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PRODUCT-CONVOLUTION OPERATORS AND
MLXED-NORM SPACES

BY

ROBERT C. BUSBY AND HARVEY A. SMITH

Abstract. Conditions for boundedness and compactness of product-convolution
operators g —» PhCß = h ■ (/» g) on spaces L^G) are studied. It is necessary for
boundedness to define a class of "mixed-norm" spaces L,p>q){G) interpolating the
Lp(G) spaces in a natural way (L^^ = Z^,). It is then natural to study the
operators acting between L(/1?)(G) spaces, where G has a compact invariant
neighborhood. The theory of L(i>?)(G) is developed and boundedness and com-
pactness conditions of a nonclassical type are obtained. It is demonstrated that the
results extend easily to a somewhat broader class of integral operators. Several
known results are strengthened or extended as incidental consequences of the
investigation.

1. Introduction. Convolution by/in LX(R) defines a bounded operator, Cy, on
Lp(R) for 1 < p < oo; likewise, pointwise multiplication by A in LX(R) defines a
bounded operator Ph on Lp(R). Excepting trivial cases, these operators are never
compact. The composition PhCy of two such operators, which we term a product-
convolution (PC) operator, is frequently compact. Asking exactly when this occurs
motivates this paper. PC operators on Lp of a locally compact group arise in many
areas of analysis. In [2] and [3] the compactness of certain PC operators was used
to study induced representations of locally compact groups. PC operators (and
their adjoint CP operators) arise naturally in many applied problems.

Even with A in L^R) and/ in LX(R), we find that the "mixed-norm" spaces of
[1] must be introduced to solve the compactness problem for PhC¡. These spaces
also arise unavoidably when one attempts to weaken conditions on A and / and
keep PhCj bounded. Various mixed-norm conditons on A and/guarantee bounded-
ness of PhCf from Lp to Lq and, in fact, between mixed-norm spaces. Conversely,
PhCj may be bounded from Lp to Lq (or from one mixed-norm space to another)
with neither A nor/ in any Lr, but both A and/ must belong to mixed-norm spaces.
Thus mixed-norm spaces are the natural setting for studying bounded PC opera-
tors. We treat a wide class of PC operators and, in all but one case, find necessary
and sufficient conditions for compactness. The conditions involve only member-
ship in a mixed-norm space or, in one instance, translational continuity in mixed-
norm spaces; they are usually easily checked for explicit examples. By applying
various manipulations to PC operators, we develop easily applied necessary and
sufficient conditions for compactness of a wider variety of integral operators which
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310 R. C. BUSBY AND H. A. SMITH

do not fall within the scope of classical compactness theorems. We attempt
reasonable generality but do not pursue the extensions to vector-valued functions.

§2 establishes notation and reviews needed facts. In §3 we define "uniform
partitions" on locally compact groups and show they exist. We then use these
partitions to define and study certain mixed-norm spaces. Many of these spaces on
the real line have been studied by Holland [8], [9]. Kellogg [10] and Williams [17]
studied analogous spaces on certain discrete groups. The paper [18] of Bertrandias,
Datry, and Depuis appeared while this paper was in a referee's hands. It indepen-
dently develops, for abelian groups G, spaces lq(Lp) equivalent to our mixed-norm
spaces L(pq)(G). We hoped in revision to use their definition, which cleverly avoids
uniform partitions, but we found this obscured the mixed-norm structure and
complicated our computations. Our techniques for nonabelian G require the
uniform partition and mixed-norm structure as do some spaces we use which are
not equivalent to those of [18] even for abelian G. We have therefore not adopted
the elegant approach of [18], which was developed for different ends.

The general construction of mixed-norm spaces as function spaces on products
was given by Benedek and Panzone [1]. As a Borel space, R is the product of an
interval and the integers. The space L(p'q\l X Z) of [1] consists of functions which
are in Lp([n, n + 1]) for each n and such that the resulting sequence of Lp(I) norms
is in lq. Emerson and Greenleaf [5] show every locally compact group to be the
union of disjoint translates of some relatively compact Borel neighborhood. If the
group is second countable it is borel isomorphic to the product of a discrete set
with this neighborhood, so the construction on R generalizes. Unfortunately this
partition may not be conveniently related to group properties; moreover, we need
arbitrarily fine partitions and it is not known that arbitrarily fine "Emerson-
Greenleaf neighborhoods" exist. These problems, rather than hesitancy to assume
second countability, lead us to take an alternative approach in §3.

Our L(pooX seems a natural place to study almost periodic functions and sta-
tionary stochastic processes on G. (The Stepanovich a.p. functions are the closures
in L(poo)(R) of the trigonometric polynomials.) Particular mixed-norm spaces on
R" studied by N. Wiener, R. Goldberg, and P. Szeptycki are cited in [18].

§4 investigates convolution of functions from mixed-norm spaces and generalizes
Young's inequality. In arbitrary locally compact groups, mixed-norm properties
may be obscured by convolution. To prevent this, we assume the group is (IN), i.e.,
has a compact invariant neighborhood of the identity. This classical condition [6] is
equivalent to existence of a nontrivial center in the group algebra [13]. (It seems
unlikely (IN) is the weakest useful condition, but attempting to use unimodularity
alone proved intractable.)

Our general Young's inequality shows the L(pX^(G) to be closed under convolu-
tion and hence a group algebra. It enables us to strengthen a result of Stewart [16]
to show that there is always a bounded Lx function on an abelian group having its
Fourier transform of compact support and identically equal to one on a prescribed
compact set. We also improve a result of Rickert [14], who showed that on a locally
compact, noncompact group if l/p + l/q < 1 there are/ in Lp and g in Lq such
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that/ * g fails to exist on a set of positive measure. We give precise conditions on/
for this and show the set of such/to be of second category in Lp.

In §5 we consider the PC operators which are bounded by amalgams of classical
estimates and we show that if Ph C¡ is bounded A and / must belong to mixed-norm
spaces.

In §6 we give necessary and sufficient conditions for compactness of all the
operators studied in §5 with the exception of the case where the range space has
infinite indices. (The difficulty there is lack of useable compactness criteria in Lx.)
The conditions for compactness of Ph C¡ are mostly simply membership of A and /
in ordinary mixed-norm spaces Lp (G), but in one exceptional case a different
space involving a "local-multiplier" condition must be used. The section concludes
with a number of examples. §7 summarizes our results with particular application
to L2(R) and demonstrates the application to a wider class of operators.

2. Notation and preliminary remarks. We will always discuss a locally compact
group, G. Functions are complex-valued and measurable unless otherwise specified.
Measurability and integration is relative to a given left Haar measure m. If
1 < p < oo then/?' will denote the conjugate index: l/p + l/p' = 1. We denote
the continuous complex-valued functions on G by C(G), while CX(G) and K(G)
denote functions vanishing at infinity and functions of compact support, respec-
tively. For functions / on G we adopt the notations: /~(x) =/(x_l), (J)(x) =
f(yx), and fy(x) = f(xy). By fE we always mean the product of fxE of / by the
characteristic function of a set E. If E is Borel and of positive measure, there is
automatic identification of fE with its restriction to E which imbeds L (E) (for the
restricted Haar measure) in Lp(G) and we make the identification routinely.

We will need pairs of extended real indices which we denote v = (vx, v^.
Inequalities such asc<« are interpreted termwise and, if g is a function of one
variable, g(v) means (g(vx), g(v2)). If r is a specific extended real number, we will
denote the pair (r, r) by r. For any pair v, we denote by ©' the conjugate pair
defined by l/v + l/v' = 1. We will use a partial ordering > defined by (ax, bx) >
(a2, b2) iff a, < a2 and A, > b2. For any set S of functions, we denote the
nonnegative members by 5 +.

We use the following repeatedly.

Proposition 2.1. Let {ax, a2, . . ., a„) be nonnegative.
(a) If 1 < p < oo and l/p + l/q = 1, then

n~x/q(ax + a2+ ■ ■ ■ +a„) < (af + of + • • • +ap)l/p < (ax + a2 + ■ ■ ■ +an).

(b) 2/0 <p < 1 and l/p + l/q = I, then

(ax + a2+ ■ • ■ +an)<(ap + aP+ ■ ■ ■ +ap)i/p < «-1/9(a, + a2+ ■ ■ ■ +an).

Proof, (a) Apply Holder's inequality and the monotonicity of norms to the
measure space formed by assigning unit measure to the n integers,

(b) Apply (a) to l/p and the numbers af.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



312 R. C. BUSBY AND H. A. SMITH

3. Mixed norm spaces. To separate local and global properties of functions, we
partition G into subsets not too dissimilar in "size and shape".

Definition 3.1. Let U, V be relatively compact open neighborhoods of the
identity with U c V. A partition tt of G into disjoint Borel subsets is U- V uniform
if for each E in tt there is x such that xU <z E <z xV. A Borel partition is uniform
if it is U- V uniform for some ( U, V).

Lemma 3.2. Let F be a subset of G such that for some fixed relatively compact open
neighborhood U of the identity xU and yU are disjoint whenever x and y are distinct
members of F. For each pair (K, L) of relatively compact Borel sets there is an integer
nF(K, L) > 1 such that each left translate of L intersects at most np(K, L) of the sets
xK for x in F.

Proof. Let nF(K, L) be the greatest integer in the real number
m(LKxU)/m(U). If xK n x'L =£ 0 then x£\x'LK~x so xU c x'LK~xU.
Thus, if x¡K intersect x'L, for x, in F (i = 1,2,..., n), the disjoint sets x¡U are in
x'LK~\ so nm(U) < m(x'LK~xU) = m(LK~xU). Hence n < nF(K, L).

We now show that uniform partitions exist in abundance.

Proposition 3.3. Let U be a symmetric, open, relatively compact neighborhood of
the identity. There exists a U-U2 uniform partition of G.

Proof. Let Ï be a maximal family of pairwise disjoint left translates of U,
5 = {x¡U¡: i G I) where I is well-ordered with first element i0. For any x,
xU n x,. U ¥= 0 for some i, so G = U /e/ x¡ U2. Let W¡o = (x¡U2) ~ ( U i¥=¡0 x, U)
(where — denotes set difference). Since x, U2 meets only finitely many x¡U by
Lemma 3.2, W¡ is Borel. Suppose a Borel set W¡ has been defined for each i <j
such that

(«,) U k<i Wk = (U*<< ***/*) ~(Ut>j xkU).
(ß,) { Wk\k < /} are pairwise disjoint.
\ft) Wk C xkU2 fork < /.

We then define Wj = (XjU2) — [(U/<y W¡) U (Uk>J xkU)]. By Lemma 3.2, XjU2
meets only finitely many of the W¡ and the x¿ U, so Wj is Borel. Thus W¡ is defined
by transfinite induction for all / so that (a,), (/?,) and (y¡) hold, but U,e/ W¡ =
U ,67 x,l]2 = G and xiu C Wi-a x,i/2, so {W¡] is a U-U2 uniform partition.

Note that any U- V uniform partition tt provides a situation in which Lemma 3.2
applies, since for each E in tt we have xEU <z E c xE V and F can be taken as one
set of such xE. The following results are immediate.

