
 Open access Journal Article DOI:10.1137/S0036144504443110

Product Eigenvalue Problems — Source link

David S. Watkins

Published on: 01 Jan 2005 - Siam Review (Society for Industrial and Applied Mathematics)

Topics: Divide-and-conquer eigenvalue algorithm, Product (mathematics), Positive-definite matrix, QR algorithm and
Symmetric matrix

Related papers:

 Accuracy and stability of numerical algorithms

 Matrix computations

 Periodic Schur decomposition: algorithms and applications

 An Algorithm for Generalized Matrix Eigenvalue Problems.

 Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices

Share this paper:

View more about this paper here: https://typeset.io/papers/product-eigenvalue-problems-
1skuwo254x

https://typeset.io/
https://www.doi.org/10.1137/S0036144504443110
https://typeset.io/papers/product-eigenvalue-problems-1skuwo254x
https://typeset.io/authors/david-s-watkins-1w5et835ch
https://typeset.io/journals/siam-review-1q9nkckt
https://typeset.io/topics/divide-and-conquer-eigenvalue-algorithm-o8zbf4to
https://typeset.io/topics/product-mathematics-3o25grio
https://typeset.io/topics/positive-definite-matrix-3vbne3w1
https://typeset.io/topics/qr-algorithm-3dbb6cm7
https://typeset.io/topics/symmetric-matrix-2bpu99v1
https://typeset.io/papers/accuracy-and-stability-of-numerical-algorithms-mjydzfdsfz
https://typeset.io/papers/matrix-computations-1y0qomgdqv
https://typeset.io/papers/periodic-schur-decomposition-algorithms-and-applications-1q5tgukx3j
https://typeset.io/papers/an-algorithm-for-generalized-matrix-eigenvalue-problems-4xu10nrbcr
https://typeset.io/papers/accurate-eigenvalues-and-svds-of-totally-nonnegative-1zk1ktay2q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/product-eigenvalue-problems-1skuwo254x
https://twitter.com/intent/tweet?text=Product%20Eigenvalue%20Problems&url=https://typeset.io/papers/product-eigenvalue-problems-1skuwo254x
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/product-eigenvalue-problems-1skuwo254x
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/product-eigenvalue-problems-1skuwo254x
https://typeset.io/papers/product-eigenvalue-problems-1skuwo254x

SIAM REVIEW c© 2005 Society for Industrial and Applied Mathematics
Vol. 47, No. 1, pp. 3–40

Product Eigenvalue Problems∗

David S. Watkins†

Abstract. Many eigenvalue problems are most naturally viewed as product eigenvalue problems. The
eigenvalues of a matrix A are wanted, but A is not given explicitly. Instead it is presented
as a product of several factors: A = AkAk−1 · · · A1. Usually more accurate results are
obtained by working with the factors rather than forming A explicitly. For example, if we
want eigenvalues/vectors of BT B, it is better to work directly with B and not compute the
product. The intent of this paper is to demonstrate that the product eigenvalue problem
is a powerful unifying concept. Diverse examples of eigenvalue problems are discussed
and formulated as product eigenvalue problems. For all but a couple of these examples
it is shown that the standard algorithms for solving them are instances of a generic GR

algorithm applied to a related cyclic matrix.

Key words. eigenvalue, QR algorithm, GR algorithm, generalized eigenvalue problem, SVD, symmet-
ric, skew symmetric, positive definite, totally positive, pseudosymmetric, Hamiltonian,
symplectic, unitary

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/S0036144504443110

1. Introduction. There are many situations in which one wishes to find some or
all of the eigenvalues of a matrix. Moreover, in many cases the matrix is not given
explicitly but rather as a product of two or more matrices:

A = AkAk−1 · · ·A1.

The challenge is to compute the eigenvalues of A by operating on the factors A1,
A2, . . . , Ak. This is an old problem, and there are several instances that are widely
known.

Perhaps the best known example is the singular value decomposition (SVD).
Every matrix B ∈ R

n×m can be decomposed as

B = UΣV T ,

where U ∈ R
n×n and V ∈ R

m×m are orthogonal, and Σ ∈ R
n×m is diagonal:

Σ =

σ1

σ2

. . .

σr

0
. . .

, σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

∗Received by the editors April 17, 2004; accepted for publication (in revised form) July 14, 2004;
published electronically February 1, 2005.

http://www.siam.org/journals/sirev/47-1/44311.html
†Department of Mathematics, Washington State University, Pullman, WA 99164-3113 (watkins@

math.wsu.edu).

