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Product Accumulate Codes: A Class of Codes With
Near-Capacity Performance and Low
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Jing Li, Member, IEEE, Krishna R. Narayanan, Member, IEEE, and Costas N. Georghiades, Fellow, IEEE

Abstract—We propose a novel class of provably good codes
which are a serial concatenation of a single-parity-check
(SPC)-based product code, an interleaver, and a rate-1 recursive
convolutional code. The proposed codes, termed product accu-
mulate (PA) codes, are linear time encodable and linear time
decodable. We show that the product code by itself does not
have a positive threshold, but a PA code can provide arbitrarily
low bit-error rate (BER) under both maximum-likelihood (ML)
decoding and iterative decoding. Two message-passing decoding
algorithms are proposed and it is shown that a particular update
schedule for these message-passing algorithms is equivalent to
conventional turbo decoding of the serial concatenated code, but
with significantly lower complexity. Tight upper bounds on the
ML performance using Divsalar’s simple bound and thresholds
under density evolution (DE) show that these codes are capable
of performance within a few tenths of a decibel away from the
Shannon limit. Simulation results confirm these claims and show
that these codes provide performance similar to turbo codes
but with significantly less decoding complexity and with a lower
error floor. Hence, we propose PA codes as a class of prospective
codes with good performance, low decoding complexity, regular
structure, and flexible rate adaptivity for all rates above 1/2.

Index Terms—Accumulator, low complexity, low-density parity-
check (LDPC) codes, product codes, rate adaptivity, turbo product
codes (TPC).

I. INTRODUCTION AND OUTLINE OF THE PAPER

E propose a novel class of provably good codes that

have a positive signal-to-noise ratio (SNR) threshold
above which an arbitrarily low error rate can be achieved as
block size goes to infinity. The proposed codes, referred to as
product accumulate (PA) codes, are shown to possess many
desirable properties, including close-to-capacity performance,
low decoding complexity, regular and easily implementable
structure, and easy rate adaptivity uniformly for all rates higher
than 1/2.
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The work was initiated by the search for good, high-rate
codes which permit soft-decision and soft-output decoding.
Several applications require the use of (soft-decision decod-
able) high-rate codes, and research on high-rate codes with
good performance is of both theoretical and practical interest
[2]. Some widely used high-rate codes are Reed—Solomon
(RS) codes, punctured convolutional codes, turbo codes, and
low-density parity-check (LDPC) codes. Until very recently,
soft-decision decoding of RS codes has been a major computa-
tional problem. Recent developments are yet to be benchmarked
to know the exact performance of soft-decision decoding of RS
codes. To obtain good performance from high-rate punctured
convolutional codes and turbo codes, convolutional codes
usually must be of long constraint length, making the decoding
complexity rather high. LDPCs, on the other hand, provide
good performance at possibly lower complexity; however,
the encoding complexity can be as high as O(N?) (N is the
codeword length) if direct matrix multiplication is performed
and, moreover, explicit storage of a generator matrix may be re-
quired. It has been shown in [5] that with careful preprocessing,
most LDPC codes can be made linear-time encodable, but the
preprocess requires a one-time complexity of up to O(N 3/ 2).
Further, good high-rate LDPC codes are difficult to construct
for short block lengths.

In an effort to construct good, simple, soft-decodable, high-
rate codes, we investigated single-parity-check (SPC)-based
product codes [14], also known as array codes [16] or hyper
codes [17]. SPC-based product codes have recently been
investigated for potential application in high-density magnetic
recording channels and have demonstrated encouraging per-
formance when decoded via a turbo approach [4], [14]. Since
the product code itself does not have a positive threshold, we
consider the concatenation of a rate-1 inner code (differential
encoder or accumulator) with the product code through an
interleaver. Through analysis and simulations we find this
class of codes to be remarkably good in bit-error rate (BER)
performance at high code rates (R > 0.7) when used with
an iterative message-passing decoding algorithm. We show
that the performance of these codes can be further improved
by replacing the block interleaver in the conventional product
outer code with a random interleaver. We will refer to such
codes (using random interleavers) as PA-I codes Fig. 1(a).
Clearly, when the outer code is a conventional product code
(using a block interleaver), it is a special case of the general
PA-I codes and we will refer to those as PA-II codes Fig. 1(b).
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To facilitate understanding the structure and potential of
the proposed codes, we compute tight upper bounds on their
performance using the bounding technique developed by
Divsalar [6]. We also study the graph structure of these codes.
Thresholds are computed using density evolution (DE) [7] and
shown to be within a few tenths of a decibel from the Shannon
limit for all rates R > 1/2. By studying the graph structure,
a message-passing (sum-product) decoding algorithm and its
low-complexity approximation, a min-sum algorithm can be
developed to iteratively decode the outer and inner codes.
We show that a particular update schedule for this algorithm
when applied to the graph of the inner code results in optimal
decoding of the inner 1/(1 + D) code. That is, the sum-product
algorithm applied to the decoding of 1/(1 + D) is equivalent
to the Bahl, Jelinek, Cocke, and Raviv (BCJR) algorithm
[31] (optimal in the a posteriori probability (APP) sense) and
the min-sum algorithm is equivalent to the Max-log-MAP
algorithm. However, the message-passing algorithm can be
implemented with significantly lower complexity than the
BCIJR equivalents. Simulation results with long block lengths
confirm the thresholds and simulations with short block lengths
show that performance close to turbo codes can be achieved
with significantly lower complexity.

As such, we propose the class of PA codes as a prospective
class which not only enjoys good performance, low complexity,
and soft decodability, but also maintains a simple and regular
structure uniformly for all block sizes and for all rates above
1/2. This regular structure, as well as the ease in construction,

[ WP TPC/SPC code|/

(b)

System model for PA codes. (a) Structure of PA-I codes. (b) Structure of PA-II codes.

are particularly appealing properties in practical implementa-
tion and in applications that require rate adaptivity.

A brief background on SPC-based product codes is presented
in Section II, followed by a description of PA codes in Sec-
tion III. The decoding of PA codes is discussed in Section IV;
in particular, a graph-based sum-product algorithm is described
and shown to be optimal for inner rate-1 convolutional codes,
yet with very low complexity. Section V analyzes in detail
some properties of PA codes, including upper bounds on the
performance under maximum-likelihoos (ML) decoding and
thresholds of the codes under iterative decoding. Section VI
discusses an algebraic construction which is useful in practical
implementation. Section VII presents simulation results. Sec-
tion VIII compares the proposed codes with other good codes
proposed recently. Conclusions and future work are discussed
in Section IX.

II. BACKGROUND ON SPC-BASED PRODUCT CODES

Since the motivation for the proposed PA codes stems from
SPC-based product codes, it is desirable to first discuss SPC-
based product codes.

A. SPC-Based Product Code Structure and Properties

A product code [8], [10] is composed of a multidimen-
sional array of codewords from linear block codes, such as
parity-check codes, Hamming codes, and Bose—Chaudhuri—
Hocquenghem (BCH) codes. Recently, iterative (turbo) de-
coding has been applied to decode product codes and, hence,
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product codes have been widely referred to as block turbo
codes [9] or turbo product codes (TPC). We will use the
term turbo product code here since the overall decoder is
an iterative decoder incorporating the turbo principle [10].
Particularly of interest is the simplest type of TPC codes,
namely, single-parity-check turbo product codes (TPC/SPC)
[14], also known as array codes [16] or hyper codes [17], due
to their simplicity and high rate. An s-dimensional (s-D) turbo
product code C formed from component codes

C1 ~ (N1, K1,dy),Co ~ (No, Ka,d3),...,Cs ~ (N, Ky, ds)
has parameters
(N1Ng---Ng, K1 Ky -+ K, dydy - - - ds)

where N, K, and d are the codeword length, user data block
length, and the minimum distance of the code, respectively, and
its generator matrix is the Kronecker product of the generator
matrices of the component codes G = G1 G2 ®- - -®Gs. Since
high rates are of interest, we restrict our attention to two-dimen-
sional (2-D) TPC/SPC codes in this work where each row corre-
sponds to a codeword from component code C; and each column
corresponds to a codeword from component code Cs. In the gen-
eral case, a TPC code may or may not have “parity-on-parity”
bits [14]. A TPC code without parity-on-parity is essentially
a parallel concatenation with a block interleaver, and a TPC
code with parity-on-parity is a serial concatenation with a block
interleaver.