Proposition 3.4. Let it and F be as above, K relatively compact and Borel. Every
translate of K intersects (and so is covered by) at most nF( V, K) members of tt.

Proposition 3.5. Under the above conditions each left translate of a member of tt
intersects at most «F(2v, V) of the translates xEK.

Definition 3.6. For any p = (px,p2), I < p < öö, and uniform partition tt, we
say / belongs to L^(G) if fE £\ Lp (E) for all E in tt and the family of norms
{H/eil/.,: E £\ tt) belongs to 1P2(tt). (We say/is locally Lp¡ and globally ¡Pi relative to
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tt. The G is usually supressed and we write only Lp.) We define the norm ||/||£ to
be the I   norm of {||/£|Lj : E G tt). (It is easily seen that Lp is a Banach space.)

We denote by L"p 0) the closed subspace of L"p >OB) consisting of functions locally
in L   such that {H/^H^ : E £\ tt) vanishes at oo on tt.

Proposition 3.7 (cf. [18, §7]). (a) For any tt, and 1 < p < oo, L"pJ>) is identical
(and isometric) with Lp(G).

(b) If T < p_ < ÖÖ, / G L;, g G L;,, then fg G LX(G) and \\fg\\x < \\f\\¡H\\}.
The mapping Fg: f ^> fG\fs\ dm is a bounded linear functional, and if p < oo the
correspondence g —» Fg is an isometric isomorphism of Lp, onto the dual of Lp.
Similarly, the dual of L*pjax can be canonically identified with L"p.Xy

(c) ifP_ < q, then l; c l;.
(d) // 1 < p < q< oo," then L(;?) d Lp(G) u Lq(G) and L*,, C Lp(G) n

Lq(G).
(e) ///> < oo, K(G) is dense in Lp. Moreover, if px < oo, L*p¡0) is the closure of

K(G) inL"p¡x).

Proof, (a) is immediate from the definition, while (c) and (d) follow from the
definition and elementary norm inequalities. Because the norms depend on tt, there
is some interest to the proof of (b). Applying Minkowski's inequality first on each
E in 77 and then on the discrete set tt, we have

¡Vs\dm=   2    f\fEgE\dm<   S   UeLUeI', <\\AQsf
Jr. c ^_   J F r<=_'G' £<Ett   JÉ Eeir"   '.   ~.

which proves the first part of (b) and shows Fg is in the dual of Lp.
If \p is in the dual of Lp it restricts to a bounded linear functfonal \¡/E on Lp¡(E)

for each E in jr. By the classical result, for some gE in Lp(E), \\gE\\p> = H^H and
$E(f) = JEfgE dm for all/in Lp¡(E). Let g be the measurable function defined by
setting g(x) = gE(x) for x in E and note that for/ in L^, <|/(/) = \Gfg dm. We
need only show ||g||£ = ||^||. Clearly ||«f>|| < ||g||*, < oo~by the first part of the
proof. Given e > 0, choose, for each E, kE in Lp(E) such that \\kE\\ = 1 and
Mke) = \tE(kE)\ > (1 - e)\\gE\\p\- For any function {ßE} in ^ of tt, define
f(x) = | /J^A^x) for x in E, a member of 2^. Then

II/IÉ >!*(/)! = 2 |&| |*£(M
£6ir

=   S   Iftrl |«MM >0 - 0  2   |&| »fell,
£6l

Since /? is arbitrary in lp(jr) it follows that (1 - e)|| gE\\p. is in ¡Pi(tt) and has norm
not greater than ||i//||. Since e is arbitrarily small, however, ||g||*. < ||t^||. The proof
for L"p 0) is similar.

(e) For any/in Lp there is a finite a c tt such that

s (i^iur]1M<e/2
£ïo

so, writing F = U Eea E, ||/ - /F||; < e/2.
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On the finite set a the lp and lp norms are equivalent since they are norms on
the same finite-dimensional vector space, so on F, \\ ■ \\"p ̂  is equivalent to
|| • ||" - ) ■• H • \\p ■ Since K(G) is dense in Lp (G) it is also dense in Lp (F) and we
can find g in K(G) such that \\fF — gF\\p and hence

Wf ~ Sf\\(.Pi,p2) = ¥f " £fll(/>„/>2)
is arbitrarily small.

Without loss of generality g vanishes outside an open H d F with m(H — F)
arbitrarily small. Recall we can find a closed K c F and an open H D F such that
m(H — K) is arbitrarily small and a continuous A, A = 1 on K, A = 0 on G — H,
0 < A < 1. With g above so that ||/f - gF\\Pi < 8, hg is in K(G) and

Wf - (hg)F\\p¡ < \\fF - gF||„ +\\gF - (hg)F\\p¡ < 8 + max|g|(m(F - K))x/p\

By choice of K this is arbitrarily close to 8 and g can be replaced by Ag. For
/' = 1, 2, || g - gF\\p¡ < ma\\g\(m(H — F))x/p' can be made arbitrarily small by
choice of H. If p2 > px, by the norm inequality for discrete spaces,

\\S - 8f\\1,.P2) < \\8 - SfWIp^pO =\\g - gF\\p,-
If px < p2, the reverse norm inequality, which holds for the finite measure spaces
E G tt, yields (for some C)

\\g - gFÍ(P¡,p2) < C\\g - gFfiP2,p2) = C\\g - gF\\P2.

Thus we can choose g in K(G) so that ||/F - g^l^,^ < e/4 and || g - gF\\lPlJ>:ù <
e/4 so \\fF - g\\JpiJ,2) < e/2. Then ||/ - g||^_^ < ||/ - f^^ + \\fF - g\\¡p¡J>2)
< e. Thus K(G) is dense in L"p¡J>2)(G). The proof that it is dense in L"p¡0y(G) is
similar.

We now show the norms || • ||£ are equivalent as tt varies, so the topological
vector spaces Lp(G) are intrinsic to G.

Proposition 3.8. For tt', tt uniform partitions, 1 < p < öö, there is M such that
\\f\\"p < M ||/||^ for all measurable f.

Proof. For E' G tt', let S(E') c tt be the set of E G it such that E n E' ¥^ 0.
For E G tt, let T(E) c tt' be the set of E' such that E G S(E'). By 3.2 and
corollaries, the cardinals of S(E') and T(E) have a common bound, M. Since
ll/*<IU < 2*W)H/*IU for all E' in tt', it is immediate that ||/|£ < M\\f\\'p_ if

p2 = oo. For/?2 < oo, 2.1 yields

(|^ILf<(   S   HM,)'2 < a^-1   2   (Ifiriur
so

Hill;' < m<-->/"( s     2   (H/£||,,r)1/J
Vfi'eir'    EeS(E') I

\£:'6T(£-)   few /

< m( 2 (||/£|ur),/P2 = M||yii;.

1//-2
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Next we give an intrinsic characterization of the spaces Lp and incidentally
introduce new equivalent norms: \\(\f\p' * g)l/Px\\p •

Proposition 3.9. The following are pairwise equivalent for 1 < px < oo:
(a)fisinL;.
(b) For some g zê 0 in K + (G), (|/|P| * g)(x) exists for all x in G and (\f\p< * g)x/p>

is in Lp2(G).
(c) For all g in K+(G), (\f\p> * g)(x) exists for all x in G and (\f\p< * g)x/p> is in

Lp2(G).

Proof. Clearly (c) implies (b). We show (a) implies (c). Let tt and F be as in 3.4.
Suppose/ G Lp",g G K+(G), K the support of g and ß = maxx|g(x)|. Let 7'(2r) =
{£" G tt: E' rixEVK~x ^ 0} have cardinality CX(E) and S(E) = {E' G tt: E G
T(E')} have cardinality C2(E). If x G E G tt, then

(|/f * *)(*) = f \f(y)\P,g(y-lx) dm(y) <ß[ \f(y)\P' dm(y)
JG JxEVK-'

£'sr(£)

By 3.2, CX(E) < nF(V, VK~X) so, for 1 < p2 < oo, 2.1 yields

[Ü/T**)(*)],/',</8,/'1   2   ||/*<IL
£er(£)

<(nF(V,VK-x))^-X)/^ßx/p\      2      (ll/Ar1'
. E'^T(E)

Then

/[(l^,*g)W]A/"^W=   2     r[(W'*g)(x)]^'^(x)
C Eew   JE

< m(K)(«,<K, VK-*))<»-»ß»"> 2        2     (|l/H|„r
£eir    £'6 7(£)

= m(V)(nF(V, VK-X)f*-X)ßp^     £ 2   (||/^IU)^
£eS(£")    £"<Eir

< /n(F)(«F(K, VK-rff*-l*ß»'*nt{VK-\ V)(\\ftJ2 < oo

since C2(E') < nf(K/v -1, F) by 3.5. Thus (a) implies (c). (The proof forp2 = oo is
similar.)

Next we show (b) implies (a). (We show the more difficult case p2 < oo.) Let tt
and F be as above, and let g 2ê 0 in K+(G) be such that (|/|''l*g),/''' exists
everywhere and lies in Lpi(G).

For some 8 > 0, the open, relatively compact set W = {x: g(x) > 8) ^ 0, so,
for all x, fxW-\ is in L^ (xW7-1). By 3.5, each E' in it intersects only finitely many
sets xEW~x, so / is locally in Lp . Choose yx,y2, ■ ■ ■ ,yk such that V~XV Ç
Uy-i.tyW-1. Then g = (l/5)2*_, gy G K +(G). Since the hypothesis applies as
well to right translates of g, we must have (\f\Pl * g)x/p' in Lp¡(G). Choose zE in E
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such that

m(Eyl[[([f]P'*g)(x)Y^dm(x)

pi/Pi

2 (|/|" * %)(*,)y-i

/i•'s
|/(x)f" ¿m(x)

/^/Pl

> (IlO-T

where   5 = U *_, z¿y}W~* D z/"'K D £.   Thus   m(Uyx/p*\\ \f\p> * g\\
ip-

The proof of the following is analogous.

Proposition 3.10. The following are pairwise equivalent for 1 < px < oo.
(a)fismL{Pija).
(b) l/l" * g » in Cao(G)for some g sé 0 in K +(G).
(c) l/p"- * g « /« C.CG» affg/n 2C + (G).

The term "mixed-norm space" is used by Benedek and Panzone [1] for normed
spaces of (equivalence classes of) functions on products of measure spaces. Our
mixed norm spaces are equivalent to a special case of those defined by Benedek
and Panzone. The next few propositions establish this, justifying our use of their
term. We present them without proofs, which are straightforward.

Let (X, §, v) and ( Y, ST, p) be totally a-finite measure spaces. A measurable
function/on (X X Y, S xï,vXp)is said in [1] to be in LP-(X X Y) if (-,y) is in
Lpt(X) for (p) almost ally in Y and \\f(-,y)\\Pi is in Lpi(Y). Then Lp- is a Banach
space in the obvious way.

Emerson and Greenleaf [5] prove the existence of a relatively compact Borel
neighborhood 5 of the identity and a discrete set F c G such that tt = {xS:
x G F} is a partition of G. (The countability hypothesis in the following is to avoid
complications in defining product measures.)

