task success, a 

dialogue system which entrains may enhance rapport. Entrainment, however, is very 

challenging to model. People entrain on different features in many ways and how to design 

entrainment to build rapport is unclear.  The first goal of this dissertation is to explore how 

acoustic-prosodic entrainment can be modeled to build rapport.  

Towards this goal, this work presents a series of studies comparing, evaluating, and 

iterating on the design of entrainment, motivated and informed by human-human dialogue. 

These models of entrainment are implemented in the dialogue system of a robotic learning 

companion. Learning companions are educational agents that engage students socially to 

increase motivation and facilitate learning. As a learning companion’s ability to be socially 

responsive increases, so do vital learning outcomes. A second goal of this dissertation is to 
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explore the effects of entrainment on concrete outcomes such as learning in interactions 

with robotic learning companions.  

This dissertation results in contributions both technical and theoretical. Technical 

contributions include a robust and modular dialogue system capable of producing prosodic 

entrainment and other socially-responsive behavior. One of the first systems of its kind, 

the results demonstrate that an entraining, social learning companion can positively build 

rapport and increase learning. This dissertation provides support for exploring phenomena 

like entrainment to enhance factors such as rapport and learning and provides a platform 

with which to explore these phenomena in future work. 
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CHAPTER 1 

INTRODUCTION 

 

Over the past few years, spoken dialogue systems have become increasingly ubiquitous. 

Individuals can order food, make appointments and send text messages via their voiced 

personal assistants; they speak with digital customer service agents (Barres et al., 2007), 

and many popular toys now feature spoken dialogue interaction (Matteo et al., 2009). As 

people engage in ever more complex conversations with these systems, there is an 

increasing need for systems that can socially engage the user or build rapport by 

promoting feelings of harmony and social connection. In human-human interactions, 

rapport has been shown to be important to the success of communication between patients 

and doctors (Moira et al., 1999), various forms of negotiation and conflict resolution 

(Drolet and Morris, 2000), educational interactions (Tsui, 1996; Frisby and Myers, 2008; 

Ogan et al., 2012), and caregiving (Burns 1984; Miller et al., 2016). When dialogue 

partners feel more rapport, they enjoy the interaction more, are more engaged, they are 

more motivated, and collaborate better. There is early evidence that systems that can build 

rapport with users can replicate similar effects as seen in human-human interactions. 

People who feel more rapport for an agent-partner tend to be more motivated, engaged, 

and have higher task-success (Szafir & Mutlu, 2012; Kang, Gratch, & Watts, 2009; Huang, 

Morency, & Gratch, 2011). A dialogue system that can build rapport has the potential to 

more effectively personalize interactions and optimize experiences.  

Dialogue systems are convenient for building rapport and enhancing social 

engagement because they can unite two channels of rapport building behavior. With 
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dialogue systems, it is possible to influence rapport through both the content of what is said 

and by how it is said, through prosody. Influencing rapport through the content of a 

dialogue system has been shown to have promising effects; introducing social dialogue 

such as inclusive language, off-topic conversation, and praise enhances trust, motivation, 

and engagement (Bickmore and Cassell, 2001, Bickmore 2003, Kanda et al., 2007, Ogan 

et al., 2012, Gulz, Haake, and Silvervarg, 2011). Influencing rapport through the prosody 

of a dialogue system, such as patterns of stress and intonation, has been less explored. 

Prosody conveys important metacommunicative information in conversation; when 

speakers modulate their tone of voice, speak more quickly or softly, these changes reveal 

details about how the speaker is feeling and what they want the listener to know. Prosody 

makes the speech signal a rich modality for enhancing social behavior and building rapport. 

One particular prosodic phenomenon of human-human conversation which has 

been linked to rapport and other social factors is acoustic-prosodic entrainment. 

Entrainment occurs when individuals adapt their prosodic features of speech, such as pitch 

or tone of voice, loudness, or speaking rate, to one another over the course of a 

conversation. According to the Communication Accommodation Theory (CAT), 

individuals accommodate or entrain to their partner to achieve social approval (Giles & 

Smith, 1979). This theory suggests an individual on the receiving end of a high level of 

prosodic adaptation is likely to feel a greater sense of self-esteem, satisfaction, and rapport 

for their partner than if they were a receiver of low adaptation. In support of this, 

entrainment in human-human conversation has been found to be related to social 

engagement factors, including trust (Benus et al., 2018), social bias (Benus, Levitan, & 

Hirshberg, 2012), positive and negative affect between married couples (Lee et al., 2010), 
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engagement (Gravano et al., 2014), learning (Ward & Litman, 2007; Thomason, Nguyen, 

& Litman, 2013), and task success (Borrie, Lubold, & Pon-Barry, 2015). It is possible that 

a system which can model the prosodic fluctuations of a human conversational partner and 

entrain prosodically has the potential to increase social engagement beyond a system which 

only takes advantage of manipulating content through, for example, social dialogue. An 

entraining dialogue system may enhance feelings of rapport, where greater rapport may 

facilitate higher task success, motivation, and satisfaction with the interaction.   

Modeling acoustic-prosodic entrainment, however, is challenging. People can 

entrain on many features of speech (pitch, intensity, speaking rate, voice quality) in various 

manners (converging on a feature vs. matching on a turn-by-turn basis, globally vs. 

locally). While entrainment has been explored extensively in human-human interactions, 

it is unclear how entrainment can be designed in a human-agent interaction such that the 

agent’s entrainment positively influences social engagement. It is also unclear how 

entrainment can be combined with the more well-known content-based approaches for 

building rapport. Therefore, I pose the following two research questions in this work:  

RQ 1: How can acoustic-prosodic entrainment be modeled in a system to 

positively influence social responses?  

RQ 2: How does automated entrainment influence rapport when combined with 

content-based approaches for building rapport? 

To answer these two questions, I present an iterative exploration on designing and 

implementing acoustic-prosodic entrainment in a dialogue system. I evaluate the effects of 

entrainment with social dialogue, which has had prior success in building rapport in 

human-robot and human-agent interactions. The dialogue system is implemented in a 
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robotic learning companion which provides an excellent application for testing and 

evaluating the posed research questions. The learning companion is a form of educational 

agent that engages students socially to increase motivation, provide emotional support and 

facilitate learning. Based on the theory that learning is social (Vygotsky, 1979), learning 

companions rely on building rapport with learners to influence socio-motivational factors 

and increase learning. In this work, the learning companion is implemented as a teachable 

robotic agent. Learning companions as teachable agents involve learners in a “learning-by-

teaching” experience, where learners teach the agent about a subject domain (Chou, Chan, 

and Lin, 2003). When teaching others, learners attend more to the problem, reflect on 

misconceptions when correcting their peers’ errors, and elaborate on their knowledge as 

they construct explanations (Roscoe and Chi, 2007). Learning by teaching can improve 

domain knowledge (Kauchak and Eggen, 1993), self-efficacy (Frager and Stern, 1970), 

and peer attitudes (Griffin and Griffin, 1998).  

The teachable robot platform presents a unique opportunity for exploring the design 

and outcomes of an entraining, social dialogue system. Teachable agent interactions are 

thought to benefit from increased social engagement. Student tutors who feel more invested 

or feel more rapport for their agent have been found to learn more (Leelawong and Biswas, 

2008; Ogan et al., 2012). Human-human dyads who exhibit higher rapport tend to have 

greater success in peer tutoring interactions. However, it is unclear how rapport and 

learning interact in these scenarios. A meaningful implementation of entrainment within a 

teachable robot may provide insight into both the relationship between entrainment and 

rapport and the relationship between rapport and learning in human-human and human-

agent interactions. This suggests two additional research questions for this work: 
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RQ 3: How does entrainment influence learning in a robotic learning companion? 

RQ 4: What insights regarding human-human and human-agent interactions can 

we gain by manipulating social behavior in a robotic learning companion?  

Three main contributions emerge from this work. First, through the iterative exploration of 

how entrainment can be designed and implemented, I present an entraining, social dialogue 

system which is both robust and modular, capable of being explored in future contexts. 

One of the first dialogue systems of its kind, the system incorporates entrainment alongside 

other rapport-building verbal behavior and demonstrates successful, positive effects on 

rapport and learning. Secondly, this thesis contributes knowledge towards an integrated 

theory of entrainment and rapport by exploring the effects of acoustic-prosodic entrainment 

on rapport and learning in interactions with a teachable robot. Entrainment occurs in many 

contexts and across many domains. Rapport is also equally important in many contexts and 

domains. The significant results of this dissertation provide support for exploring how 

entrainment can foster rapport in other human-agent interactions where social engagement 

is equally important. Similarly, the findings regarding the relationship between 

entrainment, rapport, and learning provides a foundation for exploring other similar 

rapport-building phenomena in learning interactions. Finally, as a part of exploring the 

effects of entrainment with a teachable robot, this dissertation provides an understanding 

of how defining characteristics such as gender influence responses; this understanding is 

an important step in the creation of personalized systems to enhance social factors. 

This thesis is organized as follows. Part I provides an overview of human-human 

entrainment and my own work analyzing human-human interactions. The goal of this 

section was to provide the initial insight needed to identify potential models for 
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implementing entrainment in a dialogue system. Part II contains the bulk of this 

dissertation. I took an iterative approach to designing, implementing, and evaluating 

entrainment in a dialogue system. The introduction to Part II in Chapter 8 summarizes the 

overall approach consisting of six iterations. Each iteration and its results are described in 

the remaining chapters. Part III concludes this thesis with an overview of the most 

significant findings and directions for future work. 
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PART I:  

FOUNDATIONS IN HUMAN-HUMAN ENTRAINMENT 



  8 

CHAPTER 2 

MOTIVATION AND RESEARCH GOALS FOR PART I 

 

This thesis poses four research questions regarding acoustic-prosodic entrainment, 

including how it can be modeled in a system, the effects automated entrainment might have 

on feelings of rapport and learning, and the insights we might gain by manipulating 

entrainment in a human-agent interaction. Part I of this thesis examines existing work on 

human-human entrainment and presents new work on human-human entrainment to 

provide insight into the design of potential entrainment models and possible effects.  

Prior work on human-human entrainment can provide a general direction for how 

to model entrainment as well as some insight into the potential positive effects on social 

responses (Gravano et al. 2014; Levitan et al. 2012). However, prior work does not specify 

how entrainment specifically relates to feelings of rapport. Individuals can entrain in many 

ways; it is an open question whether rapport is positively related to entrainment in all ways 

for all features. This information is important for identifying appropriate models of 

automated entrainment that might be able to build rapport. 

In addition to how entrainment relates to rapport, it is unclear how entrainment 

combines with content-based dialogue approaches for building rapport. Dialogue systems 

present a distinct opportunity to manipulate both content and prosody to build rapport. In 

manipulating content and prosodic entrainment, it is possible the effects of entrainment 

might differ for different content. For example, entrainment might be more influential 

when individuals are engaged in social, rapport-building dialogue or it might be influential 

in learning-oriented task-based dialogue. Understanding if individuals entrain differently 
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when engaged in different kinds of dialogue can inform the design of automated 

entrainment and guide interpretation of responses to a social, entraining system.   

Given the lack of clarity on how entrainment relates to rapport or differs for 

different dialogue behaviors, I pose the following two research questions for Part I: (1) 

how are different forms of acoustic-prosodic entrainment related to rapport? (2) how 

does entrainment differ for social and knowledge building dialogue?  To answer these 

questions, I present an analysis of prior work on human-human entrainment followed by a 

description of a supplementary, exploratory analysis on a corpus of human-human 

conversational data collected from a set of dyads as they worked together on a set of math 

problems. This exploratory analysis provides additional insight into the questions 

regarding how entrainment relates to rapport and different dialogue behaviors. 

Chapter 3 summarizes the prior work on human-human entrainment, Chapter 4 

describes the dataset I used for the supplementary analysis. An analysis on entrainment and 

rapport is presented in Chapter 5. Chapter 6 looks at the relationship between prosodic 

entrainment, social dialogue, and learning dialogue content. Chapter 7 summarizes key 

take-aways and provides conclusions regarding how these results might guide the design, 

hypotheses, and interpretations of a social, entraining dialogue system for a robotic 

learning companions. 
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CHAPTER 3 

RELATED WORK 

 

3.1 HUMAN-HUMAN ENTRAINMENT 

Entrainment is quite prevalent in human-human interactions and occurs on multiple 

dimensions in addition to prosody. People have been found to mimic and adapt their facial 

expressions, their body language, and the content of their speech in addition to their 

speaking style (Hess & Blairy, 2001; Lakin & Chartrand, 2003; Nenkova et al., 2008; 

Levitan & Willson, 2012). Two primary theories have been proposed to explain why 

entrainment appears to be so prevalent: The Communication Accommodation Theory and 

the Interactive Alignment Theory.  

The Communication Accommodation Theory (CAT) proposes that individuals will 

either entrain or dis-entrain as a means of achieving solidarity or to dissociate themselves 

from their interaction partner. A socio-psychological theory explaining entrainment based 

on CAT argues that the phenomenon is driven by the need to achieve certain social effects 

and is based on the idea of similarity-attraction. The similarity-attraction theory posits that, 

"The more similar the attitudes and beliefs are to those of others, the more likely it is for 

them to be attracted to us." (Giles & Smith, 1979). Individuals use entrainment to obtain 

social approval from their interlocutor. This theory suggests that an individual on the 

receiving end of a high level of accommodation is likely to develop a greater sense of self-

esteem and satisfaction and to feel more rapport for their speaking partner than if they were 

a receiver of low accommodation. 
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According to the Interactive Alignment Model (IAM), entrainment contributes to 

and facilitates the construction of shared mental representations over the course of a 

conversation through the alignment of situation models (Pickering & Garrod, 2013). For 

example, at the end of a successful conversation, dialogue partners have similar 

representations of the time and location of events, the main characters involved, etc. This 

situation model alignment occurs automatically, and as it occurs, dialogue partners align at 

many levels, including lexical, semantic, syntactic, and acoustic-prosodic. Alignment at 

one level leads inexorably to alignment at other levels and that alignment at one level is 

enhanced by greater alignment at other levels. This process happens without any form of 

explicit negotiation; to explain how this happens without individuals engaging in a 

discussion, Pickering and Garrod propose that speakers are primed by each other to utilize 

the same forms. This idea of interactive priming is a method for operationalizing 

entrainment and has been used as a measure for entrainment at lexical, syntactic, and 

acoustic-prosodic levels.  

Regardless of why individuals entrain, analyses in human-human interaction have 

examined entrainment along two primary time-scales which are referred to as local and 

global. Local entrainment is measured on a turn-by-turn basis while global entrainment is 

measured across the course of a conversation, typically by comparing the beginning to the 

end. In the literature, there are five different types of local and global entrainment: 

synchrony, convergence, divergence, proximity, and priming. Synchrony is typically only 

measured locally; convergence, divergence, proximity, and priming are measured both 

locally and globally. Another form of entrainment known as compensation is discussed 

theoretically; however, no current literature appears to have explored it. Figure 2.1 depicts 
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the types of entrainment as they might be observed in a rough approximation of two 

speakers’ signals. The definitions for each type are below.  

• Proximity: The broadest, most general form of entrainment, proximity occurs 

when individuals match or mirror one another. It implies no direction or actual 

contingency. Generally, the distance between the two speakers' raw acoustic-

prosodic features is indicative of how much the two speakers entrain by proximity. 

• Synchrony: Exhibited when individuals exhibit similar rhythmic qualities and 

coordination of features. As defined by Burgoon, Stern, and Dillman (2007), 

simultaneous synchrony refers to when behaviors occur at the same time, while 

concatenous synchrony occurs when the behaviors are part of a sequential speaker-

speaker pattern – concatenous synchrony is much more common in analyzing 

entrainment in dialogue.  

• Convergence: One of the most frequent measures of entrainment, convergence 

refers to when individuals start with very different dialogue features and become 

increasingly similar over time. When convergence is present, the difference 

between two speakers’ acoustic-prosodic features shrinks over time 

• Divergence: The opposite of convergence, divergence, is the process of interaction 

whereby an individual adopts behaviors that are increasingly dissimilar from that 

of their partner.   

• Compensation: Currently not measured in entrainment analyses, compensation 

occurs when individuals over-adapt to one another, going between extremes 

• Priming: Not depicted in Figure 2.1, priming is defined as a process where the 

occurrence of a stimulus (the prime) influences the processing of a subsequent 
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stimulus (the target). Priming is typically used to measure entrainment on lexical 

features though it has been applied to acoustic-prosodic features.  

In a review of 68 papers on acoustic-prosodic entrainment analyses of human-human data, 

34 explored some form of local entrainment, 13 explored global entrainment, and 21 

explored some form of both global and local entrainment. Proximity and 

convergence/divergence dominated the analyses, with 39% of papers analyzing some form 

of proximity and 59% analyzing some form of convergence / divergence. Most of these 

works contributed either a new approach for measuring entrainment or an understanding 

regarding how entrainment relates to communicative and social constructs such as 

communicative success, liking, and trust. Of those in the latter group, which contributed 

understanding to how entrainment is related to social constructs, many explored proximity  

 
Figure 2.1. A Visual Depiction of Different Types of Entrainment 
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Global 

Proximity 

Pitch contour 

Positive words 

Negative words 

Pitch, intensity… 

Pitch, intensity 

Engagement [Gravano et al. 2014] 

Trust [Scissors et al. 2009] 

Trust [Scissors et al. 2009] 

Trying to be liked [Levitan et al. 2012] 

Conversational quality (ASD) [Bone et al 2013] 

Convergence 

Pitch, intensity 

Pitch 

Pitch, intensity… 

Intensity 

Speaking rate 

Boundary tone 

Speaking rate 

Agreement [Bonin et al. 2013] 

Solidarity [Gregory et al. 1993] 

Backchannel preceding cues [Levitan et al. 2011] 

Social desirability [Natale 1975] 

Rapport [Sinha & Cassell 2015] 

Common ground [Mushin 2003] 

Bias (vocal expectations) [Sidaras 2011] 

Local 

Proximity 

Pitch, intensity… 

Pitch, intensity… 

Intensity 

Pitch, energy… 

Pitch… 

Pitch, intensity… 

Intensity, CF 

Phonetic, pitch 

Overlaps 

Latency [Levitan et al. 2015] 

Backchannel [Levitan et al. 2015] 

Filled pauses [Benus et al. 2012; Benus 2009] 

Positive/negative affect [Lee et al 2010 / 2011] 

Rapport [Lubold 2014] 

Trying to be liked [Levitan 2012] 

Favorable voting [Benus 2014] 

Positive bias [Babel 2010; Babel 2012; Babel 2012] 

Engagement [Kousidis 2009] 

Convergence 

Pitch, intensity… 

Pitch 

Pitch, intensity… 

Speaking rate 

Backchannels [Lubold 2015] 

Grounding [Lubold 2015] 

Transactive contributions [Gweon 2013] 

Liking [Schweitzer & Lewandowski 2013] 

Synchrony 
Pitch, intensity… 

Pitch, intensity… 

Rapport [Lubold 2014] 

Agreement [Vaughn 2011] 

 

Table 2.1.  Relationship Between Entrainment and Rapport. Many types of social factors 

were considered. The ellipsis (…) indicates that there were additional acoustic-prosodic 

features explored. 
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and/or convergence and found positive relationships as shown in Table 2.1. The 

overwhelmingly positive findings may be due to non-reporting of non-significant results.  

The positive results are supported by a popular theory of rapport originating from 

Tickle-Degnen and Rosenthal’s (1990) work. This theory suggests that there should be a 

connection between feelings of rapport and evidence of entrainment. Tickle-Degnen and 

Rosenthal describe rapport as that moment or feeling when two people “click” or “have 

chemistry” and suggest that rapport consists of three components: positivity, mutual 

attention, and coordination. Positivity represents feelings of mutual friendliness and caring; 

mutual attention is a feeling that the other partner is involved, that there is an intense mutual 

interest in what the other is saying or doing. Coordination occurs when partners are ‘in 

sync,’ when behaviorally there is a high degree of coordination. Based on the definition of 

entrainment, it can be considered a form of coordination, on multiple levels. This suggests 

a connection between entrainment and rapport. Most analyses have targeted rapport-related 

attributes such as liking, engagement, and desirability.  

Within human-human analyses, most approaches looking at acoustic-prosodic 

entrainment have utilized prosodic analysis. Prosodic analysis involves extracting 

individual features such as pitch, intensity, vocal quality, and speaking rate from differing 

levels of dialogue (i.e. from a turn, from within a turn, or from the first half of the dialogue). 

As can be seen from Table 2.1, most analyses have involved pitch and intensity.  

In human-human tutoring dialogues, Ward and Litman (2007) found that students 

converge towards their human tutor on measures of pitch and intensity. Thomason and 

Litman (2013) explored whether there is any relationship between learning and entrainment 

with ITSPOKE, an intelligent tutoring system (Litman & Silliman 2004). Participant 
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entrainment towards the system on both pitch and intensity was significantly correlated to 

learning. Levitan and Hirschberg (2011) found that speaker intensity was the one feature 

on which individuals tended to be more similar to their partner then to themselves.  

It is clear from the prior work that entrainment is connected to social factors and 

possibly to learning. I build on this prior work to explore how prosodic entrainment is 

directly related to measures of rapport and to dialogue behaviors indicative of rapport, such 

as social dialogue, and of learning, like grounding.  

 

3.2 RAPPORT 

Rapport has been defined and measured in several ways in prior work, including as self-

reported rapport through questionnaires (i.e. “I felt a connection with the robot”), as 

perceptual rapport through third party perceptions where an individual observes and rates 

an interaction for rapport, and as behavioral rapport where the user’s behaviors are used as 

assessment of their rapport (i.e. does the individual smile, do they use rapport-building 

language) (Pantic et al., 2007; De Carolis et al., 2015; Foster, Gaschler, and Guiliani, 2013; 

Bechade et al., 2015). For Part I, I utilize measures of self-reported rapport and perceptual 

rapport. In Part II, I use self-reported, behavioral, and perceptual measures.  

As a self-reported measure, rapport has been assessed as general rapport related to 

feelings of connection and harmony (Gratch et al., 2007), as coordination, positivity, and 

attention (Sinha & Cassell, 2015; Tickle-Degnen and Rosenthal, 1990), and as social 

presence. For the work in Part I, I measure rapport as general rapport based on feelings of 

closeness. In Part II, I measure self-reported rapport as general rapport, as coordination, 

positivity, and attention, and as social presence.  Social presence as a measure of rapport 
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is more common with agents and robots (Huang, Morency, & Gratch, 2011). Social 

presence has been described as the “level of awareness of the co-presence of another 

human, being, or intelligence” and as the “feeling that one has some level of access or 

insight into the other’s intentional, cognitive, or affective states” (Biocca & Nowak, 2001). 

With robots and agents, social presence may be an important measure of rapport given the 

inherently remote properties typically associated with these technologies.   

For perceptual rapport, prior work has looked at measuring rapport by evaluating 

“slices” of the audio and video (Ambady and Rosenthal, 1992). Third party observers than 

listen and watch the clips and answer questions about the degree of rapport they perceive. 

The size of the clips ranges; prior work typically looked at “thin-slices” of 30-seconds. 

This approach to measuring rapport has been used in prior work to rate the degree of rapport 

between peer tutors and tutees (Madaio, Ogan, & Casssell, 2016). I use a similar approach 

to measure perceptual rapport. In Part I, I use longer clips of approximately two-minutes 

while in Part II I use audio clips of 20-30 seconds. 

To measure behavioral rapport, rapport theory suggests that linguistic behaviors 

which are indicative of politeness may provide insight into a user’s feelings of rapport. 

Spenser-Oatey (2005) suggests an individual’s use of politeness is an example of how 

individuals manage rapport. For example, if an individual praises their conversational 

partner, this may positively enhance their partner’s feelings towards them. If an individual 

is rude to their conversational partner by calling them a name, this may introduce face-

threat, hindering rapport. Bell, Arnold, and Haddock (2009) performed an analysis of 

linguistic politeness and interpretation of its meaning in peer tutoring scenarios. Based on 

the dialogue of two pairs of tutors and tutees, the authors analyzed different politeness 



  18 

strategies on the part of the tutor based on verbal behaviors such as inclusive language, 

praise, and humor that were suited to the peer-tutoring domain. In first-time sessions, the 

tutors appeared to be reluctant to utilize positive politeness behaviors such as inclusive 

language and praise; over the course of multiple sessions, these behaviors increased and 

aligned to building rapport. Similar behaviors such as praise, inclusive language, name 

usage, and formal politeness have been found to be associated with positive rapport in other 

prior works (Ogan 2012a; Wheldall 1985). Exploring how students utilize similar linguistic 

strategies when tutoring a robotic learning companion may provide insight into their level 

of engagement in building a relationship with the companion and the rapport they feel for 

the robot. For this work, I measure behavioral rapport through their linguistic behaviors. 

 

3.3 KNOWLEDGE BUILDING DIALOGUE 

Dialogue can facilitate learning in several ways. One of the more popular learning 

behaviors analyzed in conversational dialogue is grounding. Grounding refers to the joint 

activity of speakers and listeners establishing common ground—a shared understanding of 

their mutual knowledge, beliefs, and assumptions. In learning interactions, effective 

conversational grounding has been shown to be a critical component of successful 

collaboration. Grounding with successful collaboration has been shown to facilitate 

learning (Traum & Dillenbourg, 1998; Traum 1999; Baker, 1999). 

Assessing grounding can be challenging. Clark and Shaefer (1989) first introduced 

the idea of measuring common ground through coordinated contributions. Each 

contribution consists of two parts. In the first part, a speaker utters a contribution with an 

intended interpretation. Their dialogue partner responds, indicating that they heard the 
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utterance. They also indicate some interpretation of that utterance. How the listener 

interprets the speaker’s utterance depends on the common ground established. If there is 

high mutual knowledge, the speaker’s intended interpretation and the listener’s actual 

interpretation will be more similar.  Misinterpretations result when knowledge 

coordination is incomplete. If a speaker is not satisfied with a listener’s interpretation or 

the listener is uncertain about their own interpretation, additional acts are taken to expand 

or repair the initial utterance. As dialogue partners communicate, they come to some level 

of agreement on their interpretations, resulting in common ground.   

The structural complexity of Clark and Shaefer’s model is difficult to transition to 

computational systems, because there are multiple states to the process of grounding. A 

single contribution can consist of multiple turns between speakers as they work towards an 

agreed interpretation of an utterance, expanding and repairing as needed to establish what 

mutual knowledge. Several modifications and adaptations have been proposed for 

converting a grounding model to HCI with a focus on collaborative engagement (Traum 

1999; Cahn 1999). One adaptation proposes identifying grounding “units” of discourse 

structure and that these “common ground units” (CGUs) are the basic unit of collaborative 

structure (Core et al., 1999). This adaptation focuses on the part of contributions which is 

directly related to adding or confirming mutual knowledge. Mushin, Stirling, Fletcher, and 

Wales utilized this adaptation to analyze the structure of common ground units in terms of 

prosody (Mushin 2003). I base the analysis of grounding on this work, identifying 

behaviors using the concept of grounding contributions.  
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3.2 SOCIAL DIALOGUE  

Social dialogue has been explored as various forms in both human-human interactions and 

human-agent. Ogan and colleagues (2012) found that joking and teasing in conversation 

between peer tutors resulted in higher learning gains and Silvervarg, Gulz, and Sjödén 

(2010) found that students performed better when they evinced positive attitudes towards 

math. Bickmore and Cassell (2000) found that anecdotes and off-task, small talk had a 

social and trust-building effect in conversation with embodied conversational agents while 

Van Mulken, André, and Müller (1998) found that engaging in off-task conversation results 

in participants feeling more comfortable, relaxed, and at-ease with the task. Other works 

have also shown that off-task dialogue can promote trust and rapport, improving the 

learning environment (Bickmore, 2003). These findings suggest that a place to start in 

analyzing social dialogue between collaborators may be off-task versus on-task dialogue. 

It is possible that while on-task dialogue is primarily related to grounding mutual 

knowledge regarding the problem at hand, off-task dialogue may be more about creating 

common ground as two unique, independent individuals. This may result in nuanced 

differences when individuals entrain prosodically, if entrainment is related to rapport.  
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CHAPTER 4 

DATA AND FEATURES 

 

In this chapter, I describe the human-human dialogue corpus I collected to analyze the 

relationship between entrainment, rapport, and different dialogue behaviors indicative of 

rapport and learning. I also describe the acoustic-prosodic features I extracted to measure 

entrainment, how I measured dialogue behaviors pertinent to learning via grounding, and 

how I measured behaviors pertinent to rapport as social dialogue. 

 

4.1 PROCEDURE 

To explore these relationships, I collected a set of eight 30-40-minute dialogues from 16 

undergraduate college students with basic knowledge of algebra and geometry. The 

students worked together in pairs as peers and were randomly assigned to their partners. I 

gave each student a tablet containing a version of the Formative Assessment with 

Computation Technologies (FACT) application (http://fact.engineering.asu.edu/). The 

students worked together face-to-face and the application encouraged collaborative 

interaction through the use of a shared workspace, as shown in Figure 4.1. 

 
 

Figure 4.1. Students Collaborating with FACT Tablet Application 
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The application was designed to support and provide formative assessment for K-

12 students solving mathematical problems. The mathematical problems available in the 

FACT application are part of the Mathematics Assessment Project. An example problem 

can be seen in Figure 4.2. The problems were designed with a goal to make knowledge and 

reasoning visible; the iterative refinement required to solve the problem was intended to 

generate conversation and drive collaboration as seen in the sample below: 

A: Ohhh . . . negative. Wait, this doesn't help anything 

B: Well it's just a bad equation because it's a fraction 

A: I clearly can't do this 

B: No, it's okay I can do it. So, y equals 10 minus x 

The students did not receive any mathematics-based training before the experiment. They 

began with a 10-minute introductory exercise to ensure they were comfortable using the 

tablet-interface of the FACT application. In the body of the experiment, the pairs of 

 
Figure 4.2. Screenshot of an Example MAP Problem from the FACT Application 
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students worked together to solve two math problems (grade level 9 and above) using the 

tablets. Sessions were of variable length (M = 26.0 minutes, SD = 6.25).  

I recorded high-quality audio data using unidirectional microphones with separate 

audio channels for each speaker. I manually labeled dialogue turns in the following manner. 

I identified the beginning of a turn as anytime a participant introduced verbal articulation; 

the end of a turn was either when the participant ceased that articulation or concluded the 

overall utterance. Laughter and filled-pauses were included. Overlapping speech resulted 

in overlapping turns. Each student made on average 96 turns (SD = 57). 

I then further segmented each turn into inter-pausal units or IPUs. An IPU is a 

pause-free unit of speech separated from any other speech by at least 50ms (Levitan & 

Hirschberg, 2011). Turns are composed of one or more IPUs. For example,  

B:  No, it's okay I can do it. So, y equals 10 minus x... [silence for .33 

seconds] … I mean negative x plus 10 

is composed of two IPUs where the first IPU is “No it's okay I can do it. So, y equals 10 

minus x” is the initial IPU of the turn followed by a pause greater than 50ms, in this case 

0.33 seconds or 330ms, and the final IPU of the turn “I mean negative x plus 10." I extracted 

prosodic features from the level of the IPU and from the level of an utterance.  

 

4.2 PROSODIC FEATURES 

With a corpus of human-human dialogue, I was interested in exploring how prosodic 

entrainment relates to rapport and different dialogue behaviors. I chose to analyze 

entrainment across five of the most commonly assessed prosodic features: intensity, pitch 

(F0), jitter, speaking rate, and shimmer. Intensity was the normalized intensity, and pitch 
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was the fundamental frequency F0. Jitter was defined as the varying pitch and was 

calculated as pitch period length deviations; shimmer consisted of variations in loudness 

and was calculated as the amplitude deviations between pitch period lengths.  

To extract these features, I used OpenSmile (Eyben, Wöllmer, & Schuller, 2010). 

For the speaking rate, I applied the approach from de Jong and Wempe, which 

automatically detects syllables and estimates speaking rate based on syllables per second 

(de Jong & Wempe, 2009). For each feature, I extracted several functionals, including the 

mean, maximum, and minimum. Table 4.1 describes these features and the functionals. 

Feature Description Functionals 

Pitch 
F0: The fundamental 
frequency 

mean 
maximum value 
max value position 
min value position 
standard deviation 

Intensity The normalized intensity 

mean 
maximum value 
minimum value 
max value position 
min value position 
standard deviation 

Voice Quality 

Local Jitter: frame-to-frame 
jitter (pitch period 
length deviations) 

mean 
maximum value 
max value position 
min value position 
standard deviation 

DDP Jitter: Differential 
frame-to-frame jitter 
(the 'jitter of the jitter') 

mean 
maximum value 
max value position 
min value position 
standard deviation 

Shimmer: (amplitude 
deviations between 
pitch periods) 

mean 
maximum value 
max value position 
min value position 
standard deviation 

Speaking Rate 
Measured in estimated 
syllables per second 

N/A 

 

Table 4.1. Acoustic-Prosodic Features and Their Functionals 
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When comparing speakers with different vocal tracts, I normalized features affected by the 

vocal tract so that they would lie in the same range. This was due primarily to differences 

in gender, so I normalized the female pitch mean and max by scaling them to lie in the 

same range as the male values; all other non-pitch features were raw. I describe the 

measures of entrainment using these features in Chapters 5 and 6. 

 
 
4.3 RAPPORT MEASURES 

In this section I describe how I measured rapport to evaluate the relationship between 

entrainment and rapport. To measure rapport, I looked at observational rapport and I 

validated the measure by comparing it to self-reported rapport obtained from five of the 

eight dyads. Prior to having annotators listen to the recorded audio, I manually selected 

four two-minute segments from each dialogue (32 segments in total). These segments 

optimized the amount of dialogue pertaining to the math problems and minimized the 

amount of silence. I manually annotated turn boundaries in each two-minute segment, 

defining a turn as a continuous speech utterance by a single speaker, including filled pauses 

and laughter (Traum & Heeman, 1997). I obtained a measure of perceptual rapport by 

having three annotators listen to only the audio of each of the 32 two-minute-long 

conversational segments. Since there were four segments per dyad, I randomized the order 

in which the annotators listened to the segments. For each segment, the three annotators 

responded to the following statement using a three-point Likert scale (Agree, Neutral, and 

Disagree): “There is a sense of closeness between Students A and B” 

This question was adopted from the rapport scale statements developed by Gratch 

and colleagues (Gratch et al., 2007). I checked for inter-rater agreement using percent 
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agreement and Cohen's Kappa; the average pairwise percent agreement across all segments 

was 63.5% while the average pairwise Cohen's Kappa was 0.41. This was lower than I 

would have liked but was not entirely unexpected (Schuller et al., 2009; Acosta & Ward, 

2011).  However, given that the level of agreement between the annotators was lower, I 

validated the perceptual observations against the measures of self-reported rapport I 

collected from five of the eight dyads.   

For the self-reported rapport, I posed to each of the participants’ two questions with 

a similar connotation at the end of the session. The participants responded to the following 

statements, again using a three-point Likert scale (Agree, Neutral, Disagree):  

“My partner created a sense of closeness between us'” 

“I tried to create a sense of closeness between us” 

There were two primary differences between the questions I posed to the annotators 

and those I posed to the participants. The first difference was the participants' self-reported 

responses were based upon the entire 30-40-minute session rather than a two-minute 

segment. The second difference was that while the annotators responded to a single, 

consolidated statement, each participant answered both questions listed above. 

I validated the measures of perceptual rapport against these self-reported rapport 

responses. Both scales were on a Likert-scale from 1 to 3. I coded all responses as 0, 0.5, 

or 1, corresponding to “Disagree,” “Neutral,” and “Agree.” I then aggregated the 

perceptual scores by calculating the average of the three observers' ratings. This resulted 

in a single value between 0 and 1 for each segment. For the self-reported rapport, I also 

found the average of both participants’ responses to obtain a single value between 0 and 1. 
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I compared the results from the perceptual annotators to the self-reported rapport 

scores for the five dyads for whom I had self-reported rapport scores. As I divided the 

dialogue of each dyad into four two-minute segments and the annotators provided 

perceptual observations for each segment, I examined the difference between the 

perceptual score of each segment and the overall self-reported score for that dyad. The 

segments were aligned temporally, in the order in which they occurred in the dialogue. 

Figure 4.3 depicts the results of this comparison for all five dyads. 

Examining Figure 4.3, I found that for the first two segments, the perceptual 

observers were not aligned with the views of the participants. When I looked at the last two 

segments, the perceptual rapport scores began to reflect the self-reported rapport from the 

participants with increasing accuracy. This may be an attribute or reflection of the fact that 

participants’ rapport responses were only collected at the end of the interaction. Perceptual 

observations from earlier in the interaction are not necessarily inaccurate measures, but 

they are potentially more representative of in-the-moment rapport rather than reflections 

of how participants felt at the end. To facilitate consistency, I chose a measure of rapport 

 
 

Figure 4.3. Difference in Perceived vs. Self-Reported Rapport for the Five Dyads 
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using the perceptual scores from the two latter segments of each dyad. I use this measure 

to examine the relationship between entrainment and rapport in Chapter 5. 

 

4.4 ASSESSING KNOWLEDGE BUILDING DIALOGUE 

In addition to evaluating the relationship between entrainment and rapport, I was interested 

in how entrainment differs for dialogue behaviors which are thought to be important to 

learning. In this section, I discuss how I measured dialogue behaviors pertinent to 

grounding. Grounding is a critical component of successful collaborative interactions and 

is indicative of both cognitive and social factors in learning interactions.  

