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Abstract. Wireless sensor networks are composed of a large number
of randomly deployed sensor nodes with limited computing ability and
memory space. These characteristics give rise to much challenge to key
agreement. General key agreement schemes like KDC, PKI and the Diffie-
Hellman key exchange schemes are not applicable to sensor networks.
Recently several key distribution schemes have been proposed specifically
for sensor networks, aimed to provide high connectivity and resilience
while keeping low memory usage in the sensor nodes. In this paper, we
formularize and analyze these methods, and deduce general conditions for
a scheme to be optimal in terms of connectivity, resilience and memory
usage. The result provides guideline to design optimal schemes. Based on
the result, we proposed 2 schemes that can achieve optimal connectivity
and resilience with the restriction of memory space.

1 Introduction

A distributed sensor network is composed of a large number of sensor nodes that
are densely deployed. The position of sensor nodes usually are not predetermined.
This allows random deployment in inaccessible terrains or disaster relief oper-
ations. This means that sensor network protocols and algorithms must possess
self-organizing capabilities. In general, a sensor node is battery powered and
equipped with integrated sensors, data processing capabilities, and short-range
radio communications. Examples of sensor network protocols include SmartDust
[9] and WINS [1]. There is a wide range of applications for sensor networks. Some
examples of the application areas are health, military, and smart environment
(see, e.g., [2]).

To secure communications for a sensor network is extremely important, as
the network is prone to different types of malicious attacks when it is deployed in
a hostile environment. An adversary can compromise sensor nodes much easier
than to compromise computers. However, since the limitation in both the mem-
ory resources and computing capacity of a sensor node, it is impractical to use
public-key cryptosystems to secure sensor networks. Using a traditional Internet
style key exchange and key distribution protocols based on trusted third parties
are also impractical.
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To solve the key management problem for sensor networks, several researchers
considered special key pre-distribution schemes. In [7], Eschnauer and Gligor
used random methods to distribute keys. In their scheme, each sensor node re-
ceived a random subset of keys from a large key pool before deployment. Any
two nodes able to find one common key within their respective subsets can use
that key as their shared secret to initiate communication. Some theory of random
graphs was used to analyze their scheme. Based on this scheme, Chan, Perrig and
Song in [4] proposed a q-composite random key pre-distribution scheme. In their
scheme, q common key instead of just one common key are used to establish se-
cure communications between two nodes, which increases the security (resilience)
of the network. Recently, Du, Deng, Han and Varshney in [6] and Liu and Ning
in [10] used a new method to construct key distribution schemes, which we will
call it product construction. In their method, they combined traditional pairwise
key distribution scheme with other schemes to construct new key distribution
schemes. Their methods improved network resilience comparing to previous key
pre-distribution schemes. The purpose of this paper is to formularize and ana-
lyze their methods in order to optimize this method. Upon these analysis, some
combinatorial methods are then used to improve their constructions.

When we design a key distribution scheme for a distributed sensor network,
the following key characteristics of the design must be considered.

– Small key size: Since the limited resource of a sensor node, key storage should
be small. For example, if there are b nodes in the network, then we cannot
expect that a node can store b − 1 keys to share a secrete key with each of
the other nodes.

– Resilience of the network: Even quite a large amount of sensor nodes are com-
promised by an adversary, the communications among other nodes should
be still secure. In other words, a coalition of certain number of sensor nodes
cannot compute other secrete keys used by other sensor nodes.

– Local connectivity: A sensor node should be able to securely communicate
with its local neighbors. Here a local neighbor means a sensor node physically
located within transmission range.

– Global connectivity: Any two nodes of the sensor network are connected.
So for any two nodes u and v in the network, there are notes c1, c2 · · · ct

such that u and c1 share a secret key, ci and ci+1 share a secret key for
i = 1, · · · , t − 1 and ct and v share a secret key.

We will only consider schemes satisfying all these properties. The main con-
tributions of this paper are as follows. First we use a uniformed method to
generalize the methods used in [6, 10]. We define a product of a key distribution
scheme and a set system and use that definition to construct new key distribution
schemes. Then we use combinatorial methods to analyze the product construc-
tion and give some necessary conditions to optimize the product construction.
Finally, we propose new constructions which meet all of these necessary condi-
tions.

The rest of this paper is organized as follows. Section 2 defines production
construction. In Section 3, set system used in the production construction is
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analyzed using combinatorial methods. Section 4 describes our proposed schemes
which is then compared with the previous schemes. Section 5 concludes the
paper.