The encoding of a TPC code is straightforward and can be
done in linear time. The decoding of TPC codes takes an it-
erative approach based on the soft-in soft-out (SISO) decoders
for each of its component codes [13]. Decoding of TPC com-
ponent codes is generally via the Chase algorithm [12], a con-
trolled-search procedure. However, with SPC component codes,
decoding can be handled in a simpler and more efficient manner.
The observation that a TPC/SPC code can be effectively viewed
as a type of structured LDPC code [4], [14] where each row in
each dimension satisfies a check, leads to a convenient adop-
tion of the message-passing algorithm (or the sum-product al-
gorithm) from LDPC codes. Since each bit is expressed as the
modulo-2 sum of the rest of the bits in the check, this message-
passing decoding algorithm is, in fact, an extension of replica-
tion decoding [15]. The exact decoding algorithm can be found
in Appendix I. The simple and regular structure of a TPC/SPC
code makes it possible to analyze the code properties. In par-
ticular, the weight spectrum of a 2-D TPC/SPC code with pa-
rameter C ~ (n1ng, (n1 — 1)(ne — 1)) can be calculated by the
following equation [15]:

A(h) =27™ nz <Zl> [ nz

a=0 m=0,m even

Pm(a;m)hm] )]

where
P = (1) (n2h) @

As expected, A(h) is symmetric in 7 and ns. It has been shown
that the weight distribution of TPC/SPC codes asymptotically

33

approaches that of a random code if the dimension of the code
and the lengths of all component codes go to infinity [15]. How-
ever, increasing the dimension decreases the code rate and is
therefore not of interest in the design of high-rate codes.

B. A TPC/SPC Code by Itself Cannot Achieve Arbitrarily Low
Error Rate

One criterion for judging a code is the test for the existence
of a threshold phenomenon where arbitrarily low error rate can
be achieved (using infinite code length and infinite decoding
complexity and delay) as long as the channel is better than
this threshold. While LDPC codes, turbo codes, and many
other serial/parallel concatenated codes have such thresholds,
a TPC/SPC code alone does not. To see this, note that an
s-dimensional TPC/SPC code always has minimum distance
2¢ irrespective of the block size. Assuming ML decoding, the
lower bound on the word-error rate (WER) is

2s+1RE
Pu(e) > Q Tob 3)

where R is the code rate. Obviously, the lower bound is not a
function of block size. In other words, unless the dimensionality
of a TPC/SPC code, s, goes to infinity, its WER performance is
always bounded away from zero independent of the block size.

In an effort to improve the performance of TPC/SPC codes,
some attempts have been made to increase their minimum dis-
tance by carefully adding more parity checks by increasing the
dimensionality [17], [18]. However, adding dimensionality ob-
viously reduces code rate. Further, for any TPC/SPC code of a
given dimensionality, the minimum distance is fixed and does
not improve with block size. In other words, except for the
asymptotic case where s — oo, multidimensional TPC/SPC
codes will not be error free even if the block length goes to in-
finity. Moreover, when s — oo, R — 0, and, hence, this case is
not of interest here.

In this paper, we take a different approach in improving the
performance of TPC/SPC codes, which is to group several
blocks of TPC/SPC codewords together, interleave them, and
further encode them with a rate-1 recursive convolutional
code (or an accumulator). The resulting serial concatenation
brings a significant improvement to TPC/SPC codes in their
fundamental structural properties, for, as will be explained
in later sections, the resulting serial concatenated code now
has a positive threshold and is still linear-time encodable and
decodable. Furthermore, we will discuss a modification to the
interleaving scheme within the TPC/SPC code which results in
a better code structure.

III. STRUCTURE OF THE PROPOSED PRODUCT
ACCUMULATE CODES

A. Proposed Code Structure

The proposed class of codes is a serial concatenation of
an outer product code (i.e., a TPC/SPC code), a random
interleaver, and an inner rate-1 recursive convolutional code
of the form 1/(1 + D) (also known as the accumulator).
Recall that depending on whether there are parity-on-parity
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bits, the outer 2-D TPC/SPC code can be viewed as a parallel
or serial concatenation with a block interleaver. Analysis and
simulations show that if a big random interleaver is used instead
of the block interleaver(s) within the TPC/SPC codes, then the
performance of these codes can be further improved. Fig. 1(a)
shows the exact structure of the proposed PA codes, or more
precisely PA-I codes, whose outer code takes the form of two
parallel branches of SPC codes concatenated via a random
interleaver. It should be emphasized that in each branch, P
blocks of codewords from (¢ 4+ 1,¢) SPC codes are combined
and interleaved together. As will be shown later, this is impor-
tant and essential to achieve the interleaving gain. Hence, these
codes are of parameters (N, K, R) = (P(t+2), Pt,t/(t+2))
and are clearly a class of high-rate codes.

When no modification is made to the original structure of
the outer TPC/SPC code, we call these codes PA-II codes.
The overall structure is shown in Fig. 1(b). Clearly, PA-II
codes are a special case of PA-I codes, and, likewise, P blocks
need to be grouped and interleaved together before passing
through the accumulator. Since a TPC/SPC code by default
has parity-on-parity bits, PA-II codes thus have parameters
(N,K,R) = (P(t + 1)* Pt*,(57)?), which are slightly
different from those of PA-I codes.

The idea of concatenating an outer code and an interleaver
with a rate-1 recursive inner code, particularly of the form of
1/(1+ D), to achieve coding gains (interleaving gain) without
reducing the overall code rate is widely recognized [19]-[21].
For low-rate codes (rate-1/2 or less), convolutional codes and
even very simple repetition codes [22] are good outer code
candidates to provide satisfactory performance. However, the
construction of very-high-rate codes based on this concept poses
a problem. The key problem here is that, from Divsalar ez al.’s
results [23], [24], the outer code needs to have a minimum
distance of at least 3 to obtain an interleaving gain. To obtain
good high-rate convolutional codes through puncturing, and in
particular to maintain a d,,;, of 3 after puncturing, the original
convolutional codes must have fairly long constraint length,
which makes decoding computationally complex. On the other
hand, 2-D TPC/SPC codes possess many nice properties for
a concatenated high-rate coding structure, such as high rate,
simplicity, and the availability of an efficient soft-decoding
algorithm. PA-II codes have outer codes with d,;, = 4 for
any code rate and, hence, an interleaving gain is achieved. We
will also show in Section V-B that although the outer code
of PA-I codes has d,;;, = 2 in the worst case, an interleaving
gain still exists for the code ensemble.

In the following sections, we will perform a comprehensive
analysis and evaluation of the proposed PA codes. The focus is
on PA-I codes since they are the more general case and since
they typically achieve better performance than PA-II codes.

?

IV. ITERATIVE DECODING OF PA CODES

The turbo principle is used to iteratively decode a serially con-
catenated system, where soft extrinsic information in log-likeli-
hood ratio (LLR) form is exchanged between the inner and outer
code. The extrinsic information from one subdecoder is used as
a priori information by the other subdecoder. The decoding of
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the outer TPC/SPC code is done using a message-passing algo-
rithm similar to that of LDPC codes, as described previously.
The inner rate-1 convolutional code is typically decoded using
a two-state BCJR algorithm, which generates the extrinsic in-
formation for bit z; in the kth turbo iteration, denoted Lgk) (24).
The outer decoder uses L™ (z;) as a priori information and pro-
duces extrinsic information L") (z;). However, a more compu-
tationally efficient approach is to use message-passing decoding
directly on the graph of the PA code including the inner code,
whose subgraph has no cycles.