For this analysis, I identified two common ground features based on common 

ground units, attempting to capture those parts of the dialogue related purely to mutual 

understanding (Nakatani & Traum, 1999). I identified (1) backchannels, and (2) 

“grounding” contributions as the two features to explore. Backchannels are defined as short 

non-disruptive segments of speech which a listener utters to let the speaker know they are 

listening. With backchannels, the purpose is not to take the floor but simply to indicate that 

the listener is keeping up and the speaker does not need to initiate a repair. The second 

feature, “grounding” contributions are contributions which are defined as specifically 

adding, confirming, or updating mutual knowledge. In grounding contributions, a turn is 

labeled as grounding if it is relevant to the preceding turn. I defined how it is relevant by 

analyzing whether it contains the response to a question or if there is a clear reference to 

repeated content from a previous turn by the other speaker.  Examples of backchannels and 

“grounding” contributions are: 
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Student 1:   So, I have 8x + 10y and I want to maximize that... 

Backchannel Student 2:   Right 
     

Student 1:   It looks like she can decorate 10 boomerangs or 20...? 
 Grounding 

Contribution Student 2:   I think it is only just 10 boomerangs total 
 
 
 

Grounded contributions and back channels were coded by two annotators and agreement 

was calculated with Cohen’s kappa.  Agreement for backchannels was 0.76 and the kappa 

for collaborative contributions was 0.72. 

 

4.5 ASSESSING SOCIAL DIALOGUE 

Finally, I am interested in assessing the relationship between entrainment and social 

dialogue. I broke the dialogues down into three categories: (1) problem-solving, (2) 

activity-related, and (3) social. In problem-solving dialogue, the students were actively 

working on the problem, discussing the solution, and in general, attempting to solve it. This 

was essentially on-task dialogue and grounding in on-task dialogue is likely to enable 

collaborators to co-construct knowledge. In social dialogue, I considered social discussion; 

everything outside the problem-solving task or the activity. Grounding in social dialogue 

On-Task/ 

Off-Task 
Topic 

% of 

Corpus 
Example(s) 

On-task Problem-Solving 79% “Because if you add 7 to it, yeah” 

Off-task 

Activity Related 13% 
“Yeah, see mine [screen] froze” 
“That was just a blank card [application tool]” 

Social 8% 
“What are you studying?” 
“We don’t need math!” 

 

Table 4.2. On-Topic and Off-Topic Statistics in Corpus 
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may be likely to build rapport and improve the relationship between the collaborators. I 

added a third category, activity-related, to represent utterances where students were not 

problem-solving or communicating socially, but instead discussing the application itself. 

Table 4.2 details the topics and the distribution across the corpus.  Two individual 

annotators coded for the topics as well and agreement was measured with Cohen’s kappa; 

the overall average was 0.84. 
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CHAPTER 5 

RAPPORT AND ENTRAINMENT IN COLLABORATIVE LEARNING 

 

Using the corpus described in Chapter 4, I investigated whether the relationship between 

entrainment and rapport is observable and whether it differs for different forms of 

entrainment, looking for insight into how different forms of acoustic-prosodic 

entrainment might be related to rapport. The following section summarizes how 

entrainment was measured for the analysis in this chapter and the results and conclusions 

are given in Sections 5.2 and 5.3 respectively. 

 

5.1 METHOD 

 

I investigated the relationship between rapport and entrainment with three of the most 

popular measures of entrainment, proximity, convergence, and synchrony. Inspired by 

Levitan and Hirschberg (2011), I measured proximity, convergence, and synchrony locally, 

on a turn-by-turn basis.  

Proximity is a measure of entrainment which looks at how closely the two speakers 

are to each other at a specific point in time as compared to the rest of the conversation. To 

determine proximity, I ran a paired samples t-test where each pair was composed of two 

differences. The first difference was the absolute difference between a speaker and their 

partner at an adjacent turn. The second difference was the absolute difference between a 

speaker and their partner at ten non-adjacent turns. 

Convergence is the degree to which speakers become more similar over the course 

of the entire conversation. If convergence does not exist, the two speakers may grow further 
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apart over time (diverge). I calculated convergence by using Pearson's correlation in a two-

tailed t-test on time and the absolute difference between a speaker and their partner.   

Synchrony is the quality of interaction which occurs when speakers stay “in sync” 

as they converse. As they converse, they modulate their prosody in tandem. If two speakers 

are not in sync, this means there is no pattern in how they modulate their voices. To find 

synchrony, I computed Pearson's correlation coefficient with a two-tailed t-test on the 

speakers' feature values at adjacent turns. 

The above measures of proximity, convergence, and synchrony are based on those 

suggested by Levitan and Hirschberg (2011). I follow them in considering the results for 

these measures to be statistically significant when 𝑝𝑝 < 0.01 and the results with 𝑝𝑝 <  0.05 

to approach significance.  

 

5.2 RESULTS 

 

I first investigated whether acoustic-prosodic entrainment existed within the data. I then 

explored whether there was a relationship between acoustic-prosodic entrainment and 

perceptual rapport, reporting on features of acoustic-prosodic entrainment which correlated 

significantly with the rapport scores.  

I observed evidence of significant entrainment as shown in Table 5.1. Looking at 

all three measures of entrainment, all three forms appeared to be significant. Overall 

participants entrained more on proximity than convergence or synchrony. This means that 

speakers were most likely to entrain by matching each other at adjacent turns. While 

synchrony and convergence were present across the corpus, the correlations were smaller. 
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Figure 5.1 depicts each measure of entrainment with a two-minute sample with particularly 

high-levels of entrainment. 

The results on proximity aligned with prior work; like Levitan and Hirschberg 

(2011), I found speakers matched each other most significantly in terms of intensity, 

suggesting that the speakers may be changing their normal behavior in intensity to conform 

to that of their partner. This also aligns with Coulston and colleagues’ findings (Coulston, 

Oviatt, & Darves, 2002) that most children actively accommodated their loudness. 

In contrast to Levitan and Hirschberg, I found significance in only a subset of the 

features I examined for synchrony and convergence, where as they found significance in 

every feature. Speakers exhibit synchrony when they adjust their speech in tandem with 

that of their partners. In the corpus, speakers entrained synchronously on intensity to a 

significant degree; however, the correlations were weak. For convergence, I found that 

only local jitter was significant when I examined it at the turn-level across the corpus. 

 
 

Figure 5.1. Entrainment Between Two Speakers from FACT Corpus 
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While I found significant acoustic-prosodic features for all three aspects of 

entrainment, I did not find the same level of entrainment as found by Levitan and 

Hirschberg. This could be due to several factors. One may be the differences in domain. 

Niederhoffer and Pennebaker found that entrainment was associated with the degree of 

engagement (Niederhoffer & Pennebaker, 2002). The Columbia Games corpus makes use 

of the gaming domain and may have been more likely to have higher levels of engagement. 

While proximity may be the most significant form of entrainment when looking 

across the entire set of dialogues, it may not be the most significant form of entrainment 

for each dyad. In addition to looking at entrainment across the whole corpus, I explored 

entrainment within each individual dyad. As shown in Table 5.2, I found that not every 

dyad entrains in all three ways. Synchrony was the most common form of entrainment; 

 Feature Functional Paired t-test t 

Proximity Intensity position max 
std dev 
max 

2.29 
-2.84* 
-2.83* 

 Pitch – F0 mean -1.98 

 Feature Functional Pearsons’s Corr. r 

Synchrony Intensity mean 
std dev 
max 

.12* 

.11* 

.09 

 
Pitch – F0 mean .08 

 Feature Functional Pearsons’s Corr. r 

Convergence Local Jitter position max 
max 

-.09 
-.08 

 
Table 5.1. Results of Measuring Proximity, Convergence, and Synchrony. Values shown are 

significant at 𝑝𝑝 <  0.05; values marked with an * are significant at 𝑝𝑝 < 0.01. 
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every dyad entrained synchronously and for five out of the eight dyads, this was the most 

significant form. Proximity was a close second; seven out of eight of the dyads also 

entrained with proximity, matching each other on a turn-by-turn basis. The least common 

form of entrainment within each dyad was convergence, with only five of the eight dyads 

showing any signs of convergence, and it was also the least significant form of entrainment.  

The acoustic-prosodic features which were important for each measure differed 

depending on the dyad and the measure. Intensity, pitch, and voice quality were distributed 

across the eight dyads. Speaking rate was entrained on the least. This could be due to the 

approach for measuring speaking rate, which looks at IPU as the unit of analysis, and the 

nature of the dialogues, where the IPUs were often shorter in duration.  

Finally, I identified whether there was a relationship between entrainment and 

rapport by comparing the entrainment scores from the dialogues to the perceptual rapport 

 Dyads 

 1 2 3 4 5 6 7 8 
Proximity         

    Intensity         

    Pitch         

    Voice Quality         

    Speaking Rate         

Synchrony         

    Intensity         

    Pitch         

    Voice Quality         

    Speaking Rate         

Convergence         

    Intensity         

    Pitch         

    Voice Quality         

    Speaking Rate         

 

Table 5.2. Evidence of Entrainment Within Individual Dyads. 𝑝𝑝 <  0.01 
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scores for the last two audio segments of each dyad. Based on the comparisons with self-

reported rapport, the final two segments reflected a more accurate picture of the perceptual 

rapport. I compared entrainment and rapport with Pearson's correlation coefficient with a 

two-tailed t-test. The results are given in Table 5.3.  

I found proximity had the most acoustic-prosodic indicators of rapport. 

Interestingly, proximal entrainment on intensity was not related to rapport despite being 

the most significant feature of proximal entrainment overall. While people entrain more on 

intensity in general, proximal entrainment on pitch may be more pertinent when looking 

for indicators of rapport. Figure 5.2 illustrates how speakers entrained differently on pitch 

mean when higher rapport was observed versus less rapport.  

Synchrony where speakers change their behavior in sync, was positively correlated 

to rapport for two acoustic-prosodic features: the standard deviation of the pitch (F0) and 

the standard deviation of the local frame-to-frame jitter. Looking at convergence, I found 

these same two features. All these features are strongly correlated, indicating that 

synchrony and convergence on pitch also play an important role regarding rapport.  

 Feature Functional Pearson’s Corr. R 

Proximity Pitch – F0 max 
mean 
std dev 

.842* 

.804 

.510 
Jitter – DDP max 

std dev 
.644* 
.512 

Synchrony Pitch – F0 std dev .568 
Jitter – Local std dev .741* 

Convergence Pitch – F0 std dev .586 
Jitter – Local std dev .634* 

 

Table 5.3. Significant Relationships Between Rapport and Entrainment. Values are 

significant at 𝑝𝑝 < 0.05; values marked with an * are significant at 𝑝𝑝 <  0.01 
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5.3 DISCUSSION AND CONCLUSIONS 

 

The goal of this chapter was to use the data set from Chapter Four to gain insight into the 

relationship between entrainment and a measure of rapport, with a focus on how different 

forms of acoustic-prosodic entrainment are related to rapport. I investigated three measures 

of entrainment, proximity, synchrony, and convergence using four acoustic-prosodic 

features (intensity, pitch, voice quality, and speaking rate).  I found all three measures of 

entrainment were present in collaborative learning dialogues I used, with individuals 

entraining the most on intensity. All three forms of entrainment were also correlated with 

rapport. Entrainment on pitch and voice quality were the most highly correlated. Matching 

the pitch of one’s speech turn-by-turn, in a measure of proximity, appeared to have the 

most significant relationship to rapport.  

There are a few explanations for why proximity on pitch was the most highly 

correlated to rapport. Pitch has been found to be important to the emotional coloring of 

utterances and is known to convey significant metadata about a user’s current state and 

understanding of the conversation. It is possible that turn-by-turn entrainment on pitch is 

 
 

Figure 5.2. Comparison of Proximity on Pitch Mean for Two FACT Dyads. 



  38 

more susceptible to the context of the conversation and combines more effectively with 

other rapport-building behaviors as opposed to general conversation wide entrainment 

which is less likely to be influenced by context within the moment and more likely to 

represent a general similarity between two individuals. It is also possible that the measure 

of rapport played a role; rapport was measured as a third-party observation of slices of the 

interaction. This approach might have been more conducive to capturing turn-by-turn 

rapport which may be more related to measures of entrainment as proximity.  

In this chapter, I focused on the general relationship between prosodic entrainment 

and rapport, regardless of other social behaviors, to obtain general insights into modeling 

prosodic entrainment in a dialogue system. I explore the relationship between social 

dialogue and entrainment in the next chapter but leave explorations of other modalities, 

entrainment, and rapport to future work.  
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CHAPTER 6 

ENTRAINMENT, SOCIAL DIALOGUE, AND  

GROUNDING IN COLLABORATIVE DIALOGUES 

 

In Chapter Five, I established that the theoretical relationship between entrainment and 

rapport is observable in collaborative learning. I found that entrainment does appear to be 

more significant for individuals who are observed to have higher rapport. This finding 

supports exploring prosodic entrainment to build rapport within a dialogue system and 

provided insight into potential models for implementing entrainment. However, 

individuals can build rapport in multiple ways. For example, individuals can build rapport 

through rapport-building dialogue or social dialogue, in which they make a social 

connection with their partner by engaging them in off-task, social conversation. In 

designing a dialogue system which utilizes entrainment, it is also important to know how 

entrainment might differ or influence responses depending on the context in which it is 

introduced. It is unclear from prior work how prosodic entrainment might combine with 

verbal behaviors known to build rapport or even behaviors known to facilitate learning. 

Knowing how entrainment might interact with social and knowledge building dialogue is 

critical to the design and evaluation of entrainment. In this chapter, I pose the following 

research question: How does entrainment differ with social and knowledge building 

dialogue?  

To explore how entrainment might differ for social, rapport-building dialogue and 

dialogue behaviors pertinent to learning, I focus on social dialogue and knowledge building 

dialogue such as grounding. I break down the overarching research question into three 
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more explicit questions focused on these specific dialogue features: (1) Do students entrain 

with their conversation partners while engaging in grounding behaviors? (2) How does 

entrainment relate to social dialogue versus problem-solving dialogue? (3) How does the 

interaction between grounding behaviors and social dialogue influence the ways in which 

students entrain on each other’s speech? I explored these questions with the dialogue 

corpus and features described in Chapter Four. In the next section, I give an overview of 

the method for measuring entrainment and evaluating how it relates to grounding and social 

dialogue. In 6.2 I describe the results and end the chapter with a discussion of the findings.  

 

6.1 METHOD 

 

For this analysis, I utilized a measure of entrainment adapted from the approach by 

Thomason, Nguyen, and Litman (2013). Using the prosodic features described in Chapter 

Four, I calculated an entrainment score by first dividing the dialogues into N exchanges. 

An exchange was composed of two consecutive turns by different speakers. For each 

acoustic-prosodic feature, I identified a sequence of exchanges (𝑛𝑛1, . . . ,𝑛𝑛𝑁𝑁) where each 

exchange consisted of the raw feature values for each speakers’ turn within that exchange: 𝑛𝑛𝑖𝑖  =  (𝑓𝑓𝑎𝑎𝑖𝑖 , 𝑓𝑓𝑏𝑏𝑖𝑖) 𝑓𝑓𝑎𝑎𝑖𝑖  is speaker A’s feature value at exchange 𝑛𝑛𝑖𝑖 𝑓𝑓𝑏𝑏𝑖𝑖  is speaker B’s feature value at exchange 𝑛𝑛𝑖𝑖 
To measure entrainment, Thomason and colleagues used the r2 correlation between two 

speaker’s acoustic prosodic features within each exchange to compute an entrainment score 

across the entire dialogue. One limitation of this method was that a single entrainment score 

across the dialogue will not capture the dynamics of the turn-by-turn coordination. Since 
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the dynamics of social and knowledge coordination happen at a turn-by-turn level, I 

modified this approach to obtain a score at each exchange. Starting with the fifth exchange 

to occur in the dialogue, I calculated the similarity score of A and B using the current 

exchange and the four exchanges preceding it. The similarity score was calculated as the 

linear fit coefficient, resulting in a set of 𝑟𝑟2 coefficients for each feature which served as 

the entrainment scores for each turn pair. I interpreted a high score to mean that the turn 

had higher entrainment.  

 

6.2 RESULTS 

 

I used regression for the analysis, and for all tests, I considered the result to be significant 

if 𝑝𝑝 <  0.05 and approaching significance if 𝑝𝑝 <  0.1. For grounding and backchannels, 

we used the features described in Chapter 4.4. In the dialogue, 37% of the turns across the 

entire corpus contained grounding contributions and 25% were backchannels. Table 6.1 

illustrates the distribution of backchannels and grounding turns across the different types 

of dialogue as well as the distribution for social, activity, and problem-related dialogue. In 

the next section I describe how I analyzed whether entrainment was indicative of grounding 

Topic / Grounding Behavior 
Mean 

(turns) 

Standard 

Deviation 

Problem-Solving 111.5 78.9 

Activity-Related 20.5 20.3 

Social 12.9 11.0 

Backchannels 12.1 16.5 

Grounding Turns 18.2 26 

 

Table 6.1. Breakdown of On-Task/Off-Task and Grounding Behaviors 
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and the dialogue types. I then investigated the co-occurrence of grounding and entrainment 

in problem-solving, activity-related, and social dialogues. 

 

6.2.1 Entrainment Differences for Grounding and Social Dialogue 

To first understand the relationship of grounding and entrainment, I analyzed whether 

entrainment at the mean of intensity, pitch, jitter, and shimmer had any predictive power 

in terms of the two grounding behaviors, backchannels and grounding contributions. I 

performed a hierarchal logistic regression analysis to control for the effect of measuring 

the entrainment features across different dyads or pairs of students. I ran the analysis with 

dyadic differences first and added in the entrainment features as intensity, pitch, jitter, and 

shimmer. The results are given in Table 6.2; only the final models are given.  

In examining backchannels, I found that dyadic differences were not a significant 

predictor. Examining grounding contributions, I found dyadic differences alone 

significantly predicted grounding contributions versus non-grounding contributions, with 

p = 0.013. In the full model, predicting grounding from intensity, pitch, jitter, and shimmer 

while controlling for dyadic differences, pitch mean also approached significance at p = 

0.053. This implies that entraining on pitch may have some potential when considering the 

 Dyad Intensity Pitch Jitter Shimmer 

Chi-square 

(overall 

model) 

p-value 

(overall 

model) 

Grounding 

Contributions 

B -0.08 -0.34 0.51 0.16 -0.27 
11.763 0.038 

p 0.013 0.22 0.05 0.58 0.37 

Backchannels 
B 0.02 0.35 -0.07 -0.56 -0.25 

5.132 0.400 
p 0.67 0.24 0.81 0.10 0.44 

 

Table 6.2. Logistic Regression on Grounding Contributions with Entrainment 
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behavior of grounding contributions. While the model overall for predicting grounding 

contributions was significant, I cannot conclude that entrainment significantly predicts 

grounding as it was primarily the contribution of the dyadic differences which contributed 

to the significance of the model. I conclude that while I observed that pitch appears to have 

a relationship with grounding, students did not appear to be significantly entraining with 

their partner when engaged in grounding behaviors. 

I also investigated the relationship of entrainment to topics controlling for dyadic 

differences. I again used regression, this time multinomial regression to identify if 

entrainment differentiated between topics.  I treated problem-solving as the base for the 

analysis, comparing how well entrainment differentiated activity-related dialogue and 

social dialogue from problem-solving dialogue. Controlling for dyad resulted in 8 

coefficients for the 8 dyads. The results are presented in Table 4.  I found that the overall 

model was significant at p < 0.01, and within the model I found that the coefficient of 

intensity mean was a key differentiator for social dialogue in comparison to the base class 

of problem solving dialogue.  This indicated that when individuals increased entrainment 

on intensity mean by one-unit, there was 1.093 decrease in the relative log odds of social 

 

Intensity Pitch Jitter Shimmer 

Chi-square 

(overall 

model) 

p-value 

(overall 

model) 

Activity 

Related 

B 0.10 0.17 -0.09 -0.27 

145.1 P < 0.01 
p-value 0.89 0.81 0.91 0.76 

Social 
B -1.09 0.07 0.24 -0.14 

p-value 0.04 0.66 0.80 0.88 

 
Table 6.3. Differentiating Topics in On-Task/Off-task Dialogue 
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dialogue in comparison to problem solving dialogue. Individuals were more likely to 

increase entrainment on intensity when they were engaging in problem-solving dialogue. 

 

6.2.2 Relationship of Entrainment, Grounding, and Social Dialogue 

I investigated whether entrainment differentiated between the grounding behaviors 

students utilized when they were engaged in on-task versus off-task dialogues. For this 

analysis, I utilized only grounding contributions. I again used regression to analyze 

grounding in terms of entrainment for each type of dialogue, identifying whether acoustic-

prosodic entrainment differentiated grounding contributions within different topics.  

 I performed logistical regression analyses on grounding contributions with 

entrainment as the independent variable for all three topics, controlling for dyadic 

differences. The results for all three are in Table 6.4. I found that for problem-solving 

dialogue, the final model was not significant. However, entrainment on shimmer did 

contribute significantly to the discernment of grounding versus non-grounding behaviors 

in problem solving dialogue. When students were entraining on shimmer, the odds that 

their individual contributions were grounded was exp(β) = 0.512.  In examining grounding 

 Dyad Intensity Pitch Jitter Shimmer 

Chi-

square 

(overall 

model) 

p-value 

(overall 

model) 

Problem-

Solving 

B -0.04 -0.08 0.45 -0.09 -0.67 
7.968 0.158 

p-value 0.20 0.80 0.14 0.78 0.03 

Activity 

Related 

B -0.01 0.10 0.17 -0.09 -0.27 
0.239 0.77 

p-value 0.91 0.89 0.81 0.91 0.76 

Social 
B -0.29 -1.55 1.73 -1.75 2.35 

11.69 0.04 
p-value 0.04 0.17 0.11 0.05 0.17 

 

Table 6.4. Differentiating Grounding in On-Task/Off-Task Dialogues 
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in activity-related dialogues, I did not observe any significant contributions, either from 

dyadic differences or from entrainment. For social, off-task conversation, the final 

regression equation was significantly predictive of grounding. Notable features which 

contributed to the overall significance of the equation included dyadic differences and 

entrainment on shimmer at p = 0.055.    

 

6.3 DISCUSSION AND CONCLUSIONS 

This chapter focused on how entrainment differed for different types of dialogue behaviors, 

particularly social dialogue and grounding, posing the following questions: (1) Do students 

entrain with their conversation partners while engaging in grounding behaviors? (2) How 

does entrainment relate to the topic of conversation (i.e., whether it is problem-solving or 

social)? (3) How does the interaction between grounding behaviors and topic of 

conversation influence the ways in which students entrain on each other’s speech? I found 

that students do not appear to entrain differently when in engaged in task-based 

conversation, but that entrainment differed if they were engaged in social dialogue.  

One interesting aspect of the results was that I did not find entrainment related to 

backchannels. This was contrary to previous findings (Levitan, Gravano, & Hirschberg, 

2011). This contradiction may be the result of different approaches for measuring 

entrainment. Levitan et al. employed a global measure of entrainment across the dialogue, 

measuring how speakers entrained in the first half of the conversation as compared to the 

latter. I employed a moving window of correlational analysis which represents the local 

dynamics of entrainment. The results for this analysis suggest different behaviors may be 
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pertinent depending on the type of measure utilized. Future work should explore the 

repercussions of using different measures more thoroughly.  

Finally, these results suggest that speech signal features like entrainment have 

potential for identifying knowledge building dialogue. In addition, detecting entrainment 

may also help identify when social interaction is occurring in real-time. This technique 

could be of large benefit to an adaptive system that attempts to assess and support face-to-

face collaboration. Future work should explore how entrainment can be detected real time 

to facilitate and support collaboration.  

The study was limited by the small sample size (only 8 dyads), and the fact that the 

mathematics task students completed may have been relatively easy and thus not an 

effective trigger for collaborative discussion and productive grounding behaviors. For 

these reasons, the analysis is exploratory. One key element of the analysis was the emphasis 

on relating features of speech to collaborative process on a turn-by-turn basis. By 

examining the relationship between entrainment, grounding, and on-task/off-task dialogue 

for each turn, I was able to build a potential process for observing how dialogue evolves 

over the course of an interaction.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

Overall, this dissertation is focused on four research questions addressing how entrainment 

might be modeled in a system, the effects modeling entrainment can have on social 

responses like rapport and outcomes like learning, and any insights we might gain by 

modeling entrainment. Part I of this thesis examined existing work on human-human 

entrainment and presented new work on human-human entrainment to provide insight into 

potential models of entrainment and its effects. The insights gained addressed two open 

questions pertinent to modeling entrainment:  

How are different forms of acoustic-prosodic entrainment related to rapport? 

How does entrainment differ for social and knowledge building dialogue?   

In exploring existing work on human-human entrainment, results clearly indicated 

entrainment was related to positive social factors such as liking and engagement. However, 

the relationship between entrainment and rapport itself remained unclear. I presented new 

work on human-human entrainment using a corpus consisting of eight dyads working 

collaboratively together to solve math problems. I found that entrainment does appear to 

be related to rapport, and particularly turn-by-turn entrainment on pitch appeared to be 

stronger between dyads who were observed to have more rapport. Entrainment also 

appeared to differ between problem-solving and social dialogue depending on the feature 

of entrainment explored. These results both support and extend existing research on 

entrainment by providing evidence that entrainment is related to measures of rapport and 

suggesting that people may entrain differently when engaging in social dialogues versus 
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problem solving dialogues. The results contribute to the body of research that suggests that 

acoustic-prosodic entrainment is an indicator of productive collaborative interactions 

during both problem-solving and social conversation.  

Towards the design of entrainment, these results suggest several potential 

directions for modeling automated entrainment. Given the prominence of entrainment on 

pitch for dyads with high rapport, pitch may be a promising feature to implement 

entrainment on in a system. Modeling entrainment based on proximity or turn-by-turn 

adaptation may also have potential for fostering rapport. In terms of understanding the 

repercussions of implementing entrainment in a system that uses both social, off-task 

dialogue while engaging in on-task problem-solving conversation, the findings suggest that 

implementing entrainment during both on-task and off-task dialogues should be 

acceptable. If the type of entrainment were to be altered depending on dialogue type, 

intensity appears to be a promising feature for entrainment during on-task, problem solving 

dialogue while pitch may have potential in off-task dialogue. Because of this, adapting to 

both intensity and pitch may produce interesting effects depending on the dialogue content.  

There were also considerable dyadic variances on entrainment. It was rare that an 

individual dyad exhibited entrainment on all features, and the features and types of 

entrainment which were significant for an individual dyad varied – for example, three 

dyads exhibited significant proximal entrainment on pitch for three other dyads, pitch 

convergence was significant. Given the size of the data set, it is hard to say what role these 

individual dyadic differences played on feelings of rapport, but it is possible that individual 

differences may contribute to different responses depending on the features and methods 

used to implement entrainment.  
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The focus of this thesis is on modeling entrainment to explore its effects; however, 

the findings from Part I also hold implications for systems which can automatically detect 

entrainment. I note the possibilities regarding detecting entrainment for potential future 

work. Systems which can detect entrainment may provide real-time information regarding 

interactions between people and between people and computers, such as the degree of 

rapport felt between two interacting partners. Automatically detecting rapport in human-

to-human and human-to-computer interactions has real-world implications. In the 

classroom, automatically detecting rapport can serve as a guide for teachers when students 

are engaged in collaborative activity. In tutorial dialogue systems, detecting rapport has 

implications for improving dialogue success and quality. With the knowledge that 

entrainment on pitch and voice quality is more likely to occur when rapport is present, this 

suggests systems which can detect entrainment or a lack of entrainment on these features 

may be able to provide support and interventions more effectively.  

Future work focusing specifically on human-human entrainment should include 

developing a comparison of entrainment measuring approaches to verify how modeling 

entrainment as a dynamic versus a linear phenomenon contributes to theoretical 

understandings of entrainment and its relationship to learning, rapport, and the 

collaborative process. Future work should also incorporate the abundant information which 

is available at the dyadic level, including accounting for the differences in acoustic-

prosodic entrainment which appear within and across dyads.   
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PART II:  

ENTRAINMENT IN A ROBOTIC LEARNING COMPANION 
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CHAPTER 8 

MOTIVATION AND RESEARCH GOALS FOR PART II 

 

We focus in Part II on human-computer entrainment; specifically, I explore how we can 

model entrainment in the dialogue systems of robotic learning companions. Part I revealed 

that entrainment on pitch and proximity appears to be more relevant to feelings of rapport; 

with these insights, I revisit the four research questions posed in the introduction: 

RQ 1: How can acoustic-prosodic entrainment be modeled in a system to 

positively influence social responses?  

RQ 2: How does automated entrainment influence rapport when combined with 

content-based approaches for building rapport? 

RQ 3: How does entrainment influence learning in a robotic learning companion? 

RQ 4: What insights regarding human-human and human-agent interactions can 

we gain by manipulating social behavior in a robotic learning companion?  

I introduce a series of design iterations conducted to answer these questions. The iterations 

followed the methodology shown in Figure 8.1, and the very first iteration in this process 

was inspired by the results from Part I. Motivated and informed by analysis of human-

human interaction, I identified several possible models or designs for entrainment. These 

models were iterated on at a micro-level to identify a design appropriate for a human-robot 

interaction. The final design emerging from that process was then evaluated in a larger 

human-robot interaction study with mixed methods analyses. The outcome of that 

evaluation was then fed back into the process as input for a new iteration. Overall, three 

micro and three macro iterations were conducted, with three unique learning companions.  
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Each of these iterations is described in detail in the following chapters. Chapter 9 

begins with an overview of related work on human-computer entrainment, learning 

companions, the development of dialogue systems, and the potential role individual 

differences might play when implementing social behaviors in a robot. Chapter 10 

describes the system features that the three robotic companions had in common, including 

the dialogue system structure. The first micro and macro iterations using the robotic 

learning companion Quinn are described in Chapters 11 and 12. Chapter 13 describes 

enhancements made to the dialogue of the general system to better support learning and 

foster self-efficacy and rapport. The second macro iteration is described in Chapter 14 with 

details on Nico, a teachable robot for middle school mathematics. The final iterations, 

performed with the learning companion Emma are summarized in Chapters 15 and 16.  

 
 

Figure 8.1. Overall Research Methodology 
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CHAPTER 9 

RELATED WORK 

 

Related work dealing with human-computer entrainment has primarily focused on how 

people will entrain to a computer (Coulston, Oviatt, & Darves, 2002), though it has been 

found that individuals prefer computer voices which are more like their own (Nass and 

Brave, 2005). Explorations of how a computer can entrain to a person are still in the early 

stages, and I describe this early work in the next section.  In Section 9.2, I detail existing 

work on learning companions and how this informed the design of an entraining robotic 

learning companion. In Section 9.3, I touch on the potential role individual differences 

might play when implementing such conversational, social behaviors in a robotic learning 

companion. Finally, section 9.4 describes current work on the development of dialogue 

systems and provides baseline insight into the design of the entraining dialogue system 

built for this work. 

 

9.1 ENTRAINMENT IN HUMAN-COMPUTER INTERACTIONS 

 

Explorations of automated entrainment are still in the early stages. Only two systems to 

date have explored implementing acoustic-prosodic entrainment in an agent or robot. 

Sadoughi and colleagues (2017) built a system for a social, human-like robot which adapts 

on a turn-by-turn basis to a child’s pitch and intensity. In their approach, they utilized a 

Bayesian network to select the verbal response with the most appropriate prosodic 

manipulation at run-time. This means the entrainment was somewhat restricted because 

they were selecting a pre-recorded audio clip which was closest to ideal entrainment. In 
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playing a game with the robot, children who interacted with the entraining robot had higher 

levels of engagement. Sadoughi and colleagues did not explore the effects of manipulating 

the prosodic features real-time and it remains unclear whether pitch or intensity or both 

resulted in the positive effects on engagement.  

Levitan and colleagues (2016) explored the effects of adapting intensity and 

speaking rate in a turn-by-turn manipulation on perceptions of a virtual agent’s likability 

and reliability. In pilot evaluations, they found positive effects for English speakers and 

their approach validates real-time adaptations. They did not explore the effects of real-time 

pitch adaptation or adaptation on multiple features at once. Neither Sadoughi and 

colleagues nor Levitan and colleagues explored the mediating effects of gender, effects on 

rapport, or how entrainment combines with social dialogue to influence social responses. 

Outside of acoustic-prosodic entrainment, Lopes, Eskenazi, and Transcoso (2012) 

proposed a form of lexical entrainment in a spoken dialogue system to improve task 

success. The system adapted to the user’s lexical choices; if the user’s choices appeared to 

be degrading performance than the system would propose words for the user to adopt. 

System performance was improved, and error rates were reduced by 10%. I focus solely 

on prosodic entrainment in this work, leaving lexical entrainment to future studies. 

 

9.2 ROBOTIC LEARNING COMPANIONS 

In this work, automated entrainment is implemented in a robotic learning companion. 

Learning companions are based on theory that learning is social (Vygotsky, 1979) and 

provide both socio-motivational support and cognitive support. Learning companions 

come in several forms; in this work, I explore the learning companion as teachable robotic 
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agent, where the learner teaches the robot about a domain. By teaching, learners may attend 

more to the problem, reflect on their own misconceptions when correcting errors, and 

elaborate on their knowledge as they construct explanations (Roscoe & Chi, 2007), leading 

to learning. Teachable agents have demonstrated success in influencing learning 

(Leelawong & Biswas, 2008; Pareto et al., 2011), and teachable robots have demonstrated 

similar positive effects (Tanaka & Matsuzoe, 2012; Hood, Lemaignan, & Dillenbourg, 

2015). Indeed, due to their physical presence and rich channels of communication, robots 

have under some circumstances socially engaged users more than agents (Liu et al., 2013), 

and this may be the case with teachable agents as well. 

It has been hypothesized that there is a social component to the success of teachable 

agents in influencing learning. Some research has shown that when learners feel rapport or 

a sense of closeness for their teachable agent (Ogan et al., 2012a) they are more likely to 

benefit. Others have demonstrated what is called the protégé effect; that learners at once 

feel more responsible for their agent, are more motivated to learn for their agent, and 

believe the onus of failure belongs to the agent, easing the negative repercussions of failure 

(Chase et al., 2009). When learners feel more responsible for the agent (Biswas et al., 

2010), they benefit more from teaching the agent. All these social factors may be enhanced 

by learners’ feelings of rapport, and thus it is likely that within a teachable agent context, 

greater feelings of rapport may facilitate learning. 

A popular way of enabling social robots and agents to build rapport with users is 

through rapport-building behaviors or social behaviors which support social connection; 

for example, a gesture which conveys ‘friendliness’ such as waving when one says hello, 

facial expressions such as smiling, or dialogue such as politeness. These behaviors have 
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been shown to increase rapport and learning when used by robotic tutors or robots that can 

teach students. Kanda and colleagues (2004) conducted a two-month trial in an elementary 

school with a social robot for learning English. The robot, called Robovie, could express 

various social behaviors, such as calling children by name. The social behaviors engaged 

the students and students who interacted with Robovie longer learned more.  

Saerbeck and colleagues (2010) investigated how a socially supportive robotic tutor 

(iCat) influenced the task of language learning. iCat exhibited a variety of rapport-building, 

social behaviors which were both verbal and non-verbal, including dialogue, gaze, and 

facial expressions; they found students had higher learning performance with the socially 

supportive tutor. Westlund and colleagues (2015) introduced Tega, an affect-sensitive 

robotic tutor which pre-school children interacted with to learn vocabulary. Tega 

demonstrated that adaptation can increase positive valence (Gorden et al., 2016). In one of 

the few explorations of prosodic manipulations, Tega was also used to explore engaging 

preschoolers in active reading (Westlund & Breazeal, 2015). In this exploration, the robot’s 

voice was either expressive, including a wide range of intonation and emotion, or flat, like 

a classic TTS engine. Their findings suggested an expressive robot is more beneficial; the 

expressive robot resulted in more concentration and engagement.  

Social dialogue has been extensively explored as a rapport-building behavior with 

virtual agents. Bickmore & Cassell (2001) demonstrated that social dialogue such as small 

talk can have rapport-building effects, significantly enhancing feelings of trust in 

interactions with a virtual real estate agent. In later work, they also found that removing 

nonverbal cues available through facial expression and gesture negatively influenced the 

effects of social dialogue, and that individual differences indicated by personality played a 
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role in these effects, with individuals preferring and trusting an ECA which matched their 

own personality more (Bickmore & Cassell 2005). Gulz, Haake, and Silvervarg (2011) 

demonstrated that students who interacted with a teachable agent which engaged in social 

dialogue in the form of ‘off-task’ dialogue reported having a more positive experience and 

learned more. In work with a virtual agent tutor for multi-party dialogues, Kumar and 

colleagues (2010) showed that a tutor which uses social dialogue to show solidarity, trigger 

tension release, and exhibit an agreeing attitude can significantly influence learning. 

Bickmore, Vardoulakis, and Schulman (2013) showed that virtual agents which exhibited 

solidarity through common ground and self-disclosure improved engagement.  

Rapport building behaviors like social dialogue and prosodic cues have been less 

explored with teachable robots. The results found with other forms of agents and robots 

provide support that both social dialogue and prosodic entrainment will enhance learning 

and rapport. For this work, I design social dialogue in line with this prior work. I use some 

of these same social dialogue behaviors as a baseline in the exploration of how entrainment 

combines with social dialogue to foster rapport.  