2 Product Construction

In this section, we give a generalized description of the schemes in [6] and [10],
which used a similar method to construct key pre-distribution schemes for sensor
networks. We start with a definition of a pairwise key pre-distribution scheme.

Definition 1. A pairwise key pre-distribution scheme D is a triple (U , F , K),
where U is a set of nodes, F is a set of algorithms and K is a set of keys, which
satisfies the following conditions:

1. For each u ∈ U an fu ∈ F is assigned to u;
2. For any u, v ∈ U there is a unique key Ku,v ∈ K shared between u and v,

which can be obtained from fu and from fv;
3. For any other w ∈ U , no information about Ku,v can be obtained by fw.

The above definition shows that we are considering unconditional secure
schemes (not for computational secure ones).

If a pairwise key pre-distribution scheme has the property that even λ nodes
are compromised the system is still secure, then we say that the scheme is λ-
secure, or the scheme is λ resilience. More formally, in a λ-secure pairwise key
pre-distribution scheme, for any w1, w2, · · · , wλ ∈ U , Ku,v cannot be computed
by fw1 , fw2 , · · · , fwλ

where u, v are different from w1, w2 · · · , wλ.
Note that it is not necessary to use a pairwise key pre-distribution scheme to

a sensor network, because even two nodes shared a common key, they may not
be able to communicate each other when their distance is beyond transmission
range. For a sensor network, local communications are more important. So we
will consider both the local connectivity and the global connectivity of a key
distribution scheme for our purpose.

An example of λ-secure key pre-distribution scheme is the Blom’s scheme [3]
in which each node stores λ + 1 keys.

The Blom’s scheme can be described as follows. Suppose there are b nodes
u1, u2, · · · , ub in a network. To distribute keys, an authorized center (AC) chooses
a random bivariate symmetric polynomial in a finite field GF (q):

f(x, y) =
λ∑

i=0

λ∑

j=0

ai,jx
iyj ,

where ai,j = aj,i. Then the CA gives Pi(x) = f(x, i) to ui as its personal key.
The common key between ui and uj is Pi(j) = Pj(i) = f(i, j). It is proved using
a linear algebra method that a Blom’s scheme is λ-secure.

To formularize the methods used in [6, 10], we need some concepts from com-
binatorics which we introduce below.
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A set system S is a pair (X, B) where X is a set of points and B is a collection
of k-subsets (called blocks) of X. For our purpose, same blocks are allowed in a
set system.

Suppose there is a map from the set of nodes U to the set of blocks B of a set
system so that for a ui ∈ U there is a unique Bi ∈ B corresponding to it. Then
we can define a product of D and S as follows.

Definition 2. Suppose D = (U , F , K) is a pairwise key pre-distribution scheme
and S = (X, B) is a set system, where |B| ≥ |U|. Suppose there is also a map
from U to B such that a ui ∈ U is mapped to a Bi ∈ B. A product of D and S,
D × S, is defined as a triple (U , F × B, K × X) such that the algorithm assigned
to ui is fui × Bi.

The method used in [6] and [10] for key establishment of sensor networks
actually is the above product method. Both of the papers used Blom’s scheme
as D. [10] proposed two set systems. One is random subset assignment. In this
assignment, each node gains a random τ -subset of X, so B contains u random
τ -subsets (by this setting, repeated blocks are allowed). The other proposed set
system in [10] is grid-based system. In this system, X = M1 ∪ M2 ∪ · · · ∪ Mt,
where M1, M2, · · ·Mt are disjoint m-sets for m ≥ u1/t. The set B contains all the
blocks from {(i1, i2, · · · , it) : i1 ∈ M1, · · · , it ∈ Mt}. [6] used the random subset
assignment.

As an example, in the following we give a brief description of the random
subset assignment used in both [6] and [10].

To distribute keys, the AC chooses a set X where |X| = v. Then for each
element i ∈ X, the AC generates a random symmetric polynomial fi(x, y) as in
a Blom’s scheme. So v polynomials are generated. For a node uj ∈ U , the AC
chooses a random k-subset of X. Denote the subset as B = {i1, i2, · · · , ik}. The
keys given to uj are fis(x, j), for 1 ≤ s ≤ k. The choice of v and k depends on
the connectivity of the network. To form a secret key between ui and uj , they
will try to find a common element in the subset assigned to them. If they found
the element, say i0, then the secret key is fi0(i, j).