3

4 DAVID S. WATKINS

This decomposition exposes completely the structure of B and is therefore useful in
many contexts. Once we have computed the SVD, we immediately have the spectral
decompositions

BBT = U(ΣΣT)UT and BTB = V (ΣT Σ)V T

implicitly. Thus the SVD of B gives the complete eigensystems of BBT and BTB
without forming these products explicitly. From the standpoint of accuracy, this is
the right way to compute these eigensystems, since information about the smaller
eigenvalues are lost when BBT and BTB are computed in floating-point arithmetic.

Example. A product eigenvalue problem of this type arises in principal com-
ponents analysis [59]. Suppose we have a sample of 1000 individuals, and for each
individual we have a list of some 50 characteristics such as height, left index finger
length, length of tail, and so on. All of these numbers can be stored in a 1000 × 50
matrix having a row for each individual and a column for each characteristic. Suppose
we take the average of each characteristic and subtract it from the appropriate col-
umn to obtain a matrix B̂ whose columns have mean zero. Then let B = ρB̂, where
ρ = 1/

√
n− 1. The product BTB is then a symmetric matrix whose (i, j) entry is the

covariance of the ith and jth characteristics. The objective of principal components
analysis is to identify some simple combinations of the characteristics that account
for the bulk of the variance of the sample. This can be accomplished by looking at
eigenvectors of BTB. The eigenvector associated with the largest eigenvalue λ1 gives
the relative weights of the combination of characteristics that has the greatest vari-
ance. The value of this greatest variance is λ1. The eigenvector associated with the
second largest eigenvalue λ2 gives the weights of a second combination of characteris-
tics, uncorrelated with the first combination, that accounts for the greatest remaining
variation. Its variance is λ2. The third, fourth, and fifth most important combinations
can be found by looking at the third, fourth, and fifth eigenvectors, and so on.

It is now recognized that the most accurate way to compute the principal compo-
nents is to compute the SVD B = UΣV T . The desired eigenvectors are the columns of
V , and the associated variances are σ2

1 , σ
2
2 , . . . , the squares of the singular values. In

this way, the eigenvalue problem for BTB is solved without even forming the product
BTB.1

Example. It is easy to generate small problems in MATLAB that illustrate the
advantage of working with B instead of BTB. As an extreme case consider the
MATLAB code

format long e

randn(’state’,123);

P = randn(3); [P,R] = qr(P);

Q = randn(2); [Q,R] = qr(Q);

S = diag([1, 1.23456789e-10]);

B = P(:,1:2)*S*Q’;

Eigenvalues = eig(B’*B)

Singular_Values = svd(B)

This generates a 3 × 2 matrix with random singular vectors and specified singular
values σ1 = 1 and σ2 = 1.23456789×10−10. It then computes the eigenvalues of BTB

1Since only V and Σ are needed, a good deal of computational effort is spared by not computing
the 1000× 1000 orthogonal matrix U . This keeps the computing cost within reason.

PRODUCT EIGENVALUE PROBLEMS 5

by the command eig. These should be the squares of the singular values. Finally it
computes the singular values of B using the svd command. Here’s the output:

Eigenvalues =

-2.775557561562891e-17

9.999999999999998e-01

Singular_Values =

9.999999999999999e-01

1.234567850536871e-10

The large eigenvalue is correct to full (IEEE standard [5, 77] double) precision, but
the tiny one is completely off; it’s not even positive. This is not the fault of the
eig command. By the time BTB had been computed, the damage was done. The
svd computation came out much better. The large singular value is correct to full
precision and the tiny one to eight decimal places.

Let us now return to the general problem A = AkAk−1 · · ·A1. It often happens
that some of the Aj are given in inverse form. That is, we might have, for example,
A = A2B

−1
2 A1B

−1
1 , where A1, A2, B1, and B2 are given. We wish to compute

eigenvalues of A without forming the inverses.
Many important eigenvalue problems present themselves most naturally as gen-

eralized eigenvalue problems (A − λB)v = 0. This is the simplest instance of an
eigenvalue problem involving an inverse, as it is equivalent to the eigenvalue problem
for AB−1 or B−1A. However, it is best to solve the problem without forming either of
these products or even inverting B. Again accuracy can be lost through the inversion
of B or formation of the product. Sometimes B does not have an inverse.