Overall, the existing work on teachable robots is small. Co-Writer, is a Nao robot 

that learners teach about handwriting. The focus of Co-Writer has been on mastery 

experiences through adaptation of the robot’s learning behavior. Studies have shown the 

robot can engage learners in the task and potentially promote motivation and self-

confidence (Jacq et al., 2016). Tanaka and Matsuzoe explored a Nao robot that learners can 

teach about vocabulary through physical demonstration (Tanaka and Matsuzoe, 2012). The 

interaction showed teaching a robot can support learning and children are just as likely to 

teach verbally and by gesture, suggesting verbal and gestural communication is natural and 



  58 

intuitive for teaching robots. rTAG, a Lego Mindstorms-based robotic learning 

environment where learners teach coordinate geometry (Walker et al., 2016), explored how 

physical embodiment affects social engagement; while social engagement increased in low 

prior knowledge learners, learning gains decreased. Collectively, this work indicates that 

teachable robots have potential to support learning, but the role of social factors remains 

unclear. In rTAG, physical embodiment alone was not enough to foster social engagement, 

while mastery experiences in Co-Writer was. I build on this prior work by introducing 

several versions of teachable robots throughout this thesis and exploring how social 

behaviors influence social engagement as well as learning. 

 

9.3 INDIVIDUAL DIFFERENCES 

 

Explorations of gendered responses in the human-robot literature are limited; as of 2014, 

only 21 of 190 HRI papers published from 2006 to 2013 provided any form of gender-

based analysis (Wang and Young, 2014). However, there is evidence which suggests males 

and females might respond differently to rapport-building behaviors from a robot. Strait 

and colleagues (2016) found females were more sensitive to verbal communication while 

males were more sensitive to multiple behaviors and consistency.  

In prior work on gender differences in human-agent interactions, females tended to 

respond more positively to social behavior from virtual agents, while males tended to 

respond negatively (Burleson and Piccard 2007; Vail et al. 2015; Arroyo et al. 2013; Lutfi 

et al. 2013; Jokinen and Hurtig 2006; Kramer 2016). Burleson and Picard introduced a 

multimodal, real-time affective agent which exhibited emotional intelligence in response 

to a user’s affect. The agent’s behaviors included speaking, nodding, smiling, fidgeting, 
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and shifting its posture forward or backward; these behaviors were adapted to mirror the 

user and to give evidence of ‘active’ listening. In analyzing responses from 76 girls and 

boys aged 11 to 13, girls responded much more positively to the affective tutor, expressing 

a stronger social bond, persevering longer, and exhibiting higher gains in meta-affective 

skills. Boys responded more positively on these measures to the task support only tutor. In 

other work, Vail and colleagues (Vail et al., 2015) explored gender responses to an agent 

which exhibited cognitive and affective support through verbal feedback; females reported 

significantly more engagement and less frustration with an agent which exhibited 

motivational and engaging support. Arroyo and colleagues (Arroyo et al., 2013) supported 

these findings with an extensive analysis of an affective pedagogical agent deployed in 

several public schools; female students had significantly lower frustration, excitement, 

self-efficacy in mathematics, and liking of mathematics when interacting with the affective 

agent. These agents were generally designed to exhibit rapport affectively through dialogue 

and physical gesture.   

Given this prior work, it is possible females may respond with more rapport to the 

social, entraining robot than males. It is also possible males and females will differ in their 

use of behavioral rapport. As described in Chapter 2, behavioral rapport will be measured 

as linguistic politeness and males and females have been found to differ in how they exhibit 

politeness. Women have been found to be politer in general, often being more likely to give 

praise and engage in formal politeness (Chalupnik 2017, Brown 1980). Empirical studies 

by Holmes (1995), Coates (2015), Tannen (1994), and Hong (2012) point to women using 

conversation to establish, nurture, and develop relationships while men are more likely to 

see conversation as a tool for obtaining and conveying information. It has been suggested 
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that differences in linguistic strategies may be a result of an individual’s experience and 

their role in the conversation as either a peer, expert, or sub-ordinate. If differences in 

linguistic strategies between males and females are observed, this could be due to males 

and females using politeness for different purposes (i.e. as a rapport builder vs. information 

conveyer) or it could be indicative of differences in their interpretation of their role as a 

peer versus an expert. 

 

9.4 BACKGROUND ON DIALOGUE SYSTEMS 

 

Dialogue systems, or systems which enable users to have a conversation with a computer, 

have entered mainstream society as digital assistants on cellphones and home controllers 

and as conversational agents on the web and in call centers. In the work, the dialogue 

system plays a crucial role as spoken language is the main form of interaction, the source 

of the social manipulation, and the dialogue system is the underlying technology which 

enables us to explore the research questions. This section contains an overview of 

background work on dialogue systems and the different ways systems are typically 

designed, providing an informative baseline for the design of the dialogue system in this 

work. This section also contains a description of the other two dialogue systems to have 

incorporated some form of entrainment. 

 

9.4.1 General Dialogue System Design 

Dialogue systems are typically composed of several modules, including an automatic 

speech recognition (ASR) module, which detects the user’s speech and translates it to text, 

a dialogue manager to identify an appropriate response, and a text-to-speech module to 
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take the response and convert it to speech.  The increasing popularity of these systems as a 

practical medium for human-computer interaction has largely been due to dramatic 

improvements in ASR over the past decade as deep learning approaches have reduced ASR 

errors. Even before these improvements to speech recognition, two common classes of 

dialogue systems emerged: task-oriented dialogue systems and chatbot systems. Task-

oriented dialogue systems are designed for a task within a restricted domain and are 

suitable for short interactions with a goal-based focus. For example, searching for a 

restaurant, getting directions to a location, or making a reservation. Chatbots are designed 

for extended conversations (Jurafsky and Martin, 2018). Chatbot dialogue managers have 

been in existence since the 1960s, when Weizenbaum introduced ELIZA, a chatbot 

designed to simulate a Rogerian psychologist (Weizenbaum, 1966). Given the multi-turn 

nature of the teachable robot system I am interested in building and the social nature of 

chatbot designs, I base the dialogue system on a chatbot framework.  

 

9.4.2 Chatbot Systems 

Chatbot systems, first introduced in the 1960’s, have increasingly been applied to practical 

applications within education, information retrieval, business, and e-commerce (Shawar & 

Atwell 2007). As noted by Gulz and colleagues, chatbot dialogue systems for educational 

applications like intelligent tutoring systems and teachable agents can be beneficial because 

they enable the combination of elements from task-oriented dialogue in a restricted domain 

with elements from the broader but shallower dialogues chatbots are known for and are 

ideal at producing (Gulz et al., 2011). This combination enables a system to produce social 
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dialogue opportunities while still maintaining domain knowledge representation with 

acceptable dialogue responses.  

 Chatbot systems fall into two classes: rule-based systems and corpus-based 

systems. Rule-based systems include the well-known ELIZA and PARRY as well the more 

recent ALICE chatbot, which makes use of Artificial Intelligence Markup Language 

(AIML). Rule-based systems take the user’s utterance and identify a response given a set 

of rules. Corpus-based systems require existing conversational human-human data. The 

human-human data is used to identify suitable system responses either by information-

retrieval algorithms or the corpus can be used to generate a mapping from user utterances 

to system responses via machine translation techniques.  

 Rule-based systems make use of pattern/transform rules where by a user’s utterance 

can be mapped or transformed to generate the system’s response. Each pattern or rule is 

linked to a keyword in the user’s utterance; keywords possess a rank, with more specific 

words having a higher ranking. Responses are identified based on the keywords found in 

the user’s utterance. Generic or non-committal responses exist in cases where no keywords 

can be found in the user’s utterance. Both ELIZA and PARRY were developed using a 

rule-based chatbot design and were extremely successfully in deeply engaging individuals 

and passing early versions of the Turing test (Colby et al., 1972). ALICE, a generic chatbot 

with source code openly available, has been successfully applied to several domains 

(ALICE, 2002). I utilized a rule-based chatbot system using AIML in this work.  

Both rule-based and corpus-based chatbots are susceptible to errors; these errors 

may originate either in the speech recognition module or in the design of responses. For 

example, with rule-based chatbots, ASR errors may result in keywords that cannot be 
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correctly identified while response design errors may occur when potential utterances or 

keywords are missed or incorrectly identified. Despite the susceptibility to these types of 

errors, chatbots are still successful, largely because individuals have been shown to accept 

a number of errors from a dialogue system and still respond socially if the system’s 

responses are generated with an appropriate degree of interpretability. Social chatbot 

agents can still elicit disclosure, build rapport, increase trust, and improve learning, all 

while experiencing some level of ASR errors (Turkle et al. 2006; Huang et al. 2011; 

Levitan et al. 2016; Forbes-Riley & Litman 2005). Dialogue systems for the tutoring 

domain have shown that perfect automatic speech recognition and natural language 

understanding are not a requirement for functional, effective systems. For example, users 

interacting with ITSPOKE, a spoken dialogue system based on the Why2-Atlas tutorial 

dialogue system, could experience a certain degree of ASR failure without correlation or 

effect on learning gains (Litman & Forbes-Riley 2005, Litman & Silliman, 2004). D’Mello, 

Graesser, and King (2010) explored to what extent ASR errors affected learning gains with 

AutoTutor, an intelligent tutoring system for computer literacy. Comparing a speech-based 

version to a text-based version, they found that there were no significant differences on 

learning gains across modalities up to a word error rate of 0.46. D’Mello and colleagues 

identified the fact that performance did not degrade considering speech recognition errors 

as an indicator of the robustness of AutoTutor’s natural language processing capabilities. 

AutoTutor uses multiple modes of input to identify and produce responses within an 

appropriate degree of interpretability. 

This idea that individuals can still respond positively to systems which generate 

responses based on flawed input or flawed processes was originally put forth by 
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Weizenbaum, the creator of ELIZA. He proposed that speakers will make assumptions 

about their interaction partner. If their partner’s responses are in line with those 

assumptions, the speaker’s image of their partner remains unchanged, undamaged. In the 

case that a response is difficult to interpret, this does not mean a speaker’s image must 

change. Rather a speaker may rationalize the response to arrive at complicated 

interpretations which maintain the reasonableness of the response. If such rationalizations 

become too massive or self-contradictory, then the image will crumble and be replaced by 

another. If I am careful in how I design a system’s responses when errors may be present, 

I may be able to stay within the boundaries of rationalized reasonable interpretations.  

I considered the repercussions of ASR and response-design errors in introducing a 

phenomenon like entrainment to a spoken dialogue system. I know from prior work that 

social interventions can still produce social responses as well as concrete outcomes in 

individuals despite system errors; this appears to be dependent on generating responses 

which fit within a reasonable rationalization of the system’s capabilities. To facilitate the 

production of responses which could fit within a reasonable interpretation of the system’s 

capabilities, I incorporated multiple modalities of input to help provide additional context 

when generating responses. This is described more in Chapter 10.2. 

 

9.4.3 Dialogue Systems for Entrainment 

To produce acoustic-prosodic entrainment in a dialogue system, two additional 

components are required beyond the typical dialogue system structure: (1) a module to 

extract the user’s prosodic features and (2) a method for manipulating the system’s text-to-

speech output to entrain to the user’s features. Extraction of the user’s prosodic features is 
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easily accomplished with a variety of tools including Praat (Boersma, 2002) and 

OpenSmile (Eyben, Wollmer, & Schuller, 2010). For (2), manipulating a system’s output, 

there are three possible approaches – using TTS provided manipulation tools like Speech 

Synthesis Markup Language (SSML) to augment the TTS output, transforming the 

properties of the TTS after it has been synthesized, or selecting pre-recorded audio 

responses which most closely match the acoustic-prosodic properties desired to simulate 

entrainment. Selecting pre-recorded audio is the most limited approach, restricting both the 

number of responses to those which can be pre-recorded as well as potentially limiting the 

extent to which a response can actually ‘entrain’ to the user. SSML and transforming the 

TTS after it has been synthesized are more flexible approaches.  

As mentioned, there are only two systems which have incorporated methods of 

automatic entrainment based on the user’s prosody and each took a different approach to 

adapting the system’s output. Levitan and colleagues utilized Speech Synthesis Markup 

Language or SSML (Levitan et al., 2016). After extracting the user’s prosody, the planned 

TTS output was augmented with the SSML markup tags identified by an ‘entrainment’ 

module. In contrast, Sadoughi and colleagues took the approach of pre-recording audio and 

selecting the audio clip with prosodic features predicted to be the most appropriate given 

the user’s prosody (Sadoughi et al., 2017). They trained a dynamic Bayesian network 

(DBN) using a human-human corpus; the model identified by the network was then used 

to identify appropriate ‘entraining’ responses from a large pool of pre-recorded audio. For 

producing acoustic-prosodic entrainment with a teachable robot, I utilized two approaches. 

I explored transforming the TTS after it has been synthesized and I introduced algorithms 

which can be applied to systems with options to augment the TTS as it is generated.   
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CHAPTER 10 

THE ROBOTIC LEARNING COMPANION 

 

The dialogue system and interaction process of the robotic learning remained consistent 

across the six design iterations and learning companion versions. This chapter, utilizing the 

background knowledge on dialogue systems provided in Chapter 9, presents the general 

dialogue system and interaction process; any differences due to the three learning 

companion versions are summarized. 

 

10.1 GENERAL SYSTEM  

 

Learners interacted with the learning companion using spoken language and a touch-screen 

interface on a tablet computer (Microsoft Surface Pro). The touch-screen interface 

displayed each math problem, presenting each problem separately. The problems were 

additionally broken down into solvable steps. The three learning companions did contain 

slightly different domain content. Given these differences in domain content, the user 

interfaces were visually different. For Quinn, the mathematical content was based on literal 

equations, for Nico and Emma the content focused on ratios, proportions, and unit rates. 

Visuals of the interfaces are shown in Figure 10.1.  

For all companions, the tablet interface supported speech recognition and displayed 

visual progress to the learner as they taught the companion. For Quinn this consisted of a 

progress bar shown at the bottom of the screen. For Nico and Emma, the current step was 

highlighted and enlarged on the screen. When the companion ‘answered’ a step, the 

corresponding table cell was updated from question marks (see Figure 10.1) to the correct 
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answer. Learners were encouraged to move through the problems at their own pace using 

buttons on the UI to advance forward.  

 

 
 

User Interface Design for Quinn 
 

 
 

User Interface Design for Nico and Emma 
 
 

Figure 10.1. User Interfaces for the Three Learning Companions 
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To speak to the learning companion, the learner pressed and held a button on the 

interface while they spoke. The speech interaction was real-time, and the dialogue was 

recorded as the student spoke. After speaking and explaining a step, learners were 

instructed to pause, giving the companion a chance to respond. A gif depicting that the 

robot was “thinking” would appear on the screen to indicate that the companion was 

occupied. During this period, the system would process the input and generate a response. 

The average response time for all companions was less than four seconds.   

 
 

10.2 DIALOGUE SYSTEM 

 

The dialogue system developed was capable of both entrainment and social dialogue for 

the purposes of exploring rapport. The overall structure follows that of typical dialogue 

systems as summarized in Chapter 9. The user’s speech was recorded via a microphone on 

the tablet interface and once they were done speaking, the user’s audio was passed into the 

dialogue system which consisted of four main modules: (1) an automatic speech 

recognizer, (2) a dialogue manager, (3) an acoustic-prosodic feature extractor, and (4) a 

module for prosodic manipulation and text-to-speech generation.  

 

10.2.1 System Overview 

For the automatic speech recognizer, I utilized the HTML5 Speech API available in 

Chrome1. Overall, across all three robotic learning companion implementations, I found 

the word error rate on average was 23.4%.  

                                                 
1 https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API 
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The dialogue manager consisted of several components including a module for 

basic functionality and several modules with additional functionality to enhance responses. 

All three implementations of the learning companion incorporated the basic functionality 

but some of the supplementary modules are found only in Nico and Emma. I describe the 

design of the dialogue manager in more detail in 10.2.2.  

For the acoustic-prosodic feature extraction, the system could extract three 

acoustic-prosodic features:  pitch, intensity, and speaking rate. I utilized Praat for extracting 

all three features. I extracted pitch using Praat’s pitch estimation algorithm which performs 

acoustic periodicity detection based on autocorrelation (Boersma 2006). Minimum and 

maximum fundamental frequencies for pitch estimation were set based on the gender of 

the speaker (i.e. for males, 75 Hz – 300 Hz and for females 100 Hz – 500 Hz). Intensity 

was extracted using Praat’s Intensity Contour algorithm, the mean intensity was calculated 

across the extracted contour, resulting in a value for intensity as Sound Pressure Level 

(SPL) in dB. For speaking rate, I needed a real-time estimation of an individual’s speaking 

rate. I employed de Jong and Wempe’s (2009) approach to extract speaking rate by 

automatically detecting the syllables in a user’s audio and estimating the speaking rate 

based on syllables per second.  

Finally, the prosodic manipulation and text-to-speech generation was unique to 

each iteration of learning companion. I leave the descriptions of that module to the 

following chapters. The overall dialogue system infrastructure can be seen in Figure 10.2.  

 

10.2.2 Dialogue Manager: Basic Functionality  

I utilized a rule-based chatbot system with the AIML framework, making use of the 
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PandoraBots tool for much of the implementation of the AIML (Wallace 2003). I was 

inspired by Gulz and colleagues (2011) who demonstrated the potential of chatbot 

frameworks for learning applications. The AIML framework implements a rule-based 

process of linking keywords to pattern/transform rules as found in seminal chatbot agents 

including ELIZA, PARRY, and ALICE. I utilized this process to develop responses suited 

to the domain content of each of the learning companions. What these means is that for 

each companion, I identified potential keywords in the learners’ utterances which could 

suggest suitable responses on the part of the robot, and I designed rules and transforms 

using these keywords to then generate the robot’s responses. For example, if a learner is 

trying to teach the system how to solve a literal equation such as: 

2𝑥𝑥 + 7𝑦𝑦 = 5.    𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑆𝑆𝑟𝑟 𝑥𝑥, 

 

 
 

Figure 10.2. Overview of Entraining Dialogue System Structure. 
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The learner might begin by explaining, “You need to subtract 7y from each side.” In this 

utterance, I might identify ‘subtract’ as a keyword and this utterance would then match the 

following rule/transform: 

( ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 ∗) →   

( 𝑂𝑂𝑂𝑂𝑠𝑠𝑦𝑦 𝑤𝑤𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠!  𝐶𝐶𝑠𝑠𝑛𝑛 𝑦𝑦𝑆𝑆𝑠𝑠 𝑆𝑆𝑥𝑥𝑝𝑝𝑆𝑆𝑠𝑠𝑒𝑒𝑛𝑛 𝑠𝑠 𝑆𝑆𝑒𝑒𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 𝑠𝑠𝑒𝑒𝑠𝑠 𝑚𝑚𝑆𝑆𝑟𝑟𝑆𝑆 𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠 𝑤𝑤ℎ𝑦𝑦 𝑤𝑤𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠? ) 

The system would then issue the response, “Okay I subtract! Can you explain a little bit 

more about why I subtract?” the simplest design mapped keywords back into responses 

that followed from the limited domain of the problem set and tended to be content-less 

rather than content-full. I then introduced more complex designs where possible to capture 

more explicit content. For example, an additional keyword mapping could capture that the 

learner said to “subtract 7𝑦𝑦”. The rule/transform would be: 

( ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 7𝑦𝑦 ∗) →   

( 𝑂𝑂𝑂𝑂𝑠𝑠𝑦𝑦 𝑤𝑤𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 7𝑦𝑦!  𝐶𝐶𝑠𝑠𝑛𝑛 𝑦𝑦𝑆𝑆𝑠𝑠 𝑆𝑆𝑥𝑥𝑝𝑝𝑆𝑆𝑠𝑠𝑒𝑒𝑛𝑛 𝑠𝑠 𝑆𝑆𝑒𝑒𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 𝑠𝑠𝑒𝑒𝑠𝑠 𝑚𝑚𝑆𝑆𝑟𝑟𝑆𝑆 𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠 𝑤𝑤ℎ𝑦𝑦 𝑤𝑤𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 7𝑦𝑦? ) 

The system would issue the response “Okay I subtract 7y! Can you explain a little bit more 

about why I subtract 7y?” This content-full response would be given a higher priority based 

on the keyword rank for “subtract 7𝑦𝑦”. All keywords were given a rank; a higher rank 

increased the likelihood of a keyword being matched.  

To reduce the effects of ASR errors and enable more content-full responses, I 

incorporated additional information from the tablet interface that learners used to interact 

with the system. This information included the current problem and step. I then considered 

each individual problem-step combination as a separate ‘topic’ with unique keywords, 

phrases, and associated pattern/transform rules. The learning companion would initiate the 

dialogue whenever a new problem or a new step was started. This would set the ‘topic’ to 
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that problem and step. Keywords belonging to the current problem and step were given the 

highest rank; general keywords and phrases not tied to the current problem and step were 

ranked lower and were therefore less likely to be matched first. If a student’s speech could 

not be matched to a specific keyword, a response was selected from a set of ‘generic’ 

utterances. This set contained two types of responses: requests for clarification (i.e. “can 

you please repeat that?”), and general acknowledgements (i.e. “ok sounds good”). 

Within a problem-step, certain keywords when matched could initiate short two to 

three turn dialogue trees where the system would then listen for keywords associated with 

the system’s prior utterances. An example of a short dialogue with dialogue tree is given 

in Figure 10.3. The dialogue is sample dialogue based on the first robotic learning 

companion I explored, Quinn. In the figure, Quinn initiated the dialogue at the start of the 

step. The learner then began an explanation telling Quinn to subtract. This initiated a 

dialogue tree based on the keyword subtraction. Keywords and phrases corresponding to 

subtraction and Quinn’s prior utterances were then given the highest priority.  

Finally, the ability to include social dialogue was also a part of the basic 

functionality. To include social dialogue, I modified the rules/transforms to include social 

content in addition to the domain-based content. The type of social dialogue included was 

dependent on the version of learning companion. I describe the design of the social 

dialogue more in each section on Quinn, Nico, and Emma. As an example, the social 

dialogue implementation for Quinn included positivity or being cheerful. With the keyword 

“subtract 7y” the social dialogue response that would trigger for Quinn would be:  

( ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 7𝑦𝑦 ∗) →   

( 𝑇𝑇ℎ𝑠𝑠𝑠𝑠 𝑠𝑠𝑆𝑆𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑠𝑠𝑤𝑤𝑆𝑆𝑠𝑠𝑆𝑆𝑚𝑚𝑆𝑆!  𝐶𝐶𝑠𝑠𝑛𝑛 𝑦𝑦𝑆𝑆𝑠𝑠 𝑆𝑆𝑥𝑥𝑝𝑝𝑆𝑆𝑠𝑠𝑒𝑒𝑛𝑛 𝑠𝑠 𝑆𝑆𝑒𝑒𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 𝑠𝑠𝑒𝑒𝑠𝑠 𝑚𝑚𝑆𝑆𝑟𝑟𝑆𝑆 𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠 𝑤𝑤ℎ𝑦𝑦 𝑤𝑤𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 7𝑦𝑦? ) 
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10.2.3 Dialogue Manager: Supplementary Modules 

All three robotic learning companions employed the basic dialogue manager functionality 

described in 10.2.2 to generate responses and drive dialogue. For two of the companions, 

Nico and Emma, I introduced several additional modules with advanced functionality to 

help improve system responses. A high-level architecture that summarizes how responses 

were matched to the user dialogue and including these additional modules is given in 

Figure 10.4. I describe the functionality of each these modules in more detail below. 

 

 
 

Figure 10.3. Sample Dialogue Tree Initiated by a Student’s Keyword to Subtract 
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Advanced Explanation Paths 

As described earlier, short dialogue trees could be initiated based on the keywords in a 

student’s dialogue. In the basic functionality, these trees were typically designed for two 

to three turns and were kicked off by common-use keywords with typically one tree to one 

keyword. In this advanced module, I expanded on these trees given the domain content for 

a specific learning companion. I designed the dialogue trees based on specific explanation 

paths. For example, to solve a ratio problem, some students utilize a counting approach 

rather than setting up a ratio. They might explain to the learning companion a counting 

approach. I would use their dialogue to identify that they are using a ‘counting’ explanation 

approach and kick off a dialogue tree which is based on any of the keywords associated 

with that explanation path. Table 10.1 gives an example of the potential keywords and an 

alternative explanation approach for a ratio-based problem. Using this approach, I designed 

the dialogue such that the learning companion would ‘reach’ an understanding of each step 

and problem at the end of each ‘explanation path’ tree.  

 

Prompt for Speech 

In the design, I wanted the companion to exhibit awareness and I wanted the students to 

feel as if the robot was engaged in the interaction. To design the dialogue to help encourage 

this perception, I implemented additional functionality in which the robot would prompt 

the student to engage with them if the student had ceased interacting with it for two to three 

minutes. A random timer was set for between two and three minutes and if no interaction 

was detected, the timer would trigger the robot to initiate dialogue. For example, the robot 

might say “You’ve been quite for a while. Are you thinking?”  



  75 

 

Trigger Explanation Path 

It was possible that the dialogue system would not be able to match or detect keywords, 

particularly if the speech recognition for a given individual was particularly flawed. To 

facilitate the flow of dialogue and avoid such issues, I designed additional functionality to 

 

function DialogueManager(user ฀฀฀฀฀฀฀฀฀฀ current ฀฀฀฀฀฀฀ ฀฀฀฀฀) returns ฀฀฀฀฀฀฀฀  
 
฀฀฀฀฀฀฀฀฀฀฀←Pop the current explanation 
฀฀฀฀฀←Pop the last system utterance 
 
Find the word/phrase ฀  in ฀฀฀฀฀฀฀฀฀ that has the highest keyword rank in 
฀฀฀฀฀฀฀ ฀฀฀฀฀ given ฀฀฀฀฀ 
 

if ฀  exists and ฀฀฀฀฀฀฀฀฀฀฀ is NOT none 
Choose the highest ranked rule ฀ for ฀  that matches ฀฀฀฀฀฀฀฀฀ in 
฀฀฀฀฀฀฀฀฀฀฀ 
฀฀฀฀฀฀฀฀ ← apply the pattern/transform in ฀ to ฀฀฀฀฀฀฀฀฀ 

else if ฀  exists and ฀฀฀฀฀฀฀฀฀฀฀ is NONE 
 Choose the highest ranked rule ฀ for ฀  that matches ฀฀฀฀฀฀฀฀฀ 

฀฀฀฀฀฀฀฀ ← apply the pattern/transform in ฀ to ฀฀฀฀฀฀฀฀฀ 
if ฀  corresponds to an explanation approach: 

฀฀฀฀฀฀฀฀฀฀฀ ← explanation approach 
Push ฀฀฀฀฀฀฀฀฀฀฀ onto memory stack  

else if ฀฀฀฀฀฀฀฀฀฀฀ is NOT none but no keyword applies 
Choose random rule ฀ in ฀฀฀฀฀฀฀฀฀฀฀ given ฀฀฀฀฀ 
฀฀฀฀฀฀฀฀ ← apply the pattern/transform in ฀ to ฀฀฀฀฀฀฀฀฀ 

else (no keyword applies)  
increment count of NONE responses 
if count of NONE responses > rand(3, 4) 

฀฀฀฀฀฀฀฀ ← apply pattern/transform rule from random 
explanation approach 

฀฀฀฀฀฀฀฀฀฀฀ ← explanation approach 
count of NONE responses← 0 

else 

฀฀฀฀฀฀฀฀←Apply the transform for the NONE keyword to 
sentence  

 

return (฀฀฀฀฀฀฀฀) 
 

Figure 10.4. Dialogue Manager Architecture with Advanced Functionality 
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detect if a learner’s speech was continuously unmatched to specific keywords for three to 

four turns. When this occurred, the system would initiate an explanation path for the current 

problem-step and trigger a dialogue tree to begin; with the dialogue tree triggered, the tree 

could be used to provide additional context to facilitate response identification and ensure 

that the companion would ‘reach’ an answer.  

 

Keyword Normalization 

Another modification I added to enhance the system’s responses was to utilize a method of 

normalization to transform words that the ASR would consistently get incorrect to 

keywords I could identify. For example, “multiply” was occasionally recognized as “make 

a tie;” “surface area” was occasionally recognized as “service area.” These normalizations 

helped to improve the generation of responses.  

 

Gesture Generation 

This module enhanced the dialogue by incorporating gesture. Gestures were managed 

through the dialogue manager because they were tied to the verbal responses. After 

Explanation Initial Keywords / Phrases Dialogue Tree 

Utilizing ratios 
“ratio”, “relationship between”, 
“looking at how * related” … 

 

Utilizing counting  
“count”, “add up”, 
 “add together”, “ * plus *”,… 

 

[Other 
explanations…] 

[keywords / phrases…] [different trees…] 

 
Table 10.1. Possible Explanation Approaches for Solving a Ratio Problem 
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identifying an appropriate verbal response, the gesture generator would identify whether 

there was a corresponding gesture that matched the verbal response. There were eight 

emblematic or easily recognizable gestures and they included waving ‘hello,’ nodding head 

as in ‘yes,’ shaking head as in ‘no,’ putting hands on hip to make a point, raising either 

hand, raising hands in celebration, and shrugging. The system identified an appropriate 

gesture based on the content of Nico’s utterance, timing the behavior to that utterance. For 

example, if Nico said “Hello! How are you?” the gesture ‘wave’ would be identified, and 

it would occur during the verbalization of “Hello.” For Nico and Emma, I also enabled 

“autonomous life”, a default capability which introduces a slight, swaying movement and 

listening behavior to indicate engagement and awareness.    
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CHAPTER 11 

DESIGNING PITCH PROXIMITY WITH QUINN 

 

This chapter introduces the first iteration on designing automated entrainment. Motivated 

by the findings in Part I, several initial models for entrainment were identified based on 

local proximity, a form of turn-by-turn matching. I focused on a single feature for local 

proximity—pitch. Local proximity on pitch prominently differentiated communicative 

success (Borrie, Lubold, and Pon-Barry, 2015), entrainment measures derived from pitch 

features were significantly higher in positive interactions (Lee et al., 2010) and entrainment 

on pitch was significantly related to learning (Thomason, Nguyen, & Litman, 2013). There 

are many ways in which local proximity on pitch might be modeled. This chapter describes 

the exploration of several possible designs. Designs were evaluated based on two criteria: 

perceived naturalness and perceived rapport.  

I collected data from four individuals interacting with different entrainment designs 

and using crowd-sourced analysis via Amazon Mechanical Turk, compared the different 

adaptations regarding rapport and naturalness as perceived by third-party observers. In the 

next section of this chapter, I describe the companion, Quinn, in which the entrainment 

designs were implemented. Section 11.2 contains the descriptions of the adaptations. The 

method and procedure for analyzing the adaptations are in 11.3 and the results are in 11.4.   

 

11.1 QUINN: A SOCIAL LEARNING COMPANION 

 

I designed and built Quinn, a social learning companion. For this first iteration, Quinn is a 

virtual teachable agent for literal equations and is present throughout the interaction on a 
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Windows Surface Pro tablet. Quinn is not implemented in the robotic form as the focus of 

this iteration was on the design of prosodic entrainment as described in Sections 11.2.  

Students interacted with Quinn using speech and the tablet interface on which 

Quinn was present; Quinn and the interface are shown in Figure 11.1. Quinn responded to 

the students with spoken language. The speech interaction was real-time, and the dialogue 

was recorded via microphone. Once a student was done speaking, their audio passed into 

the dialogue system described in Chapter 10. For Quinn, the dialogue system 

implementation included only the basic functionality as outlined in 10.2.2; the additional 

mechanisms for enhanced interaction including Advanced Explanation Paths, Prompt for 

Speech, Trigger Explanation Path, and Keyword Normalization were not included for 

Quinn and neither was the gesture generation. For further details on the system, see Chapter 

10. I describe the domain content and specific interface/interaction design in the next 

section and the design of the social dialogue specific to Quinn in 11.1.2.  

 

11.1.1 Domain Content and Interface Design 

Students taught Quinn how to solve literal equations (i.e. “Solve 𝑠𝑠𝑥𝑥 +  𝑔𝑔𝑦𝑦 =  14𝑠𝑠𝑦𝑦 +

 6𝑥𝑥 for 𝑥𝑥”). The web application contained materials to guide the students in their teaching 

of Quinn with the worked-out solutions for each literal equation provided on the interface. 

 

 

Figure 11.1. Quinn and a Sample Problem 
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Up to eight literal equation problems and quizzes were available in the application. The 

application presented one problem at a time and included the worked-out steps to reach a 

solution. The problems were ordered in increasing difficulty. New concepts were 

introduced every two problems; concepts included how to handle multi-step equations, re-

arranging formulas, and factoring. Students walked Quinn through the worked-out 

problems using spoken language, explaining each step. Quinn responded using spoken 

language and had an animated facial expression when speaking, neutral otherwise. At the 

end of each problem, a follow-up quiz was provided. Students asked Quinn to solve the 

quiz, step by step. Quinn solved the quiz independent of the student. Figure 11.1 gives a 

sample problem as shown on the tablet interface.  

 

11.1.2 Social Dialogue Design 

Quinn was a social learning companion and had the ability to add social dialogue to 

responses. The social dialogue content was motivated by the social interaction strategy 

proposed by Bales (1950) and utilized by Kumar and colleagues with their virtual tutoring 

agent (2010). I chose this framework since Kumar and colleagues demonstrated that their 

designed social utterances had positive effects on collaborating students’ communication 

Category Description Social Response Non-social Response 

Solidarity Compliments Ok so we add x. You’re a really 
great teacher! 

Ok so we add x. I get that we are 
adding x here. 

Tension 

Release 

Being cheerful 
Ok so we add x. I’m so happy to 
be working with you 

Ok so we add x. It makes sense that 
we would add x here. 

Off-topic Ok so we add x.  Do you like 
math? 

Ok so we add x. I get adding. 

Agreeing Comprehension 
I hear what you’re saying. You’re 
saying we add x. 

We add x. It makes sense that we 
would add x here. 

 

Table 11.1. Social and Non-Social Dialogue Examples for Quinn 
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and because similar social behaviors were found to have positive effects by Gulz, Haake, 

and Silvervarg (2010) and Bickmore and colleagues (2013). Bales defined three main 

categories of positive socio-emotional behaviors: showing solidarity, showing tension 

release, and agreeing. Examples of social responses Quinn could give in each category are 

given in Table 11.1. Bales based his process on observations of group interactions; 

however, these responses and categories are also supported by human-human peer tutoring 

dialogue analysis which has shown that peer tutors can engage in behaviors which indicate 

solidarity (i.e. praise and encouragement, “come on, I can do this”), tension release (i.e. 

off-topic conversation such as “so what do you do for fun?”) and agreeing (i.e. 

comprehension, “yes, okay, you are right”) (Ogan et al., 2012; Bell et al., 2009). For this 

iteration, Quinn would issue a social response 15-20% of the time. This frequency mirrored 

results from analysis of human-human social responses in collaborative dialogues (Lubold 

2013, Kumar 2010). 

 

 

11.2 THREE METHODS OF PITCH PROXIMITY 

 

In this section, I describe the three forms of pitch adaptation based on the form of 

entrainment known as local proximity and inspired by observations of how human 

conversation partners entrain. These pitch adaptations were implemented in the Prosodic 

Manipulation and TTS Generation module of the dialogue system mentioned in Chapter 

10 and shown in Figure 10.1.  

The three methods of pitch adaptation which operated at the turn-level to mimic 

local proximity are illustrated in Figure 11.2 along with a sample waveform. For all three 
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adaptations, the TTS output was first generated using the Microsoft Speech API. The 

gender of the TTS output was matched to the gender of the speaker; the female voice of 

“Zira” was used to adapt to female speakers and the male voice of “David” was used to 

adapt to male speakers. For all three methods, the system adapted its pitch based on the 

estimated pitch values from the human speaker’s previous turn, as opposed to the longer 

dialogue history. The human speaker’s pitch values were extracted during the acoustic-

prosodic feature extraction phase described in Chapter 10.  

Praat’s pitch estimation algorithm based on autocorrelation was utilized to extract 

pitch features from the non-adapted TTS. One of the three adaptation approaches was then 

applied to the non-adapted TTS. Once modifications were identified and applied, the TTS 

was re-synthesized with Praat’s version of Time-Domain Pitch-Synchronous Overlap-and-

Add (TD-PSOLA). Re-synthesis with TD-PSOLA has the potential to introduce some 

distortion based on speaker characteristics (Longster 2003), which can lead to potential 

Waveform control 
(no adaptation) 

mirror partner shift+contour shift+flatten 

              

 
Figure 11.2. Spectrograms and Pitch Contours of Pitch-Adapted Waveforms 

 F1 F2 

 t p t P 

mirror partner 1.3 .19 1.4 .14 
shift+contour -.11 .91 .06 .95 
shift+flatten -.76 .44 -.71 .48 

 

Table 11.2. Results Comparing Formant Values Before and After Adaptation 
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attenuation of some frequency values and reverberation. To identify if there would be 

issues regarding intelligibility for different female and male frequencies, I reviewed 

differences in the values of the vowel formants produced pre-adaptation and post-

adaptation. Formants correspond to resonances in the vocal tract; vowels are identifiable 

based on formant ranges and there is a clear link between perceived vowel quality and the 

first two formant frequencies. For each adaptation, the resulting formants stayed 

consistently within expected ranges for intelligibility. Comparing pre-adaptation and post-

adaptation values for each method using a paired t-test, there was not a significant 

difference between the formant values produced. The results of the t-tests are in Table 11.2.  