Proposition 3.11. With the above notation, if G is second countable it is Borel
isomorphic with S X F in such a way that an isomorphic isomorphism is induced
between LP(S X F) and L£(G).

For 1 < p < öö" this shows Lp(G) is the norm completion of Lp(S) ® lp(F)
which it contains in an obvious way.

We will now characterize compact subsets of Lp for 1 < p < öö. We first show
the set of translation operators is uniformly bounded on Lp.

Lemma 3.12. Let tt and F be as in 3.4. Then for I < p < öö, /// is in Lp(G) then
^P^c\\J\rp<nF(V,V)\\f\\l.

Proof. Define S(xE) = {£" G tt: xE n E' ^ 0}, T(xE) = {£' G tt: E £\
S(xE')}. By 3.4, neither S(xE) nor T(xE) has more than nF(F, V) elements, so by
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2.1 we have

f\Ay)f'dm(y)
~\Pl/P,

2       / l/Wl" dm(y)
E'eS(xE)   JE'

2
£'ES(i£) L

Pi/Px

I/P,

<(nF(V,V)r~{      2
E'^S(xE)

P2/P,

(\\J]\T<[nF(v,v)r-1 2      2
Eev    E'eS(xE)

-l»ÁV,v)}*-\ 2      2
E'<E.ir   EeT(xE')

<{nF(V,V)}p>  2

f \f(y)\P' dm(y)

f \f(y)\P' dm(y)
J E-

f \f(y)\P> dm(y)J E'

[ \f(y)\P' dm(y)
.  E'

[ \f(y)f dm(y)Y   * =[nF(V, V)]>\\\j\W■> E'

Pi/P\

Pi/P,

Proposition 3.13. For T < p < öö, a subset H of Lp is relative compact iff
(a) H is bounded.
(b) 7Ae family of maps of G into Lp defined for each f in H by x —>x/ is

equicontinuous at the identity.
(c) For all e > 0, there is a set J of compact complement such that \\fj\\Z < e for all

f in H.

Proof (Notation of 3.12). Necessity of (a) is clear by continuity of the norm.
Let k G K(G) have support S. By 1.4, at most n^V, S) of w intersect S, so
||Jfc|(* < n¡J(V, S)1//'2m(K)1/'''||À:||00. If H is relatively compact, for any e > 0 there
is a finite subset {kx, k2, . . . , k„} of K(G) such that, for any/ in H, \\f — k^ <
e/2(nF( V, V) + 1) for some i. For x in some neighborhood W of the identity, we
have \\xk¡ — k^ < e/2 for all /', so using 3.12 we have

11 j - f% < v-m+11 a- - m+u - m
<[nF(V,V) + \] ||/ - k£ + WJc, - *,||; < e

and (b) is proved. The necessity of (c) follows from choosing {&,} as above and
noting that all the k¡ vanish outside a fixed compact set.

The proposition is known for Lp(G). We use this to prove sufficiency. From (c),
for any e > 0 we can find Q = G ~ / such that, for/ in H,

\\fX<t/2(nF(V,V)+l).
From (b) we can find a neighborhood W of the identity such that \\J — f\y < e/2
for all x in W and/in H. From (a) we have \\fQ\\'g = ||/ - ¿fÇ < ||/||; + ||/y||; <
M + e/2 for all/in H. Consider the set HQ of all functions fQ,f in H, as a subset
of Lp(Q). By our last remark, (a) applies to HQ. But for x in Wwe have
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\\jQ - /di;=ne/ -jj-(f- m: < 11/ - j%+u - /Aï
< e/2 + \\JX + MAC < «/2 + inE{V, V) + l)\\f£ < e.

Thus (b) also applies to HQ. By definition, (c) applies to the HQ. On the compact
set Q, however, the norm || • ||J and the usual Lp (Q) norm are equivalent (by 2.1).
Thus (a), (b), (c) hold for HQ regarded as a subset of Lp (Q) and HQ is relatively
compact in Lp (Q). Thus we can find {A„ h2, . . ., hn) in HQ such that for all / in
H, \\fQ — A,||p < e/2 for some A,, (again, by norm equivalence). Thus ||/ — h¡\\p =
II// + /ß - M} < WM'e + H/ß - *!ilÇ < e and 2/ is totally bounded, hence rela-
tively compact, in Lp(G).

Our results on compactness of PC operators require a mixed-norm space
different from those discussed above. The remainder of the section develops these
spaces.

Let A^ denote the projection operator taking the measurable function / to fv
supported on the measurable set U and let Tx carry/to fx; note that TX-,AVTX =
A

Definition 3.14. For 1 < p, q < oo, we say/is a localp-q multiplier if, for every
pair (E, H) of relatively compact sets of positive measure, AHCfAE: Lp(G) ~*
Lq(G) (where AHCfAE(g) = (/* gE)H) ¡s defined and bounded. We denote the
bound by \\AHCfAE\\pq.

Lemma 3.15. With the above notation, if f is a local p-q multiplier where 1 < p,
q<co then \\AHCfAE\\Ptq = RA^C^Hm-

Proof. Cf commutes with right translation, so

^HXCfAEx = Tx-,AHTxCfTx-,AETx = Tx-,AHCfAETx.
But writing A(x) for the modular function on G, we have

(||7>A„C7A£7;A|| )' = f |(A„C/A£7;A)(>>x-,)f dm(y)
JG

= L(x)JG\{AHCfAETxh)(u)\q dm(u) < Hx)(\\*„CfAE\\pJ(\\Txh\\py

= A(x)A(x-')(||A//C/A4i/(||A||,r.
Thus \\Tx-,AHCjAETx\\pq < HA^C^U^ and symmetry, replacing x by x~\
yields equality. For the infinite index case, the same argument yields:

Lemma 3.16. (a) \\AHxCjAEx\\^ = \\AHCfAE\\x¡a0.
(b) HA^ÇA^H^ - [Hx)]-l'>\\A„CfAE\\Piaafor 1 < p < oo.
(c) \\AHxCfAEx\\x¡q = [AW^WAnCfA^for 1 < q < oo.
An analog of Lemma 3.2 need not hold for right translates. There is no bound on

the (finite) number of members of a uniform partition which can intersect a right
translate of a member. This problem can be avoided if G has a relatively compact
invariant neighborhood of the identity, i.e., G is an (IN) group.
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Definition 3.17. Let G be an (IN) group, tt a uniform partition, and 1 < p,
q < oo, 1 < s < oo. We say/ is a local p-q multiplier of class í relative to tt if, for
some H in tt, HE^(\\AHCjAE\\pqf < oo, i.e., UAjpC/A^il^ (regarded as a function
of E in tt) is in Is (tt). We denote the space of such /by LMp and denote the norm
in Is(tt) by H/Iß",. Similarly LMp and LMpq0 are defined in terms of member-
ship in /°°(w) and c0(77), respectively.

Proposition 3.18. With the above notation, LMpq.s is independent of the choice of
H; the norms obtained for different choices of H are equivalent.

Proof. We give the case 1 < s < oo. Proofs for s = 0, oo are similar. As usual, tt
and F are as in Proposition 3.4.

Let A' be a relatively compact invariant neighborhood of the identity, Hx, H2
members of tt. There is a finite set A of cardinality \A\ such that H2 c U xeA Hxx.
For E G tt, x in A we write

S(E, x) = {£' G tt: E' n Ex'x + 0),
T(E, x) = {E' G tt: E G S(E', x)}.

There are {x,, x2, . . . , xk) such that £ c U ,■ x¡N and if 2T' G S(E, x) then
2s' n U , x,.A0c"' = U ¡(E' n x.x-'W) * 0. By 3.4, E' n x(x"!/V =*= 0 can hold
for no more than nF(V, N) sets £" in tt; the cardinality of S(E, x) is at most
knF(V, N). Since every left translate of V can be covered by the same number of
left translates of N, k can be independent of E. Thus knF( V, N) is a bound on the
cardinality of all the S(E, x). A similar argument shows it is such a bound for the
T(E, x). Now

\AHCfAE\\pq < \AH,xCfA4p,q = 2 ||a„,ca

by 3.15 and 3.16. (Recall that (IN) implies unimodular.) But

2
x£A

AnCfAEx- 2      2    IWAA,
xSA    E'eS(E.x)

since AEx' 2>E<^s(E,x) A^A^-i. Thus, using 2.1,

£E?
|A„2C}A£| p.ir< 2 2      2    I

xeA    E'eS(E.x)
\AH CfAE,\\    )

<   2   [knF(V,N)\A\Y~x 2 2    I
E'<ES(E,x)

\A„ CfAF\\

= 22      2    [i^i^k,^)]'-^^^!!  )'
£'eir   x£y4    EeT(E',x)

< (\A\knF(V, N)Y  2   (lA^A^II   /

and by interchange of //, and 2/2, the norms are equivalent and the spaces LMpq.s
are independent of the choice of the set H, in their definition. Moreover, the
equivalence class of norms is independent of tt.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



320 R. C. BUSBY AND H. A. SMITH

4. Convolution and mixed-norm spaces. If G is unimodular, 1 < p, q < oo,
l/p + l/q > 1 and \/r = l/p + l/q - 1, then Lp(G) * Lq(G) c Lr(G) and
11/* g\\r < ll/llpllsll, (Young's inequality). Attempting to extend Young's inequal-
ity we encounter products of sets from tt and can find no bound on the number of
members of tt intersecting such a product. As in the discussion of local multipliers,
the appropriate assumption appears to be that G is (IN). For the rest of this paper,
G will be an (IN) group and N will denote a fixed symmetric compact invariant
neighborhood of the identity.

Lemma 4.1. Let tt and F be as in 3.4. For Ex, E2 in tt, define

S(EX, E2) = {£ G tt: E n E2EXX * 0),

T(EX,E2) = {E £\tt:Ex£\S(E,E2)),

W(EX, E2) = {E G tt: Ex G S(E2, 2s)}.

There is an integer T(tt) which uniformly bounds S, T and W.

Proof. Let A be a finite set of cardinality \A\ such that V c U y£A yN. Then if
E S S(EX, E2), 0 ^xEV nxEVV~xxEx c  Uy(EA U;6A^n xE vz-xxExN2}

by the invariance and symmetry of N and A'2. By 3.2, there are at
most nF(V, N2)xE for which each set of the union is nonempty. Thus S(EX, E^ has
at most \A\2nF(V,N2) members. Since E G T(EX, E2) (or W(EX, EJ) iff E n
EX~XE2 ¥= 0 (or E n 2s,2s2 ̂  0), similar computations show we can choose T(tt)
= \A\2nF(V, A2) in all cases.

Theorem 4.2 (cf. [18]). Let f G L/, g G L", T < p_, q < öö, l/p2 + l/q2 > 1;
then

(a)/ * g exists (and is finite) locally a.e. and lies in Lf where

l/rx = max{0, \/px + l/qx - 1}, \/r2 = l/p2 + l/q2 - 1.

(b)||/*g|i;<r(77)||/pg|i;.