Example. If one wants to compute the fundamental vibrational modes of an
elastic structure such as a building or an airplane wing, one often carries out a finite
element analysis [91, 106]. The structure is approximated by a discrete assemblage
of elements, and the vibrational modes are then found as solutions to a generalized
eigenvalue problem (A − λB)v = 0, where A and B are the finite-element stiffness
and mass matrices, respectively.

Example. Here is a small MATLAB example in which a superior outcome is
obtained by keeping A and B separate.

format long e

randn(’state’,123);

M = randn(2); [M,R] = qr(M);

N = randn(2); [N,R] = qr(N);

A = [2 1; 0 1e-8]; B = [1 1; 0 1e-8];

A = M*A*N; B = M*B*N;

Smart_Result = eig(A,B)

Other_Result = eig(A*inv(B))

This code produces a 2 × 2 matrix pair (A,B) for which the eigenvalues are λ1 = 2
and λ2 = 1. B is ill conditioned, as is A. The eigenvalues are computed two different
ways. The command eig(A,B) uses the QZ algorithm [76], which works with A and
B separately to compute the eigenvalues. The command eig(A*inv(B)) obviously
computes AB−1 and then finds the eigenvalues. Here are the results:

6 DAVID S. WATKINS

Smart_Result =

1.999999999475219e+00

1.000000000557143e+00

Other_Result =

1.997208963148296e+00

1.002791036386043e+00

We see that the QZ computation got the eigenvalues correct to about ten decimal
places. The fact that it did not do better can be attributed to the ill conditioning of the
eigenvalues. As we see, the computation that formed AB−1 explicitly did much worse.

In addition to the SVD problem and the generalized eigenvalue problem, there are
many other examples of product eigenvalue problems. A rich variety will be discussed
in this paper. Most of these problems are normally considered standard eigenvalue
problems for which the matrix has some special structure. We shall see that in many
cases we can profit by reformulating the structured problem as a product eigenvalue
problem. The structures considered in this paper include skew-symmetric, symmetric,
totally nonnegative, pseudosymmetric, Hamiltonian, symplectic, and unitary. Appli-
cations of the symmetric eigenvalue problem are numerous and well known. The
pseudosymmetric eigenvalue problem is quite general. Indeed almost any matrix can
be transformed to pseudosymmetric tridiagonal form by a similarity transformation.
The nonsymmetric Lanczos process [69] generates a pseudosymmetric tridiagonal ma-
trix whose eigenvalues must then be computed. The Hamiltonian eigenvalue prob-
lem arises in several contexts, including linear-quadratic optimal control problems
[17, 26, 68, 70, 71, 74], determination of corner singularities in anisotropic elastic
structures [6, 75], and stability of gyroscopic systems [67]. The symplectic eigenvalue
problem arises in discrete-time linear-quadratic control problems [58, 68, 74, 79]. A
unitary eigenvalue problem must be solved in order to determine the points and
weights for a Gauss–Szegö quadrature rule [51, 53]. Gauss–Szegö rules are numerical
integration formulas of optimal degree with respect to measures with support on the
unit circle.

We will consider the solution of product eigenvalue problems by the famous QR
algorithm and its close relatives, which are collectively known as GR algorithms.
Historically, the first algorithms of this type were the quotient-difference and LR
algorithms of Rutishauser [83, 84, 85] developed in the mid- to late 1950s. These
were soon followed by the QR algorithm of Francis [37, 38] and Kublanovskaya [66].
More than 40 years later, the QR algorithm is still the most important method for
computing the eigenvalues of small to medium-sized matrices (up to about 1000×1000,
or perhaps a bit larger).2 The QR codes that are used in practice for small matrices
differ hardly at all from the form given by Francis [37, 38]. For larger matrices, newer
innovations are beginning to have an impact [19, 20, 57]. See also [7, 29, 97, 98]. By
the way, the problem of computing the eigenvalues of a single, explicitly given matrix
A ∈ C

n×n also falls within the scope of this paper. A is a product of k matrices,
where k = 1.

2For matrices much larger than this, completely different methods are recommended, as it be-
comes essential to exploit sparseness [8, 72, 87, 88, 89]. However, even in this realm GR algorithms
have a role to play. Many sparse eigenvalue solvers make repeated use of GR algorithms to solve
small subproblems that result from projections onto low-dimensional subspaces.