The first method of pitch adaptation introduced was mirror partner. With mirror 

partner, the text to speech output was adapted to the entire pitch contour of the speaker’s 

previous turn by replacing the original contour of the TTS with the contour of the speaker. 

To account and control for differences in utterance length, I resized the speaker’s utterance 

to be the same length as the proposed text to speech output prior to applying the speaker’s 

contour to the output. This approach to adaptation maximized the level of entrainment. 

While mirroring the shape of a partner’s pitch contour might strengthen automated 

measures of entrainment, there is the possibility of “over-adaptation” and of a mismatch 

between pitch contour and syntactic and semantic structure. Shift+contour was an 

alternative method of pitch adaptation that maintains the contour of the original TTS but 

shifts it up or down to match the mean pitch of the speaker. Since entrainment on pitch 

mean has been found to be correlated with learning and rapport, above and beyond other 

attributes of pitch, shift+contour only adapts the pitch mean. I perform this adaptation 
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shifting all the frequencies of the non-adapted TTS output by the difference between the 

mean pitch of the user and the mean pitch of the non-adapted TTS.    

I introduce a third adaptation called shift+flatten.  This adaptation serves as a 

minimum manipulation baseline in respect to the other two approaches. Still adapting on a 

single feature, pitch mean, I flatten the pitch contour of the TTS to the pitch mean of the 

user. The TTS output maps to the average pitch of the student. As this adaptation is 

intuitively the least realistic, it is expected to produce less rapport than the other two 

conditions. Thus, it serves as a baseline comparison for the more sophisticated pitch 

adaptations proposed, in addition to the control, the original synthesized waveform. 

 

11.3 METHODOLOGY AND PROCEDURE  

The three methods of pitch adaptation were evaluated with Quinn, the teachable agent 

described in 11.2. 32 dialogues were collected from four individuals as they interacted with 

Quinn. In each study, an undergraduate college student interacted with Quinn using the 

web application to teach Quinn how to solve eight variable equation math problems. For 

two problems, Quinn spoke with a non-transformed baseline speech. For the remaining six 

problems, Quinn alternated the type of adaptation for each problem. Two full problems 

were given for each type of adaptation; I collected each problem as a separate dialogue for 

a total of 8 dialogues per student. Statistics for the collected corpus are shown in Table 

11.3. The gender of Quinn’s voice was chosen to match the gender of the student. The four 

case studies were gender balanced with two males and two females. The gender of the 

speaker drove the gender of Quinn’s voice. If the student was a female, then Quinn was 

female. If the student was male, Quinn was male. 
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I manually selected 40 exchanges from each of the student-Quinn dialogues. An 

exchange was two adjacent turns by different speakers (i.e. The student and Quinn). I 

selected ten exchanges for the baseline text-to-speech and ten exchanges for each of the 

three types of adaptation, focusing on those exchanges with maximum coherency and 

minimal pausing or silence, eliminating any exchanges where speech recognition may have 

failed. The ten exchanges were evenly split between two scenarios. In the first scenario, 

Quinn was the first speaker in the exchange. In the second scenario, Quinn was the second 

speaker and was responding. With a total of 40 exchanges per student, I utilized Amazon 

Mechanical Turk (AMT), a popular resource for crowdsourcing research tasks including 

annotations, transcripts, and subjective analysis (Buhrmester, Kwang, & Gosling, 2011). I 

used AMT to obtain 10 random, perceptual evaluations per exchange for a total of 400 

evaluations per student or 1600 evaluations. Using third party ratings such as those 

collected through AMT is a standard technique in the evaluation of naturalness and social 

features of dialogue systems (Jurcicek et al., 2011). In addition, avoiding first-person 

ratings allowed us to present all dialogue approaches to each of the four individuals without 

concern for how their perceptions of different approaches might affect their ratings. 

Through AMT, individuals, referred to as workers, were asked to listen to each 

exchange and answer a series of questions regarding the speakers. Each worker had access 

 Mean Std. Dev. 

Dialogue length (min) 5.4 2.1 

Number of turns 30 10 

Turn length (sec) 10.8 4.6 

 
Table 11.3. Dialogue and Turn Statistics for Quinn Corpus 
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to evaluate 160 exchanges (40 per student). To evaluate naturalness, I used Mean Opinion 

Score or MOS (ITU-T, 1994). With MOS, workers were asked to evaluate the quality of 

the voice on a Likert scale of 1-5, where 1 was very poor and 5 was completely natural. 

Workers evaluated both the human speaker and Quinn on this scale.  

For evaluating rapport, I adopted a subset of questions from the rapport scale 

utilized by (Gratch, et al., 2007) and in the own work (Chapter 5). Workers were asked the 

following two questions about the relationship between the speakers on a Likert scale of 1-

5, where 1 is “not at all” and 5 is “a lot.”  In the questions below, Alex refers to the student 

and Quinn refers to the virtual agent. I selected these questions because they target a shared 

feeling between speakers. The responses are averaged for one rapport rating.  

1. Alex and Quinn understood each other 

2. There is a sense of closeness between Alex and Quinn 

In total, 174 workers provided evaluations of the audio. 12% or 21 workers rated 30% or 

more of the 160 exchanges they had access to; 40% of the workers listened to and rated 

only one exchange. In analyzing the results, I treated each rating as the unit of analysis. I 

calculated inter-rater agreement using Krippendorffs alpha (Krippendorff 2011), an 

alternative to Cohen’s kappa designed to handle multiple raters and missing data (i.e. not 

all raters rated every exchange). Like Cohen’s kappa, agreement is most acceptable above 

0.8 and tentatively accepted above 0.66. Agreement here was measured at α = 0.69. 

 

11.4 RESULTS  

I am interested in evaluating how the different methods of pitch adaptation performed with 

respect to two criteria: perceived naturalness and perceived rapport. To analyze the effects 
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of the pitch adaptations in terms of rapport and naturalness, I ran basic statistical analyses 

on the relationship between adaptation type, naturalness, and rapport.  

To assess differences in naturalness, I performed a one-way analysis of variance 

(ANOVA) with the type of adaptation (mirror partner, shift+contour, shift+flatten, and 

control) as a factor and naturalness as the dependent variable. Table 11.4 gives the means 

and standard deviations for each condition. The ANOVA analysis indicated statistically 

significant differences among type of adaptations, F (3, 1599) = 19.9, p < 0.001. Tukey 

post hoc tests indicate that shift+contour was perceived as significantly more natural than 

either mirror partner (p < 0.001) or shift-flatten (p < 0.001). I expected to find mirror 

partner and shift+contour to be as natural as the control. I found mirror partner was 

perceived to be much less natural, on par with shift+flatten. I also found shift+contour was 

not significantly different from the control, where no adaptation was performed (p = 0.52). 

These results lead us to conclude that in pursing implementing an automatically entraining 

system, shift+contour, adapting pitch by shifting the TTS contour, is the most natural of 

the adaptations reviewed and is as natural as a non-manipulated TTS output.  

To identify differences in how rapport was perceived for each of the pitch 

adaptations, I performed a one-way ANOVA with adaptation type as a factor and rapport 

as the dependent variable. Table 11.5 gives the means and standard deviations. I found 

statistically significant differences among the types of adaptations, F (3, 1599) = 5.63, p < 

 Mean Std. Dev. 

control 2.22 1.36 
mirror partner 1.79 1.11 
shift+contour 2.39 1.33 
shift+flatten 1.85 1.15 

 

Table 11.4. Descriptive Statistics for Naturalness on Each Pitch Adaptation 
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0.001. The hypothesis was that mirror partner would result in the most rapport, followed 

by shift+contour. Shift+flatten, I expected to be the lowest. Interestingly, I observed 

shift+contour to be on par with mirror partner. Both indicated higher, equivalent degrees 

of rapport over the control. Using Tukey post hoc tests to analyze which of the pitch 

adaptations were significantly different, I found shift+contour generated significantly 

higher perceptions of rapport than shift+flatten (p < 0.01). Differences between 

shift+contour, mirror partner, and control were not significant.  

Additional follow-up analyses were conducted to try to understand the effects of 

the different types of adaptations.  I examined the average ratings for each student who 

participated, as shown in Table 11.6. I found that for 3 of the 4 students, the raters perceived 

more rapport in the exchanges where Quinn adapted by the shift+contour adaptation than 

in any other condition. Listening to these recordings, I identified an imbalance in terms of 

content spoken across the individual interactions. In most scenarios, Quinn and the student 

engaged in on-task, problem related conversation. However, Quinn was programmed to 

introduce social dialogue 15-20% of the time. For example, 

Q: This is not very fun, are we almost done? 

S:  Math can be fun! But yeah…we're almost done 

Given the possibility the raters were considering the content of exchanges in their 

evaluations of rapport, I annotated the exchanges as either social (off-topic and not about 

 Mean Std. Dev. 

control 3.56 1.17 
mirror partner 3.73 1.07 
shift+contour 3.74 1.07 
shift+flatten 3.35 1.15 

 
Table 11.5. Descriptive Statistics for Rapport on Each Pitch Adaptation 
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the problem), or not social (on-topic and about the problem). In addition, Quinn was 

designed to entrain to the previous turn made by the student. In the exchanges raters 

listened to, I counter-balanced between exchanges where the rater would hear Quinn speak 

first and scenarios where the rater would hear the student speak first. In the latter, the turn 

to which Quinn adapted is audible. I suspected the raters were perceiving more differences 

in the rapport produced when they could hear the speech to which Quinn was adapting. 

To explore the effect of the social exchanges versus non-social exchanges as well 

as the order in which Quinn spoke, I ran a 3-way ANOVA with rapport as the independent 

variable, including the type of adaptation, whether Quinn spoke first or second, and the 

social/not-social annotations as factors. The ANOVA analysis indicated statistically 

significant interactions between all combinations of factors except for the highest order 

interaction (all 3 factors). F-scores and p-values are shown in Table 11.7.  

Finding significant 2-way interactions for all combinations of factors, I ran pairwise 

comparisons for further analysis. In social exchanges, the type of adaptation resulted in 

significantly different levels of rapport. When Quinn spoke second, shift+contour had 

significantly higher rapport than the control (p = 0.03) and shift+flatten (p < 0.001). The 

difference with mirror partner was nearly significant (p = 0.08). Pitch adaptation in non-

  Average Rapport Average Naturalness 

 gender control mirror s-contour s-flatten control mirror s-contour s-flatten 

S1 F 3.61 3.68 3.74 3.38 2.14 1.69 2.41 1.74 

S2 F 3.58 3.70 3.78 3.59 2.36 1.94 2.39 1.93 

S3 M 3.64 3.65 3.80 3.55 2.28 1.74 2.27 1.83 

S4 M 3.79 3.36 3.29 3.25 2.50 1.87 2.05 1.68 

 

Table 11.6. Descriptive Statistics for Each Student in Pitch Adaptations 
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social exchanges or when Quinn spoke first had less of an effect. In reviewing these results, 

differences between the pitch adaptations become the most notable when incorporating 

social/non-social annotations. This suggests that in social exchanges, shift-contour 

produced significantly more rapport than the other adaptations and control, and that in 

considering adaptations for a broader study, shift-contour may be the most optimal and 

effective when an agent is also social. This is supported by the findings in Chapter 6 that 

people tend to entrain more when engaging in off-task, social dialogue.    

I found support for the hypothesis that shift+flatten would result in the least rapport. 

I did not find support for mirror partner as a high-rapport adaptation. Listening to the 

exchanges, this was mostly likely due to the original concern of mismatches between pitch 

contour and syntactic and semantic structure. This was supported by the finding that mirror 

partner is significantly less natural. Considering mirror partner did receive very low 

naturalness scores, the rapport perceived for this adaptation is relatively high. Overcoming 

issues with syntactic and semantic structure with a more nuanced adaptation which 

accounts for contextual dependencies may be worth exploring in the future. 

Factor F-Score p 

Type of Adaptation 6.8 < 0.001 

Social/Non-Social Exchange 1.3 0.25 

Quinn Speaks First/Second 3.6 0.06 

Adaptation x Social Exchange 6.1 < 0.001 

Adaptation x Quinn Speaking 7.5 < 0.001 

Social Exchange x Quinn Speaking 12.7 < 0.001 

3-Way Interaction 2.0 0.11 

 

Table 11.7. 3-Way ANOVA with Rapport as Dependent Variable 
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11.5 DISCUSSION AND CONCLUSIONS 

These results demonstrated that adapting to the speaker does influence naturalness and 

rapport and that different types of adaptations can have positive effects on perceptions of 

naturalness and rapport. Shifting the contour by pitch mean is one form of adaptation which 

sounds as natural as current text-to-speech technologies while significantly increasing 

perceptions of rapport, particularly during social utterances.  In the next Chapter, I describe 

how this adaptation was used in a larger study to explore the effects of proximal 

entrainment on rapport and learning with a robotic form of Quinn.  
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CHAPTER 12 

EFFECTS ON RAPPORT AND LEARNING WITH QUINN 

 

Using the pitch shift contour adaptation from Chapter 11, a larger study was conducted to 

explore the effects of this form of entrainment on rapport and learning. This larger study 

provides insight towards the overall research questions regarding how entrainment can be 

modeled, the effects of entrainment on rapport and learning, and any insights entrainment 

might provide regarding these kinds of interactions.  

For this larger study, I implemented the agent Quinn in a robotic form and 

conducted a between subjects’ experiment. Participants taught Quinn in one of three 

conditions: (1) a social plus entraining condition in which Quinn introduced social 

statements and adapted its pitch via shift+contour, (2) a social condition in which Quinn 

only introduced social statements, and (3) a non-social condition in which Quinn did not 

speak socially or entrain, staying purely on task. In the next section I revisit briefly how 

Quinn was designed and any differences which are present from the agent version 

described in Chapter 11. Section 12.2 describes the procedure and measures; the results of 

the study are given in 12.3 and the conclusions from this study are summarized in 12.4. 

 

12.1 QUINN (REVIEW) 

For this study, Quinn consists of a LEGO Mindstorms base with an iPod mounted on top 

of it representing its face. Like the virtual agent in Chapter 11, Quinn’s facial expressions 

are animated when speaking, and neutral otherwise. Students still engage Quinn via speech 

and a web interface; Quinn an example problem on the interface are shown in Figure 12.1. 
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In this iteration, students teach Quinn six variable equation problems, with the application 

presenting one problem at a time. At the end of each problem, students ask Quinn to solve 

a quiz, step by step.  

As with the virtual agent, Quinn can introduce social dialogue. Social responses 

were generated by creating two parallel dialogue options; a social dialogue and a non-

social dialogue. The ‘social’ dialogue response was selected in the social and social-

entraining conditions and resulted in social utterances 15 – 20% of the time.  

 

12.2 METHDOLOGY AND PROCEDURE 

A total of 48 individuals interacted with Quinn in the one of the three conditions described. 

There were 16 participants in each condition consisting of 8 females and 8 males. 

Participants were undergraduate students between the ages of 18 and 30; all were native 

English speakers. Individuals were randomly assigned to conditions, sessions lasted for 90 

minutes, and were compensated $15 upon completion.  

 

12.2.1 Procedure 

Participants began by completing a 10-minute pre-test on literal equations. They were then 

given a practice exercise consisting of two worked-out examples of literal equations. The 

 
 

Figure 12.1. Quinn (Robotic Version) and an Example Problem 
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participants were asked to explain the problems and how to solve each step out loud. This 

exercise was to help participants adjust to the tutoring task and encourage them to think 

about how they might explain the content. After this exercise, participants watched a short 

video introducing Quinn and the task.  

Participants were told the task consisted of helping Quinn learn how to solve literal 

equations; they should walk Quinn through the steps to solve six problems and they would 

have the opportunity to test Quinn’s understanding through quizzes. Participants were also 

informed they could ‘reteach’ Quinn if Quinn struggled on a quiz by moving back to the 

previous problem. After teaching Quinn all six problems, participants were given a 10-

minute post-test and a short questionnaire assessing their attitudes towards Quinn. If a 

participant had additional availability meaning they could stay longer than the 90 minutes 

of allotted time, I asked them some final interview questions. Outside of availability, no 

other criteria were used to determine which participants were interviewed. The interviews 

were approximately distributed across gender (11 female, 9 male) and condition (6 control, 

6 social, 8 social plus entraining).   

 

12.2.2 Measuring Learning 

Learning gains were assessed with the pretest and posttest scores. I computed normalized 

learning gains according to (Hake, 2002) using (1) to account for prior knowledge. If the 

posttest scores were lower than the pretest scores, I used (2).  

    𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) (𝟏𝟏 − 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑)⁄        (𝟏𝟏) 

    𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑⁄                    (𝟐𝟐) 
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After removing the five participants who scored 100% on the pretest, I found of the 43 

participants remaining, 23 hit a ceiling on their learning gains (scoring 100% on the 

posttest). With 10 individuals at zero gain, 10 individuals who gained in a normal 

distribution, and 23 hitting full gain, I determined analysis would be better served by 

grouping the learners into three groups – no gain, some gain and all gain. The results on 

learning gains are analyzed in this context. 

I also assessed a measure regarding persistence in the interaction by collecting the 

number of times a student retaught Quinn. Quinn was pre-programmed to get the wrong 

answer on two of the quizzes. This re-teaching metric was calculated as the total number 

of times the student retaught Quinn, with four possible values observed: 0, 1, 2, or 3.  

 

12.2.3 Measuring Rapport 

I collected two measures for analyzing social responses: subjective, self-reported rapport 

and observable, verbal rapport-building behaviors. For self-reported rapport, I was 

interested in two kinds of self-reported rapport, general rapport related to feelings of 

understanding and connection and social presence, related to feeling that one’s partner is 

real, present and attentive. For general rapport, I based the questions off work by Huang 

and colleagues (Huang et al., 2011) and Gratch and colleagues (Gratch et al., 2007) who 

developed a rapport scale over several iterations. I adapted their questions to create a nine 

Likert-scale questionnaire directed at capturing general rapport, i.e. feelings of 

connectedness, coordination, and understanding (Appendix A). Cronbach’s alpha for the 

nine questions was .72. I averaged these nine questions to create one representative 

construct for general rapport, referred to as ‘rapport’ in the results.  To measure social 
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presence, I utilized eight Likert-scale questions from the attentional allocation portion of 

the Networked Minds Social Presence Inventory (Biocca 2002, Appendix A). I utilized the 

attentional allocation portion of the survey because attention has been identified as a critical 

element of both social presence and rapport (Tickle-Degnen and Rosenthal 1990). 

Averaging the eight social presence questions, Cronbach’s alpha was .69. I averaged the 

eight questions and refer to this measure as social presence in the results.   

For the observable behaviors of rapport, I based the measures on prior work on 

linguistic rapport as discussed in Chapter 9. I assessed elements of linguistic politeness, 

including praise, formal politeness, inclusivity, and name usage; examples of the behaviors 

can be found in Table 12.1. The detailed coding scheme is given in Appendix A. In 

deciding on a coding scheme for linguistic politeness, I considered that different situations 

create unique interpretations for which linguistic structures are positively polite and may 

build rapport versus hinder rapport. Distinctions were made for any situations in which 

these behaviors may have been used to express negativity. This was rare; in those cases, 

the behavior was not included. Two individuals each independently coded two thirds of the 

dialogues for these behaviors. The average Cohen’s kappa for these behaviors was 0.88. 

Individual kappas are reported in Table 12.1 along with the overall means and standard 

deviations for each condition. To assess how these behaviors differed across conditions, I 

  M SD k 

Praise “Great job”, “Good answer” 2.63 4.01 .79 

Politeness “thank you”, “you’re welcome” 2.98 5.49 .83 

Inclusive ‘we’ or ‘lets’ 26.0 19.5 .98 

Name “That’s right, Quinn”, “okay Quinn” 23.5 17.8 .95 

 

Table 12.1. Descriptive Statistics for Coding of Linguistic Rapport with Quinn 
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aggregated them into a single representative construct of linguistic rapport; Cronbach’s 

alpha was .70.  

 

12.3 RESULTS OF PITCH PROXIMITY ON RAPPORT AND LEARNING 

I evaluated how individuals responded to a teachable robot as they interacted with Quinn 

in one of three conditions – the robot engaged in social dialogue and entrained by adapting 

its pitch (condition = social plus entraining), the robot was engaged in social dialogue but 

did not entrain (condition = social) or the teachable robot did not entrain and was not social 

(condition = non-social). I summarize the results regarding learning, self-reported rapport, 

and linguistic rapport in the next section. I include an analysis of how gender mediated an 

individual’s self-reported and linguistic rapport and then compared the effects depending 

on whether responses were measured as self-reported or linguistic.  

 

12.3.1 Learning Results 

Analyzing learning as gain, I found 10 individuals at zero gain, 10 individuals who gained 

in a normal distribution, and 23 hitting full gain. I determined analysis would be better 

served by grouping the learners into three groups – no gain, some gain and all gain. Having 

grouped the students into three learning groups, I analyzed the learning gains in terms of a 

multinomial logistic regression. However, even with this adjustment, the overall model in 

the analysis including both condition and gender was not significant, Χ2(6) =6.86, p = 0.33, 

and I found that none of the individual predictors are significant.  

I was also interested in assessing whether individuals re-taught Quinn and whether 

differences existed in the degree to which individuals retaught Quinn. I utilized the re-
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teaching metric described as persistence Section 12.2. The means and standard deviations 

for persistence by gender and condition are shown in Table 12.2. I utilized multinomial 

logistic regression to estimate the influence of condition and gender on persistence in the 

interaction, given that I measure persistence in terms of total re-teaching. In the analysis, 

the overall model including both condition and gender was not significant, Χ2(9) =12.35, 

p = 0.19. Looking at the predictors individually, gender is significant when controlling for 

condition. The likelihood of a female persisting in the interaction and re-teaching Quinn 

was 2.13 times more likely than a male, p = 0.03.  

Given the significance of re-teaching in relation to gender, I explored whether re-

teaching was related to learning. I ran Pearson’s chi-squared correlation on the categorical 

learning gains described above. I found a significant correlation between re-teaching and 

the categorical learning gains, with Χ2(6) =17.9, p = 0.006. 

Finally, I assessed social presence and rapport in terms of learning. Running a 

multinomial regression with rapport and social presence, I found the model was not 

significant, Χ2(4) =4.68, p = 0.32. However, in viewing the individual coefficients, social 

presence does approach a significant effect on learning (p = .06). For those individuals who 

 

 Learning Persistence 

Condition Males Females All Males  Females All 

Non-social .72 (.44) .83 (.41) .81 (.33) 1.4 (1.1) 2.0 (.89) 1.7 (1.1) 

Social .34 (.48) .73 (.48) .50 (.54) .57 (1.1) 1.4 (1.3) 1.1 (1.2) 

Social plus entraining .53 (.51) .60 (.43) .56 (.45) 1.0 (1.1) 1.8 (1.2) 1.4 (1.2) 

All Conditions .53 (.48) .71 (.43) .62 (.46) 1.0 (1.1) 1.7 (1.1) * 1.4 (1.2) 

 
Table 12.2. Descriptive Statistics for Learning and Persistence with Quinn. * Significant at 

p < 0.05, ** Significant at p < 0.01 
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gained but did not hit ceiling on their gain, social presence is 1.38 times higher than for 

those individuals who did not gain.  

 

12.3.2 Self-Reported Rapport Results 

I utilized multivariate analysis of variance (MANOVA) to explore how gender mediated 

self-reported rapport, measured as general rapport and social presence, to a social, pitch-

entraining teachable robot. A two-way MANOVA with general rapport and social presence 

as dependent variables and gender and condition as independent variables revealed 

significant main effects for condition (Wilks’ λ = .80, F = 4.41, p = .02) and gender (Wilks’ 

λ = .77, F = 2.54, p = .04, partial eta squared = .124). The interaction between gender and 

condition was not significant. The means and standard deviations are in Table 12.3. 

Performing an analysis of univariate effects to understand the effect of condition, I 

found individuals reported significantly less social presence when Quinn was social but 

did not adapt its pitch, F (2, 42) = 4.0, p = .02. While there was not a significant interaction 

between gender and condition, simple pairwise comparisons of gender indicated that for 

males, the social condition differed significantly from both the social plus entraining (p = 

 Social Presence Rapport 

Condition Males Females All Males Females All 

Non-social 4.63 (.35) 4.75 (.68) 4.69 (.52) 4.58 (.61) 5.35 (1.11) 5.04 (1.06) 

Social 4.05 (.74) + 4.49 (.51) 4.27 (.65) 4.90 (.75) 5.58 (.58) 5.27 (.91) 

Social plus entraining 4.88 (.29) 4.71 (.79) 4.75 (.60) 4.92 (1.36) 5.59 (.78) 5.36 (1.2) 

All Conditions 5.18 (.79) 5.55 (.70) 4.57 (.62) * 4.70 (.97) 5.60 (.71) ** 5.22 (1.05) 

 
Table 12.3. Descriptive Statistics for Social Presence and Rapport with Quinn. * Significant at p 

< 0.05, ** Significant at p < 0.01 
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0.001) and the non-social (p = 0.01) conditions, with males reporting significantly less 

social presence in the social condition, suggesting the males were driving the difference.   

Analysis of the univariate effects of gender revealed that regardless of the robot’s 

behavior within conditions females felt significantly more rapport overall than males, F (2, 

42) = 8.86, p = 0.006. The effect size 𝜂𝜂2 for this difference is large at 0.18. In considering 

social presence, the difference between males and females approached significance, F (2, 

42) = 3.76, p = 0.06, with males reporting less social presence overall.  

One explanation for these results is the potential speech recognition errors made by 

the dialogue system. To analyze the effect of speech recognition errors on rapport and 

social presence, I focused on the output of the dialogue manager. As described in Chapter 

10, if the dialogue manager could not match the student’s words to a specific response, the 

dialogue manager would return either a request for clarification (i.e. “can you please repeat 

that?”) or a general acknowledgement (i.e. “ok sounds good”). I classified the number of 

generic responses Quinn returned when Quinn could not match an exact pattern to a precise 

response and ran an ANCOVA with gender and condition as independent variables and 

social presence and rapport as dependent variables, with the percentage of turns where 

Quinn requested clarification or gave a general acknowledgement as the covariate. I found 

this did not have a statistically significant effect on rapport and social presence (p = 0.41) 

and did not alter the significance of gender and condition on social presence and rapport. 

To summarize, I found individuals self-reported significantly less social presence 

in the social condition. These findings suggest individuals found social dialogue without 

the presence of prosodic entrainment on pitch to be less engaging, indicating consistency 

and balance of design is critical when incorporating social behaviors to build rapport. In 
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the next section, I explore whether these findings are supported by linguistic measures of 

rapport and whether the alignment of social dialogue with entrainment appeared to 

facilitate more rapport-building behaviors in the social plus entraining condition.  

 

12.3.3 Linguistic Rapport Results 

I measured linguistic rapport through individuals’ use of four rapport-building linguistic 

politeness behaviors: name usage, inclusive language, praise, and formal politeness (for 

example, “please” or “you’re welcome”) while interacting with Quinn. I combined all four 

linguistic rapport behaviors into a single construct of linguistic rapport. I expected 

individuals’ use of linguistic rapport to reflect similar findings as with the self-reported 

rapport. I conducted a two-way ANCOVA to examine the effect of condition and gender 

on use of linguistic rapport while controlling for dialogue length. There was a statistically 

significant interaction between the effects of gender and condition on the presence of 

linguistic rapport, F (2, 42) = 5.45, p = .008. In terms of main effects, there was not a 

statistically significant difference in linguistic rapport for the different conditions, F (2, 42) 

= 1.26, p = .29. However, I do observe significant differences by gender, F (1, 42) = 10.6, 

p = .002. The means and standard deviations are given in Table 12.4.   

I explored the significant interaction effect; simple main effects analysis showed 

that females used on average significantly fewer linguistic rapport behaviors in the social 

plus entraining condition as compared to both the nonsocial (p = .03) and social conditions 

(p = .002). Males however did not change significantly in the number of linguistic rapport 

behaviors they used between conditions. In addition, females used significantly more 

linguistic behaviors than males in the nonsocial (p = .03) and social conditions (p = .001).  
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To summarize, these findings indicated that females utilized rapport-building 

behaviors significantly more in the social and nonsocial conditions when compared to 

males and when compared to themselves in the social plus entraining condition. This 

suggests that the robot’s social behavior did influence individuals’ use of these behaviors 

but that it was mediated by gender and potentially that these behaviors may be more 

informative of female responses. If these behaviors are positively related to self-reported 

rapport as I have hypothesized, this may mean that the entraining mechanism failed for 

females, something I did not necessarily observe in the self-reported rapport results. 

However, if linguistic rapport is negatively related to feelings of rapport, then these 

findings align with the self-reported findings while also suggesting that there may be a 

mismatch between how females self-report rapport versus their behavior. It is also possible 

linguistic rapport is not related to self-reported rapport. If this is the case, then these 

behaviors may be indicative of another underlying factor which was influenced by the 

robot’s social behavior in significantly different ways for males and females. I investigated 

the relationship between self-reported and linguistic rapport in the next section.  

 

12.3.4 Relating Self-Reported and Linguistic Rapport 

I utilized the Pearson product-moment correlation coefficient to explore whether there was 

  Non-social Social 
Social + 

Entraining 

Linguistic 

Rapport 

Females 57.9 (29.9) 72.3 (31.0) 28.3 (24.7) 

Males 29.1 (17.3) 19.6 (16.2) 36.3 (32.7) 

Overall 43.5 (27.9) 45.9 (36.2) 32.2 (28.3) 
 

 

Table 12.4. Descriptive Statistics for Linguistic Rapport with Quinn 
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a relationship between self-reported general rapport, social presence, and the measure of 

linguistic rapport. I had hypothesized a relatively simple, positive relationship between 

self-reported measures and linguistic measures. I found that social presence was 

significantly, negatively correlated with linguistic rapport, r (46) = -.44, p = .002; self-

reported general rapport was not significantly correlated with the linguistic rapport, 

although approaches a positive relationship, r (46) = .23, p = .10.  

 Breaking out the correlations by gender, I found that females may be the driving 

force behind the significantly negative correlation between self-reported social presence 

and linguistic rapport, r (22) = -.49, p = .001. For males, social presence and linguistic 

politeness were not correlated at all, r (22) = .05, p = .80. In addition, males approached a 

significant positive relationship between self-reported general rapport and linguistic 

rapport, r (22) = .36, p = .08; for females there was no relationship between general rapport 

and linguistic politeness, r (22) = -.12, p = .57. Figure 12.2 summarizes these findings.  

Gender also appeared to be a significant indicator of individual differences in how 

self-reported rapport and social presence related to use of linguistic politeness. Regardless 

of condition, when males used more praise and politeness, they self-reported feeling more 

rapport. Females on the other hand reported lower feelings of social presence and rapport 

when they used more inclusive language and used Quinn’s name more often. These 

findings suggest that there are individual differences present in how behaviors reflect an 

individual’s internal rapport state and how these behaviors are influenced by the robot’s 

use of social dialogue and entrainment.  
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Figure 12.2. Correlations of Self-Reported and Linguistic Rapport. 
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12.3.5 Understanding Rapport State 

Several interesting observations emerge from the exploration of pitch proximity with a 

social, robotic learning companion. First, it appears that an entraining robot improved 

perception of social dialogue. When social dialogue was present without the pitch 

adaptation, individuals perceived the robot as significantly less socially present. I also 

observed that linguistic rapport as a measure of behavioral rapport was negatively 

correlated to perceptions of social presence, particularly for females, and that females 

especially engaged in more linguistic rapport in the social condition, further supporting 

that the social condition was socially engaging. The results suggest that Quinn’s social 

dialogue influenced how individuals engaged in linguistic rapport and that linguistic 

rapport was indicative of their own underlying rapport, mediated by gender.  

There are several possible explanations for the role of gender in these findings 

regarding linguistic rapport. It is possible females in the study increased linguistic rapport 

behaviors when they felt less rapport because they were attempting to increase rapport and 

build a relationship where they currently did not sense one. According to prior work, 

women are more likely to see conversation as a means for building rapport. While females 

used these verbal behaviors to build a relationship, males may have utilized these verbal 

behaviors as relationship indicators, engaging in linguistic rapport only once a positive 

relationship had been initiated, confirmed, and pushed by their conversational partner. This 

would suggest that for males, linguistic rapport emerged because they felt rapport, not 

because they were trying to build rapport. If this is true, it implies that verbal behavioral 

measures are not indicative of the same underlying rapport state for all individuals and that 

this rapport state may manifest differently in response to social triggers. 
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It is possible Quinn’s social dialogue may have triggered transitions in an 

individual’s underlying rapport state and that for males and females, this state manifested 

differently. Exploring how individuals responded on a turn-by-turn basis to Quinn’s social 

dialogue with their own linguistic rapport may provide confirmation of this. I hope to gain 

insight into whether the introduction of social dialogue in the social and social plus 

entraining conditions caused changes in a user’s underlying rapport state as indicated by 

their linguistic rapport behavior. I explore this in the next section, using the observed 

linguistic behaviors with Quinn’s own social dialogue to predict a user’s underlying rapport 

state and I evaluate how this state changed for different individuals when Quinn was social 

versus when Quinn was social and entrained.  

 

12.3.6 Input-Output HMMs to Model a User’s Rapport State 

I used an input-output Hidden Markov Model (IOHMM), a special type of Hidden Markov 

Model, to explore how an individual’s rapport state can be predicted from their use of 

linguistic rapport and Quinn’s own social dialogue.  Hidden Markov Models have 

historically been applied for understanding hidden states such as emotions, tutoring modes, 

and learner engagement (Nwe, Foo, and Silva 2003; Boyer et al. 2010; Beal, Mitra, and 

Cohen 2007). Once a model has been created, the frequency counts of the estimated hidden 

states can be used to understand the relationship between the hidden state (i.e. tutorial mode 

or learner engagement) and desired outcomes (i.e. learning). For example, Boyer and 

colleagues utilized an HMM to model effective tutoring modes based on observed dialogue 

acts. Correlating the estimated frequency counts of the different tutoring mode states with 

learning, they found significant learning gains associated with state sequences. Beal, Mitra, 
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and Cohen modeled learner engagement; relating the hidden state of learner engagement 

to learning, they identified learner engagement trajectories which directly related to 

learning gains. Bergner and colleagues explored how tutors assist tutees when tutees make 

a mistake (Bergner, Walker, & Ogan, 2017). Utilizing an IOHMM, they compared the 

assistance value of different tutor inputs in helping the tutee correct a mistaken step and 

found successful as well as deleterious patterns in collaborative learning. In the work, I 

utilized an IOHMM to explore whether there is a hidden state associated with linguistic 

politeness, whether I can consider that state to be ‘social’ or reflective of an individual’s 

rapport, and finally, how that state was affected by Quinn’s social behaviors.   

Hidden Markov Models are the simplest form of a dynamic Bayesian network. In 

an HMM the states are unobserved (i.e. hidden), making the HMM a useful model for 

estimating internal conditions such as social state which is only hinted at only by 

observable social cues. HMMs utilize the Markov property and assume the probability of 

the current state depends only on the prior state. In this work, I utilize input-output HMMs 

because they include one additional dependency, where the current state depends not only 

on the probability of the prior hidden state but also on the preceding input (for example, 

whether Quinn is social or not). I give a summary of how IOHMMs operate below but a 

complete description can be found by Bengio and Frasconi (1995). Like an HMM, the joint 

probability distribution of a given sequence of observations (𝑂𝑂1:𝑇𝑇) and hidden states (𝑆𝑆1:𝑇𝑇) 

is based on the Markov property. The distribution is given in Equation 12.1 for a sequence 

of length T.  𝑃𝑃(𝑂𝑂1:𝑇𝑇, 𝑆𝑆1:𝑇𝑇) = 𝑃𝑃(𝑂𝑂1)𝑃𝑃(𝑆𝑆1|𝑂𝑂1)∏ 𝑃𝑃(𝑆𝑆𝑡𝑡|𝑆𝑆𝑡𝑡−1)𝑃𝑃(𝑂𝑂𝑡𝑡|𝑆𝑆𝑡𝑡𝑇𝑇𝑡𝑡=2 )    Eqn. 12.1 
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With IOHMMs, the hidden state at time 𝑠𝑠, 𝑆𝑆𝑡𝑡, is dependent on both the prior hidden state 𝑆𝑆𝑡𝑡−1 and the prior input 𝐼𝐼𝑡𝑡−1. This primarily affects the transition probability, or the 

probability of a particular state given what has already occurred. The transition probability 

can be described by the input (I) and the prior state as shown in Equation 12.2. Given the 

total number of input types (𝐾𝐾) and the total number of state types (𝑁𝑁), the transition 

probabilities can be broken into 𝐾𝐾 separate 𝑁𝑁 ×  𝑁𝑁 transition matrices, one for each input 

type. I report the transition probabilities as 𝐾𝐾 separate 𝑁𝑁 ×  𝑁𝑁 transition matrices. 𝑃𝑃(𝑆𝑆𝑡𝑡|𝑆𝑆𝑡𝑡−1, 𝐼𝐼𝑡𝑡−1)                   Eqn. 12.2 

A model of the network based on the general form of an IOHMM is given in Figure 

12.3. I aggregated Quinn’s social dialogue so that I had two input types (𝐾𝐾 =  2) consisting 

of whether Quinn speaks socially. I analyzed the IOHMMs across the three conditions. For 

the hidden state, I was interested in a state indicative of whether the student is responding 

socially. I proposed two hidden states (𝑁𝑁 =  2), corresponding to whether a student is 

‘socially engaged’ or not. I utilized two states because I did not want to overcomplicate the 

representation, and the measures I am using are more interpretable with fewer states. In 

addition, a model with two states resulted in an acceptably high likelihood while keeping 

the number of parameters suitably smaller than the dataset. For observations, I labeled a 

turn as rapport building if the student used any one of the four behaviors, giving us two 

possible observations (𝑂𝑂 =  2), either linguistic rapport was present, or it was not. 