Sometimes we also can view the product construction as using different copies
of a pairwise key distribution scheme D and denote it as D × X. So (D, i) will
be used to denote the ith scheme. It’s also called a key space in this paper.

The main purpose of using a set system is to add resilience of the key dis-
tribution scheme. However, [6] and [10] only discussed the specific set systems
used in their schemes. In next section, we will discuss how a set system effects
the resilience and connectivity of the product scheme in general.

3 Analysis of the Set System

For a better key pre-distribution system, we should consider several things: the
resilience of the system, the storage space requested for a node, the connectivity
of the network, etc. Basically, the storage space requested for a node depends
on the size of a block in the set system. In this section, we discuss how the set
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system used in the product construction effects the resilience and connectivity
of the network if the size of block is fixed.

3.1 Resilience

Suppose the resilience of the original key pre-distribution scheme D is λ. When
a set system S is used in the product construction, we need to consider the
probability that one of the schemes in the product system D × S is broken. For
example we consider the probability that (D, 1) is broken (We denote this event
as D1). Let p1

j denote the probability that exact j blocks out of s blocks contain
1. Let Cs denote the event that s nodes were compromised. Then we have

Pr(D1|Cs) =
s∑

j=λ+1

p1
j . (1)

Therefore we want to keep p1
j as small as possible. On the other hand, since

Di and Dj are independent and we want the probability that any space is broken
as small as possible, we have the following result about the structure of D, which
gives some necessary condition for D.

Theorem 1. In a product scheme D × S, suppose D, the size of X, the size of
B and the size of a block are fixed. Then each element of X should appear in
equal number of blocks to keep the optimal resilience of the scheme.

Proof. Suppose all the parameters of the set system mentioned in the theorem
are fixed. Let b = |B|, k be the size of a block. Suppose X = {1, 2, · · · , v} and
i ∈ X appears in ri blocks. Then the probability that exact j out of s blocks
contain i is

pi
j =

(
ri

j

)(
b−ri

s−j

)
(

b
s

) ,

which depends on the value of ri. Since
∑v

i=1 ri = kb is fixed, if there are some i
such that the value of

∑s
j=λ+1 pi

j is small, then there must be some t such that∑s
j=λ+1 pt

j is larger. That means (D, t) is easier to break. ��
In intuition, if an element in X appears in more blocks, then the correspond-

ing key space is weaker. So we want the elements distributed evenly.
It is easy to check that the grid-based system satisfies the condition of The-

orem 1 (However, we will see later that its local connectivity is not good). The-
oretically, the random subset assignment also satisfies the condition of Theorem
1 in a sense of probability. However, in practice the random subset assignment
may violate that condition. For example the worst case of the random subset as-
signment will not fit the condition of Theorem 1. So we want some deterministic
method to find a set system that has even distributions of elements.

Suppose each element appears in r blocks. Then we have

pi
j =

(
r
j

)(
b−r
s−j

)
(

b
s

) . (2)

Therefore the value of Pr(Di|Cs) is determined by the values of r and b.
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To obtain a set system satisfying the condition of Theorem 1, we need a
definition from combinatorial design theory. For general information about com-
binatorial design theory used in this paper, see [11].

Definition 3. A 1-design Sr(1, k, v) is a set system (X, B) such that each el-
ement x ∈ X is contained in exactly r blocks, where v = |X|, k is the block
size.

The following construction is from [11–Theorem 9.10].

Theorem 2. There exists an Sr(1, k, v) with b blocks if b = vr/k is an integer.

Proof. Let u = gcd(k, r). Then r = ur′ and k = uk′ where gcd(r′, k′) = 1. Since
b = vr/k = vr′/k′ and gcd(r′, k′) = 1, it must be the case that v ≡ 0 (mod k′).
Let v = sk′ where s is a positive integer. Then b = sr′.

Let Y be a set of cardinality k′, and define X = Y × Zs. Let A1, A2, · · · , Ar′

be r′ arbitrary u-subsets of Zs. For 1 ≤ i ≤ r′, define Bi = Y × Ai. Then
each Bi is a k-subset of X. Now for each Bi, we develop s blocks Bj

i as follows.
Suppose Bi = Y × {s1, s2, · · · , sr′}. Then for each j, 1 ≤ j ≤ s − 1, let Bj

i =
Y × {s′

1, s
′
2, · · · , s′

r′}, where s′
t = st + j (mod s), 1 ≤ t ≤ r′. The result is an

Sr(1, k, v). ��
When r =

(
v
k

)
, we have a easy way to construct a 1-design.