PRODUCT EIGENVALUE PROBLEMS 7

Over time a number of extensions of the QR algorithm for a variety of prod-
uct eigenvalue problems were developed. First there was Golub and Kahan’s 1965
QR algorithm for the SVD [46, 47]. Then, by 1973, Moler and Stewart [76] had de-
veloped the QZ algorithm for the generalized eigenvalue problem. This effects QR
iterations on AB−1 and B−1A implicitly, without ever forming these products or in-
verting B. Shortly thereafter, Van Loan [92] presented a generalization to products
of four matrices that encompasses the standard problem, the SVD problem, the gen-
eralized eigenvalue problem, and the problem (ATA − λBTB)v = 0 as special cases.
Later Hench and Laub [56] and Bojanczyk, Golub, and Van Dooren [18] developed
extensions of the QR algorithm to products of large numbers of matrices. This last
development is called the periodic QZ algorithm.

Each of these steps extended a bit further the scope of the QR algorithm, or so it
appeared. Now recent work of Kressner [65, 64] showed that each of these extensions is
not really an extension; it is just an instance of the standard QR algorithm, if we view
the product eigenvalue problem in an appropriate light. Adopting this viewpoint and
generalizing it very slightly, we will find that a rich variety of algorithms for solving
diverse problems flows from the GR algorithms for the standard eigenvalue problem.

2. The GR Algorithm for a Single Matrix. We begin with the single matrix
case: find the eigenvalues of a matrix A ∈ C

n×n. It is a consequence of Galois theory
[55] that all algorithms for computing eigenvalues of matrices larger than 4× 4 are it-
erative. The generic GR algorithm is an iteration that repeatedly performs similarity
transformations to move the matrix toward upper triangular form. Since similar-
ity transformations preserve eigenvalues, and the eigenvalues of an upper triangular
matrix are evident, the GR algorithm ultimately delivers the eigenvalues.

A single GR iteration has the following form: Pick a function f and compute
f(A). Then compute a decomposition f(A) = GR, where G is nonsingular and R is
upper triangular. Finally, use G to effect a similarity transformation: Â = G−1AG.
In summary,

f(A) = GR, Â = G−1AG.(1)

Â is our new iterate. It has the same eigenvalues as A, and, if f and G are chosen
well, it will be closer to upper triangular than A was.

This looks like a time-consuming operation. Even if f is something so simple as a
quadratic polynomial, the computation of f(A) will require a matrix-matrix multiply,
which is not cheap if A is large. The GR decomposition can be expensive as well, and
so can the similarity transformation. For now, suffice it to say that there are ways of
doing the operations economically. More will be said on this score later.

The function f is usually taken to be a polynomial, although sometimes a rational
function is used. If f is a polynomial of degree m, say

f(A) = (A− µ1I)(A− µ2I) · · · (A− µmI),

then we speak of a GR iteration of degree m. The complex numbers µ1, . . . , µm are
called the shifts for the GR iteration. For rapid convergence it is best to choose shifts
that are good approximations to eigenvalues of A. As we proceed with the iterations,
we get progressively better estimates of eigenvalues. It follows that we should update
our choice of shifts now and then. In practice, new shifts are chosen on each iteration.
For discussions of shift selection and convergence, see [103] and [100], for example.

8 DAVID S. WATKINS

Usually the convergence to triangular form does not take place in a uniform
manner. Typically we will find after some iterations that the current iterate satisfies

A =

[

A11 A12

A21 A22

]

≈
[

A11 A12

0 A22

]

.

That is, there is a k × (n− k) block, for some k, that is close enough to zero (on the
same order of magnitude as the roundoff errors) that we can declare it to be zero for
practical purposes. Then subsequent iterations can operate on the submatrices A11

and A22 separately. Typically A22 is a small matrix, and finding its eigenvalues λ1,
. . . , λk is a relatively trivial task. We speak of deflating out the eigenvalues λ1, . . . ,
λk. Subsequent iterations operate on A11.

There are many ways to do the decomposition f(A) = GR, since all we require in
general is that G be nonsingular and R be upper triangular. However, we often put
additional requirements on G. If we take G to be unitary, then we call it Q, and the
GR iteration is then called a QR iteration. If we take G to be unit lower triangular
(resp., symplectic), we call it L (resp., S) and refer to an LR (resp., SR) iteration.

Often the choice of f and G is determined partly by the principle of structure

preservation: If A has any significant structure, then we should design a GR iteration
that preserves the structure. Observation of this principle usually results in algorithms
that are superior in speed and accuracy. For example, if A is Hermitian (A∗ = A), we
would like Â also to be Hermitian. This can be achieved by taking G to be unitary,
that is, by using the QR algorithm.