It has been recognized that the message-passing algorithm is
an instance of Pearl’s belief propagation on graphical models
with loops [25], [26]. The basic idea of probability inference de-
coding is implied in Tanner’s pioneering work in 1981 [27], and
later addressed by Wiberg [28], Frey et al. [26], [29], McEliece
et al. [25], and Forney et al. [30]. While message-passing de-
coding has gained tremendous popularity in decoding LDPC
codes, relatively little has been reported about convolutional
codes, possibly because the code graph of a convolutional code
is, in general, complex and involves many cycles which either
make the message flow hard to track or make the algorithm inef-
fective (due to the significant amount of correlation in the mes-
sages caused by the cycles). Nevertheless, for the specific case
of the 1/(1+ D) code, a cycle-free Tanner graph presenting the
relation of y; = z; D y;—1 (b denotes modulo-2 addition) can be
constructed, using the message flow which can be conveniently
traced. Recently, message-passing on the graph structure of a
1/(1+ D) inner code has been used with irregular repeat accu-
mulate (IRA) codes by Jin, Khandekar, and McEliece [22] and
by Divsalar et al. [22], [6] to analyze two-state codes. Here, we
use a serial update in the graph (rather than the parallel update as
used in [22] and [6]). This is equivalent to the BCJR algorithm,
but has an order of magnitude lower complexity [39]. We show
that the low-complexity approximation, the min-sum update on
the graph, is equivalent to the Max-log-MAP algorithm which
further reduces the decoding complexity.

A. The Message-Passing Algorithm

As shown in Fig. 2(a), the combination of the outer code, the
interleaver, and the inner code can be represented using one
graph which contains bit nodes (representing the actual bits)
and check nodes (representing a constraint such that connecting
bit nodes should add up (modulo-2) to zero). Fig. 2(b) illus-
trates how messages evolve within the 1/(1+ D) code. The out-
going message along an edge should contain information from
all other sources except the incoming message from this edge.
Hence, the extrinsic messages sent out at bit x; at the kth turbo
iteration Lgk)(a,z) is computed as

L) (z;) = (Lch(yi—1)+L£’;)(yi—1)) H (LC;L(yi)wLLE’Z)(yi)
“4)

Pr(ri|y: = 0)
Eenl) =108 by = 1)

denotes the message obtained from the channel (r; is the re-
ceived signal corresponding to the coded bit y;), L., (y;) and
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Fig. 2.
1/(1 4+ D). (d) Backward pass in 1/(1 + D).

L., (y;) denote the (extrinsic) messages passed “forward” and
“backward” to bit y; from the sequence of bits/checks before
and after the ith position, respectively. The superscript (k) de-
notes the kth turbo iteration between the inner and outer de-
coders (as opposed to the local iterations in the decoding of
the outer TPC/SPC code) and the subscript ¢ denotes the ¢th
bit/check. The operation H refers to a “check™ operation, also
known as the “tanh” rule, which is given by

ﬂ) o

v=aHBB=2tanh™! (tanh % . tanh 5
Forward-pass and backward-pass messages, L., (y;) and
L., (yi), can be calculated using (see Fig. 2(c) and (d))
L® (i) = LE (@) B (Lenlyi 1) + L8 (i 1)),
2<,i< N (6)
Lg’z)(%) = Lgk_l)($i+1) H (Lch(yi+1) + Lglz)(g/i+1)>7
1<i<N-1 (7

where Lgk_l)(xi) is the message received from the outer
TPC/SPC code in the (k — 1)th turbo iteration (between inner

and outer codes). Clearly, L((P)(a:i) = 0, V 4, since in the first

(d)

Code graph and message-passing decoding for 1/(1 + D). (a) Graph presentation of PA code. (b) Message flow in 1/(1 + D). (c¢) Forward pass in

turbo iteration the inner code gets no information from the
outer code. The boundary conditions are

L& (1) = LD (1) B oo = LD ()
Lglz) (yN) = 07

E>1 (8)
kE>1.(9)

?

From the above computation, it can be seen that the outbound
messa ime i i, L (z; ili
ge at the present time instance 4, Le ’ (z;), has utilized all
dependence among the past and future (through ng) (2;—1) and
Lgf) (z;)) without any looping back of the same information.

Fact 1: The aforementioned message-passing (sum-product)
decoder is identical to the BCJR algorithm for the 1/(1 + D)
inner code.

Proof: The result can be expected from the well-known
fact that message-passing decoding, if properly conducted on
cycle-free code graphs, will converge to the optimal solution
[25], [26]. The exact proof of Fact 1 becomes straightforward
if one notes the relations between the two decoding processes
(which is summarized in Table I). To save space, we leave out
the detailed discussion and the proof. Interested readers are re-
ferred to [39]. O
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TABLE 1
EQUIVALENCE OF SUM-PRODUCT AND MAP DECODING FOR THE 1/(1 4+ D) CODE

BCJR Sum-product
Forward @ = (0y—1 B Lo(z1)) + Len(ye) Le,(ye) = (Le; (Ye-1) + Len(ye-1)) B Lo(:)
Backward | ;= (Bu1+Len(yen))BLo(Ze1) Le,(ys) = (Ley (Ye1) + Len(Yer1)) B Lo(T141)
Extrinsic LLR A= 1B(Bi+ Len(ys)) Lo(x) = (Le; (Y1) + Len (Y1) B (Le, (Ye) + Len (31))

Pr(S;=0,rt

5 A )
@ = log —Pr(S¢=1,+rl) )

3 A Pr(r],,|S:=0)
ﬁt = lOg _Pr(t‘,’v+l|sr.=1) )

A 2 log _§r<n=olr"J ;

r(z¢=1|r]

The key advantage of message-passing decoding is that it
obviates the need to compute log(e® + ¢”) and the need to
explicitly normalize at each step. Instead, a single operation
log tanh(%) is used which can be implemented using table
lookup. A significant amount of complexity is thus saved,
which makes the (aforementioned) message-passing decoding
an efficient alternative to the conventional BCJR algorithm for
1/(1 4 D) code.

The message-passing algorithm used by Jin et al. [22] and Di-
vsalar et al. [6] in repeat—accumulate/irregular repeat—accumu-
late (RA/IRA) codes is a parallel version the sequential update
of L& and L% in (6) and (7)

Lgﬁ)(y’i) =L (@) B (Len(yio1) + ng];_l)(yFl» (10)
L (y;) = LY~ (2i41) B (Len(yir1) + LE D (yira)).
(11)

Clearly, since the parallel version uses the information from the
last iteration rather than the most recent, the convergence may
be a little slower. But for practical block sizes and for moderate
decoding times, simulations have shown that the compromise in
performance is only about 0.1 dB after 15 to 30 iterations [39].

B. The Min-Sum Algorithm

The main complexity in the decoder comes from the H oper-
ation in both the outer TPC/SPC and inner 1/(1 4 D) decoding.
Each turbo iteration (composed of one round of 1/(1 + D) de-
coding followed by one round of TPC/SPC decoding' requires
at least five H operations per coded bit. A straightforward imple-
mentation of B may require as many as one addition and three
table lookups (assuming log(tanh(-)) and log(tanh~'(-)) are
implemented via table lookups). Although this is already lower
complexity than turbo codes, it is possible and highly practical
to further reduce the complexity with a slight compromise in
performance. Just like the Max-log-MAP algorithm of turbo
codes, the HH operation has a similar approximation [37], [38]

v =2tanh ! <tanh % - tanh ﬂ)

2
og LE
e 4 ef
1+ e lotdl
=sign(a) - sign(B) - min(|a|, |3|) + log 1L e ladl
~sign(a) - sign(B) - min(|al, |6])- (12)

ISimulation results show that the best performance/complexity gain is
achieved with only one local iteration of TPC/SPC decoding in each turbo
iteration between the inner and outer decoders.