Theorem 3. There exists an Sr(1, k, v) for r =
(

v−1
k−1

)
and b =

(
v
k

)
.

Proof. Let the set of blocks contains all the k-subsets of a v-set. ��
Suppose we fix |X| = v, and the size of block is k. Then we want each element

belongs to kb
v blocks so that the condition of Theorem 1 is satisfied. In practice,

we let b be multiples of v and r = kb
v .

3.2 Connectivity

To consider the connectivity of a sensor network, we consider the graph G(U , E),
where two nodes are connected by an edge if and only if these two nodes share
at least one common secret key. Following from the method used in [7], we view
a sensor network as a random graph. Since the connectivity of a random graph
is a monotone property (when the number of nodes are fixed, the probability of
connectivity is increasing when the number of edges is increasing), according to
a theory of [8], the expected node degree d can be computed as follows:

d =
b − 1

b
(ln b − ln(− lnPc)),

where b = |U| and Pc is the probability that the random graph is connected.
Therefore the connectivity of the network depends on the degree d when the
number of nodes are fixed.



286 R. Wei and J. Wu

In the product construction, two nodes share a common secret key if and only
if their blocks have at least one common element. Suppose in the set system, each
block intersects t other blocks. For a given density of sensor network deployment,
if the expected value of number of neighbors is n, then d = nt

b . So we have the
following result.

Lemma 1. The connectivity of the product scheme depends on the number of
blocks which share at least one element with a block in the set system.

From Lemma 1, we know that the connectivity of the scheme from grid-based
system in [10] is not good. In that system, each block intersects tv1/t − t other
blocks. However, we will see later that using other set system will improve the
connectivity of the network a lot.

Suppose X = {1, 2, · · · , v} and B = {B1, B2, · · · , Bb}. An incidence matrix of
the set system (X, B) is a b × v 0-1 matrix A = (ai,j), where

ai,j =
{

1 if j ∈ Bi,
0 otherwise.

Let C = AAT = (ci,j). Then C is a symmetric b × b matrix. Suppose each
element of X appears in r blocks. Then we have ci,i = k, 0 ≤ ci,j ≤ k and

b∑

i=1,i �=j

ci,j = k(r − 1). (3)

The number of blocks which intersect block Bi equals to the number of
nonzero elements in the ith row of C. So if we want to keep the local con-
nectivity as large as possible, we need to let the number of nonzero elements in
C as large as possible. In other words, we want to keep the individual ci,j as
small as possible. In intuition, we don’t want repeat blocks to avoid the case
that ci,j = k for some i �= j.

Remark 1. From (2) and (3) we can see that there is a trade-off between the
resilience and connectivity of the network. For the connectivity, we want r to
be large. However, when r is larger the probability that a scheme is broken is
increasing.

The following result indicates that the construction of Theorem 3 is optimal.

Theorem 4. When b =
(

v
k

)
, r =

(
v−1
k−1

)
and v > 2k, the set system constructed

in Theorem 3 has the largest number of intersections for a block.

Proof. It is easy to know that a block intersects

I =
(

v

k

)
−

(
v − k

k

)
− 1

other blocks in the set system of Theorem 3. We are going to prove that if there
are repeated blocks in an Sr(1, v, k), then a block intersects less blocks.
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Suppose there are two identical blocks. Then each element in that block
appears in r−2 other blocks. So that block can intersect at most I ′ = k(r−2)+1
other blocks. Since

(
v
k

)
= v

k

(
v−1
k−1

)
and r =

(
v−1
k−1

)
we have

I =
v

k

(
v − 1
k − 1

)
−

(
v − k

k

)
− 1,

and

I − I ′ =
v − k

k

(
v − 1
k − 1

)
−

(
v − k

k

)
+ 2k − 2

=
(v − 1)(v − 2) · · · (v − k)

(v − k)(v − k − 1) · · · (v − 2k + 1)

(
v − k

k

)
−

(
v − k

k

)
+ 2k − 2

=
(

(v − 1)(v − 2) · · · (v − k)
(v − k)(v − k − 1) · · · (v − 2k + 1)

− 1
) (

v − k

k

)
+ 2k − 2

> 0.

The conclusion follows. ��
In order to use construction of Theorem 2, we need to consider how to choose

the sets A1, A2, · · · , Ar′ . Suppose S ⊆ Zs, where Zs is the additive group of order
s. Define the differences of S as:


S = {x − x′ (mod s) : x, x′ ∈ S, x �= x′}.