Proof. Suppose p2, q2, r2 =£ co; then by Young's inequality
(0 \\fE, *gEJ\r, < II/eJUISeJU, < oo for any 2T„ 2s2 in w, and
(Ü) (fEl * gE)El = 0 if 2s, G S(2s2, 2s3). Now

222   (i^trdifaJU*
£3S5T   Et.Stt   E,eS(E1,E1)

= 2 (iifajij* 2       2    (||U,r
E2e-n £,en    £]E(/(£|,£2)

< r(ir)(|wi,T(ll*ll,T < «•
TT.    „  r_L    r     r-Ihus for each 2s3 G tt,

2       2     (\\fE,U2(U4\X < «>■
^Stt    £,ES(£2,£j)
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By the generalized (multiproduct) Holder inequality

2       2     (i&JIJfll&JJ
£2£i    Ei£S(E2,E1)

< 2    2   (iiu,nii**u
£¡£1    E¡eS(E2,E})

ll/'i

2 2  (ii/£,iur
E2En £,ES(£2,£j)

2 2   (iifaji„r
E2&ir E,eS(E2,Ey)

P,'     \II°*2H«,

(?2-l)/?2

0>2~ l)//>2

2    2  (ii/iltIr(Bfa1B„r
£2eir    £,ES(£2,£j)

2    2   (iiÄ.t.r
£,ew   £2er( £,,£,)

(<?2-])/92

(Pi~l)/P2

2    2   (n^ii„r
. £26ir    £|Ei(£2,£¡)

<[r(»)]°-,/A-,/tó(|wi?T(*-,)/*(||g|i;)fc(,,i-,)/'1

2       2     (\\fEir(\\gE2\\J2
E2<Ev   £|ES(£2,£,)

l/'2

Thus for any 2s3, by (ii)

(\\(f*ghl,Y 2       2     We, * gE2\\r¡
. E2eir   £, ES(£2,£3)

(2- l/ft-l/ft)M| /||»\'-2^2(i2- 0/92/M      M W\ 1-292(^2- O/ft

2       2     (||/,JUr(ll^llJ?2
. E2en   £|ES(£2,£,)

<[r(,r)](

(ii/^n;r= 2 (ii(/**)ííii„r
£•,£77

<[T(tt)]( (2- l/>2- l/ftW,. fl,»\'-2/'2(?2- ')/?2/||      ||"\'-2?20'2- l)//>22(|W^^?2-.V?2(||g||;)

2    2       2    (ll^JUnil&JIJ
£3 Sir    £2£7r    £,ei(£2,£j)

(2- \/p2- l/q2)r2+ U n fí,"\P2+ r2p2(q2- l)/q2,..    ,.v\q2- r2q2(p2- l)/p2<[T(TT)]^-'^-'/^+,(\\f]Ç)

-[n*)]mT(lls|,T>
efVo\\l)

IL/**|i;<r(w)||Ä||;
which proves both (a) and (b) for this case.
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Supposep2, q2 ¥= oo but r2 = oo (so \/p2 + l/q2 = 1). By 4.1 and 2.1

2Í   2   mS < [ W]^ 2     2   (ii/£,iur
£2EE7r V £,EES(£2,£3) / E2eir   £,ES(£2,£j)

=[r(w)]-/- s    2  o^iur
£,ew   £2eT(£|,£3)

<[r(w)](P2/,2)+.      g      (||/£J|J*
| EE7T

"\/>2

Computing as before

-[r(ir)HM;>

||(/*AM„<    2 2        llÄr.tJlfaJI,,
£26E7r   £,ES(£2,£j)

= 2 ll&j,,     2     \\fEl\\Pl
£2£7T £lES(£2,£j)

( 2 (ii^uftr),/fc( 2 (   2   ttUÏ'P
V£2eir / \ E2eir \£|ES(£2,£,) /    /

< r^ii/psii;.
Thus for this case we also have ||/* g||* = supEjeJ(f* g)E}\\r¡ < r(ir)||/H*||*||*.

Now   suppose  p2 = oo   (so   q2 = 1,   r2 = oo).   Then   supE¡eJfE¡\\p¡ < oo,
^E2^\\gE2\\q,   <   «>,

||(/•*)*,!„< 2       2     |/,,UaJa <MU'iX») 2 ||g£l||„,
£2e7r   £,eS(£,,£2) £2E7T

A similar calculation yields the case q2 = oo.
Remarks, (i) By 3.13(b) translation is continuous, so from 4.2/* g is uniformly

continuous if/ G Lp, g G Lp,, 1 <p < 55, just as for usual Lps.
(ii) It follows from 4.2 that the L"pX)(G) are group algebras (i.e., closed under

convolution) for all/7 > 1.
(iii) J. Stewart has proved [16, §4, Lemma 1] for G abelian with dual G~, that for

every compact set K in G", there is / in L"2X)(G) n LX(G) such that its Fourier
transform/= 1 on K and has compact support. (By 3.7(c) we know L(2X) c L„ so
Stewart's condition is redundant.) By 4.2,/*/ is in L"xix(G) c LX(G) n LX(G)
and its Fourier transform (f)2 has the desired properties. Thus there is actually a
bounded Lx function with such a Fourier transform.

Lemma 4.3. Suppose 1 < p < oo. 2*br euery nonnegative sequence a not in lp(Z +)
there is a nonnegative sequence ß in lp,(Z+) such that 2"_, a„ß„ = +oo.

Proof. If p = 1, set ßn = 1. If p = oo, choose a subsequence such that ak > k.
Let the corresponding ßk be 1/A:2 and let ß vanish elsewhere. Then clearly ß is in
/,(Z+) and the condition holds. Finally, suppose  1 <p < oo. By assumption,
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2™_i(a„y = +00, so if Dn = (axy + (a2Y + • ■ ■ + (a„y, Dini's theorem on
sequences (see [11]) says 2"=,(a„y/(Dn)y is infinite for y < 1 and finite for y > 1.
Let ßn = af~xI'Dn. Then by Dini's theorem

2/r=2^—=2^7<-,
oo oo      ap

2 «„A, = 2 7^; = +00.
n=l n=l   ^

Theorem 4.4. For f locally measurable and I < p < öö the following are equiva-
lent.

(a) (/ * g) exists (and is finite) locally a.e.for all g in Lp.
(b) (g * f) exists (and is finite) locally a.e.for all g in~Lp.
(c)fis in L^y.

Proof. By 3.8, we can assume tt in N-N2 uniform. By symmetry and invariance
of N, tt~x = {E~x: E G tt) is also an N-N2 uniform partition. By 3.8, the map
/—>/~, f~(x) = f(x~x), leaves all the spaces Lp invariant. Since f*g =
(g~ * /~)~ it follows that (a) and (b) are equivalent.

By 4.2, (c) implies (a) and, in fact, / * g is in L™ x). We need only prove (a)
implies (c). Let 2s be in tt, W a relatively compact neighborhood of the identity,
and g the characteristic function of E~XW~X. Since g G Lp, (a) implies that/* g
exists for some x in W~x;

oo > [ I/Wist*-1*) dm(y) = f     \f(y)\ dm(y) > f \f(y)\ dm(y);
JG JxWE JE

f is locally integrable.
Choose a maximal family of pairwise disjoint left translates {yjN2:j G J) of N2

and let A be a finite family of elements of G such that A'4 c U zG// zN. By
maximality G = \J J£J U ,ea yjzN = U ^„[U^^/lz. If/ is not in L^y,
there must be z0 in H such that the restriction of / to Uye/ 7>Az0 is not in L^y, so
there must be some subsequence of them's indexed by Z +, such that the restriction
of/ to U?=ly„Nz0 is not in L^y. Taking a in 4.3 to be {Hj^H,}, there is
nonnegative ß in lp(/Z +) such that 2"_, <xnß„ = oo. Let g be a function defined to
be identically ßn on the set z^xyn~XN2 are zero elsewhere. (Disjointness of
z0~ xy~ XN2 follows from that of yjN1.) Clearly g G Lp and if x G N we have

f \f(y)g(y-'*)| dm(y) >  2   f      |/O0|s(.V- '*) dm(y).

lfy£\ ynNz0,y~xx G z0~ |y~'A2, so g(y 'xx) = ß„. Thus, for all x in N,

( \f(y)g(y-ix)\ dm(y) >   2 «„A, = oo.

Thus/ * g(x) is not defined on N, a compact set of positive measure; assuming/is
not in LJyj^ contradicts (a).
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N. Rickert proved [4] that for 1 < p, q < oo, l/p + l/q < 1 on a locally
compact group G which is not compact there must be/ in Lp(G) and g in Lq(G)
with / * g undefined on a set of positive measure. Theorem 4.4 gives a precise
characterization for (IN) groups and show it to be the rule, rather than the
exception. For p, q as above, we say / G Lp(G) has a divergent ^-convolution if
there is some g G Lq(G) such that/ * g is undefined on a set of positive measure.
Immediately from 4.4 we have:

Proposition 4.5. If 1 < p, q < oo, l/p + l/q < 1 and f G Lp(G), f has a
divergent q-convolution iff f is not in L"Xq.y(G).

Corollary 4.6. The set of f in Lp(G) having a divergent q-convolution (1 < p,
q < oo, l/p + l/q < 1) is of second category in Lp(G).

Proof. By 4.5 we need only show that X = Lp n L^^ is one of the first
category. With norm N(f) = ||/|| + ||/||0)9), A1 is a Banach space and the natural
injection of X into Lp is continuous. By 2.11 of [15], since X is not all of L it must
be first category.

5. Product-convolution operators. Let 911(G) be the locally measurable functions,
with locally a.e. equal functions identified. For A in 91c(G), ph denotes pointwise
multiplication by A ((Phg)(x) = A(x)g(x)). For/in 911(G), Cf denotes the operator
having as domain the g in 911(G) such that / * g exists (and is finite) locally a.e.
and which maps g to / * g. A product-convolution (PC) operator is a composition
PhC¡. We will be concerned with cases where the domain of the PC operator
contains, and is restricted to, one of the mixed-norm spaces and the range of this
restriction lies in another. In this section we study conditions for the operator to be
bounded; in the next, conditions for it to be compact.

Theorem 5.1. The operator PhC¡, with A G Lp and f G L", bounded from Lq to
L" where 1 < p, q, r, s_ < öö, //

"(a) l/p + l/r> I + l/s - \/qand
(b) (sx, r2) < (px, q'2).

In this case, the bound satisfies

(T(tt) is as in 4.2).

Proof, (b) implies 1 < l/r2 + l/q2so, defining t by

1 L   1       1      A ill,
— = max  0, — +-1,        — = — +-1,
'i I      rx       qx J t2       r2       q2

(by 4.2) for any g G L?"||/*g||J < r(,r)||/||-||g||'.
(a) and (b) imply sx < px and sx < tx. If sx = oo, for any 2s in tt,

\\[h-(f*g)]El, <INWK/**)*lk
Fors, < oo, since (a) implies l/p, + 1//, < \/sx and |A|J¿ G Lp¡/s¡(E), \f * g\*¿
L, ,s (E), Holder's inequality yields
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ii[iAr,-i(/**)r,]j,<iiAr¿iu.A,ni(/*f)r¿««,A,
= (\\hE\\p,\\(f*g)E\\,,y\

so the results hold in this case also. Thus if s2 = oo, by the above result,

||A. (/*g)||J = sup ||[A- (/**)£]||„ < sup ||hE\\p¡ sup ||(/*g)£||,,
E £.ir EGtt E G-ït

<iiAíii/*<<rwiiA|^i;i|g|i;.