If the approximation in (12) is used, i.e., a “‘signed min” op-
eration is used instead of H, then a considerable reduction in
complexity is achieved, and the message-passing algorithm, or
the sum-product algorithm, is then reduced to the min-sum al-
gorithm.

Fact 2: Min-sum decoding of 1/(1 + D) is equivalent to
Max-log-MAP decoding.

Proof: Fact 2 follows from Fact 1 where the equivalence
of sum-product decoding and BCJR decoding for the 1/(1+ D)
code is shown. Note that the Max-log-MAP algorithm approxi-
mates the BCJR algorithm by replacing the max™* operation with
max operation and that the min-sum algorithm approximates
the sum-product algorithm by replacing the B operation with a
signed min operation. Specifically, between the Max-log-MAP
and BCJR algorithm, we have the following approximation:

max(a, ) & max*(a, §) 2 log(e® + ¢°). (13)

Applying approximation (13) to the sum-product algorithm
results in the min-sum algorithm. It thus follows that the
min-sum algorithm is a computationally efficient realization of
the Max-log-MAP algorithm for the decoding of 1/(1 + D)
codes. O

V. PROPERTIES OF PRODUCT ACCUMULATE CODES

Before presenting numerical results, we first show some
properties of PA codes to facilitate understanding of their
performance. The proposed PA codes possess the following
properties [3].

i) Property I: They are linear time encodable and linear time
decodable.

ii) Property II: They are capable of achieving error-free per-
formance under optimal ML decoding asymtotically.

iii) Property III: They are capable of achieving asymptotic
error-free performance under iterative decoding.

A. Encoding and Decoding Complexity

The encoding and decoding complexity of PA codes is linear
in the codeword length. The encoding process involves only a
parity check in each dimension (see Section II-A ), interleaving
and encoding by a rate-1 inner code (see Fig. 1(b)), all of which
require linear complexity in the block length. The decoding
complexity is proportional to the number of iterations of the
outer TPC/SPC code and the inner convolutional code, both of
which have linear decoding complexity.
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TABLE 1I
DECODING COMPLEXITY IN OPERATIONS PER DATA BIT PER ITERATION (R IS CODE RATE)
Code outer TPC/SPC inner 1/(1 + D)

Decoding Algorithm | sum-prod. | min-sum | log-MAP | Max-log-MAP | sum-prod. | min-sum
Additions 5+ % 2 (15-24+9)/R | (10-2+11)/R 5/R 2/R
Min/Max 5-— % (5-2-2)/R | (5-2-2)/R 3/R

Table Lookup 2+ 2 (5-2—-2)/R 6/R

Table II summarizes the complexity of different decoding
strategies for the inner and outer codes. We assume that in
sum-product decoding, log tanh($ ) is implemented using table
lookup. The complexity of the log-MAP and Max-log-MAP
algorithms is evaluated using [32] (based on the conventional
implementation of the BCJR algorithm). As can be seen, the
sum-product and min-sum decoding of 1/(1 + D) require only
about 1/6 and 1/8 the complexity of their BCJR equivalents,
respectively. For arate-1/2 PA code, message-passing decoding
requires about 35 operations per data bit per iteration, while
min-sum decoding requires only about 15 operations; both are
significantly less than the number of operations involved in a
turbo code.

B. Performance Under ML Decoding

In the ML-based analysis of PA codes, we first quantify the in-
terleaving gain and then derive a tight upper bound on the word
error probability. We show that under ML decoding, the prob-
ability of word error is proportional to P~! for large Ej/No,
where P is the number of TPC/SPC codewords concatenated
before interleaving. Further, we show that these codes can per-
form close to capacity limits by computing thresholds for these
codes based on the tight upper bound on the WER due to Div-
salar [6].

1) Interleaving Gain: From the results of Benedetto et al.
[23] and Divsalar, Jin, and McEliece [24], we know that for a
general serial concatenated system with recursive inner code,
there exists a threshold v such that for any Fj,/Ng > -+, the
asymptotic WER is upper-bounded by

4o —1
PgB:o<N—L 5 J) (14)
where d¢, is the minimum distance of the outer code and N is
the interleaver size. Whereas this result offers a useful guideline
in quantifying the interleaving gain, one must be careful in in-
terpreting it for PA codes.

The resultin (14) indicates that if the minimum distance of the
outer code is at least 3, then an interleaving gain can be obtained.
However, the outer codewords of PA codes (with random inter-
leavers) have minimum distance of only 2. On the other hand, if
S-random interleavers are used such that bits within distance .S
are mapped to at least distance S apart, then the outer codewords
are guaranteed to have a minimum distance of at least 3 as long
as S > t. Since a block interleaver can be viewed as a struc-
tured S-random interleaver, it follows that interleaving gain ex-
ists for PA-II codes. Below, we show that although the minimum
distance of the outer codewords is only 2 over the ensemble of

interleavers, an interleaving gain still exists for PA codes with
random interleavers (PA-I codes). Since from (14) outer code-
words of weight 3 or more will lead to an interleaver gain, we
focus the investigation on weight-2 outer codewords only and
show that the number vanishes as P increases. The all-zero se-
quence is used as the reference since the code is linear.

It is convenient to employ the uniform interleaver which rep-
resents the average behavior of the ensemble of codes. Let Ag_)h,
j = 1,2, denote the input output weight enumerator (IOWE) of
the jth SPC branch code (parallelly concatenated in the outer
code). The IOWE of the outer codewords, A¢ , , averaged over
the code ensemble is given as 7

4D 4@

0 _ w,hlAw,h—hl
B

hq w

15)

where K = Pt is the input sequence length.

Define the input output weight transfer probability IOWTP)
of the jth branch code, Péf % as the probability that a particular
input sequence of weight w is mapped to an output sequence of
weight h

) A(j)h
PY) = (,“;’) . i=12 (16)
Substituting (16) in (15), we get
o 1 2
Au),h = Z A’EU,)hl P’LE),;L—h] ° (17)

}Ll

For each branch where P (¢ + 1,¢) SPC codewords are com-
bined, the IOWE function is given as (assuming even parity

check)
t 2 tY 2,9 L\ 3,4
(1-{-(1)10/1 +(2)wh +<3>wh
P
L\ 4;4 A %
+ 4wh—|—---—|— twh (18)

. P
3 <t> wih20i/2]
J

7=0

ASPC(w7 h)

(19)

where the coefficient of the term w*h" denotes the number of
codewords with input weight » and output weight v. Using (19),
we can compute the IOWEs of the first SPC branch code, de-

noted as AL} (= ASFC). For the second branch of the SPC code,

u,v
(2)

since only parity bits are transmitted, A, ;, = Af}fj tu
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With a little computation, it is easy to see that the number of
weight-2 outer codewords is given by

L2=§?%#ﬂ:PG><?g>

=0 (%) =0(t*) (0

where the last equation assumes a large P (i.e., large block size).
Equation (20) shows that the number of weight-2 outer code-
words is a function of a single parameter ¢ which is related only
to the rate of SPC codes and not the block length. Now con-
sidering the serial concatenation of the outer codewords with
the inner 1/(1+ D) code, the overall output weight enumerator
(OWE) AP4 is

Al/(1+D)
o 2k
AR =S :A,L,T 1)
h! h'
AL/(+D)
(22)

— Z Z A° h',h
h'  w o (ﬁ)

where A7, is the OWE of the outer code, and the IOWE of the
1/(1 + D) code is given by [24]

A/0+D) _ <N—h> ( h—1 )
it 50 ) \-1)

In particular, the number of weight-s PA codewords produced

by weight-2 outer codewords (for small s), denoted as A}?iz, is

(23)

PA2 _ (t_1)2N_5

=TT )

A

=0(tP™") (24)

where N = P(t 4 2) is the PA codeword length. This in-
dicates that the number of small weight-s codewords of the
overall PA code due to weight-2 outer codewords (caused by
weight-2 input sequences) vanishes as P increases. When the
input weight is greater than 2, the outer codeword always has
weight greater than 2 and, hence, an interleaving gain can be
guaranteed. Hence, an interleaving gain exists for PA codes and
it is proportional to P.