If an element of Zs \ {0} appears t times in ∪i 
 Si for some subsets Si, then
we say that the element has t − 1 repeatings. The sum of the repeatings of all
elements is called the repeatings of ∪i 
 Si.

Theorem 5. The 1-design constructed from Theorem 2 has the largest local
connectivity, if the collection

∪r′
i=1 
 (Ai)

contains least repeatings.

Proof. If an element g ∈ Zs \ {0} has t − 1 repeatings in ∪r′
i=1 
 (Ai), then

pairs (xi, xj) appear in t blocks, where xi − xj = g. Since each element appears
in r blocks, we want to reduce the number of blocks containing a same pair of
elements to maximize the number of blocks which intersect a fixed block. ��
Definition 4. Let G be an additive abelian group of order v. A set system (G, B)
is called a (v, k, λ) difference family if every nonzero element of G occurs λ times
in

∪B∈B 
 B.

For example, a (13, 3, 1) difference family contains blocks {0, 1, 4} and {0, 2, 7}.
There are many results about the construction of difference families in litera-

ture (see i.e., [5]). From Theorem 5 we know that we can use blocks in a (v, k, λ)
difference family with smallest λ to construct 1-design and then obtain a good
product scheme.
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4 Proposed Schemes

Several recently proposed key distribution schemes used random distribution
method [4, 6, 7, 10]. There are reasons that deterministic method should be de-
veloped as well. For example, the theoretical analysis shows scheme in [6] can
provides good connectivity, resilience and memory consuming attributes to sen-
sor networks. But the random distribution of the keys leaves open issues in
practical implementation. We can view this scheme as a D × S scheme. Here
S is a set system (X, B), where X = {A1, A2, · · · , Av}, B = {B1, B2, · · · , Bb},
and each Bi contains k elements randomly selected from X. As we analyzed in
Section 3, in a sense of probability this scheme meets Theorem 1 and 5 to achieve
optimal connectivity and resilience. But in real implementation, it may produce
worse result. The result also depends on the random number generating function
used to generate the S set system. Different random number generators may re-
sult in different S systems. It is necessary to design a deterministic distribution
scheme that always meets Theorem 1 and 5 for the purpose of real applications.

In this section we consider the construction of set systems used in the key
distribution scheme. Given the scale and connectivity of the sensor networks, the
memory space of each sensor node, we need to determine which set system to be
used, what are the parameters of the selected set system, and how to construct
the set system.

The predefined requirements and restriction on the sensor network include:

– b, the number of nodes in the sensor network,
– M , the memory space of a sensor node to store the keys,
– Pc, the probability that the random graph of the sensor nodes are connected,

and
– n, the estimated number of neighbors of a sensor node after deployment.

The constructed set systems should meet the above requirements and restric-
tions and at the same time achieve optimal resilience. Analysis in Section 3 shows
that set systems that meet Theorem 1 and 5 can obtain optimal resilience and
connectivity. In the next parts we give construction using 2 such set systems.

4.1 Construction with (v, k, 1) Difference Families

From Definition 4 we know that (v, k, 1) Difference Families meet conditions of
Theorem 1 and 5. In this subsection, we give the construction using (v, k, 1)
Difference Families, and analyze its performance.

First we compute Pconnect, which is the probability that a pair of nodes share
at least one common key space:

Pconnect =
b − 1
nb

(ln b − ln(− lnPc)). (4)

Next we choose a proper (v, k, 1) difference family that can provide the desired
connectivity. We compute Pvk1, the probability that a pair of blocks from the
(v, k, 1) shares an element:
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Pvk1 =
k2(r′ − 1) + k(k − 1)

vr′ − 1
,

where r′ is the number of basic blocks of the chosen family. Also we can compute
the number of blocks of the (v, k, 1):

r = kr′

The following table chooses a sample collection of (v, k, 1) difference families
from [5] and computes their parameters:

v k r’ r Pvk1

25 3 4 100 0.33
27 3 5 135 0.31
31 3 5 155 0.27
33 3 6 198 0.25
37 3 6 222 0.23
39 3 7 273 0.22
43 3 7 301 0.20
40 4 4 160 0.38
49 4 6 196 0.31

Usually there are more than one families whose connectivity are better than and
close to Pconnect. We choose the one with least blocks that is larger than b, and
assign each block to a sensor node.