If s2 < oo, let k = max{l,p2/s2), n = max{l, t2/s2). Since l/p2 + l//2 > l/s2,
by (a) and the definition of t2, l/k + l/n > 1. Again by Holder's inequality and
the preceding result,

2 \\hE\\sp2,\\(f*g)S:<   2 II*
£evr L Ee

s2k
E\\p,

i/kr
2 \\(f*g)Eû;

E&TT

l/n

SO

iA-(/*g)n;< 2 (iiAx.n«(/'*)<ii..)'
Eeir

l/s2

I 2 (n^iur
£6tt

l/s2k

2 (||(/*g)£p££•
s2n

l/s2n

<( 2 (ll^iur) 'Y 2 (||(/^)£||„)'2)
=iiAiii/*gii:<n^)ii%iyii:ii«ii;.

l/'2

Corollary 5.2. The operator PhCf with A G Lp and f G Lf is bounded on Lq,
where 1 < p, q, r < oo, provided

(a) l/p + ï/r_ > I and
0) (qx, r2) < (px, q2).

In the next section we require a strengthened version of 5.1 which is also of
interest in its own right:

_
Theorem 5.3. Suppose for 1 < p, q, r, s < öö
(a)l/p_+l/r_>l + l/s- l/qj  '
(b) (sx, r2) < (/>„ ?2),
(c) l/r2 + \/q2 > 1 + l/s2,
(d) (sx, rfj < (px, 00).

Then, for any f in L", e > 0, 9 > 0, there is 8 > 0 such that for any A in Lp for
which ||A|Ç < 9 and ||A||fI>w) < 5, iAe« U^C,^ < e.

Proof. Since r2 < 00 choose /0 a bounded function of compact support such that
11/ - /oil? < e/29P(ir). For g in L* we know by 4.2 that

ll/o * g\\ï<»,q2) < r(^)||/olir».i)lkll? (1)
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and

\[fo*g\\:<n^\\fo\\:\\g\\v (2)
i       • L  i     i     A       iii,— = mm|0, — +-l),        — = — +-1.
/, {      rx       qx J t2       r2       q2

We take tt to be U- V uniform. The usual inequality for Lp norms on sets of finite
measure yields

I/o * sí„v(„-,),2) < r(w)||/o||;i|g||>(K)^--1/'»-1/"> (3)

since 1/i, - \/Px > l/tx. Let a = e/(4r(77)m(F)1/î'-1/''||/0||?) and choose 5 > 0
so that

(ô/af/s>-ï/pùn«)»M*>,i) <£/4- (4)
For any A G Lf such that ||A||* < 9 and ||A||"lj0O) < 5 and each 2s G tt, define

Sa = {x: |A(x)| > a], 2s, = 2s n Sa, E2 = 2s ~ 2s,. Then for i = 1, 2

/ \h(x)\s'\(f0 * g)(x)f dm(x) < IKA^O^L/JK/o * ̂ JUa,,-,,)
E,

so ||[A • (/0 * g)]Ei\\s¡ < \\hEf\\p¡\\(f0 * g)E¡\\p¡Sl/ÍPl.Si) = y,- For i = 1,

yi <\\hE\\pMf0*g)E\UMEl)]0/s'-i/p')
1        ,     \0A,-i/p,)

<I|a£LII(/o^)£|L(-||a||(i,oo))

since a/w(2s,) < ||A£||, < ||A||",j00). Thus, if s2 < oo,

2 (utau * g)ui)S2 < (hh\\kJS2/1 2/"} 2 (\\hE\\p,n\\(fo * «yj*.
;Eit V   " / £Ftt£577 X   " ' £Ê77

But by (1), {||(/0 * g)E\U G ¡qt(TT) and by (a)

so, using Holder's inequality,

ä+ä>1 + Ji_i\-i+5>i,
2>2 ?2 V '2/ *2

2 (IIM,,)i2(IK/o^)£lur<( 2 (\\hElff/P1 2 (||(/o * i)J|J*V
£^77 \/?f=77 / \ £Pi7 /

)*j/ft/ ,.. . .      ..      ,„\i2/?2

* £«

=(\\h\m\\(fo*m:~,q2r
< (iiA|^T(r(^)iuoí=c,.)iigii;r (by(!))-

Thus

1 .      \1/Ji-1/i'i       „ »e1     ii   i   iiT 1 u  i   ii^n/       \ ii   /•   mW uff      __,      C   ,,       ||1Tii * • (/• * g)s.i < (-u Alió,«,) '   H*r(*>M<«..>w; < fa*
(by (4)). (If í2 = oo the same inequality follows by similar computations.)
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For i = 2, y2 < a(m(V))x/p'\\(f0 * g)E\\Pll¡/(pi-s¡) and if s2 < oo we have

(A-(/o**))c~dl. <«(*(*0) />i 2 (ll(/o**)X.*,/o.,-*,))»a

£Et7

< «m^))1//''||/o * g||o>,v</>,-*,).<2) (since by (c) '2 < **)

< a(m(K))1^T(7r)||/0|p|g||>(K)(,/j'-1/'"-|/") < i(g|J.

(Again, the result follows similarly for s2 = oo.) Thus in all cases

II* • (/o * »)C < IK* • (/o * *»*£ + H(A(/o * s))g~s£ < 11|*||;
andwehave||P,C/o||9ji < e/2.

By   5.1,   \\PhCu.:¿\'qjl < r(,r)||A||;||/-/0||; <«r(w)||/-/0||; <e/2.   Finally,
IIPhCj\\\a < linC/o||;4 + \\PhC(f_fXs_ < e.

Theorem 5.1 tells us that, given the hypotheses on the indices, the bilinear
mapping of Lp X PJ to the bounded operators from Lq to L" defined by
(A,/)—» PhCj is jointly continuous. Theorem 5.3, however, with slightly stronger
hypotheses on the indices, yields only that if the ball B9 of radius 9 in Lp is given
the coarser (1, oo) topology the map from Be X L* to these bounded operators is
separately continuous. This is precisely what we need for our results on compact-
ness.

We now show that if PhC¡ is a bounded operator between mixed-norm spaces
then A and / must lie in mixed-norm spaces-a result similar to what was proved for
Cf in 4.4.

Proposition 5.4. Suppose PhCf is a nontrivial bounded operator from Lq to L",
with 1 < q, s_ < öö. Then f is in L"x ,, and A is in L"s >00).

Proof. By hypothesis / * g exists locally a.e. for all g in Lq, so, by 4.4, / is in
r 77

Suppose i, < oo. Choose g in K(G) such that/ * g ^ 0. Since/ * g is continuous
there is a 8 > 0 and a relatively compact open set W such that |(/(g)(x))| > 5 for x
in W. Since A • (/ * g) is in L", it is locally in Ls. Thus if sx < oo

fjh(x)\Sl dm(x) < (|)"/jA(x)(/*g)(x)f dm(x) < oo.

If 5, = oo a similar inequality holds for essential bounds. By translating g we see
that A is locally Ls. If there is a sequence {2s„} in w such that ||A£ \\s  > n we
can   find   {x„}   such   that   lim^^^HA^ -ill,   = oo   and   calculating   as   above
ll(A • (/ * g))wx-'\\s ~* °° which violate the assumption that PhCf is bounded.

Using 5.1 and 5.4 completely settles one case.

Corollary 5.5. PhCj is bounded from LK to L^ iff h is in Lx and f is in Lx.

Proposition 5.4 leads us to examine the necessity of the hypotheses of 5.1.
We restate the hypotheses:
Let 1 < p, q, r, s_ < öö be such that
(\)l/Px + \/'rx'< 1 + l/sx- l/qx,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



328 R. C. BUSBY AND H. A. SMITH

(2) l/p2 + \/r2 > 1 + l/s2 - l/q2,
(3)sx<Px,
(4) r2 < q'2.

Theorem 5.1 says that if A is in Lq and/ is in L", PhC¡ is bounded from Lq to L".
Proposition 5.4 tells us conversely that if PhCf is bounded from Lq to L* then (3)
and (4) hold for some choice of p and r with A in Lp and /in Lr".

We have found examples of "boundary" cases, of functions A and / which come
arbitrarily close to satisfying the conditions of (1) and (2) in which PhCf may or
may not be bounded.

Example 5.6. Let {an}, {ß„) be sequences such that —\>an > -1, limn_>00 an
= -1, ßn > 0 and 2"_, ßj(l + <x„) < oo. For 0 < x < 1, define fix) =
Z~_, ßnx"-, h(x) = - log x and let fix) = A(x) = 0 elsewhere. Then A G Lp(R)
for 1 < p < oo but A G 2.^,(2?); / G L,(2?) but / G L,(2Î) for 1 < q < oo. We
examine PACy on L2(R), i.e. <? = í = 2. Then clearly A and/cannot be members of
any pair of spaces Lp, L, (respectively) for which the conditions (1) and (2) hold,
but for any e > 0 there are index pairs/? and r_, such that (1) and (2) are violated by
less than e. By choosing particular g in L2(R) it is easy to show the sequence { ßn)
can be chosen so that PhCf is unbounded. The problem is to show that it can be
bounded. For this we need:

Lemma 5.7. Let g be a nonnegative function in L2(R) vanishing on (0, oo) and let
g" denote the increasing rearrangement of g on (—oo, 0) (i.e. g"(x) is the usual
decreasing rearrangement evaluated at — x). Let f be nonnegative, summable, decreas-
ing on (0, oo) and vanish on (— oo, 0). Then (f * g)[0iOO) < (/ * g")[o,oo) and ootn these
functions are decreasing on (0, oo).

Proof. For x > 0, we have

(/ * g)(x) = f   f(<)g(x -t)dt= j    fix + t)g(-t) dt.

Since/is decreasing, for x > 0
/-OO /. 00

/    fix + t)g(-t) dt< j    fix + t)g'(-t) dt.
Jo Jo

If 0 < x < y, then fiy + t) > fix + t) > 0 for t > 0, so /£° fiy + t)g(-1) dt >
So f(x + t)g(-1) dt and the functions decrease on (0, oo).

Suppose || g||2 = 1, where g is as in the lemma. Then for x > 0

\=       g2(-t)dt=       (g(-t))2dt>(   (g(-t)fdt>x(g(-x)f,
Jq Jq Jq

so g*( — x) < x"1/2. Thus, by the lemma, for x > 0

(/*áO(x)=   ['""2   ßn(x+trg(-t)dt
Jo

< f°°2 ßn(x + tyg'(-t)dt

<2y8nr00(x + /r/-1/2^
•'0

= 2 ß„xa"+l/2(™(i + ty*rx/2dt.