2) Upper Bounds: To further shed insight into the asymp-
totic performance (N — o0) of PA codes under ML decoding,
we compute thresholds for this class of codes based on the
bounding technique recently proposed by Divsalar [6]. The
threshold here refers to the capacity of the codes under ML
decoding, i.e., the minimum F} /Ny for which the probability
of error decreases exponentially in NV and, hence, tends to zero
as N — oo

Among the various bounding techniques developed, the union
bound is the most popular but it is fairly loose above the cutoff
rate. Tighter and more complicated bounds include the tangen-
tial sphere bound by Poltyrev [33], the Viterbi—Viterbi bound
[34], Duman—Salehi bound [35], the Hughes bound [36]. These
new tight bounds are essentially based on the bounding tech-
niques developed by Gallager [40]

Pr(error) < Pr(error, y € R) + Pr(g ¢ R) (25)
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where ¥ is the received codeword (matched-filter samples of the
noise-corrupted codeword), and R is a region in the observed
space around the transmitted codeword. To get a tight bound,
the above methods usually require optimization and integration
to determine a meaningful R.

Recently, Divsalar developed a simple bound on error prob-
ability over additive white Gaussian noise (AWGN) channels
[6]. The bound is also based on (25), but a simple closed-form
expression is derived and shown that the computed minimum
SNR threshold can serve as a tight upper bound on the ML ca-
pacity of nonrandom codes. The simple bound is the tightest
closed-form bound developed so far. It is also shown that, as
block size goes to infinity, this simple bound is equivalent to
the tangential sphere bound [6]. In what follows we apply this
simple bounding technique to the analysis of PA codes.

We first quote and summarize the main results of [6]. Define
the spectral shape of a code, yn (), as the normalized weight
distribution averaged over the code ensemble Cx

1
N (8) & N1n<Ah:L6NJ>7 0<o<1 (26)
where N is the code length and A, is the (average) output
weight enumerator of the code. Further, define the ensemble
spectral shape as
v(8) = Nlim rn(),

It can be shown that the probability of word error can be upper-
bounded by [6]

0<6<1. Q7

Py(e) <Y e NEE/No) 28)
h
where
E(c,h) = —(8) + %ln [[3 +(1- /})627(6)}
6p

+mc (29)

where

ﬁ:¢661—gw@+( 5>[U+W—ﬂ
—1—_6(1 +¢). (30)

6

The threshold Cyy; is defined as the minimum FEj /N,

such that E(E,/Ng, h) is positive for all h and, hence, for all

Ey/Ny > Ciyy» Pu(e) — 0as N — oo. The threshold can be
computed as [6]

1
ML = R 0<5Hgl?1)33) co(0)
where R is the code rate. For the simple bound, co () is given
by

€19

Simple: co (6) = ~—° (1 - (32)

20

Similar forms are also derived for Viterbi—Viterbi, Hughes,
and Union bounds [6]

6—2"/(5)) .

Viterbi: ¢o(6) = (

5 v(6) (33)
Hughes: co(§) = 2% (1 _ 6_27(6)) (34)
Union: co(8) = (). (35)
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Fig. 3. The union bound and the simple bound of PA codes (PA-I).

Since the above bounds are based on the ensemble spectral
shape 7(6), they serve as the asymptotic performance limit (i.e.,
N — o) of the code ensemble assuming ML decoding.

There is no simple closed-form expression for the ensemble
spectral shape of PA codes. However, the spectral shape can be
computed to a good accuracy numerically since the component
codes of the concatenation are SPC codes. Specifically, using
(17), (22), and (26) we can compute the spectral shape of PA
codes, which is a function of N, P,t. We approximate the en-
semble spectral shape by choosing a large N. Whenever pos-
sible, IOWTP P, ;, should be used instead of the IOWE A, j,
to eliminate numerical overflow. The bounds for GPA codes
are computed and plotted in Fig. 3 (for clarity, only the simple
bound and the union bound are shown). For comparison, also
shown are the bounds for random codes and the Shannon limit.
Several things can be observed: 1) the simple bounds of PA
codes are very close to those of the random codes, indicating that
PA codes have good distance spectrum; 2) the higher the rate,
the tighter the bound is, indicating that GPA codes are likely
more advantageous at high rates than low rates (as opposed to
repeat accumulate codes).

The implication of the above analysis is that PA codes are
capable of performance a few tenths of a decibel away from
the capacity limit with ML decoding. However, since there does
not exist a computationally feasible ML decoder, it is desirable
to investigate iterative decoding to provide a more meaningful
evaluation of the code performance with practical decoding.

C. Performance Under Iterative Decoding

In this subsection we compute the iterative threshold (min-
imum Ej,/Ny) for PA codes using DE. DE has been shown to
be a very powerful tool in the analysis and design of LDPC and
LDPC-like codes [7], [41]-[43]. By examining the distribution
of the messages passed within and in-between the subdecoders,
we are able to determine the fraction of incorrect messages (ex-
trinsic messages of the wrong sign). The basic idea is that if the
fraction of incorrect messages goes to zero with the number of
iterations, then the decoding procedure will eventually converge
to the correct codeword.
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The analysis of PA codes involves computation of the prob-
ability density function (pdf) of the message flow within the
outer decoder, the inner decoder, and in-between the two. Since
the pdf that evolves with iterations may not have a closed-form
expression, density evolution takes a numerical approach. It
is worth mentioning that a simplified approximation can be
made by assuming that the messages passed in each step follow
Gaussian distributions. This Gaussian assumption trades a
little accuracy for a considerable reduction in computational
complexity when combined with the consistency condition
which states that the distribution f of messages w passed in
each step satisfies f(w) = f(—w)e™ [43]. Here, to preserve
the accuracy, we perform the exact density evolution (with
quantization).

Without loss of generality, we assume that the all-zero
codeword is transmitted and use LLRs as messages to examine
the decoding process. The threshold, which serves as the prac-
tical capacity limit for a given code (given rate and decoding
strategy), is thus formulated as
C*

iterative

= inf {SNR lim hm
SNR

k—oo N—o0

/ fL I\) )d:l? — 0} (36)

where f, k)( ) is the pdf of the messages (extrinsic informa-
tion) evaluated at the output of the outer decoder (due to the in-
dependent and identical distribution (i.i.d.) assumption, we have
dropped the dependence i on z;) superscript (k) denotes the kth
iteration between the outer and inner decoder, and [V is the block
size. Before we describe how DE is performed numerically for
PA codes, we first discretize messages. Let Q(w) denote the
quantization operation on message w with a desired quantiza-
tion interval (accuracy) A.

1) Message Flow Within the Outer Decoder: The outer code
of the general product codes (PA-I) consists of two parallel con-
catenated branches where each branch is formed of P blocks of
(t+1,t) SPC codewords. This alone can also be considered as a
special case of LDPC codes whose parity-check matrix has 2P
rows with uniform row weight of (¢ + 1), and (¢ + 1)? columns
with H_% percent of the columns having weight 2 and the rest
weight 1. Therefore, the exact decoding algorithm for LDPC
codes can be applied to the outer code. However, for a more effi-
cient convergence, we could make use of the fact that the checks
in the outer code can be divided into two groups (corresponding
to the upper and lower branch, respectively) such that the corre-
sponding subgraph (Tanner graph) of each group is cycle free. It
thus leads to a serial message-passing mode where each group
of checks take turns to update (as opposed to the parallel update
of all checks in LDPC codes).