I trained the HMM for each condition (non-social, social, social plus entraining) on 

sequences composed of each students’ turn-by-turn dialogue with Quinn. Each student had 

taught Quinn six problems. A single sequence consisted of a single student’s turn-by-turn 

exchange with Quinn on one problem. This resulted in 319 sequences with 2545-time 
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slices; each time slice consisted of an observed input and output. All parameter learning 

was carried out using Murphy’s Bayes Net Toolbox for Matlab (Murphy 2001), which uses 

a variation of the expectation-maximization (EM) algorithm. The likelihood manifold has 

local maxima, so I used multiple restarts of EM from different initial values. Using 300 

restarts, I found the ten best runs, in terms of log-likelihood, resulted in values consistently 

within a narrow range. Additionally, I ran models for males and females across conditions 

considering how the underlying rapport state of genders might differ. 

 

12.3.7 Results of IOHMM  

The final models suggested that there is a distinguishable hidden state associated with 

observing linguistic rapport. When linguistic rapport was observed, this was associated 

with a distinct state (S2) which was separate from when linguistic rapport was not observed 

(S1). These states were observable from the observation probabilities given in Table 12.5 

broken out by gender. The state associated with observing linguistic politeness (S2) was 

  
 

Figure 12.3. IOHMM for Exploring the Rapport State of Students 
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also clearly related to Quinn’s social dialogue and adaptation; this was suggested by the 

results of the transition probabilities, which were broken out by males and females across 

conditions and shown as 2 (𝐾𝐾 =  2), 2 x 2 (𝑁𝑁 ×  𝑁𝑁) matrices in Table 12.6. 

Gender differences were present in how the hidden state associated with linguistic 

rapport manifested, particularly when Quinn was social. In the non-social condition when 

Quinn was not social nor entraining, males and females responded similarly. If they were 

in a state which was associated with verbal rapport, they stayed in that state. However, in 

the social condition, when Quinn exhibited social dialogue but did not adapt, I began to see 

a difference in how males and females responded. For males, if Quinn was not social, males 

would either move to a non-linguistic rapport state or they would stay in a non-linguistic 

rapport state. If Quinn was social and the male student was already exhibiting verbal 

rapport behaviors, the male student was likely to continue exhibiting these behaviors. If 

Quinn was social and they were not exhibiting linguistic rapport already, a male student 

had a 50-50 chance of moving to a state associated with linguistic rapport. Females on the 

other hand were more likely to move to a state characterized by linguistic rapport when 

Quinn was NOT social. If Quinn was social, female students were more likely to move to 

a non-linguistic-rapport state. I saw these patterns intensify when Quinn was social and 

adapted. Males were more likely to move to a state associated with observed linguistic 

rapport when Quinn was social and adapted. Female students were more likely to move to 

a state which was NOT associated with linguistic rapport when Quinn was social and 

adapted.  

These results suggest that (1) a hidden state exists which is associated with 

linguistic rapport and is clearly influenced by Quinn’s social behaviors, (2) how this hidden 
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state manifests and the effects of Quinn’s social behaviors on it are strongly mediated by 

gender and (3) males and females entered this underlying state on different social triggers.  

 

12.4 DISCUSSION AND CONCLUSIONS 

Forty-eight college students interacted with the teachable robot Quinn in one of three 

conditions, a social condition where the robot utilized social dialogue, a social plus 

entraining condition where the robot spoke socially and entrained using the pitch 

  Non-social Social Social + Entraining 

 Student is… S1 S2 S1 S2 S1 S2 

Males 
Not exhibiting rapport .92 .13 .95 .11 .75 .12 

Exhibiting rapport .08 .87 .05 .89 .25 .88 

Females 
Not exhibiting rapport .77 .06 .88 .18 .92 .12 

Exhibiting rapport .23 .94 .12 .82 .08 .88 

 
Table 12.5. Observation probabilities for IOHMM; S1 S2 represent the two hidden states 
 
 

  

Next 

State 

Non-social Social Social + Entraining 

 Quinn is… S1 S2 S1 S2 S1 S2 

Males 

Not social 

(K = 1) 
S1 .95 .15 .95 .93 .96 .92 

S2 .05 .85 .05 .07 .04 .08 

Social 
(K = 2) 

S1 --- --- .45 .12 .05 .08 
S2 --- --- .55 .88 .95 .92 

Females 

  S1 S2 S1 S2 S1 S2 

Not social 

(K=1) 
S1 .95 .01 .12 .15 .22 .26 
S2 .05 .90 .88 .85 .78 .74 

Social 

(K=2) 
S1 --- --- .66 .86 .92 .99 
S2 --- --- .34 .14 .08 .01 

 
Table 12.6. Transition Matrices for IOHMM to Estimate Rapport State 
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adaptation, and a non-social condition where the robot neither spoke socially nor 

entrained.  The results of these interactions provided insight into the four research 

questions posed by this thesis on how entrainment might be modeled, the effects of 

entrainment on social responses like rapport, the effects of entrainment on learning, and 

whether modeling entrainment in a teachable robot can provide new insight into human-

human and human-agent interactions.  

This study demonstrated that entrainment can be modeled as a form of turn-by-turn 

pitch adaptation and that this design can have a positive impact on social responses. 

Interestingly, the results suggest that prosodic manipulation as a form of entrainment may 

have served to enhance the positive perception of social dialogue while social dialogue 

without prosodic manipulation decreased perceptions of Quinn’s social presence. In prior 

works, social dialogue has been shown to build rapport but, in this study, social dialogue 

unexpectedly produced the lowest responses, even lower than no social behavior at all. 

Individuals reported significantly lower social presence in the social condition and I found 

individuals increased linguistic rapport behaviors negatively correlated with social 

presence in the social condition while individuals in the social+entraining condition 

reported the highest feelings of social presence and rapport. These findings suggest a single 

channel of social behavior can fail where two channels can succeed, and strongly supports 

incorporating multiple channels of social behavior as an important consideration in 

facilitating rapport. Other work has indicated that the misalignment of multiple behaviors 

can harm perceptions (Meena, Jokinen, & Wilcock 2012). The results here suggest that 

facilitating alignment through pitch proximity can potentially improve social responses.  
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This study did not provide any evidence of entrainment effects on learning. Many 

learners hit ceiling on the posttest, suggesting that potentially the domain content was sub-

optimal for enhancing learning in the given participant group. It is also possible that the 

design of the entrainment was too simple to influence learning. Follow-up studies will 

continue to explore effects of alternative entrainment designs on learning with different 

domain content suited to the given participant group.  

The interaction results with Quinn provide interesting insights into human-human 

and human-agent interactions, particularly regarding gender and the degree to which 

gender indicates individual differences present in social responses. It is not surprising that 

males and females might respond differently to social behavior from a robot and exhibit 

different linguistic rapport when we consider the background work of Chapter 9, which 

suggests that females may respond more positively to social behavior from a robot and in 

general tend to use linguistic rapport more often. Compared to the males, females felt 

significantly more rapport for the robot overall. They also changed how they used linguistic 

rapport across the different conditions, using more linguistic behaviors associated with 

rapport in the nonsocial and social conditions. I found females used these verbal behaviors 

when they felt less rapport as opposed to more rapport for Quinn, and they were more likely 

to stay or move to a social state (i.e. states not associated with linguistic rapport) when 

Quinn was not engaging in social dialogue.  Males on the other hand reported significantly 

low social presence in the social condition and were more likely to stay or move to a social 

state when Quinn was already social. These findings have several interpretations with 

implications regarding interactions. One interpretation is that females utilized linguistic 

rapport to build rapport while males used it to express rapport. This interpretation is aligned 
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with how males and females have been found to use and interpret conversation where 

females tend to view conversation as a means for building relationships while men are 

more likely to see conversation as a tool. This supports the theory that the verbal behaviors 

explored here might represent different rapport building strategies, and suggests that when 

these behaviors are observed, they may be utilized in different ways to assess responses. 

An alternative interpretation is that males and females had different initial social 

inclinations towards Quinn and this resulted in different rapport responses. I measured the 

linguistic rapport behaviors based on theories of rapport and politeness; in human-human 

interactions, politeness is more commonly associated with initial encounters with strangers. 

As individuals get to know one another, rapport increases and politeness decreases. The 

longer people know each other the less polite they tend to be and the more rapport they 

tend to feel. I observed females used fewer of the rapport behaviors in the social plus 

entraining condition. Females may have been more comfortable with viewing Quinn as a 

‘teachable’ entity that could learn, being more likely to anthropomorphize Quinn and 

expect Quinn to be social. As a result, when Quinn engaged in social dialogue and 

entrained, females were more likely to accept Quinn’s social behavior as genuine and treat 

Quinn as a friend, dropping the social niceties of linguistic politeness I use with strangers. 

In contrast, males followed a more traditional path. Feeling less rapport in general, males 

were less comfortable with Quinn. Quinn was a ‘stranger’ that they could potentially 

develop rapport with, but they did not feel as if Quinn was their ‘friend.’ I found 

confirmation of these attitudes in the post interviews, where females were more likely to 

refer to Quinn as “my friend” and “we’re best friends now,” males were more likely to 

describe Quinn as “an interesting robot” and “decently complex.” This suggests that 
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individuals who are more prone to social interaction with a robot will respond with more 

familiarity to a robot’s social behaviors; they will be more inclined to rapport overall, and 

this will impact their behavioral responses accordingly. If this interpretation is accurate, 

this has implications for the design of social interaction for different individuals – for those 

who are more inclined to social behavior, social interaction models may move to more 

quickly to familiar behavior than for users who are less inclined to social interaction.   

Towards assessing the four research questions posed by this thesis, the overall 

results of this study highlight the complexities inherent in measuring responses as self-

reported rapport versus observable rapport. I found males and females responded very 

similarly to the conditions, but this was not immediately obvious from their self-reported 

scores. The work suggests that self-reported scores may be more informative for some 

individuals than for others and the addition of verbal behaviors can provide more insight 

into those individuals for whom the self-report is less informative. In addition, self-reported 

rapport measures were not aligned in the same direction as the verbal rapport behaviors I 

collected, particularly for females. The results emphasize the importance of assessing 

social responses like rapport from multiple dimensions and that when using verbal 

behaviors to gain insight into an individual’s underlying feelings, individual differences 

such as gender should be considered because the underlying state indicated by their verbal 

behavior is not the same. That state appears to manifest and be triggered differently.   

This iteration on designing entrainment focused on entrainment as local proximity 

on pitch. Overall, the work in this chapter demonstrated that modeling entrainment based 

on a form of pitch proximity can produce complex self-reported and linguistic rapport 

responses rooted in individual differences. However, pitch proximity did not perform 
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significantly better than no social behavior at all and did not observe result in effects on 

learning. The next few chapters line up the next iteration on the design of entrainment for 

a social robotic learning companion by first focusing on the dialogue of the companion and 

then introducing a new design for local pitch entrainment.  
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CHAPTER 13 

ENHANCING DIALOGUE THROUGH ITERATIVE DESIGN 

 

In this chapter, I investigate how I can enhance the design of the dialogue of the robotic 

learning companion. In Chapter 12, promising results on the use entrainment emerged in 

that it appeared to improve perceptions of social dialogue. However, the social dialogue 

performed poorly on its own, resulting in significantly lower social presence, and no 

observable effects on learning. Given the success of social dialogue in prior work, this was 

unexpected and presents a challenge when trying to assess the rapport-building potential 

of entrainment as a complementary dialogue behavior. It is possible there were missed 

opportunities in the robot’s dialogue to foster better learning experiences as well as better 

social experiences; alternative designs of social dialogue may produce better outcomes. 

This chapter explores those alternative designs with the goal of identifying a more optimal 

social dialogue design to be implemented with explorations of entrainment.  

As a strategy for the design of the dialogue, I concentrate on how the robot’s verbal 

behaviors can create social self-efficacy experiences, or interactions that may aid learners 

in improving their self-efficacy, their belief that they can succeed in a domain. I focus on 

self-efficacy as a motivator for the design of the dialogue for several reasons. One, self-

efficacy in STEM plays a major role in learner persistence and success and has been found 

to correlate with learning. Two, self-efficacy is difficult for learners to build on their own, 

but the teachable robot may be an ideal means for assisting learners in building self-

efficacy. Three, self-efficacy has been theorized to be influenced by a series of social 
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experiences (Bandura, 1977). These social experiences provide an excellent guide for 

designing and evaluating dialogue strategies. These social experiences include: 

1. Mastery experiences, facilitated by experiences where learners successfully teach 

the robot 

2. Vicarious learning experiences, where a social model exemplifies good learning 

practices 

3. Social persuasion, through social interaction learners are convinced of their 

success as domain experts 

Bandura further hypothesizes that a learner’s rapport, or sense of connection, with a 

collaborating partner, might enhance the effects of these pathways.  

4. Building rapport, or a feeling of connection, with the learner  

In this chapter, I examine the design of dialogue to foster these social experiences within 

the context of Nico. Like Quinn, Nico is a teachable robot for mathematics, but unlike 

Quinn, Nico is a Nao robot with a humanoid body and can introduce realistic gestures in 

addition to spoken dialogue. The focus of this chapter is on the design of dialogue, but 

Nico as a Nao robot enables future exploration of other embodied modalities.  

To explore the design of the dialogue, I present the results of a multi-phase iterative 

design process with 14 learners; through this process, I explore how Nico’s dialogue can 

foster social, self-efficacy-building experiences. The goal is to identify a design of dialogue 

that can be used more successfully with entrainment to build rapport. Towards that goal, I 

pose the following research questions: 
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RQ 1: How do different dialogue design strategies based on human-human peer 

tutoring and theories of rapport enhance mastery, vicarious experience, social 

persuasion, and rapport with a teachable robot? 

RQ 2:  How might individual differences, such as initial self-efficacy, influence 

responses to different dialogue design strategies in a teachable robot? 

Motivated by the literature on peer tutoring and rapport, I iterated on the design of Nico’s 

dialogue for each social experience. I explored how Nico’s dialogue can facilitate mastery 

by balancing the challenge learner’s face in articulating knowledge while enabling them to 

feel successful. I investigated how Nico’s dialogue can model different learning practices 

such as question-asking and optimism and spark a corresponding response in the learner as 

vicarious experience. I explored both subtle and overt approaches to social persuasion. 

Finally, I explored rapport by iterating over rapport signaling behaviors of friends versus 

strangers. I analyzed learners’ responses in each phase, yielding six design 

recommendations with an emphasis on how different individuals might benefit from 

different strategies. These design recommendations are then utilized in the design iterations 

for prosodic entrainment, described in Chapters 14, 15, and 16.  

 In the next section, I describe more about Nico and how learners interacted with 

Nico. In 13.2, I describe the methodology and then I describe the design of each phase and 

the results. I conclude with a brief discussion and a summary of recommendations. 

 

13.1 NICO: A SOCIAL, ROBOTIC LEARNING COMPANION 

For exploring dialogue design, I utilized the teachable robot Nico. Nico was a Nao robot 

that learners could teach about middle school mathematics. To interact with Nico, learners 
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utilized spoken dialogue and the tablet interface described in Chapter 10. After speaking, 

the learners’ audio would pass into the dialogue system; for Nico, the dialogue system 

implementation included both the basic functionality and all the supplementary modules 

detailed in Chapter 10. The learning domain for the teachable robot was reasoning about 

ratios. The system included seven narrative-style ratio word problems; in this study, 

learners taught Nico four of the problems. The problems were based on the Common Core 

Standards for 6th grade (Common Core Standards Initiative, 2010). In addition to the 

narrative, the problems included a table, a common format for teaching ratios. Each row in 

the table was considered a problem ‘step.’ For each problem, Nico and the learner were 

given partial information; Nico would request the learner’s help in how to use ratios to 

solve for the missing information. An image of an example problem is given in Figure 13.1. 

Learners interacted with Nico using spoken language and a touch-screen interface 

on a tablet computer (Microsoft Surface Pro) that displayed each problem. The UI 

 
Figure 13.1. Example Ratio Word Problem with Table 
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displayed visual progress as the learner moved through the problems. To speak to Nico, 

the learner pressed a button on the interface. After they are finished speaking, a notice 

would appear on the interface indicating that Nico was ‘thinking’ while the system 

processed the input and generated a response. Average response time was less than four 

seconds. The UI tracked progress as the learner guided Nico through each problem step at 

their own pace, using buttons to advance forward. The current step was highlighted and 

enlarged on the screen. 

 

13.2 ITERATIVE DESIGN OF DIALOGUE 

 With the platform described above, I can iterate over the design of a teachable robot’s 

dialogue and explore (1) how different dialogue design strategies might enhance mastery, 

vicarious experience, social persuasion, and rapport, and (2) the role of individual 

differences in response to different strategies.  

 

13.2.1 Method 

Fourteen participants between ages 10 and 13 (M: 11, SD: 1.0, 4 female/10 male) 

participated across three exploratory design iterations with 5 participants (1 female/4 male) 

in the first phase, 5 (2 female/3 male) participants in the second phase, and 4 participants 

(1 female/3 male) in the final phase. All participants were native English speakers. Sessions 

lasted 90 minutes. Participants were recruited via flyers and emails shared during local 

programs offered to middle schoolers on the university campus.   

The procedure for each session was the same across all phases. Participants began 

by completing a 10-minute pretest on ratios. Next, each participant was given a pre-survey 
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on self-efficacy and comfort-level towards robots. Before interacting with Nico, 

participants were given a few minutes to review the worked-out solutions to the problems 

they were to teach. Participants then watched a 3-minute video introducing Nico. After the 

video, Nico initiated a brief ‘introduction’ interaction by saying “Hello, it’s nice to meet 

you. What is your name?” The ‘introduction’ gave participants an opportunity to practice 

talking to Nico before teaching.  Participants utilized the tablet and spoken dialogue to 

teach Nico and moved through the problems at their own pace. Time to complete teaching 

the problems varied from 12 to 35 minutes. After the interaction, participants completed a 

post-survey; twelve participants also took a 10-minute posttest (isomorphic to the pretest). 

I then conducted structured interviews; the same questions were asked of every participant. 

To evaluate the design and impact of each phase, I collected self-reported measures 

of rapport, self-efficacy, and learning gains and performed a comparative analysis on the 

interviews, experimenter observations, and dialogue transcripts. For the self-reported 

rapport, I posed a set of 14 Likert scale questions about rapport to each participant. The 

questions were based on a combination of prior work exploring rapport in human-human 

(Tickle-Degnen and Rosenthal, 1990), human-agent (Cassell, Gill, and Tepper, 2007), and 

human-robot interactions (Lubold, Walker, and Pon-Barry, 2016). Questions related to 

feelings of general rapport (i.e., “Nico and I worked well together”), positivity (i.e., “I liked 

Nico, Niko liked me”), attention (“Nico paid attention to me”), and coordination (“I was 

awkward in talking to Nico”). I asked participants in post-interviews to explain their 

understanding and interpretation of each survey question; these validations enabled small 

iterative changes to improve the wording. I aggregated the questions for each participant 

into an average rapport score. 
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Self-efficacy towards math was measured with six questions based on work by the 

Friday Institute for Technology (2008). Participants answered the six questions both before 

and after interacting with Nico. Averaging the responses, I calculated whether participants 

experienced a change in self-efficacy as post-score minus pre-score. Additionally, I asked 

how comfortable individuals were interacting with robots and human-looking robots. 

Finally, I calculated learning from the pre- and post-tests as a normalized learning gain 

score, as recommended in (Hake, 2002).  

I focused the qualitative analyses on the interviews, experimenter observations, and 

transcripts of the interaction dialogue. Since I am interested in identifying the degree to 

which the dialogue can influence social experience, I coded the data for themes regarding 

mastery experience, vicarious experience, social persuasion, and rapport. A set of decision 

rules for identifying themes, as suggested by Miles, Huberman, and Saldana (1994), were 

identified. For example, for mastery to be present, the learner must give evidence they feel 

Nico learned. An example decision rule for mastery was: participant is marked as having 

felt a degree of mastery based on the presence of either (a) did the learner give any 

reference to Nico having ‘learned’ or (b) did the learner mention any observations 

regarding Nico’s learning (i.e. “Nico said ‘I understand’ so he was learning”). Two 

researchers compared rules, themes and analyses to validate consistency; findings were 

triangulated across all data to ensure all pieces were mutually supportive.   

 

13.2.2 Phase I 

In Phase I, I began with dialogue which might foster mastery, vicarious experience, social 

persuasion and rapport based on human-human peer tutoring. To foster mastery, Nico 
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challenged participants to explain each step thoroughly before reaching an understanding 

of the solution. To foster vicarious experience and social persuasion, I introduced a 

question-answer design based on human-human peer tutoring (Graesser and Person, 1994) 

which found that tutees typically ask questions with low specificity. I designed Nico’s 

dialogue as approximately 80% questions with a tendency towards low specificity. In 

addition, Nico was responsive, giving a sense of paying attention by acknowledging 

answers to questions. To build rapport, I based the dialogue design on behaviors suitable 

Phase One Phase Two Phase Three 

User:  Nico, first you’re 
going to look at the 
ratio between the 6 
and the 2. You can 
set it equal to 9. 

Nico:  Okay but I’m not 
sure I get it. How 
do we do that?  

User:  You put 6 over 2 
equal to 9 over 
something. 

Nico:  Oh, okay like in a 
fraction? 

User:  Yeah exactly 

Nico:  I get it. We put 6 
over 2 equal to 9. 
And then what do 
we do? 

User:  Then you’re gonna 
cross multiply 2 
times 9. 

Nico:  So, then we multiply 
and then what do we 
do? 

User:  Nico, first you’re 
going to look at the 
ratio between the 6 
and the 2. You can 
set it equal to 9. 

Nico:  Oh okay! Great! 
We put 6 over 2 
like in a fraction?  

User:  Yeah exactly and it 
is equal to 9 over 
something 

Nico:  These problems are 
hard, but I think I’m 
getting it, thanks to 
you! Now do we 
multiply 9 by 2? 

User:  Yes, so you’re gonna 
cross-multiply to get 
18 

Nico:  I get it; you’re so 
helpful!  What do we 
do after we have 18?  

User:  Nico, first you’re 
going to look at the 
ratio between the 6 
and the 2. You can 
set it equal to 9. 

Nico:  So, we put 6 over 2 
like in a fraction, 
then we can use the 
ratio to figure it out.  

User:  Yeah because you 
have two ratios, so 
you can multiply 

Nico:  Oh okay!  So, we can 
multiply.  

User:  Yes, so you’re gonna 
cross-multiply to get 
18 

Nico:  Sweet! So, then we 
have 9 times 2 is 18. 

 

Table 13.1. Example Dialogue from Each Phase of Dialogue Design 
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to strangers in peer tutoring with an interest in whether it is better for Nico’s dialogue to 

model that of a stranger or a friend. In human-human peer tutoring, tutees who strangers 

are ask more questions and these questions tend to be shallow (Madaio, Ogan, and Cassell, 

2016); tutors and tutees who are strangers are politer (Ogan et al. 2012b). Nico’s dialogue 

already included questions; I further designed these to be shallow and politer. Table 13.1 

gives an example of the dialogue.  

Five participants took part in this phase, 4 males and 1 female. The results for the 

rapport, change in self-efficacy and qualitative observations are summarized in Table 13.2. 

I found that for mastery experience four of five participants in this phase were not 

convinced of Nico’s learning, reporting Nico only “kind of learned” (P1, P2). I observed 

no evidence of vicarious experience. Participants’ did not appear to experience or observe 

Nico’s model of question-asking and attention through responsiveness. The majority of the 

participants in this phase did not exhibit any form of social persuasion; they did not feel 

like Nico learned and felt that they were not successful as tutors. The one participant who 

felt like Nico learned did not attribute Nico’s success to himself. P5 felt that Nico 

succeeded despite his own flaws as a tutor. Finally, participants were largely neutral in the 

degree of rapport they felt for Nico. Few of the participants exhibited any sense of general 

rapport for Nico, and while participants responded in the interviews that while they ‘liked’ 

% of 
Decision 

Rules Met 

  Self-

reported 

rapport 

∆ in Math 

Self-

Efficacy 
 Mastery Rapport 

Vicarious 

Experience 

Social 

Persuasion 

 0–20%  Phase 1     3.52 (1.2) .16 (.19) 
 20–50% Phase 2     3.91 (1.2) .50 (.20) 
 50–75% Phase 3     4.67 (.29) .68 (.17) 
 75–100%        

 

 

Table 13.2. Results and Observations for Each Dialogue Design Phase 



  126 

Nico (P1, P2, P3), Nico was still ‘a robot, not a person’ (P2, P3). Differences in verbal 

behaviors emerged; unlike the others, P5 praised Nico and was more inclusive. 

Individuals overall did not appear to be having productive social experiences; I 

found no evidence of mastery, vicarious experience, social persuasion or rapport. I did find 

one participant with dissimilar responses, which suggests individual differences play a 

pertinent role in these types of experiences. 

 

13.2.3 Phase II 

In the first design phase, I attempted to facilitate experience of mastery by challenging 

learners to explain each step to Nico. However, they clearly did not experience mastery. It 

was possible the content of the problems and act of tutoring is challenge enough; for Phase 

II, I increased the speed at which Nico understands and I increased the level of specificity 

to see how this influences mastery. For vicarious experience, I kept the question-based 

design and responsiveness indicating attention, but I explored whether other learning 

practices may be more suitable to vicarious experience with Nico. Positive social behavior 

during learning and staying optimistic in the face of challenging problems is correlated 

with learning outcomes (Pampaka, Williams, and Hutcheson, 2012). I introduced positivity 

(i.e. “Oh okay! Great!”) and optimism (i.e. “these problems are hard, but I think I’m getting 

it”) into Nico’s dialogue. For social persuasion, I had explored a subtle approach in Phase 

I; in Phase II, I introduced an overt design by framing messages to give outright 

encouragement success as a tutor (i.e. “You’re so helpful!”). While these messages could 

be perceived as disingenuous, participants’ belief in themselves may be positively 

influenced. Finally, for rapport, ‘stranger-like’ behaviors may have been distancing but it 
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was also possible there were too few dimensions of behavior. I incorporated additional 

rapport-building behaviors while maintaining a model consistent with that of a stranger. 

Individuals who are strangers may introduce more positivity when building rapport 

(Tickle-Degnen and Rosenthal 1990). Increasing Nico’s positivity to build rapport aligned 

with supporting vicarious experience and social persuasion.  

Five participants took part in this design phase, 2 females and 3 males. I found an 

increased number of participants (4 of 5) exhibited mastery, feeling Nico learned and that 

this learning was due to their tutoring. They noted that when Nico was specific, as in “Oh 

I guess I divide six by three?” (P7), they felt he was learning from what they told him. I 

still did not see any acknowledgement from the participants of vicarious experience; they 

did not comment on Nico’s question-asking, attention, or positivity and optimism. In terms 

of social persuasion, while most of the participants in this phase felt Nico had learned, few 

felt they were “good” tutors. It is possible I over-simplified the process for explaining steps 

to Nico, leading learners to feel Nico was just very smart, very intelligent, as one participant 

noted - “I didn’t explain it very well, but he was really smart, so he got it”. Also, P8 felt 

Nico’s praise, designed to socially persuade the learners, was “undeserved.” Finally, 

average rapport was higher in this phase. All five participants in post-interviews expressed 

higher engagement and two expressed feelings of accountability. These two learners also 

had the largest corresponding changes in self-efficacy, and praised Nico, “Good job” and 

“Nice job.”  

In this second design phase, evidence of productive social experiences increased. 

More participants expressed a sense of mastery, higher social engagement, and behaviors 

expressive of rapport. However, experiences of social persuasion in the form of feeling 
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responsible for Nico’s success and especially evidence of vicarious experiences of good 

learning practices were not substantial.  

 

13.2.4 Phase III 

In the second design phase, I observed positive responses to mastery. However, I also 

observed that individuals felt Nico was “very smart” and they did not experience social 

persuasion. The prior phase may have over-simplified the tutoring task in a way that could 

not be overcome by either subtle or overt persuasion and contributing to feelings that 

Nico’s praise was disingenuous. I re-adjusted the level of challenge required in explaining 

to Nico how to solve the problems where Nico is slightly slower to understand than in 

phase II. I also did not see substantial evidence of vicarious experience; for this phase, I 

focused on how increasing rapport might influence vicarious experience. For rapport, I 

emphasized behavior which would typically be found between friends rather than 

strangers. For example, Madaio, Ogan, and Cassell (2016) found that tutees who are friends 

tend to verbalize problem-solving statements more often than asking questions. I modified 

Nico’s dialogue to incorporate statements about problem solving.  

For this final phase, I had four participants take part, 3 males and 1 female. Again, 

I found evidence that participants experienced mastery, implying that slowing Nico’s 

understanding did not influence whether participants felt like Nico learned. I did find 

evidence of vicarious experience. Participants commented on how teaching Nico was like 

teaching a friend and three participants noted the positivity of Nico’s learning behavior. 

For example, P11 stated that he “doesn’t get mad” and “Nico doesn’t get frustrated at you” 

(P13), he stays “positive.” Participants also noted Nico “doesn’t get distracted as people 



  129 

tend to do” (P13) and was a good listener (P12). All four participants in this phase gave 

evidence of feeling socially persuaded that they taught Nico. It was “because they 

explained it well that he understood it” (P11, P12, P13). In post interviews, participants’ 

comments reflected feelings of accountability in helping Nico learn as well. This phase had 

the highest rapport compared to the two previous design iterations; participants commented 

Nico “reminds me of my friend,” is “pretty cool,” “funny,” and “cute.” Verbal behaviors 

when interacting with Nico showed two out of the four participants praised Nico. I found 

their use of praise similar to prior phases. However, one participant gave Nico a little sass. 

(P13: “Thank you, Nico. Now get back to the questions!”).  

This iteration resulted in the most evidence of social experiences for enhancing self-

efficacy. Participants continued to express a sense of mastery and high expressions of 

rapport. I finally saw evidence that individuals vicariously experienced models of good 

learning practices, and individuals not only felt success in the task, but they expressed 

feelings of responsibility for that success. 

 

13.2.5 Cross-Phase Trends 

In addition to qualitative observations, I measured rapport, self-efficacy, and learning. The 

average rapport and change in self-efficacy are summarized for each design phase in Table 

13.2. While participants in different design phases experienced different interactions, I 

explored cross-phase trends for insight into overall design directions. I found a significant 

correlation (r = .71, p = .02, n = 10) between rapport (M = 4.0, SD = .9) and learning gains 

(M = .47, SD = .2). I also found that rapport is significantly correlated with change in self-

efficacy (M = .46, SD = .3) across all participants (r = .62, p = .03, n = 14). Change in self-
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efficacy was not correlated with learning gain (r = .46, p = .17, n = 10). These results 

support the theoretical argument that rapport is related to learning and self-efficacy and 

imply designing to enhance rapport may result in positive outcomes.  

I did not observe a correlation between self-efficacy and learning. While this may 

be due to the iterative design and the small sample size, it is possible the relationship is 

obscured by individual differences. Within each phase I observed a single individual who 

was very socially engaged, from their self-reported rapport to their interview responses and 

verbal behaviors. Regardless of phase, these individuals praised Nico more, included Nico 

in the learning process with inclusive language, and were more likely to anthropomorphize 

Nico. Viewing Nico as socially and cognitively capable, these learners had high social 

responses, a low bar for social experience, and higher gains. Comparatively, individuals 

with the lowest rapport and the lowest change in self-efficacy (P3, P6, and P8) responded 

to Nico with less inclusive language, little to no praise, and spoke of Nico as “the robot.” I 

found two other individuals, who interacted with Nico in phase III, reported initial self-

efficacy scores as low as P3, P6, and P8; however, their change in self-efficacy was much 

higher. This suggests the third design phase may have been more effective for individuals 

with low self-efficacy.  

 

13.3 SIX DESIGN RECOMMENDATIONS 

In this paper, I described Nico, a fully autonomous teachable Nao robot for mathematics 

learning that can interact with learners using natural language. I explored through iterative 

design (1) how different dialogue design strategies can foster four social, self-efficacy 

experiences: mastery, vicarious learning, social persuasion, and rapport and (2) how 
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individual differences influence responses to different dialogue design strategies. The final 

design, which yielded the highest self-reported feelings of self-efficacy and rapport, was 

the most successful at fostering these four experiences. It consisted of human-robot 

dialogue based on two human learners who are friends and introduced a moderate level of 

difficulty for achieving mastery experience. Overall, I found several design suggestions: 

1. For mastery, dialogue design should provide the learner with the impression they 

are effective; if the robot reaches an answer too quickly, this reduces feelings of 

effectiveness. Design that incorporates equal question-asking with problem-solving 

statements can facilitate mastery. 

2. For both vicarious experience and social persuasion, the analysis suggests if 

learners do not feel adequate rapport, they are less likely to have genuine social 

experiences, and this will influence their overall self-efficacy. This implies initially 

focusing design on fostering rapport.  

3. To foster rapport, designing dialogue based on that of friends may produce stronger 

responses. I am not suggesting designing a robot to act like a long-time friend from 

the first interaction but targeting initial design strategies to incorporate ‘friend-like’ 

moves in initial interactions. 

4. Different dialogue designs interact with learners’ social predispositions and 

attitudes towards robots. Problem-solving statements, positivity, and high 

specificity may increase positive effects for individuals who are less inclined to 

social interaction with robots and may influence a positive change in self-efficacy. 

5. For individuals with initially low self-efficacy, design for fostering social 

experiences is more critical. Individuals with initially high self-efficacy responded 
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positively across all phases while individuals with initially low self-efficacy 

responded positively only to the third design phase. 

6. Gesture design should potentially differ depending on the learner’s initial level of 

self-efficacy. I did not perform a full analysis of the design of gesture, keeping 

emblematic gestures and autonomous life consistent. However, individuals with 

lower self-efficacy strongly disliked Nico’s autonomous life movement, while 

individuals with high self-efficacy preferred it.  

 

13.4 CONCLUSIONS 

 

With Nico and the work performed in this chapter, some of the limitations observed in 

Quinn’s dialogue in Chapter 12 may have been addressed. With the iterative design 

performed here, there is support for the use of different dialogue strategies to create a more 

optimal learning experience. With the next iteration on entrainment, these dialogue design 

strategies may perform more optimally than the design used previously with Quinn.  

Moving beyond the application of this dialogue design and the specific insights 

presented in this chapter, the results of this work demonstrate that Nico can be a suitable 

platform for exploring a larger space of design questions in learning companion 

interactions. Unlike Quinn, Nico has the potential as a humanoid robot to explore both the 

effects of dialogue and gesture on social learning experiences. For example, we can explore 

how small variations in the design of dialogue and the combination of dialogue and gesture 

create social experiences that might have a large impact on learning and motivation. In the 

following chapters, this platform is used to iterate on the design of entrainment and explore 

how it influences rapport and learning.  
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CHAPTER 14 

 EFFECTS ON RAPPORT AND LEARNING WITH NICO 

 

In Chapter 12, the exploration of pitch entrainment with Quinn, a Lego Mindstorms robot, 

resulted in positive effects of entrainment on perceptions of social presence but there were 

no learning effects. There are several possible explanations for the lack of effect on 

learning. On the one hand, the implementation of entrainment may have been overly 

simple. On the other, many students were at ceiling on the posttest, and thus the domain 

content may have been too easy and prevented us from detecting effects.  

In this chapter, I iterate on the design of entrainment taking into consideration the 

results from Quinn as well as insight from human-human interactions. With Quinn, 

entrainment was modeled as proximity on pitch, meaning the robot matched its pitch to the 

user turn-by-turn. Human-human entrainment and theory on rapport suggest that as an 

alternative design, convergence may be more optimal for building rapport. Convergence 

occurs when speakers grow more similar over a series of dialogue turns, over time. While 

both proximity and convergence on pitch have been found to be related to learning 

(Thomason, Nguyen, & Litman, 2013; Ward & Litman, 2007; Sinha & Cassell, 2015) and 

rapport, rapport is often defined according to three constructs: attention, positivity, and 

coordination (Tickle-Degnen & Rosenthal, 1990). Theoretically, as coordination increases, 

so does rapport. Entrainment as convergence is an ideal model of increasing behavioral 

coordination, suggesting that an agent which converges may build more rapport. A learner 

who feels more rapport may learn more as described in the background work on learning 

companions in Chapter 9. 
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This study introduces the next design iteration on entrainment as pitch convergence. 

Pitch convergence is implemented as part of the interaction mechanisms of Nico and I 

explore its effects on learning with middle school students. Nico was introduced in Chapter 

12 and is a Nao robot that learners can teach how to solve ratio problems. It interacts with 

the learner using spoken dialogue and realistic gesture. In addition, Nico uses social 

dialogue based on the most successful dialogue design introduced in Chapter 12. This 

design includes social dialogue strategies found in other AIED systems like praise, 

enthusiasm, politeness, and inclusive language (Saerbeck et al., 2010; Lane et al, 2015; 

Maldonado et al., 2005). Dialogue of this sort has been shown to influence learning and 

was the most successful design in the results from Chapter 12.  