J0
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Write In = fo(l + tyrx'2 dt. Then, again by the lemma,

||A • (/• S)||2 < II* ■ (/• S*)||2 < i'(2 ß„I„x°- + i'2 logx)2 dx

<2    2/UUA    f110g2XX- + -+1Ä<2    2   ,    2^JJm        .
Jo (a„ + am + 2)3

Since -\ > an > -1, anam < 1 and an + am + 2 > (a„ + l)(am + 1). Thus

ÏA-(/.g)||2<2(2  7^3
2

(«„ + iy

Since {/?„} was only constrained by 2 /3„/(l + a„) < oo, this last sum can be
made bounded by appropriate choice of { ß„) and PhCf is bounded on all positive g
in L2(R) with support in (- oo, 0).

Suppose the support of g is in (0, oo) and let g~ be the decreasing rearrangement
on (0, x) of the restriction of g to that interval and again assume ||g||2 = 1. By
previous remarks we know gx(t) < t~x/2 and

(/•*)(*) < fxf(0g:(t)dt < Cfit)t-x'2dt
Jo Jo

.x r^ + 1/2
2 A,/  ^'/2*<2^-pr

^x v<^, + l/2

Much as before

|A-(/*g)||22<2  2 7-—-pr/^-^log2* í¿x

<2 2t-tt;—^#-t<2I2
(«- + l)(«m + DK + «m + 2)3        \      {a„ + \)(an + l)3 /

Again, {ßn) can be chosen so this sum is bounded, as well as the previous ones.
Since any g in L2(R) can be constructed as linear combinations of positive
functions having supports in the two half-lines, for {ßn} appropriately chosen we
have PhCj bounded from L2 to L2.

6. Compactness of PC operators. In this section we give necessary and sufficient
conditions for compactness of PC operators which satisfy the sufficient conditions
for boundedness given in 5.1. We thus consider PhCf: Lq —> L/ with A in Lp and/
in LZ where the indices satisfy

(1) \/Px + \/rx < 1 + l/sx - l/qx,
(2) l/p2 + \/r2 >  1 + l/i2 - l/q2,
(3)¿, < Px,
(4) r2 < q'2.

Because we do not know enough about compact sets in Lx we sometimes further
restrict attention to cases which also satisfy

(5) sx < oo and
(6)i2 < oo.
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If the "global" indices p2 and r2 are finite, the operators are always compact.
Except for the possibility that one or both of "local" indices px and rx may be
infinite, the proof is similar to classical results for kernel operators. We include the
proof because of this complication.

Definition 6.1. We say a measurable function F on G X G is in LZ\V(G X G) if
F(x, •) is in LZ for almost all x and the function x -> ||F(x, -)||* is in LZ. The LZ
norm of this latter function will be denoted HFII^.

Lemma 6.2. For 1 < s, q < öö and F in LZS(G X G), the integral operator T:
L; -» LT defined by Tg(x)"= fG F(x,y)g(y) dy'is bounded and \\ T\\ < ||F||^.

Proof. By 3.7(b) and the hypotheses on F, \Tg(x)\ < ||F(x, -)\\mA g\\\ ae. on G,
so||7g|ii_< iigigiFn^.

Remark 6.3. If F is continuous with compact support, then the transformation
defined in the lemma is compact.

Proof. F can be approximated uniformly by "degenerate" kernels composed
from functions in K(G). The norm bound of the lemma then shows that T is
approximated in norm by the corresponding operators of finite rank.

Theorem 6.4. Under conditions (1) through (5) above, if p2 < oo, r2 < oo then
PhCf is compact.

Proof. Suppose first that rx < oo. By 3.7(e) choose, for any e > 0, fe in K(G)
such that ||/ -/X < ^/(2\\h\\pT(TT)). Choose a finite p\< px such that 5, < p\;
l/p'x< 1 + 1/i, - l/qx- Again by 3.7(e) we can choose A£ in K(G) such that
IIA - Mfcrt < e/2r(»)ll/.ll(«^»- Since¿ is in L^, (A - A.) is in L7PiPÙ, and/.;
was chosen so that (p\, p2), q, (oo, r2), s_ satisfy the conditions of 5.1, we have

ll^c/. - PKCf\\ < T^)\\h - Kf(p^M'»^ <eÄ
But again, using 5.1,

\\PhCf - PhCf]\ < r(w)||A||;||/ - f£ < e/2,

so PhCj can be approximated in norm by the compact Pk Cf and is itself compact.
Now suppose rx = oo. If also px = oo, (1) becomes a strict inequality, we can

find p\ < oo such that (p\, p-ff, r, q, s satisfy the conditions of the theorem and A is
also in L"p ¿. Thus we may suppose without loss of generality that/?, < oo. Given
e > 0, we can find Ae in K(G) such that ||A - he\\np < e/2r(w)||/||;. Since/?, < oo
we can find r~x < oo such that 1/'r\ < 1 + 1/j, - l/qx. Choose/ in K(G) such that
Wf-WrVù <£/(2rWIIAelir=o^)- Since (/-/) is in L^, Ae is in L^y and
(oo, p2), q,(r\, r2), s_ satisfy the hypotheses of 5.1 we have ||P^Cy — P^C^H <
n*)\Ml^\\f-~f.\\Zv* < e/2- Moreover \\PhC, - PKC,\\ < T(W)||A - MÇ||/||"
< e/2 and, as before, PhCf is compact.

More interesting results are obtained when either p2 or r2 is infinite. We now
consider these cases when conditions (1) through (6) are met.
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Lemma 6.5. If sx, s2 < oo and a, ß are members of LZ having disjoint (essential)
support, then

\\a\\:+\\ß\\:>\\a ± ß\\: > 2<i/*+,/*-2>[h« +m¡].

Proof. The first inequality is clear. For the second, we know by 2.1

i« ± ß\\: =
0 \s2/s,y/'2

\a(x) ± ß(x)\*> dm(x))
E I

s,\s2/s,
\l/s2

2 «ii«*«-.)*1 + (ii/y,,)")*
.   £677 J

2   [2^''l)\\aE\\Sl+\\ßE\\Sl]^
£Et7

>    2('A|-0
l/*2

Ï/H

2    (K|kf  +  {\\ßE\\X
££77

> 2<i/s,+i/s2-2h 2 (Ki;y,y*+■/ 2 (||/yjA

= 2^+i^-2>[|i«n;+i|is|i;].
Since G is an (IN) group, the operator S defined on locally measurable functions

by (Sf)(x) =f~(x)=f(x~x) leaves all the spaces Lp(G) invariant and is bounded
on each. Then (SCfSg)(x) = fG fiy)g(xy) dm(y) and SPhS = Ph- so SPhCfS =
Ph-SCfS. These will be used in the next proposition. We will also need Q(t, a,f)
defined for all / and a in G and/ in LZ, by a fixed A in Lp and a fixed g of compact
essential support in LZ by-

Q(t,a,f)=\\PhSC/S(ag-lg)\\¡

-2<x/^x/^[\\PhSCfSU)\\¡+\\PhSCfS(lg)\\¡}

where (1) through (6) all hold, and r2 < 00.

Lemma 6.6. lim,^M Q(t, a,f) > 0.

Proof.  Since r2 < 00,  there is a compact set L  for any 5 > 0 such  that
11/-Allí <ô- Then

\Q(t,a,f)- Q(t,a,fL)\

< {\\PhSCu_fLySU)l+\\PhSCu_fLyS(ë)l)(l + 2'A, + '/*2-2)

<pvi m \\s-x\\(u\w+u©o + 2x/^x^-2)\\f-fL\\;
<l|AÍI|5||2X||g||?:(l + 2X^ + X^~2)\\f - f£
<wWii*ii«o + 2,/í,+1/í2~1).
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By 3.14, A > 0 can be chosen independent of a and t, so by choice of 8 this last
quantity is less than e. The essential support of SCf S(ag) is contained in a"xKL~x
and that of SCfLS(,g) in t " XKL~ '. Take Ke to be KL"XLK" xa; then if t is not in Ke,
PhSCf S(ag) and PhSCf S(,g) are in LZ and have disjoint essential supports. Thus
by 6.5¿, Q(t, a,fL) > 0. Hence if t £\ K2, Q(t, a,f)> - e.

Proposition 6.7. 2/(1) through (6) hold andp2 = oo,f £\ LZ,f ¥= 0,h £\ Lp, then
PhCffrom Lq to LZ' is not compact if h & LJ0).

Proof. By discussion preceding 6.6 and the invariance of LZ, 0) under S, it
suffices to show PhSCfS is not compact.

Choose g =£ 0 in K(G) with support L. Then SCjSg is continuous, so there is an
open W and e > 0 such that |5C}5g| > e on W. There is a symmetric relatively
compact neighborhood U of the identity and x0 in W such that x0t/4 c W. Let tt
and F be as in 3.4 with V = U2.

If x0 G £" G tt, xE. £\ x0U2, so E' c x0C/4 c W. Thus

i*w*ii; / JAOOI'-KSCSX*)!" dm(x)
i/*,

> EIIMv

If we write z(2i) = x£.x£ ', we have similarly

\PhSCfS(z(E)g)fs > f \h(x)\s'\(SCfS(ziE)g))(x)\S'dm(x)
l/s, > "IIML

for if x G E, (SCfS(z(E)g))(x) = (5C/Sg)(x£.x¿'"x) and xE.xExx G x£,t/2 c W.
Note that:

(i) If 23 is a compact set, there is a finite subset, J(D), of tt such that if z(E) G 2)
then E G /(£>).

(ii) Since A £ L£ 0), there is 8 > 0 such that for any finite subset of tt, there is a
member E of it not in that subset such that ||A£||,  > 8.

Let c = e<52'Al + 1/i2-2 and choose 2T, in tt such that ||A£J|J| > 8. Let z, = z(£,)
and (by 6.6) choose a compact T such that Q(t, z,f) > — c for í outside T. By (i)
and (ii) we can pick E2 £\ J(T) with ||A£ \\s > 8. Letting z2 = z(E2) and using
computations made above we see that \\PhSCyS(z_g)\\,'s > e8 for /'= 1,2, and
Q(z2, zx,f)> — c since z2 is not in Y. But by definition of Q we have

\\PhSCfS(z¡g) - PhSCfS(Z2g)\\¡ > 2>/^ + 1^-2(2eS) - c = c.

Suppose we have chosen Ex, E2, ...,£„_, in tt such that, writing z( for z(E¡) we
have, for i ¥*j, (a) \\PhSCfS(z¡g)\\: > eS and (b) \\PhSCj(Zig) - P^SC^g)!!' > c
where i and j run over 1, 2, . . . , n — 1. By 6.6, choose T compact such that
Q(t, z¡,f) > — c for t outside T and for ¡' = 1,2, . . . , n - 1. By (i) and (ii), choose
En G J(T) such that \\hEJ\s¡ > 8. As above (a) and (b) then hold for £„..., En.
We have, by induction, a bounded sequence {^g} in Lq such that {PhSCfS(z g))
has no convergent subsequence, so Ph SCfS is not compact.