The fundamental element in the decoding of the outer code is
the decoding of SPC codes. Consider the upper branch. Suppose
data bits d; 1,d; 2,...,d;+ and parity bit p; participate in the
ith SPC codeword (1 < ¢ < P). Then the messages (extrinsic
information) for each bit obtained from this check (during the
kth turbo iteration and /th local iteration) are

data bit: L (d; ;)
< > B(EO i)+ LV >)>E‘3L£’“)(pi)

1<k<t k]
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(k1)
<= tanh Lf(dj)

tanh

B 1 L d; ) + LED(d, )
1<k<t,k#j 2
Lgk)(m)
2

- tanh 37)

parity bit: L( )( i)

:( > E(Lgk)(di,k)+L$’l_1)(d”"))>

1<k<t
(kA=) .
<= tanh (p:)

L (k I-1)
= Tt 2 Ly () (38)
1<k<t

where L.(-) denotes the messages ( a priori information) re-
ceived from the inner code, L. (-) denotes the messages (ex-
trinsic information) obtained from the upper SPC branch to be
passed to the lower branch and L.»(-) denotes the messages to
be passed from the lower branch to the upper branch. After inter-
leaving, similar operations of (37) and (38) are performed within
the lower branch. We assume L.1(-) and Leo(+) to be i.i.d and
drop the dependence on d; ; and p;.

We use superscript (k, ) to denote the kth turbo iteration be-
tween the outer decoder and inner decoder and the [th iteration
within the outer decoder (local iterations). For independent mes-
sages to add together, the resulting pdf of the sum is the discrete
convolution of the component pdfs. This calculation can be ef-
ficiently implemented using a fast Fourier transform (FFT). For
the tanh operation on messages, define

v=QaBg) 2Q <2tanh_1 (tanh % tanh g)) (39)

where «, (3, and -y are discretized messages, and QQ denotes the
quantization operation. The pdf f., of v can be computed using

K= >0 falil- £l (40)
(5,7): kKA=iAB A
To simplify the notation, we denote this operation (40) as
fy = R(fa: fa)- (41)

In particular, using induction on the preceding equation, we can
denote

R*(fa) 2 R(far (R(far - .

~~

k—1

It then follows from (37), (38), and (42) that the pdf of the
extrinsic messages obtained from the upper branch fr_, (-) and
the lower branch, f7,_,(-) are given by

,R’(favfa)"'))/' (42)

Upper branch :

data bit: /{0 (d) =R (£ (), ROV (£ (d)+ £V ()
(43)

parity bit: /{1 (p) = R (@) £ (@) - (44)
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Lower branch:

data bit: f(k l)( d)= R(f(k)( ), RU- 1)(f (k)( )* gzll)(d)))
45)

parity bit: £*) (p) = Rl( N(dy« D (d )) (46)

where f ék) (+) denotes the pdf of the messages L (+) from the
inner 1/(1 + D) code in the kth turbo iteration, f£kll)() and
fr. (k1) >’ (+) denote the pdfs of the extrinsic information from the

upper and lower branch of the outer code, Lg;’l)( -) and L(k b (),
respectively, and * denotes the discrete convolution.

Since the systematic bits (data) and the parity bits of the outer
code are treated the same in the inner 1/(1 4+ D) code, we have

k k k
W)= 1) = 12

where f 1. . is the pdf of the extrinsic information L( ) obtained
from 1/ (1 i D) (also refer to Section V-C2 for a detailed expla-
nation). For PA-I codes, the local iterations within the outer code
only involve the exchange of messages associated with data bits
(as can be seen from the above equations). After L local itera-
tions, the messages the outer code passes along to the inner code
include those of data bits (Le1(d) and Leo(d)) and parity bits
(Le1(p) and L2 (p)), which thus leads to a mixed message den-
sity with a fraction ¢/(¢+ 1) having pdf (fr_, (d) * fr_,(d)) and
equal fractions 1/(2¢ + 2) having mean fr_, (p) and fr_,(p),
respectively (note these fractions are from the edge perspective
in the bipartite code graph of the outer code). This will in turn
serve as the pdf of the a priori information f élztl) to the inner
decoder. "

A similar serial update procedure can also be used with PA-II
codes. With conventional (K1+1, K1) x(K2+1, K5) TPC/SPC
codes (using block interleavers and parity-on-parity bits) as the
outer code, the means of the extrinsic messages associated with
row code and column code, L.1(+) and Lcz(+), can be computed
using (also refer to Appendix I for the decoding algorithm of
TPC/SPC codes)

S =R () ) (47)
k1 ek [ p(k k1
S =R (0 D). 48)

Unlike the general case of PA-I codes, data and parity bits are
treated exactly the same in the outer code of PA-II codes. Hence,
the pdf of the messages passing along to the inner 1/(1 + D)
decoder is given by ( (kL) (k’L))

g M Le
iterations.

It should be noted that although PA-II codes can be viewed
as a subclass of PA-I codes, the use of block interleavers and
the existence of many length-8 cycles in the outer code even
when N — oo limits the application of density evolution, since
density evolution assumes that all messages passed are i.i.d.
For PA-I codes, it is reasonable to assume that the neighbor-
hood of each node is tree-like due to the use of random inter-
leavers. However, for PA-II codes, partial independence holds
only when the message flow in the decoding has not closed a
length-8 cycle. In other words, the number of times (47) and (48)
can be applied consecutively is strictly limited to be no more

after L rounds of local
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than log, % = 2, before messages need to be passed out to the
1/(1 + D) decoder. In fact, due to the serial update, even two
local iterations will incur the looping of the same message [14]
and, hence, we take L = 1 for analysis on PA-II codes. Further-
more, during every global iteration (%), the extrinsic messages
within the TPC/SPC code generated in the previous iterations,
Lgi_l’L) and ng_l’m, should not be used again since this rep-
resents correlated information. Due to the above reasons, the re-
sulting thresholds for PA-II codes are upper bounds (pessimistic
case) while the results for PA-I codes are exact.

2) Message Flow Within the Inner 1/(1+ D) Decoder: Sim-
ilar to the treatment of TPC/SPC codes, we assume that mes-
sages (LLRs) are i.i.d. for the 1/(1 + D) code. From (10) and
(11), it is obvious that for sufficiently long sequences, messages
Lc,(y) and L., (y) follow the same distribution. Note that we
are somewhat abusing the notation here by dropping the depen-
dence on 7, which denotes the transmission at the ith epoch.
This is because on a memoryless channel the pdfs of L., (y;)
and L, (y;) are independent of <. Further, as can be seen from
the message-passing algorithm, the forward and the backward
passes are symmetric and, hence, for large block sizes, L. ; (y)
and L., (y) follow the same pdfs. Thus, we drop the subscript
and use L. (y) to represent both L., (y) and L, (y). It was ver-
ified by simulations that the serial (see (6) and (7)) and parallel
(see (10) and (11)) modes do not differ in performance signif-
icantly (only about 0.1 dB as shown in [39]), especially with
sufficient number of turbo iterations. It is convenient to use the
parallel mode for analysis here. Hence messages (LLRs) as for-
mulated in (4) and (10) and (11) have their pdfs evolve as

® =R (fr,, + F)) (49)
where
O = RAAD o, < 1Y), (50)

The initial conditions are fr_, = N(2/0% 4/0%) (Gauss-
ian distribution of mean 2/0? and variance 4/02) and
gi)z = g:) = 6(z) (Kronecker delta function).