I evaluate the influence of acoustic-prosodic entrainment with Nico using three 

conditions: a social-entraining condition, where Nico entrains and speaks socially, and 

two baseline conditions: a social baseline, where Nico speaks socially but does not entrain, 

and a non-social baseline, where Nico neither speaks socially nor entrains. These three 

conditions are analyzed in terms of effects on social responses and learning, and, prompted 

by prior work and the findings from Chapter 12, the responses of different genders are also 

analyzed. For this chapter, three research questions are proposed which are related to the 

overall goals of this thesis: 

RQ 1:  How does entrainment as pitch convergence influence learning in 

interactions with a social, robotic learning companion? 

RQ 2: How does a social robotic learning companion which entrains via pitch 

convergence build rapport? 

RQ 3: How are the effects of pitch convergence mediated by user gender? 
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Overall, this thesis is focused on understanding how we can model entrainment, the effects 

of entrainment on rapport and learning, and increased understanding of human-human and 

human agent interactions. Answering these proposed questions will provide insight into 

these over-arching questions. It seems highly probably that when Nico entrains via 

convergence and speaks socially, learners will report feeling more rapport and achieve 

greater learning gains when compared to the social and non-social baselines. With the 

enhanced social dialogue from Chapter 12, the social baseline should result in higher 

rapport and learning gains than the control.   

The next section briefly reviews the design of Nico as a learning companion. In 

14.2, I describe the implementation of acoustic-prosodic entrainment as pitch convergence. 

The third section describes the evaluation study at two middle schools with 72 participants. 

The results of this study are given in Section 14.4, and I end the chapter with a discussion 

of the implications of these results.  

 

14.1 NICO (REVIEW) 

 

This study made use of the same version of Nico as described in Chapter 13. As described 

in Chapter 13, Nico was an autonomous, Nao teachable robot for middle school 

mathematics. The domain content and method of interaction are the same as described 

previously. In this study, Nico’s dialogue is based on the results from Chapter 13. The 

baseline, non-social dialogue pulls from the dialogue design strategies for encouraging 

mastery and was meant to foster learning by encouraging students to attend to the problem 

and elaborate on their knowledge (Roscoe & Chi, 2007).  Nico’s responses encourage 

learning by prompting for explanations and providing feedback to encourage learners to 
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feel that they are succeeding in helping Nico. 

Nico can also speak socially. This social dialogue is designed to be social based on 

the third design phase of Chapter 13. The dialogue is also augmented with social content 

introduced in prior work (Saerbeck et al., 2010; Lane et al, 2015; Maldonado et al., 2005) 

and thought to be successful in building rapport. These behaviors included using the 

learner’s name, inclusive language, praise, enthusiasm, and off-task dialogue. Table 14.1 

depicts social and non-social dialogue.  

 

14.2 DESIGNING PITCH CONVERGENCE 

 

In this iteration, entrainment is implemented as local convergence on pitch. Convergence 

is a form of entrainment where speakers gradually grow closer in their speech features over 

time; they adapt over the course of a conversation. Local convergence refers to this 

phenomenon happening on a local, turn-by-turn level. Individuals converge towards one 

another over a series of turns and then ‘reset,’ moving apart, typically when there is a 

 Non-Social Dialogue Social Dialogue Strategy 

Nico: 

Okay so I setup a ratio with 2.5 
over 10. But then what do I 
do? 

Awesome! So, we setup a ratio 
with 2.5 over 10. But then what 
do we do? 

Enthusiasm 

Inclusive 

Learner: 
So, then you can reduce it, or I 
guess simplify it to 1 over 4 

So, then you can reduce it, or I 
guess simplify it to 1 over 4 

 

Nico: 
Oh, I simplify? How do you 
know I can do that? 

Sounds great! So, we simplify? 
How do we know we can do 
that? 

Enthusiasm 

Inclusive 

Learner: 
Because we know that 2.5 can 
go into 10 four times 

Because we know that 2.5 can go 
into 10 four times 

 

Nico: 
Oh, I get it. So, then I have 1 
over 4? 

Oh, I get it! Thank you for 

explaining, [learner name]. 

You’re a great tutor. So, then we 
have 1 over 4? 

Politeness 

Praise 

Name usage 

 
Table 14.1. Example of Non-Social and Social Dialogues with Nico 
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change in topic or context. I continue, as in prior work, to focus on pitch for the 

implementation of convergence as pitch is known to be an important feature for conveying 

metacommunicative information. Pitch convergence has also been found to be related to 

learning in prior work and was weakly correlated with rapport.  

I explored local convergence on pitch by gradually matching Nico’s mean pitch to 

the learner’s mean pitch over a series of turns. The learner’s mean pitch was extracted from 

their immediate prior utterance. Nico would speak with a mean pitch that was closer and 

closer to the learner’s pitch at each turn. To adapt Nico’s pitch, the entrainment algorithm 

builds on results of Chapter 11, using the same method of shifting the pitch contour found 

to perform successfully in that work. This method involved shifting the text-to-speech 

(TTS) output up or down such that the mean of the fundamental frequency of the TTS 

utterance matches a target value. That target value is calculated using the mean pitch or the 

mean fundamental frequency of the learner’s turn immediately prior.  

 
 

Figure 14.1. Mean Pitch Values for a Learner and Nico with Entrainment 
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This work differs from the entrainment calculation for Quinn as described in 

Chapter 11 with respect to the target value calculation. As described in Chapter 11, the 

robot mirrored the learner’s mean pitch, meaning the target value was the mean pitch from 

the learner’s utterance, target value = learner pitch. In this chapter, the calculation mimics 

local convergence by considering the number of turns which have passed, whether this is 

a new problem, and Nico’s current mean pitch. Within a single problem context, the 

distance between Nico’s mean pitch and the learner’s mean pitch is gradually reduced. The 

target value to shift Nico’s pitch is determined by the learner’s pitch and the number of 

exchanges that have passed (one exchange = learner speaks, Nico speaks). Depending on 

the number of exchanges that have passed, Nico’s pitch is shifted to be within a certain 

range of the learner’s pitch (e.g., 0-1 exchanges: 50 Hz, 2 exchanges: 40 Hz, …, > 8 

exchanges: 0 Hz). Thus, after 8 exchanges, Nico’s mean pitch will equal the learner’s mean 

pitch.  I identified 8 as the number of exchanges to which Nico should converge based on 

the average number of exchanges per step in 18 pilot evaluations. When Nico and the 

learner moved to a new problem, Nico would ‘reset’ and temporarily stop converging for 

one turn. Nico has a baseline pitch of approximately 230 Hz. To ‘reset,’ Nico speaks with 

a pitch at that baseline. Figure 14.1 depicts the changing mean pitch values as Nico 

converged and reset to the learner over a series of turns across two problems. 

One additional restriction was placed on the adaptation. Nico will only adapt up to 

±75 Hz, to reflect a realistic entrainment distance. Nico speaks with the same voice for 

both males and females, a version of the default Nao text-to-speech voice, with a baseline 

pitch of 230 Hz. This means Nico will adapt within the range of 155 Hz – 305 Hz. I tested 
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the pitch convergence with four middle school students (2 female/2 male) and validated 

that the mechanisms of entrainment were consistent.  

 

14.3 METHODOLOGY AND PROCEDURE 

Using the pitch convergence approach, I conducted a between-subjects experiment in 

which learners taught Nico how to solve ratio-based problems in one of three conditions: 

(1) non-social: Nico exhibits dialogue meant to foster a learning experience and does not 

introduce social dialogue or entrainment, (2) social: Nico encourages social interaction and 

rapport through social dialogue, and (3) social + entrainment: Nico introduces equivalent 

social dialogue and additionally entrains via convergence on pitch. Across all three 

conditions, the experimenter instructions and the content of the activity were held constant. 

These three conditions mirror the experiment performed with Quinn in Chapter 12 to 

provide additional insight into how this new iteration on entrainment performs with an 

enhanced version of social dialogue.  

 

14.3.1 Procedure for Exploring Pitch Convergence 

Participants were 72 middle-school students from two public middle schools in the 

Southwestern United States. 51% of the students were recruited from one school and 49% 

from the other, with a mean age of 11.25 (SD = 0.47). The gender breakdown is given in 

Table 14.2 along with statistics regarding the dialogue. Sessions lasted 60 minutes and took 

place at the participant’s school. As shown in Figure 14.2, students sat a desk with a Surface 

Pro tablet in front of them. Nico stood on the desk next to the Surface Pro, to the right of 

the participant. Three participants experienced technical issues during the experiment and 
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were excluded from the results. Thus, 22 participants remained in the non-social, 23 

participants in the social condition, and 22 participants in the social-entraining condition.  

Participants began with a 10-minute pretest and a short pre-survey to evaluate their 

initial self-efficacy towards math and tutoring. The participants were then given a few 

minutes to review the ratio problems and the worked-out solutions. After watching a short 

video depicting how to interact with Nico, students engaged in a teaching activity with 

Nico for 30 minutes. After the activity, they completed a 10-minute posttest and a survey 

on self-efficacy, rapport, and their goals.  

 

14.3.2 Measuring Learning 

To measure learning, I utilized a pretest-posttest design with an A and B form of the test. 

The two forms were isomorphic and counter-balanced within condition (half of the 

 
 

Figure 14.2. Students Interacting with Nico at the Two Middle Schools 

 
Females Males 

Total Turns  

M (SD) 

Words per 

Turn 

M (SD) 

non-social 13 11 141.7 (37.0) 8.13 (4.5) 
social dialogue 13 11 124.9 (28.6) 8.56 (3.4) 
social dialogue + entrainment 13 11 123.8 (26.5) 10.7 (4.9) 

 

Table 14.2. Gender Breakdown and Dialogue Statistics per Session 
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participants in each condition received test A as the pretest with test B as the posttest, and 

vice versa). The tests consisted of 10 questions around ratios, mostly procedural with some 

conceptual. Examples are shown in Figure 14.3. The full pretest and posttests can be found 

in Appendix B. I piloted and iterated on the design of the questions through 18 pilot studies, 

evaluating timing and applicability of questions. To analyze learning, I used both the 

pretest and posttest scores in statistical analyses and I also calculated the normalized 

learning gains according to Hake (2002). If the posttest was lower, I used (2): 

 gain = (posttest – pretest) / (1 – pretest) (1) 

 gain = (posttest – pretest) / (pretest)   (2) 

 

14.3.3 Measuring Rapport 

I measured both self-reported and linguistic rapport in this study. Self-reported rapport was 

assessed with 12 questions designed and developed based on Tickle-Degnen and 

Rosenthal’s understanding of rapport as being composed of three parts: attention, 

positivity, and coordination. Questions for positivity were developed based on measures of 

rapport proposed by Gratch and colleagues as well as the definition of positivity. For 

 
 

Figure 14.3. Example Problems from Pretest and Posttest 
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attention, I designed the questions based on the attentional component of the Networked 

Minds Social Presence Inventory which was used to measure social presence with Quinn 

in Chapter 12. I drew upon measures proposed by Sinha and Cassell (2015) for 

coordination. Given the age group, I designed and iterated over the questions in a series of 

14 pilot studies, adjusting the questions to target the desired measures while still being 

understandable to middle schoolers. I finalized four questions assessing positivity, four 

questions measuring attention, and four questions for coordination (Appendix B). I 

averaged the rapport questions to create a single representative construct with an acceptable 

internal reliability (Cronbach’s α = 0.83).  

To assess linguistic rapport, I coded for similar verbal rapport-building behaviors 

as in Chapter 12. I assessed the learners’ dialogue for elements of linguistic politeness, 

including praise, formal politeness, inclusivity, and name usage. I utilized the same coding 

scheme as given in Appendix A with one modification. In addition to praise, politeness, 

inclusivity, and name usage, some learners exhibited empathy for Nico through their 

dialogue. For example, Nico would prompt the student for help by saying “I’m not sure 

what to do” and some students responded to this with statements such as “That’s okay! I 

can help you.” In addition to the verbal rapport behaviors for praise, formal politeness, 

inclusivity and name usage, I also coded for instances where the student exhibited empathy 

  M SD k 

Praise “Great job”, “Good answer” 1.2 2.5 .75 

Politeness “thank you”, “you’re welcome” .42 .9 .80 
Inclusive ‘we’ or ‘lets’ 9.8 11.9 .97 
Name “That’s right, Nico”, “So Nico…” 1.8 4.4 .96 
Empathy “Me too, Nico”, “I can help you” .54 1.0 .71 

 

Table 14.3. Descriptive Statistics and Kappa Ratings for Linguistic Rapport 
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for the robot. Examples of the behaviors can be found in Table 14.3. Two individuals each 

independently coded the dialogues for these behaviors. The average Cohen’s kappa for 

these behaviors was 0.84. Individual kappas are reported in Table 14.3 along with the 

means and standard deviations for the behaviors as they occurred across all conditions. For 

analysis, I summed the total observed behaviors into a single representative construct of 

linguistic rapport for each participant; the statistics for the total linguistic rapport are given 

in Table 14.4.  

 

14.3.4 Self-Efficacy and Other Measures 

In addition to rapport and learning, measures of self-efficacy around math and tutoring 

were also collected. The measures were based on work by the Friday Institute for 

Technology (2008) and guidelines set forth by Albert Bandura on measuring self-efficacy. 

The questions were on a Likert scale of 1 to 5 and included four questions on their tutoring 

self-efficacy, such as “I can help others learn”, and four questions on their self-efficacy 

towards math and ratios, such as “I am good at math.” The full set of questions can be 

found in Appendix B. Participants answered all eight questions both before and after 

interacting with Nico. I averaged the tutoring and math questions to obtain four scores: 

tutoring self-efficacy (Cronbach’s α = 0.47) and math self-efficacy (Cronbach’s α = 0.58) 

prior to interacting with Nico and tutoring self-efficacy (Cronbach’s α = 0.69) and math 

self-efficacy (Cronbach’s α = 0.62) post interacting with Nico.  

The results of the work with Quinn in Chapter 12 suggested that individual 

differences such as those hinted at by gender may influence how one approaches and 

perceives social behavior from a robotic learning companion. These individual differences 
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may encompass an individual’s prior experiences, bias, and interaction goals. In an initial 

exploration of these kinds of variables which lead to individuals perceiving Nico’s social 

behavior differently, I asked participants what their goal was in teaching Nico. In learning 

interactions, individuals with social goals may learn more (Ogan et al., 2010) and respond 

to social behavior from the robot differently. Three people hand-coded the goal responses 

for social goals versus task goals.  

 

14.4 RESULTS OF PITCH CONVERGENCE ON RAPPORT AND LEARNING 

I report the results for learning and rapport where individuals interacted with Nico, the 

teachable robot, in one of three conditions: a social-entraining condition where Nico was 

both social and entrained, a social condition where Nico was only social, and a non-social 

where Nico was neither social nor entraining. Studies were conducted across two schools. 

After analyzing differences between schools, there were no significant differences or 

interactions with school by condition or gender on learning or rapport. I therefore report 

the results without the additional factor of the school.  

 

14.4.1 Learning Results 

With learning, I explored whether the social-entraining condition resulted in greater 

learning than the social and non-social baselines by analyzing learning gains in a two-way 

analysis of variance (ANOVA) with condition and gender as the independent variables and 

gain as the dependent variable. Table 14.4 gives means and standard deviations for gain by 

condition and gender. I found the gain was significantly different across conditions, F (2, 

63) = 6.06, p = 0.004. Partial eta squared was .16, a medium effect size. Gender was not 
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significant, F (1, 63) = .05, p = .82 and the gender by condition interaction was not 

significant F (2, 63) =2.13, p = 0.12. Tukey post-hoc analyses indicated significant pairwise 

differences for the social-entraining condition, with the social-entraining condition 

resulting in significantly more learning than the non-social (p=.005). The social condition 

approached a significantly higher gain than the non-social (p = .06). I did not find any 

differences between the two social conditions, (p = .6).  

The findings regarding learning were further supported with a repeated measures 

ANOVA with pretest and posttest as the dependent variables and condition and gender as 

the independent variables. I observed a significant effect of condition on learning, F (2, 63) 

= 3.56, p = .03. Gender was not significant, F (1, 63) = .9, p = .34. The condition by gender 

interaction on learning was also not significant though it does appear to be approaching 

significance, F (2, 63) = 2.77, p = .07. Evaluating the differences between conditions with 

 
Non-Social Social 

Social-

Entraining 

Learning Gain .04 (.08) .15 (.04) .23 (.04) 

Pretest .20 (.04) .20 (.03) .24 (.04) 

Posttest .27 (.04) .33 (.04) .42 (.04) 

Self-Reported Rapport 4.1 (.12) 3.8 (.18) 4.1 (.13) 

Linguistic Rapport 10 (2.0) 22 (3.3) 26 (3.9) 

Pre-Tutoring Self-Efficacy 3.5 (.72) 3.2 (.70) 3.2 (.68) 

Post Tutoring Self-Efficacy 3.4 (.77) 3.1 (.94) 3.3 (.90) 

Pre-Math Self-Efficacy 3.3 (.55) 3.2 (.89) 3.3 (.81) 

Post Math-Self-Efficacy 3.3 (.78) 3.2 (.92) 3.4 (.74) 

Dialogue Error (WER) 22.2 (8.3) 24.9 (10.4) 25.4 (8.1) 

 

Table 14.4 Descriptive Statistics for Learning and Rapport Across Conditions 
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post-hoc analyses reveals similar outcomes with the social-entraining resulting in 

significantly higher learning than the non-social condition, p = .04.  

Additionally, I analyzed differences in posttest scores while controlling for the 

pretest in an ANCOVA. I found a significant main effect for condition, replicating the 

previous analyses, F (2, 62) = 5.19, p = .008. Gender is not significant, F (1, 62) = .99, p = 

.32; however, the gender by condition interaction is significant, F (2, 62) = 4.84, p = .01. 

Comparison of the means shows that significant differences in the posttest for condition 

follow the same trend as the other analyses, with the social-entraining condition resulting 

in a significantly higher posttest than the non-social. In comparing the gender-by-condition 

interaction, it appears that males learned the most in the social-entraining condition (mean 

= .491) and females learned the most in the social condition (mean = .347).   

Based on the theoretical relationship between learning and social motivation, it 

seems possible that the social-entraining condition resulted in higher learning gains due to 

enhancing social responses. This is explored further with the analysis of rapport in the next 

sections. There is a potential gender-by-condition interaction regarding the performance 

on the posttest, suggesting that males may have responded more positively to the social-

entraining condition but there is no general learning by gender interaction.  

 

14.4.2 Self-Reported Rapport Results 

Given the results found with Quinn in Chapter 12 and the theoretical relationship between 

rapport and entrainment, we can hypothesize rapport to be higher for the social-entraining 

condition. The self-reported means and standard deviations for rapport by condition are 

given in Table 14.4. I first explored if rapport and learning gain were correlated. They were 
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not: Pearson’s r = -.115, p = .347. I then explored if rapport differed by condition by 

analyzing rapport in an ANOVA with condition and gender as independent variables. I 

found the hypothesis was rejected. There were no significant differences in rapport across 

conditions, F (2, 63) = .751, p = .48, η2 = 0.02. There was also no effect of gender, F (1, 

63) = .04, p = .84, η2 = .001 or gender by condition, F (2, 63) = 1.49, p = .23, η2 = 0.04. 

I found the lack of difference in self-reported rapport across conditions surprising, 

especially given that there were significant differences in learning. Prior work has 

suggested that the length of dialogue turns may play a role in learning and potentially 

rapport (Rose et al, 2003; Litman et al., 2006). While every learner interacted with Nico 

for thirty minutes regardless of condition, there may have been differences in number of 

turns and the number of words per turn issued by each learner. The means and standard 

deviations for the total number of turns and total number of words are given in Table 14.2. 

I explored whether the total number of dialogue turns and the average number of words per 

turn for each learner played any role in their responses. However, I did not find any 

differences across conditions in the number of turns exchanged, F (2, 63) =1.22, p = .30, 

or words used, F (2,63) =1.7, p = .19. I also did not find any significant influence of turns 

or words on rapport or learning.  

There are several possible explanations for why self-reported rapport did not differ 

across conditions as one might expect it would. One explanation may be that Nico was 

very successful in building rapport across all conditions and that the measure ‘hit ceiling.’ 

An alternative possibility is that a single post-session survey may not capture the changes 

in rapport which would reveal it increasing within and across conditions. Self-reported 
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rapport is also notoriously hard to measure. Analysis of linguistic rapport, given in the next 

section, may provide insight into whether one of these explanations is possible. 

 

14.4.3 Linguistic Rapport Results 

Like self-reported rapport, we might hypothesize linguistic rapport to be higher in the 

social-entraining condition. I analyzed differences in linguistic rapport with an ANCOVA, 

controlling for the length of dialogue as a covariate. I found significant differences across 

conditions, F (2, 62) = 7.39, p = .001. I did not observe significant differences between 

males and females, F (1, 62) = 2.3, p = .137 nor was there a significant gender by condition 

interaction, F (2, 62) = .98, p = .38. Post-hoc tests on the estimated marginal means with 

Bonferroni correction indicated that linguistic rapport in the social-entraining condition 

was significantly higher than in the non-social control, p = .001. The social condition also 

had significantly more linguistic rapport than the non-social control, p = .02. These findings 

suggest that, given the linguistic rapport changes across conditions, social factors are being 

influenced by the robot’s social behavior. In the next section, I explore the relationship 

between linguistic rapport, self-reported rapport and learning. 

 

14.4.4 Relating Self-Reported Rapport, Linguistic Rapport, and Learning 

In the exploration of entrainment with Quinn in Chapter 12, I found that for some 

individuals, self-reported rapport was not always positively reflected in their linguistic 

behavior. For females, higher use of linguistic rapport was related to lower feelings of 

social presence. I investigated whether the same phenomenon re-occurred here by first 

exploring whether the self-reported measures for rapport were correlated with use of 
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linguistic rapport. I found a significant, positive correlation between linguistic rapport and 

self-reported rapport, r (65) = .317, p = .007. The strength of the correlation is moderate 

but present. Individuals who self-reported higher rapport also used more linguistic rapport. 

Analyzing the relationship between self-reported rapport and linguistic rapport by gender, 

the correlation trends positive for both males and females. For males, the correlation is 

significant, r (30) = .39, p = .02; it is not significant for females, r (35) = .26, p = .10.  

Turning to learning, linguistic rapport was significantly correlated with posttest 

score, r (65) = .25, p = .03. However, a partial correlation between linguistic rapport and 

posttest controlling for pretest was not significant, r (64) = .16, p = .19. I analyzed this 

further by exploring by gender. I found that for males, the relationship between linguistic 

rapport behaviors and posttest scores while controlling for pretest was significant, r (29) = 

.39, p = .02. For females, it was not significant, r (34) = .04, p = .80, suggesting that for 

males, the use of linguistic rapport behaviors may be more indicative of their learning.  

 

14.4.5 Self-Efficacy 

I measured self-efficacy on tutoring and math as a part of the pre and post surveys given to 

participants. The means and standard deviations are reported in Table 14.4. Traditionally, 

self-efficacy is not measured pre to post on such micro-scale interactions (where the 

intervention is not recurring and is of short duration); however, I was curious whether 

responses might change from pre to post interaction with Nico. I explored this with a 

repeated measures ANOVA with the pre and post self-efficacy scores as the dependent 

variables and condition and gender as the independent variables. I performed this analysis 

with both the math self-efficacy and tutoring self-efficacy scores. I did not observe 
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significant effects for math on condition, F (2, 63) = .08, p = .9, or gender, F (1, 63) = 1.04, 

p = .31. I also did not observe significant effects for tutoring on condition, F (2, 63) = .40, 

p = .67, or gender, F (1, 63) = .64, p = .43.  

 I also explored whether the post self-efficacy scores appeared to be related to any 

of the other measures I collected, including self-reported rapport, linguistic rapport, and 

learning gain. Post math self-efficacy was positively correlated with rapport, r (67) = .24, 

p = .04 but not linguistic rapport, r (67) = .01, p = .9, or gain, r (67) = .10, p = .41. Post 

tutoring self-efficacy was highly correlated with rapport, r (67) = .53, p < .001. Like math 

self-efficacy, tutoring self-efficacy was not correlated with the gain, r (67) = .01, p = .42, 

or with linguistic rapport, r (67) = .15, p = .21.  I explored whether the math and tutoring 

self-efficacy scores collected prior to interacting with Nico were also correlated with 

rapport to explore whether it was simply individuals who had higher self-efficacy in 

general who experienced more rapport. However, neither score was correlated with rapport 

(pre-tutoring self-efficacy: r (67) = .10, p = .39, pre-math self-efficacy: r (67) = .004, p = 

.97). This suggests that there was a deeper connection between experiencing higher rapport 

and reporting higher self-efficacy than can be explained by an individual’s initial self-

efficacy and suggests that the interaction may have potential for building self-efficacy. 

 

14.4.6 Validating Dialogue Errors 

Lucas and colleagues found that when an agent makes a conversational error, the negative 

effects can be boosted or exaggerated if the agent also incorporates social dialogue. I 

examined the role of dialogue errors in the above results to determine if potentially speech 
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recognition errors and incorrect dialogue responses were the contributing to the significant 

differences observed for learning and linguistic rapport. I measured the word error rate as  

𝑊𝑊𝑊𝑊𝑊𝑊 =  
𝑆𝑆 + 𝐷𝐷 + 𝐼𝐼𝑁𝑁  

where  𝑆𝑆 is the number of substitutions, 𝐷𝐷 is the number of deletions, 𝐼𝐼 is the number of 

insertions, and 𝑁𝑁 is the total number of words. The average word-error rate for Nico was 

24.15; the WER for each condition is given in Table 14.4. Analyzing if the WER was 

significantly different across conditions or by gender with an ANOVA, we find that it is 

not, F (1, 63) = .734, p = .601. Additionally, treating the WER as a covariate in the analyses 

of gain and linguistic rapport, the WER does not significantly reduce the significant 

difference of learning gains across conditions, F (2, 63) = 5.53, p = 0.006, nor does it alter 

the significance of linguistic rapport, F (2, 63) = 5.25 = .008. Dialogue errors potentially 

introduced by the low WER were not responsible for the differences in learning gain and 

linguistic rapport observed across conditions.  

 

14.5 DISCUSSION AND CONCLUSIONS 

In this chapter, I explored prosodic entrainment on pitch with the teachable robot, Nico. 

This exploration built on the previous iteration of entrainment evaluated in Chapter 12; 

instead of simply matching, Nico mimicked local convergence on pitch. Nico also utilized 

a new form of social dialogue as explored in Chapter 13. Exploring the effects of this new 

design iteration, entrainment with social dialogue significantly improved learning when 

compared to the condition where Nico was not social. This was the first time that an 
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implementation of acoustic-prosodic entrainment in an agent has shown positive effects on 

learning and suggests that entrainment may be a useful mechanism for enhancing learning.  

 Entrainment and social dialogue were also expected lead to higher feelings of 

rapport. However, learners did not self-report feeling more rapport for the social, entraining 

companion; instead I found that they were overwhelmingly positive across the board, self-

reporting at an average of 4.0 (.7) on a Likert scale of 1 to 5, which is higher than might be 

expected with such a scale. The mean would be expected to be closer to 3 if individuals 

were feeling more negative regarding the interaction (Johns, 2005; Garland, 1991). 

Analyzing linguistic rapport, individuals engaged in verbal rapport-building behaviors 

differently across conditions. Their use of these behaviors was significantly correlated with 

their self-reported rapport and with their post-test scores. Individuals who were the most 

engaged in linguistic rapport tended to be those who interacted with a social, entraining 

Nico. It appears that Nico’s social behaviors may have facilitated greater social 

engagement which then led to greater overall engagement. In the next section, I look in 

more detail at the dialogues to find further support for this and discuss an alternative theory 

that entrainment may have facilitated cognitive factors. I also touch on the results regarding 

gender and possibilities for why we do not see the same results we saw with Quinn. 

 

Differences in High Gain Learner Dialogue vs. Low Gain Learner Dialogue  

I compared the dialogues of individuals who had higher learning gains to the dialogues of 

individuals with lower gains. There are obvious differences in how they interacted with 

Nico. The individuals with high gain exhibited many more of the rapport building 

behaviors, encouraging Nico with statements such as “Yes, you got it!” and praising Nico, 
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“Good job, you did it!” The individuals with high gain were also much more likely to 

respond to Nico’s questions about how and why a step was performed as opposed to low 

gain learners who were more likely to side-step Nico’s questions. Table 14.5 gives 

examples of two dialogues from a high gain learner and a low gain learner. The high gain 

learner was also in a social-entraining condition, so Nico’s responses include social 

content. The high-gain learner attempts to explain to Nico why Nico is supposed to divide 

while the low-gain learner does not explain why Nico should multiply. The high-gain 

learner also exhibits more inclusive language, uses Nico’s name, and responds with a 

confirmation when Nico gets the answer. It seems possible Nico’s social behaviors may 

have positively influenced social factors. These social factors may have contributed to 

individuals engaging more with Nico which may have influenced their cognitive behavior.  

 

Entrainment and Cognitive Factors 

There is an alternative theory regarding the origin of entrainment which suggests that 

entrainment might influence cognitive factors through means such as grounding. The 

Interactive Alignment Model (Pickering and Garrod, 2012) suggests entrainment is an 

observable outcome of individuals aligning on multiple levels of dialogue from their 

acoustic-prosodic features to their understanding and knowledge of a situation. With this 

model, Nico’s entrainment could have facilitated learning by prompting learners to 

converge towards Nico and Nico’s understanding of how to solve the problem. For 

example, the learner might explain to Nico that Nico “needs to multiply by two.” Nico may 

elaborate on this statement, recognizing the need to multiply by two because there are twice 

as many bags, “Oh because I have two more bags? I have twice as many and multiply by 



  154 

two?” Even though learners were given the worked-out solutions, they may not always 

have had full domain knowledge and so Nico’s queries led to deeper understanding of the 

problem. With local convergence, learners were invited to converge to Nico and Nico’s 

understanding. As Nico and the learner converged, this may have facilitated deeper 

understanding of the domain content.  

There is evidence that this occurs in human-human peer tutoring. Sinha and Cassell 

(2015) explored relationships of learning, convergence and rapport in dyads of peer tutors 

with a mean age of 13. The found relationships between learning and convergence and 

suggest that a virtual peer that both converges to its human partner and invites convergence 

may be a more effective learning partner.  

High-Gain Learner  Low-Gain Learner 

User:  You need to divide twelve by three 
to get your answer 

Nico:  Okay! So, with the twelve. You 
think we divide twelve? What do 
we divide it by?  

User:  We divide it by three 

Nico:  Got it! You’re on top of this! But 
can you explain, why do we divide 
by three? 

User:  We divide by three because six…if 
you have two then you must figure 
out what's, um, to- how to get the 
six. So, if you do six divided by 
three it's two and then you're going 
to do that down to 12. 12 divided by 
three. 

Nico:  Sweet! Thank you! So, if we divide 
twelve by three, that’s four. 

User:   Correct, Nico! 

 User:  Ten times two point five is 
twenty-five. 

Nico:  Okay I multiply by ten. Why 
do I multiply by ten?  

User:  Yes. 

Nico:  So, ten times two point five is 
twenty-five. Then what do I 
do? 

User:  So, your answer is twenty-
five. 

Nico:  I can go ten miles in one hour 
and twenty-five miles in two 
and a half. I will put the 
answer is twenty-five.  

User: [moved to next step] 

 

Table 14.5. Dialogues from Two Learners Interacting with Nico 
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I explored whether this might be occurring in the dialogues with Nico by exploring 

how learners entrained lexically to Nico across the different conditions, with the theory 

that if learners were entraining lexically to Nico more in the social plus entraining 

condition, this could be evidence for Nico’s prosodic entrainment encouraging 

convergence in response on multiple levels and potentially facilitating learning.  

 

Lexical Entrainment 

I used a measure for lexical entrainment introduced by Nenkova, Gravano, and Hirshberg 

(2008) which is thought to be more robust to potential word sparsity issues. Given the size 

of the individual conversations between learners and Nico, sparsity was a potential 

challenge in measuring lexical entrainment with the corpus. The entrainment score was 

calculated by first identifying a score for individual words. This score,  𝑆𝑆𝑛𝑛𝑠𝑠𝑟𝑟 (𝑤𝑤), was 

calculated as the negated absolute value of the difference between the fraction of times a 

word 𝑤𝑤 is used by the learner and by Nico: 

𝑆𝑆𝑛𝑛𝑠𝑠𝑟𝑟(𝑤𝑤)𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  −  �𝑠𝑠𝑆𝑆𝑠𝑠𝑛𝑛𝑠𝑠𝑙𝑙𝑖𝑖𝑛𝑛𝑛𝑛(𝑤𝑤)𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑖𝑖𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑆𝑆𝑠𝑠𝑛𝑛𝑠𝑠𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤)𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 
𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑖𝑖𝑛𝑛𝑛𝑛 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 refer to the total number of all words spoken by Nico and the 

learner. I calculated 𝑆𝑆𝑛𝑛𝑠𝑠𝑟𝑟 (𝑤𝑤) for the top 25 occurring words in each individual dialogue, 

ignoring stop words. I then obtained a single lexical entrainment score for each learner by 

generalizing the above measure across the top occurring words for each learner as: 𝑊𝑊𝑁𝑁𝑇𝑇𝑊𝑊𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑆𝑆𝑛𝑛𝑠𝑠𝑟𝑟(𝑤𝑤)𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

This resulted in an entrainment score for each learner ranging from 0 to −∞, with scores 

closer to 0 indicating higher lexical entrainment.  
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 I first analyzed whether the lexical entrainment scores were correlated with self-

reported rapport, linguistic rapport, and learning. I found that entrainment was positively 

correlated with linguistic rapport, r (67) = .31, p = .009. When individuals exhibited greater 

lexical entrainment, they also exhibited more linguistic rapport behaviors. I observed no 

evidence of a relationship between lexical entrainment and self-reported rapport or lexical 

entrainment and learning with all other correlations showing p-values above 0.7.  

I then analyzed whether entrainment differed by condition to answer the question 

of whether learners entrained more to Nico when Nico exhibited prosodic entrainment. A 

two-way ANOVA with condition and gender as factors and the lexical entrainment score 

as the dependent variable indicated that entrainment did not differ statistically across 

conditions, F (2, 63) = .01, p =.9, or by gender, F (2, 63) = 2.01, p < 0.16. The condition 

by gender interaction was also non-significant, F (2, 63) = 1.2, p = .3. The means and 

standard deviations for the lexical entrainment scores are given in Table 14.6.   

This result suggests that it is more likely that social factors were at the heart of the 

learning differences between conditions then cognitive factors. I had hypothesized that if 

Nico’s prosodic entrainment had triggered cognitive factors which contributed to learning, 

I should observe differences in how individuals entrained to Nico lexically. I cannot reject 

outright that Nico’s prosodic entrainment may have influenced cognitive factors based on 

the results, but the relationship between lexical entrainment and linguistic rapport suggests 

social factors may be more pertinent.  

One explanation regarding the relationship between lexical entrainment and 

linguistic rapport may be that individuals picked up on Nico’s social behaviors and the 

measure of lexical entrainment and linguistic rapport simply identify how much individuals 
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reflected Nico’s social behavior back. However, I did not observe significant differences 

across conditions on lexical entrainment which I would expect had that been the case. In 

addition, the top words on which individuals entrained were not the same verbal rapport 

building behaviors which Nico introduced. I analyzed lexical entrainment based on high-

frequency words; the highest occurring words were largely task-based, referring to how to 

solve problems and the content of the problems. It is more likely that lexical entrainment 

and linguistic rapport provide evidence of individuals’ complex social responses. 

 

Understanding Gender Effects 

Given the prior work on gender differences, it seemed likely females might respond to the 

social behaviors of Nico more favorably. In my first iteration on entrainment with Quinn, 

females felt greater rapport for Quinn, and both males and females disliked the robot when 

it exhibited social behavior but did not entrain but they expressed this in different ways. 

Males had significantly lower self-reported scores while for females, this was more evident 

in their use of linguistic rapport. In this work, I did not observe gender differences to the 

same extent. I did find when analyzing differences on the posttest while controlling for 

prior knowledge that females scored higher on the posttest in the social condition while 

males appear to have scored higher in the social plus entraining condition. I do not see this 

 
Non-Social Social 

Social-

Entraining 

Males -.19 (.08) -.21 (.09) -.18 (.06) 

Females -.23 (.09) -.21 (.11) -.24 (.12) 

 

Table 14.6. Descriptive Statistics for Lexical Entrainment 
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reflected however in their self-reported rapport or linguistic rapport behaviors.  

One of the possible explanations for why I did not see gender differences with this 

version of a teachable robot may be differences in the age group. In the work with Quinn, 

the age group consisted of college students while Nico was explored in interactions with 

middle school students. Gender is used an indicator of individual differences which have 

developed over time due to one’s community, culture, experiences, and exposure to gender 

stereotypes. It is entirely possible that with middle schoolers the individual differences 

indicated by gender were not as evident because they have not yet developed to the extent 

observed in young college-aged adults.  