We now prove the main result of this section. We give two equivalent versions.
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Theorem A. Let p, q, r, s_, satisfy conditions (1) through (6) and p2= +oo. For f
in LZ, h in Lp.

(a) If sx <px, PhCj is compact from LZ to LZ iff h is in LZxoy
(b)Ifsx = px, PnCf is compact from LZ to LZ iff h is in LZP]ß).

Theorem A'. Under the above conditions, Ph Cf is compact from Lq to LZ iff A is in
I "

Proof of A. (a) Suppose A is in LZX0). Then there is a sequence Kn of compact
sets such that ||A — A„||",i00) < l/n where hn is the restriction of A to Kn. The
hypotheses of 5.3 hold, so \\PhCf - P^CjW = \\P(h-K)Cf\\^>0. On the other hand,
Ph Cf is compact by 6.4 so Ph C¿ is also compact.

Conversely, if A is not in LZX0), it is not in LZ, 0) so PhCf is not compact by 4.7.
(b) If A is in LZp¡0), we can find A„ as in (a) such that ||A - AJ£ -»0. By 5.1,

\\PhCy - PKCj\\ < 1>)||/||*||A - AJi; -»0. Since PKCf is compact by 6.4, PhC, is
also. The converse is 6.7.

Proof of A'. The direct part is 6.7. For the converse, let sx = px. By (b) of
Theorem A, PnCf is compact. For sx <px, A in LZ, ^ implies A in LZX0) so, by (a) of
Theorem A, Ph Cf is compact.

The case remaining are those in which r2 = + oo which implies q2 = 1. We solve
the compactness problem for all such cases when G is first countable.

Definition 6.8. Let A" be a translation invariant topological vector space of
measurable functions. A member of X will be called translation-continuous in X
provided its orbits under both left and right translations define continuous maps of
G to*.

By 3.13 every member of Lp is translation-continuous if 1 < p < öö. Some
members of LX(G) are not. We characterize the situation for the case/J2 = oo. (We
only sketch the proof.)

Lemma 6.9. Let tt and F be as in 3.4. For f in LZpoay 1 < p < oo, the following are
equivalent :

(a)/is translation-continuous in LZp xy
(b)/ is the limit in LZ x. of uniformly continuous functions on G.
(c) {x-,fE: E G tt) is a compact set in Lp(V).

Proof. Clearly uniformly continuous functions are translation-continuous and it
follows easily that norm limits in LZpo0) also have the property. Let {Ga: a G A) be
a net of neighborhoods of the identity with r\atEA Ga = {e} and let ga be the
characteristic function of Ga, normalized in Lx. A modification of the classical
argument for L, shows ga * f converges to / in LZpj00) and clearly ga * / are
uniformly continuous. Thus (a) and (b) are equivalent.

Note that/ in LZpx) means precisely that the set {x-,fE} is bounded in Lp(V)
and thus satisfies, as a subset of Lp(G), conditions (a) and (c) of 3.13. It can be
shown (we omit the details) that the set satisfies condition (b) of 3.13 iff / is
translation-continuous. Thus the set is compact iff / is translation-continuous and
(a) is equivalent to (c).
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Theorem B. Let p, q, r, s satisfy conditions (1) through (6), r2= + oo. With f in
LZ, h ^ 0 in LZ, for the operator Ph Cf to be compact from Lq to LZ1 it is sufficient
and, if G is first countable, it is necessary that f be translation-continuous in the space
of bounded local multipliers LMq s ;oo (cf. Definition 3.19).

Proof. By the hypotheses, we have q2 = 1, p2 < s2 < oo. Also 1/r, + l/qx —
l/sx < 1 - 1//7, < 1. Since /is locally rx it follows from Young's inequality that if
E and F are relatively compact sets of positive measure, AFCF maps Lq¡(E) into
Ls (F) and its norm is bounded by ||/££--■!!,.,• For any H in tt,

\\f\\lH,x = sup \\AHCsAE\\q^ < sup ||/„£-,||r,
E Gtt E S.it

<    SUP 2 ll/dk   <   T(TT)\\f]\;  <   00
£6 77   E'ES(£,«)

(where S(E, H) and T(tt) are as in 4.1). Thus/is in LMq¡s¡Xi.
Suppose/is translation-continuous. Assume first/), < oo and let g be in the unit

ball of LZ. For any x in G, we have

\\x(PhCfg) - PhCfg\\¡ = ||(XA) -(J*g)-h-(f* g)\\l

<\\(xh - h)- u*g)\\:+\\h-[u- f) *g]f

< n«)\\xh - hQ\j\\:_+\\h\\;\\(j-f) . g|i;

(as in the proof of 5.1) where 1/r, = max(0, l/rx + l/qx — 1) and l/f2 = l/r2 +
l/^2 — 1. By the hypotheses of the theorem, however, we have in this case tx > sx
and t2 = oo, so

\\x(phcfg) - phcfg\\] < r(*)||xA - hQjwl +||A||;||(J/-/) *g||(*1,.„

and we know

\\U - f) * *||("„«) = SUP     2   ||((/ - /) * Se)eI,
£677     £'677

< sup     2   llAiC^A^I      llfe-H,,.
£677     £'677

Let N be the compact invariant neighborhood for the (IN) group G. We know
that N <Z Uyx U Uy2 U . . . U Uyk and V Q zxN \j z2N \J ... u zrN for some
finite sets of y's and z's. Then given any E0 in tt any other member E is contained
in the set U ¡_, U *_, EçsyjxExxEzi consisting of rk right translates of E0 (where, as
usual, we have tt and the set F of xE as in 3.4). Let S(E', z) = {E" G tt:
E'z n E" ¥= 0). By 3.4, the cardinality of S(E', z) is bounded by rn^N, V), since
E" G S(E', z) = U /_,(x£.z,A n E") ¥= 0, and the bound is independent of z
and E '. Thus for some choice of kr elements {gy} in G, depending on E, we have
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kr

HAíC(,,-/)A£.||,i,Ji   <   2   ||A£0ÄyC(^-/)A£'||?1>Jl
j=l

=   2   \\^EfU-f)AE%-]\q^   <    2 2 ||A£0Ca-/)||£.
2-1 /-l    £"6S(£',gj-')

< Ar2«F(A, F)^ - ü|;^;oo    (by 3.15 and 3.16).

Using q2= 1, we have

\\U-f)*g\\:s^<kr2nF(N,V)\\J-f\\;%J   2   U&.Ú
V£'6t7 /

= /c/"V(JV, V)\\J - fift^gÇ
This proves that

l|xfoc/g) - phcfgfs < r(^)n,A - A|i;n^ +||A|i;^v^ n\J-A\ 77, £„
q„s,,<*>-

The first term on the right approaches 0 as x approaches the identity since we are
assuming p < öö, the second term does likewise by hypothesis, and the conver-
gence is uniform for g in the unit ball. Thus the image of the unit ball under Ph Cf
satisfies (b) of 3.13 and it clearly satisfies (a) as well.

By (c) of Proposition 3.13, given e > 0 we can choose a compact set K such that
HV.*)IÇ < «/WH/IC- Then (PhCfg)G^K = PhfC^(Cfg)G„K, which has norm
bounded by || A(G_jf>llí■^'(,r)ll-/"IIT < e> Ior aU g m tne umt ball, as required. Thus the
image of the unit ball under PhCf is compact if />, < oo.

Consider next/?, = oo, so A is in L" ¿ with/?2 < oo. For each positive n we can
choose Borel Bn such that if hn is the restriction of A to the complement of Bn then
l|Anll"ooj>j) < !/"• ^OT fixed n we can find A' in 2C(G) identically 1 on Bn with range
in [0, 1]. By the previous case, PhCj is compact from Lq to LZ, so (Ph — Ph)Cf =
(Ph - Pk)PhCf is compact and by 5.1, \\PKCf\\^ < I^HAJ^H/IIT-*«. Thus
Ph Cj is compact which completes the proof of sufficiency.

Before turning to the converse, we note a special case in which the assumption
on the indices guarantee the translation-continuity condition, so we can exclude
this case in the proof of necessity. Suppose 1/r, + l/qx = 1 + l/sx. By hypothesis
this implies/?, = oo and, since sx < oo, rx < oo. We will show for any net {/a} -^ e
we have translation-continuity: ||, / — /||^°;oo —> 0. If not, there are nets {/a} -» e,
{Ea} in *, ga in Lq¡(Ea) with ||ga||9] = l'and \\[(,J - f) * gJ^JI,, > 8 > 0. By
4.2(b) we have \\[(tJ - f) * ga]Eo\\s¡ < C\\(J - f) * gX < CT(tt)\\J - f\\r \\ ga\\q
= CT(tt)\\,J - f\\r and by 13.5(b) H,./-/||r->0 since r_ < öö. This contradicts
the supposition that / does not satisfy translation-continuity. Thus we can assume
1/r, + l/qx - 1/j, < 1 in proving necessity.

Suppose / is not translation-continuous in LMq' ;oo. Since G is first countable
there is 8 > 0 and a sequence {/„}—» e such that ||,/ — /||^°;oo > a. Thus for
each n there is En in w such that ||A£ C(j-j)AEJ\qi>t > 5 for r = rn. This means for
each w there is gn in the unit ball of Lq (En) such that ||[(, / — f) * gn]£ ||    > 8. Let
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K =,SAEffg„),Pn = AECfgn. Then
K- Pn  =  <n[(XE0 - X,„£0)C)g„]   +[(,/"/)* g„]E¡¡.

The above calculations show the norm in Ls (E0) of the second term exceeds 8,
hence so does its norm in LZ. By continuity of translation (3.13(b)) and the bound
of 5.1 for PC operators, the first term is bounded in LZ norm by a multiple of
\\Xe0 - X<aII„-»0, where l/v < 1 + l/sx - 1/r, - l/qx. Thus \\kn -pj\' >
8/2 infinitely often, the image of the unit ball under the operator AE Cj violates
3.13(b) and hence the operator is not compact. Let A be relatively compact, Borel
and of positive measure. If A^Cy is compact, so is AAx,Cf = TxAATx-,Cf =
TxAACfTx , (right translation commutes with left convolution). Since A^-i and
AE commute, all A^-iA^ C; are compact and by 3.13

0 = }^o H'„(A^-'A£oC/&.)  - AAx-'AE0Cfgn\\l

= Bg^Aa.-ito - Pn) + (A,-,AX-, - A^-.)[fii(A£C/&)]|J.
As before, by continuity of translation and the bound for PC operators,

¡(A^-i - A^,)L(A£0^)]í-0
so we must have \\AAx-,(k„ — />„)||" —* 0 for all x. But

||A^-(*„ - Pn)L = f X^-OOIUv) - PÂy)\Sl dm{y)JG

= fxA(y-i)\kn(y-xx-x)-pn(y-xx-x)\S'dm(y)
JG

so this last convolution converges pointwise to zero. By Lebesgue's dominated
convergence theorem,

f [Xa-> * \k„ - P„\S'](x)dm(x)

= f [XA->(y)\K(y-*x) - PÁy-^l" dm(x) dm(y)
JG JG

= f XA-'(y) f \kn(y~lx) -Pn(y~lx)\S' dm(y)dm(x)
Jr. Jr.JG JG

= m(A-x)\\kn - » H*1

converges to zero. Since kn — pn has compact support, we have also \\kn — pn\\" -^
0, which contradicts our result that \\kn — pn\\" ■/» 0. Thus A^ C¡ is not compact for
any relatively compact Borel A of positive measure. By assumption on A there is
such an A on which |A| > e > 0. There is also a bounded measurable g of compact
essential support such that gA = 1 on A, so AACf = (AAPg)PhCf. If AACf is not
compact, Ph Cj cannot be.