The mesgage flow between the inner and outer codes is

straightforward. The pdf of the outbound message, f ék)m in (49),
becomes the pdf of the a priori information, f ék) (d) and fék) (p)
in (43)~(46) (PA-I code) and f1*) in (47) and (48) (PA-II code).
Likewise, the pdf of the extrinsic information from the outer
TPC/SPC code

t (kL) (k,L) I (kD)
(AP @ 5P @)+ 78 0)
1 kL
torralic )(p)>

(kL) fgi*f)) for PA-II codes, becomes

for PA-I codes and (f;,
the pdf of a priori information, f gitl) in (50), for the inner

1/(1 + D) code.

Fig. 4 shows the thresholds for PA-I codes for several rates
R > 0.5. It can be seen that the thresholds are within 0.6 dB
from the Shannon limit for binary phase-shift keying (BPSK)
on an AWGN channel. The thresholds are closer as the rate in-
creases suggesting that these codes are better at higher rates.
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Fig.4. Thresholds for PA-I codes (simulations are evaluated at BER = 10~5).
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Fig. 5. Thresholds for PA-II codes (simulations are evaluated at BER
= 107%).

The thresholds for PA-II codes are shown in Fig. 5. The plotted
thresholds in Fig. 5 are a lower bound on the capacity (upper
bound on the thresholds) since only one iteration is performed in
the outer TPC/SPC decoding in each turbo iteration (i.e., L = 1
in (48)) [14]. Note that at high rates (R > 0.7), the capacity
of PA codes (both PA-I and PA-II) is within 0.5 dB from the
Shannon limit. However, at lower rates, the gap becomes larger
especially for PA-II codes. Simulation results for fairly long
block sizes are also shown in both Figs. 4 and 5. A block size of
K = 65536 data bits was used for R = 1/2 and for the higher
rates K = 16 384 was used and a BER of 1077 is taken as ref-
erence. It can be seen that the simulation results are quite close
to the thresholds. This shows that both PA-I and PA-II codes are
capable of good performance at high rates, however, at lower
rates PA-I codes are better.

VI. ALGEBRAIC INTERLEAVER

Observe that a rate-K /N PA-I code involves two random in-
terleavers of sizes K and N, where K and NN are the user data
block size and codeword block size, respectively. Interleaving
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Fig. 6. Performance of PA-I codes at rate-1/2.

and deinterleaving using lookup tables can be quite inefficient
in hardware and, hence, we study the performance of PA codes
under algebraic interleaving. That is, we use interleavers where
the interleaving pattern can be generated on the fly without
having to store the interleaving pattern. We consider congruen-
tial sequence generated according to [44]

Apy1=(a- A, +b)mod N. (51)

To assure that this generates a maximal length sequence from 0
to N — 1, parameters a and b need to satisfy: 1)a < N,b < N,b
be relatively prime to V; 2) (a — 1) be a multiple of p, for every
prime p dividing N; and 3) particularly, (¢ — 1) be a multiple
of 4 if N is a multiple of 4. It is also desirable though not es-
sential that a be relatively prime to V. We consider such an
interleaver for both the interleavers in the proposed code. This
can also be considered as an algebraic design of the code graph
since the graph structure can be directly specified by the inter-
leaving sequence. Hence, given an N and ¢, the choice of a and
b completely specifies the code graph and, hence, the encoding
and decoding operations.

Another direct benefit of using algebraic interleavers is that
it allows great flexibility for PA codes to change code rates as
well as code length. With LDPC codes, however, it is not easy
to change code lengths nor code rates using one encoder/de-
coder structure. Although LDPC codes can be defined with a
bit/check degree profile and a random interleaver (see Fig. 13),
encoding requires the availability of the generator matrix. In
other words, with LDPC codes, for each code rate and code
length, not only does the code structure (connections between
bits and checks) need to be devised specifically, but the gener-
ator matrix needs to be stored individually. Although possible,
it requires special treatment to accommodate several rates/block
sizes in one LDPC encoder/decoder pair.

VII. SIMULATION RESULTS OF PA CODES

Performance of PA-I Codes at Medium Rate—Fig. 6 shows
the performance of a rate-1/2 PA-I code of data block size
65 536, 4096, and 1024, respectively. As can be seen, the larger
the block size, the steeper the performance curve, which clearly
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Fig. 7. Performance of PA-I codes at rate-3 /4.

depicts the interleaving gain phenomenon. For comparison, the
performance of a (2048,1024) turbo code from [22] and the
most recently reported IRA codes [22] of the same parame-
ters are also shown. As can be seen, (2048, 1024) PA-I codes
perform as well as the turbo codes at BER of 10~° with no
error floors. From Table II, we can see that the decoding com-
plexity of rate-1/2 PA codes with 30 iterations is approximately
1/16 that of a 16-state turbo code with eight iterations. It is
also important to note that the complexity savings are higher
as the rate increases, since the decoding complexity of punc-
tured turbo codes does not reduce with increasing rate, whereas
the decoding complexity of PA codes is inversely proportional
to the rate. It should also be noted that the curve of PA-I codes
is somewhat steeper than that of turbo codes or IRA codes, and
therefore may outperform them at lower BERs.

Performance of PA-I Codes at High Rate—As indicated by
both ML-based and iterative-based analysis, PA codes are most
advantageous at high rates. Fig. 7 compares the performance of
a rate-3/4 PA-I code at fifteenth and twentieth iteration with a
16-state turbo code of polynomials (37, 23) at fourth iteration.
Data block size is K = 1024 for both codes. Clearly, while a
PA-I code is comparable to a turbo code (Fig. 6) at rate-1/2, it
significantly outperforms turbo codes at rate-3/4 (much steeper
curves and no error floors). Further, the PA-I code at fifteenth
and twentieth iteration requires only about 23% and 30% the
complexity of the turbo code at fourth iteration, respectively.
Hence, PA codes are expected to be useful at high rates with
the advantages of low complexity, high performance, and no
observable error floors.

Performance of PA-II Codes—Fig. 8 plots the BER per-
formance of PA-II codes at high rates. The codes simulated
have rates 0.88,0.94, and 0.97, which are formed from
(16, 15)2, (32,31)2, and (64,63)2 outer 2-D TPC/SPC codes,
respectively. Since interleaving gain is directly proportional
to the number of TPC/SPC blocks in a codeword, several
TPC/SPC blocks may be combined to achieve a large effective
block size when needed. Corresponding threshold bounds
calculated by density evolution are also shown. Two things can
be immediately seen from the plot: 1) PA codes demonstrate
a significant performance improvement than plain TPC/SPC
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Fig. 9. Comparison of PA-I and PA-II codes at high rates.

codes. Although the performance of the plain TPC/SPC codes
are not shown due to space limitation, we observe that the PA
code outperforms the plain TPC/SPC code by 1 dB at rate 0.97,
and as much as 3 dB at rate 0.88; 2) with a data block size of
K = 16000, the performance of PA-II codes is within 0.3 dB
from the capacity bound at BER of 1075, showing a very good
fit. All curves shown are after 15 turbo iterations. Although not
plotted here, a reduction from 15 to 8 iterations incurs only
about 0.1-dB loss.

As mentioned before, PA-II codes are slightly simpler in im-
plementation and PA-I codes have better BER performance. Al-
though the plot is not presented in this paper, simulations show
that at medium rates of around 0.5, PA-I codes can outper-
form PA-II codes by as much as 0.8 dB, but at high rates like
R Z 0.88, the difference in performance is negligible. Hence,
for high rates, PA-II codes seem to be an attractive choice (see
Fig. 9).