Another potential explanation may be that with Quinn, the robot was gendered via 

its voice – females interacted with a female-voiced robot and males interacted with a male-

voiced robot. There was not clear evidence in the results with Quinn on how, if at all, this 

influenced responses. Prior work suggests that the gender of the robot should not have 

negatively influenced responses. In contrast to Quinn, I left Nico’s gender unspecified in 

this study. I did not use personal pronouns in referring to Nico. Regarding the name ‘Nico,’ 

I had surveyed the 18 pilot participants and found they did not find Nico to be overtly male 

nor female. In the study, I avoided all reference to gender, letting the participants make up 

their own mind regarding the gender of the robot and the voice was gender neutral falling 

into either male child or female child ranges. I then surveyed participants after the study 

regarding whether they thought Nico was male or female. 87% of the participants reported 

that Nico was male. The interpretation of Nico as a male robot did not appear to influence 

responses but there was a large skew. It is unclear from these results whether the interpreted 

gender of the robot was responsible for these results, but it is possible that this may have 
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contributed to different responses. In the next study, we specify the robot’s gender and 

consider how this may have influenced responses.  

 

Conclusions 

In this second, macro-iteration on entrainment with a social, robotic learning companion, 

the first evidence emerges that automated entrainment in a learning companion can have a 

significant effect on learning. Revisiting the four proposed research questions, I am 

interested in exploring how we can model entrainment, the effects of entrainment on social 

responses, on learning, and any insights into human-human and human-agent interactions. 

The results of this study suggest that regarding RQ1, a model of pitch convergence is more 

optimal than pitch proximity, for influencing social responses like linguistic rapport as well 

as learning. With respect to RQ2, how does entrainment perform when combined with 

social dialogue, entrainment on pitch appears to enhance responses to social dialogue. With 

RQ3, this study suggests entrainment can facilitate learning in interactions with a teachable 

robot. In the next chapter, I build on these findings, iterating on a new design of entrainment 

and building on this work to evaluate further models of entrainment, to understand the 

effects of entrainment, and explore insights automating entrainment might give us. 
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CHAPTER 15 

DESIGNING MULTI-FEATURE ENTRAINMENT WITH EMMA 

 

In this chapter, I iterate once again on the design of entrainment, revisiting and 

incorporating what we know about human-human entrainment to explore how entrainment 

can be modeled. The study with Nico in Chapter 14 established that a design of entrainment 

as convergence on pitch can have positive effects on learning and linguistic rapport. 

However, in human-human entrainment, speakers often entrain or adapt their prosody to 

one another on multiple features over the course of a conversation. Multi-feature 

entrainment has been found to be highly correlated with rapport and task-success, and the 

analysis of human-human entrainment in Chapter 6 high-lighted that entrainment on 

different features can be important at different points in dialogue. While I found successful 

results with convergence on pitch, entrainment on multiple prosodic cues has the potential 

to influence social factors even more strongly. I introduce several models for combining 

entrainment on multiple prosodic cues and as in Chapter 11, I evaluate these designs based 

on two criteria: perceived naturalness and perceived rapport.  

I collected data from four individuals interacting with the different multi-feature 

entrainment designs and using crowd-sourced analysis via Amazon Mechanical Turk, 

compared the different adaptations on rapport and naturalness as perceived by third-party 

observers. In the next section of this chapter, I describe Emma, the companion used for this 

evaluation. Emma is a Nao robot that learners teach how to solve math problems. Like 

Nico and Quinn, students teach her how to solve ratio problems using spoken dialogue. In 

the next section of this chapter, I describe Emma in more detail. Section 15.2 contains the 
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descriptions of the different adaptations I explored. Section 15.3 describes the method and 

procedure for analyzing these adaptations, and the results are given in 15.4.   

 

15.1 EMMA: A ROBOTIC LEARNING COMPANION 

Emma is an autonomous social, teachable Nao robot for middle school mathematics; in 

design she is very similar to Nico. The dialogue system for Emma is just like that of Nico, 

incorporating both the basic and advanced functionality described in Chapter 10. Emma 

also can be social, employing the same social dialogue as evaluated with Nico. Sample 

dialogue from an interaction with Emma is given in Table 15.1.  

In contrast to Nico, Emma is deliberately gendered to be a female robotic learning 

companion. The motivations and possible considerations behind this choice are given in 

the following section. In addition, learners teach Emma a slightly expanded domain, 

incorporating content related to proportions and proportional relationships for the 7th and 

8th grade. This domain content is described more in 15.1.2.  

 

15.1.1 Gendering a Robotic Learning Companion 

In interactions with a computer agent or a robot which exhibits social behavior, individuals 

are going to make assumptions and interpretations of that behavior and these are going to 

be colored by the individual’s community, culture, gender stereotyping, and gender 

assumptions regarding the robot. While many people may consciously acknowledge that 

robots do not have a ‘gender,’ individuals will still assign a gender to the robot, particularly 

if they are engaging in an interaction which is inherently social (Wang & Young, 2014).  
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This makes the robot’s gender an important consideration when designing 

interactions. In prior work, I had left the gender of the robot unspecified and let the user 

interpret the gender. 87% of the users interpreted the gender of the robot to be male. This 

did not appear to influence results; however, evidence indicates that individuals will let the 

gender of the robot guide how they respond to social behavior (Nomura 2016) so in this 

study, I decided to control the gender of the robot by clearly assigning it a gender.  

I gender the learning companion to be female, calling the robot Emma and using 

female personal pronouns. I do this for several reasons. Math and robots are stereotypically 

associated with males. Gendering the robot opposite to the stereotypical gender of the task 

can have positive effects on engagement (Eyssel & Hegel, 2012).  Additionally, in human-

 Non-Social Dialogue Social Dialogue Strategy 

Emma: 

Before I go to the store, can you 
help me figure out how much of 
my battery I will use over time? 

Sweet! Before I go to the store, 
can you help me figure out how 
much of my battery I will use over 
time? 

Enthusiasm 

Learner: 

 
And we need- we need to figure 
out how much for one hour. So, 
let's multiply two thirds by three 
over two. 

Yes, I can!  

Emma: 

 
So, I know I use 1/20th of the 
battery in 2/3rds of an hour.  I 
need to figure out how much I 
use in one hour. So, I multiply? 
 

Yay! Thank you! You are 

awesome. Where do we start? 

Enthusiasm 

Politeness 

Praise 

Inclusive 

Learner: 
We multiply two thirds by three 
over two. 

Do you see that the time is one 
hour? So, we must try and s- either 
times or divide it by the, um, 
battery usage of one hour. 
 

 

Nico: 

I think I get it. But can you 
explain your thoughts about why 
I multiply? 

Oh right! You're so smart! So, we 
know I use 1/20th of the battery in 
2/3rds of an hour. We need to 
figure out how much I use in one 
hour. So, we multiply? 

Praise 

Inclusive 

 

Table 15.1. Sample Dialogues with Emma 
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human peer tutoring scenarios, the tutor has been found to learn for all gender pairings of 

tutor to tutee except for when the tutor is female, and the tutee is male (Topping & Whitely, 

1993; Falchikov, 2001; Sobral, 2002). In this scenario, the tutee tends to learn a great deal, 

but the tutor does not. As I am interested in fostering learning in the ‘tutor’ I can potentially 

avoid a negative pairing by making the robot tutee female.  

 

15.1.2 Domain Content and Interface 

The learning domain for Emma was middle school mathematics with a focus on 7th and 8th 

grade Common Core concepts regarding advanced ratios and proportions such as 

recognizing and representing whether two quantities are in a proportion, identifying the 

constant of proportionality in tables, and using and applying advanced math to understand 

relationships. With these concepts, I designed nine narrative-style word problems such as 

shown in Figure 15.1. Like the UI for Nico, the problems are designed in a table-based 

format and Emma requests the student’s help in how to solve for the missing information.  

 
Figure 15.1. Example Problem on Functions 
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15.2 DESIGNING MULTI-FEATURE ENTRAINMENT 

In human-human conversations, people will prosodically entrain, or adapt their prosody to 

their speaking partner, on multiple features at once and this has been shown to be correlated 

to social factors and task success. It is challenging to model multi-feature entrainment as 

there tends to be inter-dependencies between features; manipulating pitch can influence 

intensity and manipulating speaking rate can influence pitch. Building on the work from 

Chapters 11, 12 and 14 which explored entrainment on just pitch, I introduce an approach 

for multi-feature entrainment which combines entrainment on pitch with entrainment on 

loudness and entrainment on pitch with entrainment on speaking rate. To model multi-

feature entrainment, there are several design decisions which need to be made including 

what type of entrainment the system should model, how the system should implement the 

adaptation – as a part of the TTS system or on the output of the TTS, and in what order 

multiple features should be adapted. I describe decisions made and why in the next section, 

followed by the algorithm to model multi-feature entrainment. 

 

15.2.1 Design Decisions 

In deciding which type of entrainment to model, I based the approach on the success found 

with modeling local convergence. Adapting pitch as a form of local convergence, where 

the text-to-speech (TTS) was adapted over a series of turns, produced positive effects on 

learning and rapport with Nico. An approach of local convergence on multiple features 

may prove successful, given that adaptation over time has been theorized to be strongly 

related to rapport and convergence in human-human dialogues on multiple features has 

been related to pertinent social factors. For this work, I explore multi-feature local 
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convergence using a similar model as discussed in Chapter 14. I adapt the TTS to grow 

closer to the user on multiple features over a series of turns and then reset when a new topic 

is introduced.  

In terms of how the system should implement the adaptation, the approach with 

Quinn and Nico involved transforming the TTS after it was synthesized. Using Praat, the 

synthesized text-to-speech was processed, manipulated, and re-synthesized to create a new 

TTS. In this iteration, I take an alternative approach using TTS augmentation tools; these 

tools usually come with a TTS engine and can be used to manipulate pitch, speaking rate, 

and loudness as the TTS is synthesized. The Nao robot comes with a form of these tools 

and I use these to adjust the TTS as it is synthesized, to modify the loudness, pitch, and 

speaking rate. 

The order in which features are modified is important because the manipulation of 

one feature can influence another. Levitan and colleagues found that the degree of inter-

dependencies between features varied depending on the tool utilized to transform the TTS. 

With Praat, manipulation of the speech rate influenced pitch by up to 10Hz; manipulating 

pitch with Praat influenced loudness by around 1dB. I additionally explored these 

interdependencies, both with Praat and the TTS system which accompanies the Nao robot. 

With Praat I found similar results as Levitan and colleagues, that manipulation of speech 

rate influenced pitch by up to 10Hz and that manipulation of pitch influenced intensity by 

up to 1dB. With the TTS system which accompanies the Nao robot, I found the effects of 

manipulating pitch on loudness appeared to be lower than with Praat, resulting in average 

of only 0.5dB change. The effect of speech rate on pitch was sometimes as high as 12 Hz; 

however, the TTS system was much faster in performing the adaptation on speaking rate. 
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This is an important consideration when implementing entrainment as latency has been 

found to negatively impact both the influence and degree of entrainment in human-human 

dialogues (Levitan et al., 2015). If the system is slow to produce a response, the positive 

effects of the entrainment may be reduced, and users may become disengaged. In addition, 

with the Nao TTS system, manipulating pitch after adapting speaking rate somewhat 

mitigated the effects of speaking rate as the pitch is re-adjusted to the specified target. In 

the following algorithm, pitch is manipulated after speaking rate and prior to loudness.  

 

15.2.2 Algorithm for Multi-Feature Entrainment 

The algorithm described here has the potential to be applied to either using TTS 

augmentation tools or transforming synthesized TTS with Praat. The algorithm is utilized 

here with the Nao TTS system.  The high-level architecture is in Figure 15.2. 

The algorithm accepts as input the user’s mean as calculated by Praat, the robot’s 

prior mean, the type of feature which is being adapted, and the number of exchanges (one 

exchange = user speaks, system speaks) which have passed. Within the program, the 

following parameters must be set: the maximum number of exchanges to which converge 

to, after which point the system will adapt to the user 100% unless triggered to reset, the 

minimum and maximum values for realistic synthesized output for each feature type, to 

ensure that the TTS is not adapted higher or lower than perceived natural limits, and the 

conversion equation to convert a Praat feature value to a value interpretable by the TTS 

system (if Praat is being used to transform the TTS after synthesis, this is not required). 

The conversion equation can be identified by collecting a set of user data, extracting a data 
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set for the target feature using Praat, and mapping this data set to the range of possible 

values in the TTS system. The conversion equations for the Nao TTS are in Table 15.2. 

Upon receiving the inputs, the user’s mean is converted to a value interpretable by 

the TTS system given the conversion equation. This value is then used with the robot’s 

previous mean to identify which direction the TTS should be adapted. If the system’s prior 

mean was higher than the user’s current mean, the TTS is adapted down towards the user. 

If the system’s prior mean was lower than the user’s current mean, the TTS is adapted up 

to the user. The degree of adaptation is identified as a percentage of the difference between 

 

function entrainment(฀฀฀฀ ฀ ฀฀฀฀ ฀฀฀฀฀ ฀ ฀฀฀฀ ฀฀฀฀฀฀฀ ฀฀฀฀, ฀฀฀฀฀฀฀฀฀)   
returns ฀฀฀฀฀฀฀฀฀฀  
 
฀฀฀฀฀฀฀฀฀M฀฀฀  ← convert(฀฀฀฀ ฀ ฀฀฀฀ ฀฀฀฀฀฀฀ ฀฀฀฀) 
 
฀฀฀฀฀฀฀ ← percentage to adapt depending on ฀ ฀฀฀฀ ฀฀  ฀฀฀฀฀฀฀฀฀ for 100%  
                  convergence and ฀฀฀฀฀฀฀฀฀฀ the number of exchanges which have passed 
 
฀฀฀฀฀฀฀฀฀฀V฀฀฀฀ ← if (฀฀฀฀฀ ฀ ฀฀฀ ± (diff (฀฀฀฀฀฀฀฀฀M฀฀฀฀ ฀฀฀฀฀ ฀ ฀฀฀)  ×  ฀฀฀฀฀฀฀) 
 
if  ฀฀฀฀฀฀฀฀฀฀V฀฀฀฀ < min (฀฀฀฀฀฀฀ ฀฀฀฀) : ฀฀฀฀฀฀฀฀฀฀V฀฀฀฀ ← min(฀฀฀฀฀฀฀ ฀฀฀฀) 
 
else if  ฀฀฀฀฀฀฀฀฀฀V฀฀฀฀ > max (฀฀฀฀฀฀฀ ฀฀฀฀) : ฀฀฀฀฀฀฀฀฀฀V฀฀฀฀ ← max(฀฀฀฀฀฀฀ ฀฀฀฀) 
 
฀฀฀฀฀฀฀฀฀฀ ← TTS (฀฀฀฀฀฀฀฀฀฀V฀฀฀฀) 
 

return (฀฀฀฀฀฀฀฀฀฀) 
 

Figure 15.2. Algorithm for Calculating Entrainment 

 Conversion Equation 

Pitch 0.5𝑥𝑥 − 10 
Intensity 3𝑥𝑥 − 149 

Speaking Rate 33𝑥𝑥 − 49 
 
Table 15.2. Equations to Convert Praat Feature Value for Nao TTS 
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the user’s mean and the system’s prior mean, given the number of exchanges which have 

passed, and the number of exchanges allowed to pass before maximum convergence. For 

example, at the beginning of the conversation when zero exchanges have passed, the TTS 

will be generated at the specified baseline values for the system (i.e. 230 Hz, 68 db, 110 

words per minute). If the number of exchanges for maximum convergence is set to five, 

then after one exchange, the system will adapt the TTS in the direction of the user by 20%, 

after two exchanges by 40%, three exchanges: 60%, and so on until after five exchanges, 

the system mean feature will equal the learner’s mean.  The maximum number of turns 

prior to convergence can be set as a parameter and the percentage increments will be 

automatically calculated. For this work, I identified five as the number of exchanges to 

which Emma should converge based on the average number of exchanges per step in four 

pilot evaluations. To model local convergence, the number of exchanges passed was be 

reset to zero whenever a new step or new problem was introduced. To model multi-feature 

convergence, the system calls this algorithm for each feature. 

 

15.3 METHODOLOGY AND PROCEDURE 

Perceptions of naturalness and rapport were evaluated for two multi-feature entrainment 

combinations: pitch with speaking rate and pitch with intensity. I compared the perceptions 

of these multi-feature entrainment approaches to single feature entrainment (on pitch, 

intensity, and speaking rate) and to non-transformed text-to-speech. Twenty-four dialogues 

were collected from four individuals to evaluate and compare the entrainment designs. In 

each interaction, a middle school student interacted with Emma, teaching Emma how to 

solve six math problems. For one problem, Emma spoke with a non-transformed baseline 
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speech and for each of the other five problems, Emma utilized each one of the different 

forms of entrainment. I collected each problem as a separate dialogue for a total of 6 

dialogues per student. Statistics for the collected corpus are shown in Table 15.3. The four 

case studies were gender balanced with two males and two females interacting with Emma.  

The longer dialogues were separated into shorter audio clips based on the individual 

steps for each problem so that each audio clip was the length of solving a single step. This 

resulted in 60 short dialogues for each student, with an average length of 1.03 minutes (std. 

dev .12). The entrainment was designed as local convergence with Emma resetting at the 

beginning of each step; for the audio clips where Emma was entraining, the clip contained 

one complete example of convergence. With a total of 60 audio clips per student, I utilized 

Amazon Mechanical Turk (AMT), a popular resource for crowdsourcing research tasks 

including annotations, transcripts, and subjective analysis (Buhrmester, Kwang, & 

Gosling, 2011). I used AMT to obtain 10 random, perceptual evaluations per clip for a total 

of 600 evaluations per student or 2400 evaluations. Using third party ratings such as those 

collected through AMT is a standard technique in the evaluation of naturalness and social 

features of dialogue systems. In addition, avoiding first-person ratings allowed us to 

present all dialogue approaches to each of the four individuals without worrying about how 

their perceptions of one approach might affect their ratings of a different approach. 

 Mean Std. Dev. 

Dialogue length (min) 9.6 3.4 

Number of turns 38 9 

Turn length (sec) 7.3 2.6 

 
Table 15.3. Dialogue and Turn Statistics for Corpus 
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Through AMT, individuals, referred to as workers, were asked to listen to each 

exchange and answer a series of questions regarding the speakers. Each worker had access 

to evaluate 240 exchanges (60 per student). To evaluate naturalness, I used Mean Opinion 

Score or MOS (ITU-T, 1994). With MOS, workers were asked to evaluate the quality of 

the voice on a Likert scale of 1-5, where 1 was very poor and 5 was completely natural. 

Workers evaluated both the human speaker and Emma on this scale.  

For evaluating rapport, workers rated the degree of connection between the human 

speaker and Emma on a Likert scale of 1-5, where 1 was “no connection” and 5 was “a 

strong connection.”  In addition, workers rated on a Likert scale of 1 to 7 the degree of 

rapport they observed between Emma and the human speaker given the following 

definition of rapport:  

 

“Rapport is a term used to describe a combination of qualities that emerge from a 

particular kind of interaction. These interactions are characterized by such 

statements as 'we really clicked,' or 'we experienced real chemistry.' Terms like 

"engrossing," "friendly," "harmonious", "involving", and "worthwhile" describe 

interactions high in rapport.” 

 

This definition and approach to measuring rapport has been used in prior work to rate the 

degree of rapport between peer tutors and tutees (Madaio, Ogan, & Casssell, 2016). Finally, 

I had workers listen to two of the audio clips with two different type of entrainment (or no 

entrainment) and select which audio clip they believed had higher rapport.  
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In total, 236 workers provided evaluations of the audio. Only four workers rated 

30% or more of the possible 240 exchanges they had access to while 63% of the workers 

listened to and rated at most two exchanges, meaning many of the ratings came from unique 

workers. In analyzing the results, I treated each rating as the unit of analysis. I calculated 

inter-rater agreement using Krippendorffs alpha, α = 0.67 (Krippendorff, 2011). 

 

15.4 RESULTS  

To analyze the effects of the different multi-feature adaptations in terms of rapport and 

naturalness, I ran a basic statistical analysis of the relationship between type of adaptation, 

naturalness, rapport, and connection. The marginal means and standard deviations for 

naturalness, rapport, and connection for the different adaptations and the non-transformed 

text-to-speech, referred to as the control, are given in Table 15.4. 

To assess differences in naturalness, I performed a one-way analysis of variance 

(ANCOVA) with the type of adaptation (pitch, loudness, speaking rate, pitch + loudness, 

pitch + speaking rate, control) as a factor, naturalness as the dependent variable, and the 

amount of time the worker spent on the task as a covariate. Controlling for the time workers 

spent is common (Buhrmester, Kwang, and Gosling, 2011); workers can vary significantly 

in the amount of time they spend on individual ratings and this can be indicative of the 

quality of their responses and significantly predictive of differences. After controlling for 

time spent, the ANCOVA analysis indicated statistically significant differences among 

type of adaptations, F (5, 2394) = 12.71, p < 0.001. Post hoc tests indicated that pitch + 

speaking rate was perceived as significantly less natural than every other form of adaptation 



  172 

and the control (p < .001 for all factors). Outside of this, no other significant differences in 

naturalness emerged.  

To assess rapport, I introduced two different questions, asking individuals about 

the degree of connection they perceived between Emma and the speaker as well as the 

degree of rapport, given a definition of rapport. I analyzed these two questions in a 

MANCOVA with the type of adaptation (pitch, loudness, speaking rate, pitch + loudness, 

pitch + speaking rate, control) as a factor, rapport and connection as the dependent 

variables, and the amount of time the worker spent on the task as a covariate. There was a 

statistically significant difference between the types of adaptations on the combined rapport 

variables after controlling for time workers spent, F (10, 4706) = 3.07, p = 0.001, Wilk’s λ 

= .98, η2 = .012. Univariate analyses revealed significant effects of adaptation type on both 

rapport, F (5, 2354) = 4.9, p < 0.001, and connection, F (5, 2354) = 3.7, p = .002. Post-hoc 

analyses of differences on rapport indicated that the control was significantly higher on 

rapport than pitch + speaking rate (p = .002). I also found that pitch + loudness was 

significantly higher in rapport than pitch + speaking rate (p < .001). I observed similar 

findings for connection, with both the control (p = .001) and pitch plus loudness (p = .01) 

 Naturalness Rapport Connection 

Control 3.14 (1.1) 4.8 (1.2) 3.6 (.93) 
Pitch 3.00 (1.1) 4.7 (1.2) 3.6 (.87) 
Intensity 3.00 (1.1) 4.7 (1.2) 3.6 (.96) 
Speaking rate 2.90 (1.1) 4.6 (1.2) 3.6 (.96) 
Pitch + speaking rate 2.51 (1.3) 4.4 (1.3) 3.4 (1.1) 
Pitch + intensity 3.00 (1.1) 4.8 (1.2) 3.6 (.97) 

 
Table 15.4. Descriptive Statistics of Perceptions for Different Adaptations 
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resulting in higher ratings of connection than pitch plus speaking rate. Outside of this, no 

other significant differences in the measures of rapport emerged.  

I had also asked the workers to listen to two clips and report whether they thought 

one interaction held more rapport than another, given the definition of rapport. In analyzing 

the number of times any adaptation was preferred over any other, including the control, I 

only observed significant preferences when individuals heard a clip with pitch + loudness 

next to a clip with entrainment on speaking rate. Pitch + loudness was selected significantly 

more, p = 0.001, than the clip with entrainment on speaking rate. Outside of that 

comparison, none of the selections significantly exceeded a binomial test which assumed 

a 50-50 chance of picking one adaptation over the other, meaning that workers were just 

as likely to pick any adaptation or the control. There were no significant preferences.   

 

15.5 CONCLUSIONS 

From these results, I can conclude that the adaptations performed did have an effect, 

although small, on perceptions of naturalness and rapport. The differences between 

different adaptations and the control were minor, with a few exceptions. The adaptation of 

pitch + speaking rate resulted in surprisingly low perceptions of rapport and naturalness, 

especially when compared to the other adaptations and the control. I had investigated in 

the design of the multi-feature entrainment whether I needed to control for any unintended 

amplification of entrainment due to how manipulating one feature might influence another. 

It is unlikely the low performance of pitch plus speaking rate was due to the multi-feature 

manipulation. I explored whether the low performance was due to some undesirable 

combination of pitch plus speaking rate which was resulting in negative perceptions. For 
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example, entraining to low pitch combined with entraining to a slower speaking rate 

combines to produce a very unnatural perception and lower observations of rapport. 

However, different combinations of entrainment direction did not appear to significantly 

influence perceptions. In listening to the audio clips, I did observe that even though I had 

chosen minimum and maximum values for entrainment which fell within natural human 

parameters, these minimum and maximum values resulted in very synthetic text-to-speech 

output. Future work is needed for exploring how to produce a more acceptable speaking 

rate manipulation and exploration of why the addition of pitch seemed to spark lower 

responses. For this chapter, pitch plus loudness resulted in the highest rapport and rivaled 

the control in significant differences compared to the lowest performing adaptations. I 

utilize this multi-feature approach in a larger study, described in the next section.  
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CHAPTER 16 

EFFECTS ON RAPPORT AND LEARNING WITH EMMA 

 

With the multi-feature adaptation of pitch and loudness, this chapter describes a larger 

study conducted to explore the effects of multi-feature entrainment on rapport and learning. 

48 middle school students interacted with Emma in one of three conditions: (1) Non-social. 

Emma did not behave socially. (2) Entraining. Emma entrained. (3) Social plus 

entraining. Emma entrained and spoke socially, adding social dialogue to the 

conversation. In contrast to the explorations with Quinn and Nico, I explore entrainment 

without the addition of social dialogue. With Quinn and Nico, social dialogue with 

entrainment consistently performed better than social dialogue alone. I am interested with 

this study in exploring how entrainment performs as a social behavior independent of social 

dialogue. I collected subjective self-reported rapport measures and coded for observable 

behaviors related to rapport. I also collected measures of learning, self-efficacy, and 

interaction goals.  

I hypothesize that when Emma entrains, learners will report feeling more rapport 

and exhibit greater learning gains than when Emma does not entrain. I further hypothesize 

that when Emma entrains and speaks socially, learners will feel the most rapport and 

exhibit the greatest learning. In both human-human and human-robot interactions, the 

combination of multiple channels has been found to be important to rapport and 

communication (Argyle, 1988; Richmond and McCroskey, 1995; Swerts and Krahmer, 

2008). Bruce and colleagues (2002) found that a robot which combined gaze and aligned 

appropriate movement was more compelling to passers-by. It seems likely that the effects 
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of two channels of social behavior, social dialogue plus entrainment, will continue result 

in more rapport than a single channel of prosodic entrainment alone. 

 This study utilizes the same version of Emma described in Chapter 15; no additional 

changes were made to the system or domain content. The next section describes the 

methodology and procedure. Section 16.2 contains the results of this exploration followed 

by a discussion and conclusions regarding the effects of multi-feature entrainment.  

 

16.1 METHODOLOGY AND PROCEDURE  

Participants were 48 middle-school students from one public middle school in the 

Southwestern United States with a mean age of 13.1 (SD = 0.75). The gender breakdown 

is given in Table 16.1 along with statistics regarding the dialogue. Sessions lasted 60 

minutes and took place at the participant’s school. As shown in Figure 16.1, students sat a 

desk with a Surface Pro tablet in front of them. Emma stood on the desk next to the Surface 

Pro, to the right of the participant.  Two participants experienced technical issues and were 

excluded from the results. Thus, 15 participants remained in the non-social, 15 participants 

in the entraining condition, and 16 participants in the social-entraining condition.  

Participants began with a short pre-survey on their initial self-efficacy towards math 

and tutoring and any prior experience with robotics. Participants then completed a 10-

minute pretest. The pretest included the first three problems participants were to teach 

Emma. After completing the pretest, they were then given a few minutes to review the 

worked-out solutions to the problems pertaining to Emma. After watching a short video on 

how to interact with Emma, students taught Emma for 30 minutes. After the activity, they 

completed a 10-minute posttest and a short survey on self-efficacy, rapport, and their goals.  
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16.1.1 Measuring Learning 

To measure learning, I utilized a pretest-posttest design with an A and B form of the test. 

The pretest versions of A and B consisted of 10 questions with three of the questions 

mapping to the first three problems the participants would be teaching Emma. The posttest 

versions of A and B also consisted of 10 questions; three of the questions on the posttest 

were written in a similar format to the problems the students taught Emma. The remaining 

questions on the tests were isomorphic and consisted of questions on advanced ratios and 

proportions. The questions were mostly procedural with one conceptual. The tests were 

 
 

Figure 16.1. Student Interacting with Emma 

 
Females Males 

Total Turns  

M (SD) 

Words per 

Turn 

M (SD) 

non-social 8 8 116.3 (24.0) 7.13 (2.5) 
entraining 9 7 125.4 (25.9) 9.23 (3.2) 
social dialogue + entraining 9 7 119.3 (21.4) 8.9 (3.3) 

 

Table 16.1. Gender Breakdown and Dialogue Statistics 
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counter-balanced within condition (half of the participants in each condition received test 

A as the pretest with test B as the posttest, and vice versa). The full pretest and posttests 

can be found in Appendix C. I piloted and iterated on the design of the questions with four 

pilot studies, evaluating timing and applicability of questions. To analyze learning and 

maintain consistency with the prior work, I used both the pretest and posttest scores in 

statistical analyses and I also calculated the normalized learning gains according to Hake 

(2002). If the posttest was lower, I used (2): 

 gain = (posttest – pretest) / (1 – pretest) (3) 

 gain = (posttest – pretest) / (pretest)   (4) 

 

16.1.2 Measuring Rapport 

I measured both self-reported and linguistic rapport in this study. Self-reported rapport was 

assessed with the same 12 questions used to measure rapport with Nico. While I did not 

find significant differences in the study with Nico, these measures of rapport had high 

internal reliability, were correlated with linguistic rapport, and appear to be reasonable 

assessments of rapport. I averaged the rapport questions to create a single representative 

construct; reliability remained high (Cronbach’s α = 0.81).  

To assess linguistic rapport, I coded for similar verbal rapport-building behaviors 

as with Quinn and Nico, including praise, formal politeness, inclusivity, and name usage. 

I utilized the same coding scheme as given in Appendix A and included the modification 

described in Chapter 13 regarding empathy for Emma. Examples of the behaviors can be 

found in Table 16.2. Two individuals each independently coded the dialogues for these 

behaviors. The average Cohen’s kappa for these behaviors was .85. Individual kappas are 
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reported in Table 16.2 along with the means and standard deviations for the behaviors as 

they occurred across all conditions. For analysis, I summed the total observed behaviors 

into a single representative construct of linguistic rapport for each participant. 

  

16.1.3 Self-Efficacy Measures 

Measures of self-efficacy around math and tutoring were also collected; the same questions 

as posed with Nico based on the measures on work by the Friday Institute for Technology 

(2008) were used with some slight modification. The number of questions on tutoring self-

efficacy was reduced from four to three, removing a question with particularly low 

agreement. I also reduced the number of questions on math self-efficacy from four to three. 

Participants answered all six questions both before and after interacting with Emma. I 

averaged the tutoring and math questions to obtain four scores: tutoring self-efficacy 

(Cronbach’s α = 0.39) and math self-efficacy (Cronbach’s α = 0.61) prior to interacting 

with Nico and tutoring self-efficacy (Cronbach’s α = 0.45) and math self-efficacy 

(Cronbach’s α = 0.71) post interacting with Nico. Unfortunately, Cronbach’s α for the 

tutoring self-efficacy questions is even lower than in the previous study despite removing 

questions which had low agreement in the study with Nico.  

 

  M SD k 

Praise “Great job”, “Good answer” 7.4 9.7 .70 
Politeness “thank you”, “you’re welcome” .84 .91 .89 
Inclusive ‘we’ or ‘lets’ 8.9 12.3 .95 
Name “That’s right, Emma”, “So Emma…” 1.3 2.1 .99 
Empathy “Me too”, “I can help you” .39 .71 .71 

 

Table 16.2. Descriptive Statistics and Kappa Ratings for Linguistic Rapport 
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16.1.4 Comfort-Level Around Robots 

Individual differences appeared to be important in the study with Quinn, suggesting that 

an individual’s prior experiences, bias, and interaction goals may influence their response 

to social behavior. With Nico, gender was not a significant factor, but it still seems possible 

that prior experiences may influence responses. With Emma, I explore the role of comfort-

level around robots and human-looking robots along with prior experience with robots. 

Two questions were posed regarding how comfortable participants around robots; these 

questions were averaged (Cronbach’s α = 0.79) and then split into a high comfort / low 

comfort categorical variable where scores less than three were marked as low comfort and 

scores greater than three were marked as high comfort. This resulted in a mostly even 

distribution. We may observe differences in how individuals respond based on their prior 

experience and comfort-level around robots.  

 

 16.2 RESULTS 

I report the results for learning and rapport where 48 middle schoolers interacted with 

Emma, the teachable robot, in one of three conditions: a social-entraining condition where 

Emma was both social and entrained, an entraining condition where Emma only entrained, 

and a non-social where Emma was neither social nor entraining. For the statistical analysis, 

I do not report gender as no gender differences on learning or rapport were found.  

 

16.2.1  Learning Results 

With learning, I had hypothesized that the social-entraining condition would result in 

greater learning than the entraining and non-social baselines, and that the entraining 
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condition would result in greater learning than the non-social condition. I verified this 

hypothesis by analyzing learning as a repeated measures ANOVA with pretest and posttest 

as the dependent variables and condition as the independent variable. Mean pretest and 

posttest scores are given in Table 16.3. I observed a significant effect of condition on 

learning, F (2, 43) = 3.91, p = .03. Pairwise comparisons within conditions revealed 

significant learning in every condition: non-social improved by 14% (p = .001), the 

entraining condition improved by 9% (p = .04), and the social plus entraining condition 

improved by 24% (p < 0.001). This suggests that greater learning occurred in the social 

plus entraining condition, and surprisingly, the least learning appears to have occurred in 

the entrainment-only condition. 

 To maintain consistency with prior work, I measured the learning gain as well and 

analyzed differences by gain using in a one-way analysis of variance (ANOVA) with 

condition as the independent variable and gain as the dependent variable. Table 16.3 gives 

means and standard deviations for gain by condition. I found the gain was significantly 

 
Non-Social Entraining 

Social-

Entraining 

Gain .31 (.34) .04 (.45) .36 (.18) 

Pretest .48 (.18) .28 (.19) .29 (.19) 

Posttest .63 (.16) .36 (.25) .53 (.22) 

Self-Reported Rapport 4.1 (.47) 3.9 (.54) 4.4 (.47) 

Linguistic Rapport 16.7 (14) 15 (13) 24 (16) 

Comfort-level 4.1 (.24) 4.0 (.20) 4.2 (.17) 

Dialogue Errors 17.5 (6) 16.4 (9) 18.7 (9) 

 

Table 16.3 Descriptive Statistics for Learning and Rapport Across Conditions 
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different across conditions, F (2, 43) = 4.03, p = 0.03. Partial eta squared was .15, meaning 

the effect size was medium. Tukey post-hoc analyses indicated significant pairwise 

differences for the social-entraining condition when compared to the entraining only 

condition indicating more learning in the social-entraining (p=.03). The nonsocial 

condition approached a significantly higher gain than the entraining-only (p = .08). I did 

not observe any indication of differences between the social-entraining condition and the 

non-social condition, (p = .8).  

In reviewing pretest scores, I found significant differences between conditions. 

Despite random assignment to conditions, the average pretest scores for the non-social 

condition were significantly higher than the social plus entraining condition (p = .02) and 

the entrainment-only condition (p = .02). There was not a significant difference between 

the pretest scores for the social plus entraining and entrainment only conditions.  I 

controlled for pretest in all other analyses and given the differences in pretest scores, I 

analyzed differences in posttest scores while controlling for the pretest with an ANCOVA. 

I found a significant main effect for condition, F (2, 42) = 4.19, p = .02, η2 = .17. Pairwise 

comparisons of the means revealed a significant difference in posttest scores, controlling 

for pretest scores, between the social plus entraining (marginal mean = .58) and the 

entraining condition (marginal mean = .42), p = .01. There was not any difference between 

the nonsocial (marginal mean = .52) and social-entraining posttest scores.   

I had hypothesized that the social-entraining condition would result in the most 

learning, followed by the entrainment-only condition and the non-social control. However, 

I found that the entrainment-only condition performed poorly; it resulted in significantly 
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lower learning than social-entraining analyzed multiple ways. The entrainment-social 

resulted in higher learning, but not significantly more than the non-social control.  

 

16.2.2 Self-Reported Rapport Results 

I hypothesized that self-reported rapport might increase for the entraining-only and the 

social-entraining conditions; if it did influence rapport, it may also enhance learning. The 

self-reported means and standard deviations for rapport by condition are given in Table 

16.3. I first explored if rapport was correlated with the pretest and posttest scores. I found 

rapport was not correlated with pretest (r (44) = -.23, p = .11) nor was it correlated with the 

posttest (r (44) = .02, p = .89). I then explored if rapport differed by condition in an 

ANCOVA with condition as the independent variable and controlling for differences in 

pretest scores. I found that self-reported rapport did significantly differ across conditions 

after controlling for pretest, F (2, 42) = 4.30, p = .02, η2 = 0.17. Exploring pairwise 

comparisons, I found the social plus entraining condition (marginal mean = 4.4) had 

significantly higher rapport than the entrainment only condition (marginal mean = 3.8). 

The non-social control (marginal mean = 4.2), while lower in rapport, was not significantly 

different from the social plus entrainment condition.  