A portion of the above yields
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Corollary 6.10. For f in ££„«,)> A in LZ^^s with rx < oo, p2 < oo, the operator
PhCffrom L"qiX) to LZ,^ is compact if 1/r, + l/qx = 1 + l/sx > 1, and p2 < s2 <
oo.

Corollary 6.11. Under the hypotheses of Theorem B, Ph Cf is compact whenever f
is a translation-continuous vector in LZ.

Proof. The local multiplier norms of Theorem B are dominated by rx norms.
The conditions of 6.11 is often easier to verify than that of Theorem B. Unfor-
tunately it is not necessary. We give a counterexample using the uniform partition
of R into the intervals En = [2mr, 2(n + 1)tt). Let Dn be the nth Dirichlet kernel:

sin(« + \)x
Dn(X) = 2 sin j-x

and let d„ be the normalized restriction of D,n, to Lx(En). Let/= H^_ao d„, so/
belongs to LZhx)(R).

Example 6.12. The function/is translation-continuous in LM22.X (so, e.g., for
any A in LZxX), PhCf is compact from L(21) to L(21) but/is not translation-continu-
ous in LZXoo).

Proof. For g in L2(Ek), x in E0,

(/ * g)(x) = r /Wsi* -y)dy= r g(y)f(x -y)<b
J — rr. J — nr.

/-2(A+1)77
I fix - y)g(y) dy

J2km
•x + 2kir . f2(k+\)irfx + 2k-n ■ f2(k+\)TT

= I dk(x - y)g(y) dy + j dk+ ,(x - y)g(y) dy.
J2hn Jx + 2kir

.For n > 0, Dn+X(x) = Dn(x) + cos(n + l)x and the Lx(Ek) norms are strictly
increasing so, writing the reciprocal of this L, norm of D,k, as Ck,

\(f* g)(x)\ < ci|/2(* + ,)X|(JC - y)g(y) dy )

+ 1 f2(* + I)'cos(|fc+ l\(x - y))g(y) dy
\Jx + 2kv

/-2t7|   f2(k+\)TT , _    ,    „ 2 r2(k+l)ir     ,       ,
f    \f Dw(x - y)g(y) dy    dx<TT2\( \g(y)\2 dy.

J(\        \Jrk„ JTkmJ2km

As is well known, the first of these integrals is tt times the projection of g to a
subspace of L2(2kTr, 2(k + 1)tt), so

•2t7|   /-2(*:+l)77

'ikrn

By direct computation, we also have

/•2t7|   /•2(x+l)77 , , ^,    ,    ^ 2 -, /•2(/V+l)i7 ,
\     \\( cos(\k + l\(x - y))g(y) dy    dx < 4tt2 [ ' \g(y)\2 dy.

J0     \Jx + 2kn J2kit

Thus /o"|(/* g)(x)|2 dx < Q27ff2||g||2. Since the Q's converge to zero, / is in
LM22.0 c LAf£2;oo. Thus given e > 0 we can choose a compact set K such that
supjÚl - aJ/II^ < e/3. Since K is compact, as x -»0, L(A^/) - AKf\\^
< \\x(AKf) - AJWl^^O. Thus if x is small enough ||^-/IB& < e, so / is
translation-continuous in LM22.X.
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For 0 < 8 < -a/% let E(8) = U "__J2m - 8, 2nir + 8) and let F(8) be its
complement. We know

r->„(x)i dx < f2*-s dx   < 2* - ]\,
Jo        '   "K  ,l JS        2sin(2-x)      2sin(fi/2)'

so as x -> 0, \\x(AF{Sxf) - AnS)f\\o,X) ~* °- °n the other hand>

\\2s(AE(Syf) - AE(S)f]\iUao) =||2«(A£(S>/')||(,i00) + ||A£(4>/||(li00)

which can be made arbitrarily close to one. Thus / is not translation-continuous in
J  77■^(1,00)-

7. Summary and applications. In this section we review our results, illustrate
important special cases, and show how the results can be extended.

Proposition 3.7 establishes that the mixed-norm spaces LZpq)(G) (for 1 < p, q <
oo) provide a class of Banach spaces which interpolate (and include isometrically)
the usual Lp(G) spaces as topological vector spaces, have duality relationships
similar to those of the Lp spaces, and have the continuous functions of compact
support as a dense subset if p, q < oo. Theorem 4.2 provides the analogue of
Young's inequality for convolutions on these mixed-norm spaces. (See also [18].) It
incidentally establishes that LZpX)(G) is always a group algebra and allows us to
strengthen a lemma of Stewart [16] to show (for G abelian) there is a bounded L,
function on G with Fourier transform of compact support and identically equal to
one on a prescribed compact set.

Proposition 5.4 shows the introduction of mixed-norm spaces cannot be avoided,
even in studying bounded PC operators on Lp, since the product and convolution
functions must lie in certain mixed-norm spaces but need not he in any of the usual
Lp spaces. Theorem 5.1 establishes sufficient conditions for boundedness of PC
operators between mixed-norm spaces. Necessary and sufficient conditions for
PhCj to be bounded are obtained only for operators from LM to itself (A must be in
Lx and/in Lx). Example 5.6 shows that if the conditions of 5.1 are approximated
arbitrarily closely whether the operator is bounded or not can depend on "rate of
growth" conditions.

As an application, consider PC operators on L2(R) (which were the original
motivation for this study). Let it be the partition of R into unit intervals [n, n + 1).
Proposition 5.4 states that for such an operator PhC¡ to be bounded it is necessary
that / be in LZXT) and A be in L(2 x), i.e. / must be integrable over each interval and
the resulting sequence of Lx([n, n + 1)) norms must be square summable while A
must be locally square integrable and the sequence of L2([n, n + 1)) norms must be
bounded. Theorem 5.1 says such an operator will be bounded if/ is in L"r r_.- lo-
cally in Lr ([n, n + 1)), with norm sequence in lr -and A is in LZp ,, where
1/p, + 1/r, < 1, l/p2 + l/r2 > 1, 2 < px, r2 < 2. (The last two conditions are
also necessary, of course.)

Our discussion of compactness is limited to operators PhC} which satisfy the
sufficient conditions for boundedness given in Theorem 5.1 acting between spaces
where neither index is infinite. In that case Theorem 6.4 shows that all  the
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operators for which the "global" second indices of both A and / are finite are
compact. For a PC operator in L2(R), for instance, the operator will always be
compact unless in the above conditions p2 = oo. Theorem A gives necessary and
sufficient conditions for compactness of Ph Cf when the global index of A is infinite.
(This, incidentally, answers the question posed in the first paragraph of this paper:
if A is in LX(R) and / in LX(R) then a necessary and sufficient condition for
compactness of PhCf as an operator in L2(R) is that A be in LZx(y), i.e., A must be
locally in Lx([n, n + 1)) and the sequence of L, norms must converge to zero. This
is equivalent, of course, to the condition given in [2].) The remaining case, when the
global index of / is infinite, is dealt with in Theorem B. This can only occur when
the global index of the range space is 1, so does not apply to operators on L2(R). It
can be applied to LX(R), however. For instance, Corollary 6.10 shows that PhCf is
compact from LX(R) to LX(R) provided A is in L(xiXX(R) (i.e., A is bounded and the
local bounds on [n, n + 1) are summable) and / is in L(lj00)(2?) (i.e., / is locally
integrable and the L, norms on [n, n + 1) are bounded).

To produce a particularly nasty example, let 9, <j> be in L2 with essential support
in[0, 1] and leti      j

A(x) = f     V~h 9(nx - n2),
'n=\

f(x) =  2 4(nx - n2)/Vn~ log2(2n).
71=1

Then PhC} is bounded on L2(R) but not compact. On the other hand, with the
same/, if A(x) = 2^L, log n9(nx — n2) then PhCf is compact. (To be more specific,
take 9(x) = «x) - 1/V3c log(x/2) on (0, 1].)

The class of kernels to which our results apply can be broadened by applying
some simple manipulations. By taking adjoints, we obtained results for convolu-
tion-product operators CjPh and consideration of (PhCf)*(PhCj) yields results for
kernels of the form

K(x, t) = Jf(x - y)\h(y)\2f(y - t) dy
often encountered in applications. A rather different set of kernels can be obtained,
however, by using a change of variables. Let A: be a monotone increasing absolutely
continuous function on R and define T on L2(R) by

/OO
fik(x) - y)g(y)dy = - (/•*)(*(*)).

-00

Then
„

(||7g||2)2=f     \(f * g)(k(x))\2 dx
J -oo

= /_J(/ * g)(k)\\^) dk = (\\PhCfg\\2)2

where A = (dx/dk)x/2. Thus boundedness of T reduces to that of a PC operator.
Moreover there are clearly partial isometries U and V such that PhCf= UT,
T = VPh Cj, so T is compact iff Ph C¡ is. Similarly, if we let
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(Sg)(x)= C fix - k(y))g(y)dy
J — on

we need only observe that 5 is the adjoint of an operator of the type T defined
previously (with / replaced by/~). Its boundedness and compactness, therefore, are
also determined by those of a PC operator, namely PhCj-. Thus our results
embrace kernels of the type fik(x) — y) and fix — k(y)) as well as those of the
form h(x)f(x — y) and their adjoints fix — y)h(y). Obviously, the restrictions to
monotone k in the above discussion is overly stringent and can be weakened to
demand only that the induced measure be absolutely continuous. The dx/dk in the
above calculation then becomes the Radon-Nikodym derivative.

For specific examples, let/be in LX(R) and define the operators Tx, T2, 5, and
S2onL2(2?)by

(Txg)(x) = C /(eW + sin|x| - y)g(y) dy,
-00

(Sxg)(x) = C fix - eM - sin|.y|)gO;) dy,

/OO
/T|*| + log|*|->0gO')4',

-00

(S2g)(x) = C fix - \y\ - log|>>|)g(j>) dy.
•'-oo

Application of our results as outlined above then shows that Tx and Sx are compact
while T2 and S2 are bounded but not compact.

8. Acknowledgements. The authors are indebted to Professor Jesus Gil de
Lamadrid for bringing reference [18] to their attention and to Professor Loren
Argabright for numerous discussions including the observation that the functions
considered in 3.9 provide new equivalent norms.

Added in proof. The authors have recently been made aware of several
publications by H. G. Feichtinger which relate to mixed norm spaces as discussed
in this paper. See, for example, [19] and [20].
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