Performance of the Min-Sum Decoding—Fig. 10 compares
the performance of a rate-0.5 PA-I code with the sum-product
decoding to the low-complexity min-sum decoding. Perfor-
mance at 5, 10, 15, and 20 iterations is evaluated. For all of
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the iterations, min-sum decoding incurs only about a 0.2-dB
loss, while saving more than half the complexity. Hence,
the min-sum algorithm provides a good tradeoff between
performance and complexity, and is thus appealing for simple,
low-cost systems. Fig. 11 compares the performance of PA-I
codes using min-sum decoding to the performance of a serial
concatenated convolutional codes (SCCC or serial turbo)
of the same code rate and block size. The serial turbo code
is composed of an outer four-state and an inner two-state
convolutional code. It is interesting to see that even with the
low-complexity min-sum decoding, the PA-I code still out-
performs the SCCC code. Comparing the performance of the
PA-I code (using min-sum decoding) at fiftteenth iteration with
that of the serial turbo at fourth iteration, we see that a 0.4-dB
performance gain is achieved at BER of 10~ with only about
60% of the complexity (see Table II for a complexity analysis).

Algebraic Interleaver Versus S-Random Interleaver—Fig. 12
compares the performance of a rate-0.5 PA-I code with
S-random interleavers and algebraic interleavers. Interestingly,
replacing S-random interleavers with algebraic interleavers
results in hardly any performance degradation. Since the length
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of algebraic interleavers can be conveniently changed, using
algebraic interleavers can provide another degree of flexibility
to PA codes.

VIII. COMPARISON TO OTHER RELATED CODES

Graphical representation of codes has shed great insight
into the understanding of many codes [27]-[30], including
turbo codes, LDPC codes and (irregular) repeat accumulate
(RA/IRA) codes [22], [24]. This section revisits PA codes from
the graph perspective for a comparison and unification of PA
codes and other capacity-approaching codes.

The Tanner graph structure shown in Fig. 13 reveals that PA
codes are essentially LDPC codes with two levels of checks in-
stead of one as in conventional LDPC codes (small circles de-
note bits and small boxes denotes checks). However, the en-
coding complexity of PA codes is linear (without the need for
preprocessing) and the encoder is cheap to implement since it
does not require explicit storage of a generator matrix.

RA codes [24], and their improved version, IRA codes [22],
are a class of very nice codes, which are linear time encodable
and provide near-capacity performance. A careful study of the
code graph shows an intrinsic connection between the struc-
ture of the proposed PA codes and RA/IRA codes, although
our initial motivation for PA codes was from the encouraging
performance of TPC/SPC codes over partial response channels
in magnetic recording systems [4]. Fig. 13 presents the Tanner
graphs of the proposed PA codes and RA/IRA codes. One dif-
ference, however, is that a PA code is nonsystematic whereas
the systematic bits are transmitted explicitly in the IRA code
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[22]. Nonsystematic IRA codes were mentioned as not desirable
since density evolution would not evolve beyond one iteration
in the outer code. However, since PA codes can be essentially
viewed as a special type of (regular) IRA codes, we have shown
that by making the outer encoder to be systematic, nonsystem-
atic IRA codes can nevertheless be promising codes. Further,
due to the irregular nature of the IRA code construction, careful
interleaver design is needed to prevent high error floors for fi-
nite block sizes, especially for high rates. PA codes can there-
fore be seen the counterpart of IRA codes or the special form
of IRA codes that are well suited for higher rates and easy rate
adaptivity.

The recently proposed class of concatenated tree (CT) codes
also has low encoding and decoding complexities and good
performance [46]. CT codes are by definition a class of very
general codes since any code that has a tree-like “code graph™?
canbe concatenated to form a CT code. One particular realization
of a rate-1/2 CT code discussed in [46] has demonstrated
impressive performance and, hence, is proposed to be a lower
complexity alternative to turbo codes [46]. Simulation results for
arate-1/2 PA code show that the BER performance and decoding
complexity are similar to those of the CT code discussed in
[46]. In fact, the decoding complexity seems to be slightly
lower for PA codes. However, the performance of a CT code
depends a lot on the exact code structure (puncturing pattern
and node degrees), the optimization of which also appears
to be mainly through trial and error. The advantage of PA
codes is in the ease of code construction and rate adaptivity.
It should also be noted that the performance of PA codes is
on par with finite-geometry LDPC-based codes proposed by
Kou, Lin, and Fossorier [47].

All these codes can be viewed as subclasses of LDPC-like
codes. Itis worth noting that PA codes are more like a fixed code
with well-defined structure (the only randomness and variations
come from the interleavers), while IRA codes, (irregular) LDPC
codes and CT codes are more like a set of random codes whose
performances depend on and vary with the individual degree
profile and/or code graph. Hence, for IRA, irregular LDPC, and
CT codes, a random pick does not guarantee good performance
and code design and optimization are usually needed to achieve
the best performance. On the other hand, a random pick of a PA
code tends to yield the same desirable performance so long as
the interleavers are reasonably chosen. It follows that PA codes
can be rate/length adaptive which is desired in real applications.?
This regular structure also facilitates hardware implementation
and prevents having to store different graphs for different rates
and lengths at the receiver. In this sense, PA codes are more
like turbo codes, both of which enjoy well-defined structure,
predictable performance and rate/length adaptivity. The perfor-
mance of carefully optimized IRA codes will be better than PA
codes for long lengths, but the difference for high rates is small
and for smaller lengths, simulation results show that PA codes
have lower error floors.

2Note the “code graph” in here is different and more relaxed than the
Tanner graph or the factor graph used to describe LDPC, IRA, and PA
codes.

3Although in principle, puncturing can be used to change code rate and length,
punctured IRA and LDPC codes tend to significantly degrade the performance.
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TABLE III
DECODING ALGORITHM FOR 2-D TPC/SPC CODES

Initialization:
for i =1 to Ny, for j =1 to Ny,
Li,; = &rij,
Le; ;) = Le; ;¥ =0,

Iterations:
Decoding row code C;: for i =1 to N,, for j =1 to Ny,
— Lii +Le; (@
Lei,j(l) = 2tanh I(ngtle,t;éj tanh(_l’ﬁ——ze't_))v
Decoding column code Cs: for j =1 to Ny, for i =1 to Ny,

. (1)
Le; ;@ = 2tanh™ ([T,< ey o tanh(Ztzmi—y),

Soft output and decision:
fori =1 to N, for j =1 to Ny,
LLR;; = Li; j + Le; ;Y + Le; ;,
$,;j=LLR;;>070:1;

Iteration stop criteria:
Success: All rows and columns add up (modulo-2) to 0.

Fail: A max number of iteration is reached.

IX. CONCLUSION AND FUTURE WORK

A class of interleaved serially concatenated codes, called
product accumulate codes, have been constructed and shown
to possess good BER performance, linear encoding/decoding
complexity, as well as an efficient soft-decoding algorithm.
The proposed codes consist of an outer 2-D TPC/SPC code, a
random interleaver, and a rate-1 recursive convolutional inner
code of the form 1/(1 + D). The main advantages of the
proposed codes are very low decoding complexity compared to
turbo codes especially for high rates, good BER performance,
ease of implementation, and rate/length adaptivity. Through
analysis and simulations, we show this class of proposed codes
perform well for almost all rates R > 1/2 and for long and
short block sizes alike. Further error floors do not appear until
at very low error rates.

Future work on PA codes includes extension to rates below
1/2 by packing more levels of single-parity check codes in the
outer TPC/SPC codes [45]. Irregularity can be introduced to the
code structure to further improve performance; however, one ad-
vantage of PA codes seems to be regular and simple structure
which makes implementation easier. Future work will also in-
volve extending to fading channels and multilevel modulation
[48].

APPENDIX
DECODING ALGORITHM FOR TPC/SPC CODES

Assuming even-parity check codes, BPSK modulation
(0 — 41,1 — —1), and AWGN channels, a 2-D TPC/SPC
code formed from (Ni,N1 — 1) ® (N2, Na — 1) has the
following SISO decoding algorithm (Table III), where 7; ;
denotes the bits received from the channel, L;, . denotes the

7
a priori information (obtained from the channel or the inner
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code in a concatenated scheme), LLR; ; denotes the LLR,
and Lem’(l) and Lei,j@) denotes the extrinsic information
associated with component code C; and Cs, respectively.
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