 

16.2.3 Linguistic Rapport Results 

I explored linguistic rapport with behaviors including politeness, praise, name usage, and 

inclusive language as well as empathy. I first analyzed whether these behaviors appeared 

to be related to either self-reported rapport or learning. I found that they were moderately 

negatively correlated with rapport, r (44) = -.29, p = .04. However, these behaviors were 
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also positively correlated with pretest, r (44) = .34, p = .02, and with posttest, r (44) = .36, 

p = .02. I then analyzed whether the behaviors differed across conditions in a one-way 

ANCOVA with condition as the independent variable, linguistic rapport as the dependent 

variable and controlling for pretest. After controlling for pretest, I do not find a significant 

effect of condition, F (2, 42) = .32, p = .7.  

 

16.2.4 Comfort-Level Around Robots Results 

I explored whether there were any differences in reported comfort-level across conditions 

with a chi-square test for independence. We found no significant relationship between 

condition and how comfortable individuals reported they were with robots, Χ2 (2, 46) = 

.61, p =.74. Exploring whether comfort-level was related to other important characteristics 

such as an individual’s prior experience with robots or gender, only eleven out of the forty-

eight participants had some form of prior experience with robotics. These participants were 

approximately distributed across conditions (3 in the non-social, 4 in the entraining-only, 

and 4 in the social-entraining). Based on the means and standard deviations, individuals 

with prior experience with robots did not appear to differ significantly in how comfortable 

they were around robots. In addition, there was not a gender effect for comfort, Χ2 (1, 46) 

= .49, p = .48. Males and females did not differ in their comfort-level.   

I then explored whether an individual’s comfort-level around robots was related to 

their self-reported rapport utilizing an ANOVA with rapport as the dependent variable and  

controlling for pretest. Individuals who reported feeling more comfortable interacting with 

robots also reported significantly higher rapport, F (1, 43) = 9.1, p = .004. Analyzing 

whether there was a relationship between Emma’s social behavior and comfort-level, I 
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utilized an ANCOVA with rapport as the dependent variable and condition and comfort-

level as independent variables. Additionally, we controlled for differences in prior 

knowledge via pre-test scores as a covariate. After considering differences in pre-test, we 

found the interaction between comfort-level and condition approached significance, F (2, 

39) = 3.2, p = .05. Condition was also significant, F (2, 39) = 6.6, p = 0.003, as was comfort-

level, F (1, 39) = 11.5, p < 0.002. Exploring differences in rapport for individuals with 

high-comfort versus low-comfort, we found that for individuals with low-comfort, there 

were no differences in rapport between the social-entraining (M = 4.1, SD = .51), entraining 

(M = 3.8, .73), and non-social (M = 3.8, SD = .41) conditions, F (2, 19) = .86, p = .4. For 

individuals who expressed being very comfortable in interacting with robots, the robot’s 

social behavior in the different conditions had a significant effect on feelings of rapport, F 

(2, 21) = 6.65, p = .005, with individuals in the social-entraining condition feeling 

significantly more rapport (M = 4.64, SD = .3) than individuals in the entraining-only 

condition (M = 4.0, SD = .31). The difference between individuals in the social-entraining 

condition and the non-social condition (M = 4.3, SD = .38) was not significant.  

Finally, I explored the role of comfort-level with respect to learning. Adding 

comfort-level to the repeated measures ANOVA as a categorical high/low measure, there 

were no significant differences on learning for individuals with high versus low comfort, 

F (2, 40) = 2.5, p = .12. However condition and comfort-level do approach a significant 

interaction on learning, F (2, 40) = 2.54, p = .09. Exploring post hoc analyses for 

individuals with a high degree of comfort around robots, the entraining only condition 

results in significantly less learning than the social-entraining (p = .006) and non-social (p 

= .04) conditions.  
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16.3 DISCUSSION AND CONCLUSIONS 

This study focused on how multi-feature prosodic entrainment on pitch and loudness 

influenced feelings of rapport and learning with 48 middle school participants as they 

interacted with the robotic learning companion Emma. There was a significant effect of 

entrainment on rapport and on learning when entrainment was introduced in the presence 

of social dialogue as compared to entrainment by itself. This was driven by the individuals 

who felt comfortable interacting with robots. The trends in the results suggest that 

entrainment with social dialogue is the optimal condition for individuals who are highly 

comfortable interacting with robots but that for individuals who not as comfortable, less 

social behavior may be more optimal.  

The single channel of social behavior of entrainment performed poorly, resulting 

in significantly lower learning and self-reported rapport than entrainment with social 

dialogue. Lucas and colleagues found that in conversational interactions, if an agent makes 

a conversational error, negative effects can be boosted or exaggerated depending on the 

timing of the social dialogue (Lucas et al., 2018). The social-entraining condition 

performed strongly in comparison to entrainment alone; I analyzed however whether 

dialogue errors in the entraining-only condition may have produced the dip in social 

responses in that condition. I calculated errors as the number of utterances in which Emma 

asking the student to reiterate what they said (i.e. “I’m sorry, I didn’t hear you. Can you 

say that again?”). These utterances were triggered when the student’s dialogue could not 

be matched to an appropriate response. The means and standard deviations for the average 

number of errors per condition are given in Table 16.3. Running an ANCOVA with 

condition as the independent variable and the number of errors as the dependent variable, 
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the differences across conditions were not significant, F (2, 41) = 3.94, p = .02, suggesting 

that the dialogue errors were not likely to have contributed to the differences in responses.  

The results also suggest that the multi-feature entrainment might not have 

succeeded as well as single-feature entrainment was found to perform with Nico in Chapter 

14. There are a couple explanations for why this might be. One potential explanation is that 

it is possible entrainment on specific features is more pertinent at different moments during 

conversational dialogue, and that for different features, critical opportunities for 

entrainment differ. For example, I observed in Chapter 6 in the analysis of human-human 

collaborative dialogues that entrainment on intensity was significantly more common when 

individuals were engaged in problem solving versus social dialogue. Levitan and 

colleagues found entrainment at turn exchanges is related to the type of turn exchange; 

individuals tend to entrain more on multiple features during backchannels than other turn 

types and they entrain more on pitch when interrupting pauses. It is possible that by 

implementing convergence on both pitch and intensity across all dialogue, I may have 

negatively amplified entrainment at critical moments when entrainment on multiple 

features should have differed. Emma entrained on both pitch and intensity where in human-

human dialogues, I more likely would have seen entrainment on pitch but not intensity or 

entrainment intensity but not pitch, which potentially resulted in a less ideal outcome than 

if entrainment had occurred on pitch alone.  

An alternative explanation for why the multi-feature entrainment approach appears 

to have been less successful than pitch alone may be that for some individuals, it was 

possible Emma entrained more on pitch or more on intensity depending on the difference 

between Emma and the learner. For example, an individual who was substantially quieter 
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than Emma may have interacted with a more intensity-entraining companion than someone 

who spoke with a more average loudness but a substantially lower or higher pitch. I 

explored whether there was a prominent ‘feature’ of entrainment for different individuals 

and whether this played a role in responses by calculating whether Emma appeared to 

entrain more on intensity versus pitch for individual users. I looked at Emma’s pitch and 

intensity values in the entraining and social plus entraining conditions.  I analyzed how 

Emma changed between each turn on pitch and intensity for each user and identified based 

on the average normalized change in pitch and intensity whether Emma appeared to adapt 

more on pitch or more on intensity. Overall, Emma did adapt significantly on both features 

for all participants, but for 18 individuals Emma’s change in intensity was higher than the 

change in pitch and for the other 14 individuals Emma’s change in pitch was higher. I 

evaluated whether there were differences on learning, self-reported rapport, or linguistic 

rapport for those users for which Emma appeared to adapt more on pitch versus intensity. 

I did not observe any significant differences on self-reported rapport (F (1,29) = 1.9, p = 

.18), linguistic rapport (F (1,29) = .13, p = .71), or learning gain (F (1,29) = .15, p = .70) 

and significant interactions with condition. Based on these results, it is possible 

entrainment to one feature versus another did not play a significant role in the differences 

between the entraining and the social plus entraining conditions; the low performance of 

the entraining condition may have been due to more nuanced effects.  

In terms of limitations, this study did have limited statistical power because of the 

modest sample size (N = 48), which may have played a role in limiting the significance of 

some of the statistical comparisons conducted. A post hoc power analysis revealed that 

based on the mean, between-groups comparison effect size observed for learning (d = .16), 
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an N of approximately 198 learners would have been required to obtain statistical power at 

the recommended .80 level (Cohen, 1988).    

Finally, I found that individuals’ linguistic rapport behaviors were negatively 

correlated with self-reported rapport, meaning that individuals who reported feeling less 

rapport for Emma engaged in more rapport-building dialogue. While I did not observe 

differences across conditions, the negative correlation was surprising. I saw a similar 

negative correlation in the prior work with Quinn, when females exhibited significantly 

more linguistic rapport and it was significantly negatively correlated with their rapport. In 

this case, I did not observe a gender difference regarding the negative correlation. The 

sample size is small, so it is possible that I needed to collect more data. An alternative 

explanation is that potentially the gender of the robot played a role. In the study with Quinn, 

females interacted with a female robot and males interacted with a male robot. In this study, 

Emma was gendered to be female for all participants. It is possible that the robot’s gender 

plays a larger role than expected in influencing the presence and meaning of linguistic 

rapport behaviors.  

Overall, the work in this chapter demonstrates that verbal and prosodic social 

behaviors can combine to produce positive responses but that in future work, designing 

entrainment on pitch and intensity may need to involve more nuanced and dialogue specific 

constraints as well as controls for how much a companion entrains on specific features 

given individual differences in users as well as potentially the assigned gender of the robot.  
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CHAPTER 17 

CONCLUSIONS 

 
This thesis explored how the complicated phenomenon of acoustic-prosodic entrainment, 

where individuals adapt their acoustic-prosodic features of speech to one another over the 

course of a conversation, could be implemented in the dialogue system of a robotic learning 

companion. As a part of this work, the following research questions were posed:  

RQ 1: How can acoustic-prosodic entrainment be modeled in a system to 

positively influence social responses?  

RQ 2: How does automated entrainment influence social responses when 

combined with content-based approaches for building rapport? 

RQ 3: How does entrainment influence learning in a robotic learning companion? 

RQ 4: What insights regarding human-human and human-agent interactions can 

we gain by manipulating social behavior in a robotic learning companion?  

I began the exploration of how to design entrainment by exploring how entrainment has 

been found to occur in human-human conversation. I added to the existing knowledge of 

entrainment by investigating its occurrence in a corpus of human-human data consisting of 

dyads working collaboratively together to solve math problems. This work provided initial 

insight into RQ 1, how can acoustic-prosodic entrainment be modeled in a system, 

suggesting that a model of entrainment based on pitch and proximity may build rapport 

and enhance learning. I explored this model and iterated on it over a series of six studies, 

focusing on how entrainment can be modeled, the effects it might have on rapport, 

particularly when combined with other rapport-building behavior, the effects entrainment 
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can have on learning, and whether modeling entrainment can provide any insight into 

human-human and human-agent interactions. I summarize the high-level results of three of 

these studies in Tables 17.1 and 17.2; these three studies were the largest and most defining 

in terms of answering the given research questions. I discuss the significant observations 

which emerged from these studies and the answers they provided to the proposed research 

questions in the rest of this chapter.   

 

17.1 RQ 1: MODELLING ENTRAINMENT 

I introduced several designs of entrainment in this work and explored three 

implementations of these designs in larger studies with 48 or more participants. The most 

successful design when considering effects on rapport and learning was a form of local 

convergence on pitch mean, where the robot adapted its pitch to the user over a series of 

turns and then reset when a new topic was introduced, such as a new problem. In Chapter 

14, the exploration of Nico resulted in significantly more learning and significantly more 

linguistic rapport than a robot which did not entrain and did not speak socially. While this 

model appears to result in the most optimal results, aggregating all the results across all the 

implementations reveals several other interesting implications regarding modeling 

entrainment. 

 

(1) Acoustic-prosodic entrainment is a social process: Theoretically, being on the 

receiving end of entrainment should lead an individual to feel more rapport for their 

entraining partner. With Quinn and Nico, I found that entrainment enhanced the effects of 

social dialogue; being on the receiving end of entrainment appeared to lead to individuals 
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to feel more rapport for an entraining, social agent when entrainment was implemented on 

pitch. With Emma, where I implemented entrainment on pitch and intensity, the presence 

of entrainment independent of social dialogue performed poorly. However, once again, 

combining entrainment on pitch and intensity with social dialogue resulted in significantly 

higher rapport. Entrainment on pitch has been suggested to be more related to social 

processes and therefore may perform better in the presence of social dialogue (Levitan 

2014). Observing again and again the success of entrainment when combined with another 

social behavior suggests that entrainment is indeed a social process and that when modeling 

entrainment, it is vital to keep in mind the other social behaviors being introduced.  

 

(2) Increased complexity requires increased sophistication: In the initial design, I 

modeled entrainment as pitch proximity, where the robot mirrored the student at every turn. 

I iterated on that design using a similar method to adapt pitch but increasing the 

sophistication of the adaptation by incorporating the concept of convergence. With the 

design change from proximity to convergence, I created a more sophisticated model of 

 Robot  

Type 

# of 

Participants 

Participant 

Age Range 

Robot  

Gender 

Math 

Content 

Study 1 

Quinn 

Lego 
Mindstorms 

48 18 – 30 
Male for males  

Female for females 
Literal 

equations 

Study 2 

Nico 
Nao 72 11 – 12 

Unspecified. 87% 
of users viewed as 

male 
Ratios 

Study 3  

Emma 
Nao 48 12 – 14 Female 

Ratios & 
Proportions 

Table 17.1. Conclusions: Summary Details of Each Study 
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single feature entrainment. I then increased the complexity of the entrainment model by 

adding an additional feature, intensity. However, when iterating on the design to 

incorporate an additional feature, the sophistication of the model was left unchanged and 

  
Study 1 

Quinn 

Study 2 

Nico 

Study 3 

Emma 

  

Nonsocial 

Social 

Social+Entraining 

Nonsocial 

Social 

Social+Entraining 

Nonsocial 

Entraining 

Social+Entraining 

Learning 

Condition Not significant 
Significant 

Social+entraining > 
Nonsocial** 

Significant 

Social+entraining > 
Entraining* 

Gender Not significant Not significant ---- 

Self-

reported 

Rapport 

Condition 
Significant 

Social+entraining > 
Social* 

Not significant 
Significant 

Social+entraining > 
Entraining* 

Gender 

Significant 

Females report more 
overall rapport**  
Males less social 
presence in social*  

Not significant ---- 

Linguistic 

Rapport 

Condition Not significant 
Significant 

Social+entraining > 
Nonsocial** 

Not significant 

Gender 

Significant 

Females exhibit in 
non-social and social 
Males exhibit in 
social+entraining 

Not significant ---- 

Self-reported and 

Linguistic 
Negatively correlated* Positively correlated* Negatively correlated* 

 
 
 

Table 17.2. Conclusions: Summary Results from the Three Studies. * p < .05, ** p < .01 
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individuals did not respond as positively to the model. The design of multi-feature 

entrainment was unsophisticated; it seems highly probable that a model which incorporates 

context and individual differences may improve effects. Iterating on the design in a similar 

way to how the social dialogue was iterated on in Chapter 13 may produce similar marked 

improvements in responses.  

 

(3) Perceptual evaluations facilitate design: The work of modeling entrainment is far 

from finished. This thesis presents a model that can enhance responses but there are many 

more nuances in human-human conversation to be incorporated in future iterations. For 

that future work, this thesis presents an excellent methodology for designing and evaluating 

models using perceptual evaluations. The use of perceptual evaluations is a very effective 

methodology for eliminating designs and suggesting areas for iteration. The effects of a 

particular model hinted at by the perceptual evaluations proved meaningful when models 

were evaluated during longer interactions. To improve this methodology for future work, 

aggregating perceptions across the interactions as suggested by “thin-slicing” approaches 

(Madaio, Cassell, and Ogan, 2017) may help improve evaluations while keeping costs low 

during this form of design iteration.  

 

(4) Multiple channels enhance social responses: Multiple channels of social behavior 

consistently resulted in better outcomes. Entrainment combined with social dialogue had 

the highest self-reported rapport or linguistic rapport in every study and resulted in 

significantly more learning with Nico and Emma. Not only did the combined behaviors 

perform the best but it also appears that combining two social behaviors can enhance an 
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initially low performing social behavior. A higher performing social behavior may even 

mask the less than ideal effects of another behavior. With both Quinn and Emma, I found 

the single channel of social behavior, in one case social and in the other entrainment, to 

perform less than optimally. The addition of a second social behavior enhanced responses 

significantly.  These findings suggest that no single behavior is key to fostering rapport and 

enhancing learning; exploring only content or only gesture or only prosody is not the way 

if we want to truly build social relationships. However, it is important to be aware of these 

contrasting effects, particularly when modeling a behavior like entrainment which appears 

to be tightly coupled to other social behavior.   

 

17.2 RQ 2 AND RQ 3: EFFECTS ON RAPPORT AND LEARNING 

RQ 2 and RQ 3 were focused on how automated entrainment influences social responses 

like rapport and concrete outcomes like learning. The findings from this work suggest that 

entrainment and social dialogue can enhance rapport and that the presence of entrainment 

can influence learning. In the context of robotic learning companions, greater feelings of 

rapport may lead to greater engagement and in turn, greater engagement may lead to greater 

learning, as suggested by the protégé effect. The protégé effect occurs when a learner, 

feeling more rapport and social engagement for their teachable agent, engages more with 

the material and exhibits greater willingness to address misconceptions, facilitating 

learning. This effect has been found in other teachable agents with successful outcomes.  

With the three versions of entrainment in Quinn, Emma, and Nico, the results 

suggest that learners who interacted with a social, entraining robot perceived the robot to 

be more socially present (Quinn), felt more rapport for the robot (Emma), learned more 
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(Nico and Emma), and exhibited more linguistic rapport (Nico). In exploring how 

individuals spoke to a social, entraining robot, I observed particularly with Nico, where the 

learning result was the most significant, that learners who were more socially engaged were 

also more cognitively engaged. In their dialogue, they made more attempts to explain to 

Nico the how and why behind solutions as opposed to learners who were less socially 

engaged. These findings suggest that entrainment can enhance rapport and social 

engagement, which may facilitate overall engagement and increase a participant’s 

willingness to think through problems and explain solutions. This increased engagement 

in the activity of teaching may have facilitated learning.  

In considering the effects of entrainment on rapport and learning, this thesis also 

provides some insight into the role of individual differences like those indicated by gender. 

The results of the studies here provide insight not only into the role of the user’s gender 

but also how the gender of the robot may influence how individuals exhibit rapport. With 

Quinn, females felt more rapport overall; they also engaged in more linguistic rapport. 

Female use of linguistic rapport was significantly negatively correlated with their self-

reported rapport while it was positively correlated for males. Females also interacted with 

a female robot and males interacted with a male robot, indicated by the voice. With Nico, 

no significant gender differences emerged; overall, linguistic rapport was significantly 

positively correlated with self-reported feelings of rapport. Most participants believed Nico 

to be male. With Emma, again no significant gender differences emerged; however, 

linguistic rapport was back to being significantly negatively correlated with self-reported 

rapport, for all participants. Emma was intentionally gendered to be female.  
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These results suggest that while the gender of the user may be indicative of 

underlying social responses in some cases, the gender of the robot may influence how 

individuals behave, how they exhibit rapport. Prior work would suggest that responses to 

gendered robots are complex but that they are not driven by stereotypes (Rea, Wang, and 

Young, 2015; Reich-Stibert and Eyssel, 2017). The results here would suggest that when 

engaging with a female gendered robot, individuals in general appeared to use more 

rapport-building behaviors when they felt less rapport. This could perhaps be to manage 

rapport. When interacting with a male robot, individuals used more rapport-building 

behaviors when they felt more rapport. Being positively correlated with their self-reported 

rapport, these behaviors were not about managing rapport but expressing rapport. These 

findings suggest that in evaluating effects individual differences are important to consider 

but that future exploration should also include how individuals behave in response to 

gendered robots and what this implies about how they are feeling.  

 

17.3 RQ 4: INSIGHTS INTO INTERACTION 

RQ 4 was concerned with whether there are any insights to be gained from manipulating 

social behaviors like entrainment in a robotic companion, particularly insights into human-

human interaction or human-agent interaction. There are important implications to this 

research question because it can often be difficult to gain insight into some aspects of 

human-human interaction. For example, there are questions which require controlled 

responses by one of the participants, such as how does deliberate entrainment on a single 

feature influence social responses? Or, how do different dialogue strategies influence 

experiences of self-efficacy in learning-by-teaching interactions? If the platform presented 
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here can reduce both the challenge and the cost of gaining insight into such questions, the 

space of questions about interactions which can be posed and answered is expanded. In the 

next few paragraphs, I touch on a few of the insights gained from this work and how the 

teachable robot platform may enhance future research.  

Prior to this work, it was unclear and difficult to detect from analysis of human-

human entrainment how deliberate entrainment on a single feature such as pitch can 

influence social responses. The results of the studies with Quinn, Nico, and Emma 

demonstrated that deliberate entrainment on a single feature can make a positive impact on 

how individuals perceive and respond to social dialogue, and that the form of entrainment 

does not need to be sophisticated or extremely nuanced to positively influence responses.  

This finding gives value to investigating entrainment on individual features in both human-

human and human-agent interactions because even a single feature can have an impact on 

perceptions. This is contrary to what some have proposed regarding entrainment, 

suggesting that it should be studied in aggregate since individuals tend to manipulate more 

than one feature at once and speakers perceive multiple features at once.  

Exploring the impact of different dialogue strategies in human-human peer tutoring 

dialogues can be challenging because it is dependent on observing strategies employed by 

human participants. The results of Chapter 13 demonstrated that a robot can employ a 

variety of strategies and that these can be evaluated for useful they are in creating social 

experiences that will build a tutor’s self-efficacy. While explored in a human-agent context, 

these dialogue strategies which promoted social, self-efficacy building experiences may be 

applicable in human peer tutoring scenarios. This methodology of exploring different 
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interaction strategies with a robotic tutee could be used in future work to explain why some 

peer tutoring dyads are more successful.  

Ultimately, the teachable robot platform presented here reduces both the challenge 

and the cost of gaining insight into questions which may be challenging to answer in 

human-human interactions. The final version of the teachable robot platform includes a 

robust and modular dialogue system and functional robotic platform which can be used to 

explore questions regarding social behavior and interaction. The results of this work 

highlight the potential benefits of using human-robot and potentially human-agent 

interactions to explore and gain insight into open questions in human-human interactions. 

It is a significant outcome of this work to demonstrate the potential platforms Nico and 

Emma have for investigating and gaining insight into previously difficult questions.  

 

17.4 CONTRIBUTIONS 

An Entraining Dialogue System: I introduced a dialogue system containing an acoustic-

prosodic entrainment module which can produce entrainment on multiple acoustic-

prosodic features in combination with other rapport-building verbal behavior, and 

demonstrated successful, positive effects on rapport and learning. 

Theory of Entrainment and Rapport: I contributed to the theory of entrainment and 

rapport demonstrating that even simple models of entrainment implemented in a teachable 

agent context can positively influence feelings of rapport and enhance interaction. I also 

found that a social behavior such as entrainment can have positive effects on learning 

Understanding Individual Differences: I found interesting indications that gender is 

pertinent when measuring responses and that the potentially the gender of the robot may 
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play a vital role in determining what responses mean and how individuals may engage with 

a social companion. 

 

17.5 FUTURE WORK 

17.5.1 Automating Entrainment 

In this thesis I explored simple, exaggerated models of entrainment. For example, the robot 

matched mean pitch turn-by-turn on every single turn, the robot converged over a series of 

turns on mean pitch, or the robot converged over a series of turns on pitch and intensity. 

Each model was slightly more complex than the previous; however, individuals in human-

human conversations are incredibly more complex, entraining at different points on 

different features depending on the dialogue structure and context. I found success with 

these models, but future work should target systems which incorporate entrainment as a 

part of the text-to-speech synthesis. To achieve this, one immediate next step would be to 

expand on the questions raised by the multi-feature entrainment approach. How can a more 

sophisticated model of pitch and intensity entrainment achieve higher rapport and learning? 

How can we better describe the relationship between entrainment and social dialogue? 

There is also the open question of whether automated entrainment may be more successful 

as simple and exaggerated models versus more complex, as has been suggested by recent 

work (Benus, et al., 2018). Finally, I observed significant dyadic differences in the analysis 

of human-human entrainment. Understanding how and why two individuals might entrain 

one way while two individuals entrain in a different way, yet both have high rapport is 

critical to designing a successful system. Answering these questions is required to provide 

a solid foundation for understanding how a system can achieve successful entrainment.  
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In exploring models of automated entrainment in the future, another measure of 

interest which is particularly important to the long-term development of entraining 

dialogue systems is the user’s prosodic responses. Future work should explore in more 

depth how learners changed their own prosody in response to the system. This will provide 

further insight into the effects of automated entrainment and can potentially provide 

guidance on how to use a learners’ prosody to detect when a system’s entrainment 

mechanism is working as intended or needs to adapt differently.  

This thesis gives evidence that there is potential for entrainment to enhance human-

computer interactions where social factors play an important role. It also supports that these 

social factors, enhanced through entrainment, can support outcomes such as learning. 

Future work could expand automated entrainment to other domains of human-computer 

interaction where developing rapport is important to the interaction and evaluate whether 

similar effects can be achieved.  

 

17.5.2 Robotic Learning Companions  

A major contribution of this thesis is that a social behavior such as entrainment has 

potential to facilitate learning in interactions with a robotic learning companion. This 

finding provides support for replicating other similar rapport-building phenomena in 

interactions with teachable robots. For example, future work could explore how lexical 

entrainment and physical entrainment combine with prosodic entrainment to enhance 

rapport and increase learning. Future work should also include exploring the open 

questions around gender and how the gender of the robot may influence responses. Finally, 

I explored this work with a teachable robot because of the potential robots have for 
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enhancing social responses in a physical space. This implies future explorations of 

manipulating multi-channel social behavior such as gesture. Another potential exploration 

of future work might be whether the findings with a teachable robotic companion extend 

to a virtual teachable agent and whether the influence of these behaviors differs when 

physical presence is no longer an attribute. 

 

17.6 EPILOGUE 

In Part I of this thesis I explored open questions regarding entrainment in human-human 

dialogues. In Part II I explored designs of acoustic-prosodic entrainment in spoken dialogue 

system for human-robot interactions where the robot was a form of robotic learning 

companion known as a teachable robot. I presented a social, entraining dialogue system 

and demonstrated that entrainment can be used to enhance rapport and learning in 

interactions with a teachable robot. The contributions of this work provide motivation for 

exploring future phenomena like entrainment to enhance factors such as rapport and 

learning as well as a platform with which to explore these phenomena, and add to the body 

of knowledge on entrainment, rapport, and learning.  
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Rapport Measures:  Participants responded on a Likert scale from 1 to 5 
 
I felt I had a connection with Quinn 
I felt I was able to engage Quinn 
I think that Quinn and I understood each other 
I felt that Quinn was interested in what I had to say 
I felt that Quinn was warm and caring 
I felt that Quinn was intensely involved in the interaction 
I felt that Quinn seemed to find the interaction stimulating 
I felt that Quinn was respectful to me 
I felt that Quinn showed enthusiasm while talking to me 
 
Social Presence Measures: Participants responded on a Likert scale from 1 to 7 

 
Quinn was easily distracted 
I was easily distracted 
Quinn tended to ignore me 
I tended to ignore Quinn 
I sometimes pretend to pay attention to Quinn 
Quinn sometimes pretended to pay attention to me 
Quinn paid close attention to me 
 
Coding Scheme:  

 

Politeness: “P” is polite to Quinn, follows conversational niceties (like saying hello) 
Ex 1: Thank you, Quinn 
Ex 2: ah step four please 

 

Complimenting or praising: “P” praises Quinn 
Ex 1: good job Quinn 
Ex 2: great! Now I factor out the two 
Ex 3: nice!  

 

Name usage: “P” uses Quinn’s name 
Ex 1: Nice job Quinn (this would contain checks in both the praise column and 
the name column) 
 

Inclusive: “P” includes Quinn, for example by using ‘inclusive’ language such as “us,” 
“we,”, “together”, “let’s” 

Ex 1: Let’s do problem one! 
 
Empathy: “P” expresses sympathy or empathy towards Quinn. Responds to Quinn’s 
complaints, responds to concerns with agreement, and empathy 

Ex 1: me too Quinn 
 NOTE: Empathy coded for Nico and Emma only 
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APPENDIX B 

NICO – MEASURES 
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Pre and Post Tests: 

Test A 

 

Galaxy Stats Number of Objects 

Moons 17 
Stars 22 

 
  

1. The table shows the numbers of moons and stars in a galaxy. What is the ratio of 
moons to all possible objects?  

 
2. 2:3 and 4:6 are equivalent ratios. Write in numbers an equivalent ratio to the ratio you 

gave in problem one.  
 
Use the chart below to answer questions 3 – 4.  
  

Number of Hours Since Park Opening 2.2  3 7  

Number of Guests at the Park 220 300   

  
3. Write a rule that describes the data in the chart.  

 
4. Use the rule to find the number of guests at the park after 7 hours.  

 
5. Alicia and her brother are holding a Halloween party. She has made a special drink with 

4 cups of fruit juice and 8 cups of seltzer water. Alicia has also made 20 cupcakes and 15 
hotdogs. She has just found out though that her brother invited 3 times as many guests as 
she thought! How much more does she need to prepare? 
 

6. In a package of star stickers there are 15 red stars, 25 gold stars and 10 green stars. What 
is the ratio of red to gold stars (in simplest form)?  
 

7. On a triangle, each side measures 5 cm, 10 cm, and 30 cm, respectively. In lowest terms, 
find the ratios of the lengths of the sides. 

 
8. John can buy 3 books for $18.75. How many books could John buy for $54?  

 
9. Allison can read 80 pages in 2 hours. How many hours will it take her to read 240 

pages?   
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10. Albert owns a bakery that specializes in chocolate chip cookies. He has very specific 
standards for his cookies. Albert personally checks the cookies before they are sold. 
This is the table he uses when checking cookies.  

  

Number of Cookies  Number of Chocolate Chips  

2  30  

4  60  

5  75  

7  105  

  
Which of the following equations can be used to find CC, the number of chocolate chips you 
can find on any number of C, cookies?  
  

a. CC = 28 + C  
b. CC = 15 + C  
c. CC = 15 x C  
d. CC = 30 x C  

 

Test B 

Activity Time (min) 

Treadmill 25 
Lifting Weights 35 

 
1. The table shows how Levon spends his time at the gym. What is the ratio of the time 

lifting weights to all activity time? 
 

2. 2:3 and 4:6 are equivalent ratios. Write in numbers an equivalent ratio to the ratio you 
gave in problem one. 
 

Use the below table to answer questions 3 – 4. 
 

Cost ($) 46 72  
Number of Hours 2.3 3.6 5 

 
 

3. Write a rule that describes the data in the chart. 
 

4. Use the rule to find the cost after 5 hours. 
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5. On his mother’s birthday, Juan has cooked dinner for his mother and some guests. He 
made a huge pot of rice with 4 cups of rice and 8 cups of water. He made 
two pernil (pork shoulders) and baked 3 cakes for dessert. His mother has decided to 
triple (invite three times as many) guests. How many more rice, water, pernil, and cakes 
should Juan cook? 
 
 

6. At a putt-putt course there are 50 yellow golf balls, 45 red golf balls, and 65 blue golf 
balls. What ratio compares the number of blue golf balls to the total number of golf balls 
(in simplest form)? 
 

7. On a triangle, each side measures 5 cm, 10 cm, and 30 cm, respectively. In lowest terms, 
find the ratios of the lengths of the sides. 

 
8. Genevieve spent $56.25 to fill her 15-gallon tank. How much did she pay per gallon? 

 
 

9. Leo buys 5 DVDs for $60. At this rate, how much would he pay for 3 DVDs? 
 
        

10. Zylfina is an elf who likes flowers. Every year she counts the number of flowers that 
appear in the meadow outside of her house. She’s been keeping track of the number of 
flowers for many years and she has found that there is a relationship between the number 
of flowers and the amount of rain that falls. Using the table below, which of the following 
equations explains the total number of flowers (flowers) per inch of rainfall (rain)? 

 

Number of flowers  Inches of rainfall 

48 4  

24 2 

72  6  

 
a. flowers = 22 + rain 
b. flowers = 22  x  rain 
c. flowers = 12 + rain 
d. flowers = 12 * rain 
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Rapport: Participants responded on a Likert scale from 1 to 5 
 
Emma and I understood each other       
Emma and I had a connection  
 
Emma was easily distracted  
Emma paid close attention to me       
I was easily distracted    
I paid close attention to Emma        
 
Emma liked me          
I liked Emma 
I was unfriendly to Emma  
Emma was unfriendly to me        
 
Emma was awkward in talking to me    
My conversation with Emma was easy 
I was awkward in talking with Emma 
Emma’s conversation with me was easy   
 
 

Self-Efficacy: Participants responded on a Likert scale from 1 to 5 
I am good at math     
I struggle with explaining how to solve math problems to others 
I can help others learn    
I can explain math problems to another student my age     
Math is hard for me.          
Ratio problems are hard for me    
 
Mastery and Social Persuasion: 

Emma learned because I explained the problems well     
Emma would want me to help again because she thinks I’m good at ratios 
I can help Emma learn ratios in the future              
I can help Emma learn math in the future          
Emma learned because I am good at math      
     
      
Comfort-Level Around Robots 

I feel comfortable interacting with human-looking robots 
I feel comfortable interacting with robots     
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APPENDIX C 

EMMA – MEASURES 
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Pretest 

Problem 1:  

 
Finish filling in the gray boxes below by using the relationship between A and B. 
 

Step A B 

0 6 2 

1 3  

2  3 

 
 
Problem 2 
 

Lucy can eat more ice cream faster than anyone else in her class. She eats 4
12 gallons every 

13 of an 

hour. She eats the ice cream a constant rate. How many gallons of ice cream can she eat in one 
hour?  
 
 
Give your answer as improper fraction rather than a mixed fraction (for example, 5/4). 
 
 
Problem 3. 

 
Finish filling in the gray boxes below by using the relationship between A and B. 
 

Step A B 

0 2.5 25 

1  30 

2 7.25  

 
 
Write the following as mixed fractions: 

 
Problem 4.  22/6 ___________ 
 
Problem 5.  18/4 ___________ 
 

Problem 6.  13/5 ___________ 
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Problem 7. 

 

Finish filling in the gray boxes below by using the relationship between A and B. 
 

Step A B 

0 
120  23   

1  1  

2  3  

 
 

Problem 8.  

 
Select the brand with the least expensive corn per ounce. 
   

a. Brand A:   

Ounces Price 

18 $1.50 
36 $3.00 
54 $4.50 

b. Brand B:  

 
 
  
 
 

 
c. Maia buys an 11 ounce can of Brand C corn for $2.50 

 

 

Problem 9. 

 

Which table has a constant of proportionality (or consistent ratio) between y and x of  
13 ? 

Circle the letter of the correct table.  
 

  A       B            C      D 

 
x y  x y  x y  x y 

8 2  2 1  6 1.5  6 2 
10 2.5  8 4  7 2  9 3 
12 3  6 12  8 2.5  15 5 
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Problem 10. 

 

The following table shows the number of tickets purchased for a popular concert for every hour 
they are on sale. What is the relationship between the number of hours the tickets are on sale and 
the number of tickets sold?  
 

Number of hours 1 2 5 
Tickets sold  15 30 75 

 

 

Posttest 

Problem 1:  

 
Finish filling in the gray boxes below by using the relationship between A and B. 
 

Step A B 

0 12 6 

1 4  

2  15 

 
Problem 2 

Ben drinks tea at an incredible rate. He drinks 3
12, liters of tea every 

23 of an hour. Ben drinks tea 

at a constant rate. How many liters of tea does he drink in one hour? 
 
 

Give your answer as improper fraction rather than a mixed fraction (for example, 5/4). 
 
Problem 3. 

 
Finish filling in the gray boxes below by using the relationship between A and B. 
 

Step A B 

0 3.1 6.2 

1  12 

2 9  
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Write the following as mixed fractions: 

 
Problem 4.  19/8 ___________ 
 
Problem 5.  29/4 ___________ 
 

Problem 6.  7/3 ___________ 
 
Problem 7. 

 

Finish filling in the gray boxes below by using the relationship between A and B. 
 

Step A B 

0 
110  12   

1  2 

2  5 

 
Problem 8.  

 
Select the house with the best price per square foot. 
   

a. House A:   

Room Sq. 

Footage 
Price 

20 $180 
30 $270 
6.5 $58.5 

b. House B:  

 
$ 930 
310 sq. feet 

 
 
 
 
 
 
 

 
c. House C: Maia buys a 400 square foot house for $1600 
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Problem 9. 

 

Which table has a consistent ratio between y and x of  
14 ? Circle the letter of the correct table.  

 
  A       B            C      D 

 
X y  x y  x y  x y 

8 2  3 1  6 1.5  2 1 
10 2.5  6 2  7 2  4 2 
12 3  9 3  8 2.5  8 4 

  
 

 

Problem 10. 

 

The following table shows the number of tickets purchased for a popular concert for every hour 
they are on sale. What is the relationship between the number of hours the tickets are on sale and 
the number of tickets sold?  
 

Number of hours 1 2 5 
Tickets sold  12 24 60 
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