The third step is to construct v key spaces. We computer the security thresh-
old λ of the key space:

λ =
⌊

M

k

⌋
− 1

The construction of the key spaces is the same as that in [6] which is equiv-
alent to a Blom’s scheme. We briefly introduce an example as follows.

1. Select a primitive element s from a finite field GF (q), where q is the least
prime larger than the key size, then generate the following (λ+1)×b matrix
G:

G =

⎡

⎢⎢⎢⎢⎢⎣

1 1 1 1 1
s s2 s3 · · · sb

s2 (s2)2 (s3)2 · · · (sb)2
...

...
... · · · ...

sλ (s2)λ (s3)λ · · · (sb)λ

⎤

⎥⎥⎥⎥⎥⎦

2. Randomly generate v symmetric matrix D1, . . . , Dv of size (λ+1)× (λ+1),
then compute the matrixes Ai = (Di · G)T , for 1 ≤ i ≤ v. Here we get v key
spaces A1, · · · , Av. Every key space is λ-secure.
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Finally, the key spaces are assigned to the sensor nodes according to the
blocks. For example, if a block {2,3,4} was assigned to node 5, the 5th rows of
matrixes A2, A3 and A4 are assigned to node 5.

We give an illustration of the resilience of the scheme using (v, k, 1) (we
call it (v, k, 1) scheme). We use the Pbreak = Pr(D1|Cs) defined in (1) as an
indication of resilience, and plot it as a function of number of compromised node
in Figure 1. In the figure, M is set to 200, 3 schemes with different parameters
and connectivity are shown. We see that to achieve a probability of 0.5 to break 1

Fig. 1. Probability that one key space is broken

Fig. 2. Difference between Pbreak of (v, k, 1) scheme and random scheme
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key space, more than 200 nodes are to be compromised. The lower the Pconnect of
the (v, k, 1), the more compromised nodes are needed. This is the same attribute
that the scheme in [6] (we call it random scheme in the following parts) provides.

Now we compare the (v, k, 1) scheme with the random scheme in Figure 2.
Figure 2 shows the difference between Pbreak of pairs of (v, k, 1) and random
schemes with same M and similar Pconnect. The figure shows the difference is
very small, and generally, the 2 schemes risk similar compromise possibility.

4.2 Construction Using all k-Subsets

One potential drawback of the (v, k, 1) scheme is that its number of blocks is
limited. So when the network size is large, we consider using all k-subsets which
provides large block size easily. As proved in Theorem 3 and 4, the set system
of all k-subsets meets Theorem 1 and 5, and can provide optimal connectivity
and resilience. We give construction steps using that set system as follows.

First, we compute Pconnect using (4), then we need to find the v and k so
that the set system meets the requirement on the scale and connectivity. The
next 2 conditions need to be met:

Pconnect ≥ 1 −
(
n−k

k

)
(
n
k

) − 1

b ≤
(

v

k

)

The above functions produce a list of tables for v, k, Pconnect and b. From the
tables, given Pconnect and b, we can get corresponding v and k. Following is a
sample table for Pconnect = 0.3:

v k b
20 3 1140
21 3 1330
22 3 1540
23 3 1771

With v and k, it is easy to construct the set system of all k-subsets.
For the all k-subsets scheme, the resilience is

Pbreak =
s∑

j=λ+1

(
d
j

)(
x−d
s−j

)
(
x
s

)

where x =
(

v
k

)
, d =

(
v−1
k−1

)
and λ = �M

k � − 1.
The Pconnect of all k-subsets scheme is

Pconnect = 1 −
(
v−k

k

)
(

v
k

) − 1
,

which is very close to that of random scheme.
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We compare the all k-subsets scheme with random scheme with the same v
and k in Figure 3. M is set to 200 here. The figure shows the difference between
Pbreak of all k-subsets and random sets is very small.

Fig. 3. Difference between Pbreak of all k-subsets and random scheme

5 Conclusion

In this paper, we introduced a generalized D×S key pre-distribution scheme for
sensor networks. We deduced conditions of the set system used in the scheme that
can provide optimal connectivity and resilience to the sensor network. Based on
the result we analyzed some existing key pre-distribution schemes and evaluated
their strength and weakness. Then we proposed 2 specific schemes and their
constructions that can achieve optimal connectivity and resilience.

This paper is focused on optimal connectivity and resilience of the key dis-
tribution scheme. Another important property of the schemes is scalability. In
real implementation, the scale of the sensor networks often impacts connectivity
and resilience. In the future research, we are going to focus on scalability and
its relationship with connectivity and resilience, and look for optimal schemes.
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