As another example, suppose A is real. This is a significant structure and should
be preserved. Since A may well have some complex eigenvalues, it might appear that
we would be forced out into the complex plane, for if we want to approximate complex
eigenvalues well, we must use complex shifts. The remedy is simple: For each complex
shift µ we use, we must also use the complex conjugate µ. This guarantees that f(A)
stays real. Then in the decomposition f(A) = GR, we can take G and R to be real
to guarantee that we stay within the real field. These iterations can never approach
upper triangular form, but they can approach quasi-triangular form, in which each
complex conjugate pair of eigenvalues is delivered as a real 2 × 2 block. Thus each
complex conjugate pair of eigenvalues is deflated together.

3. A GR Iteration for a Product of Matrices. Now consider a product

A = AkAk−1 · · ·A1 ∈ C
n×n.

In most of our applications, all of the factors Ai are square, but they do not have to
be. A is closely related to the cyclic matrix

C =

Ak

A1

A2

. . .

Ak−1

.

The following theorem is well known3 and easy to prove.

3This dates back at least to Varga’s classic book [94], in which an equivalent result is used in the
analysis of the convergence of the successive-overrelaxation (SOR) method.

PRODUCT EIGENVALUE PROBLEMS 9

Theorem 3.1. The nonzero complex number λ is an eigenvalue of A if and only

if its kth roots λ1/k, λ1/kω, λ1/kω2, . . . , λ1/kωk−1 are all eigenvalues of C.

Here λ1/k denotes any one of the kth roots of λ, and ω = e2πi/k. There are also
simple relationships between the eigenvectors, which we will not state. The theorem
is easily proved by writing down the eigenvector equation Cx = τx and noting the
relationships that it implies. Notice that if

x =
[

xT
1 xT

2 · · · xT
k−1

xT
k

]T

is an eigenvector of C associated with τ , and α is a kth root of unity, then

x(α) =
[

αk−1xT
1 αk−2xT

2 · · · αxT
k−1

xT
k

]T

is an eigenvector of C associated with τα.
The study of product GR iterations is most easily undertaken by considering a

generic GR iteration on the cyclic matrix C. What sort of polynomial f should we
use to drive the iteration? The cyclic structure of C implies that if τ is an eigenvalue,
then so are τω, τω2, . . . , τωk−1. If we wish to preserve the cyclic structure, we must
seek to extract all of these eigenvalues simultaneously. This means that if we use a
shift µ (approximating τ , say), we must also use µω, . . . , µωk−1 as shifts. Thus our
driving polynomial f must have a factor

(z − µ)(z − µω)(z − µω2) · · · (z − µωk−1) = zk − µk.

If we wish to apply shifts µ1, . . . , µm, along with the associated µiω
j , we should take

f(z) = (zk − µk
1)(z

k − µk
2) · · · (zk − µk

m).

Thus the principle of structure preservation dictates that f(C) should be a polynomial
in Ck: f(C) = p(Ck).

Clearly Ck has the block-diagonal form

Ck =

AkAk−1 · · ·A1

A1Ak · · ·A2

. . .

Ak−1 · · ·A1Ak

,

so f(C) is also block diagonal.
Let us consider the case k = 3 for illustration. It is convenient to modify the

notation slightly: In place of A1, A2, and A3 we write A21, A32, and A13, respectively.
Then

C =

A13

A21

A32

and

C3 =

A13A32A21

A21A13A32

A32A21A13

 ,

10 DAVID S. WATKINS

so

f(C) = p(C3) =

p(A13A32A21)
p(A21A13A32)

p(A32A21A13)

 .

To effect an iteration of the genericGR algorithm we must now obtain a decomposition
f(C) = GR. The obvious way to do this is to decompose the blocks separately
and assemble the result. Say p(A13A32A21) = G1R1, p(A21A13A32) = G2R2, and
p(A32A21A13) = G3R3. Then f(C) = p(Ck) = GR, where

G =

G1

G2

G3

 and R =

R1

R2

R3

 .

The GR iteration is completed by a similarity transformation Ĉ = G−1CG. Clearly

Ĉ =

Â13

Â21

Â32

 =

G−1
1 A13G3

G−1
2 A21G1

G−1
3 A32G2

 .(2)

The cyclic structure has been preserved.
Now consider what has happened to the product A = A13A32A21. We easily

check that Â13Â32Â21 = G−1
1 A13A32A21G1. The equations

p(A13A32A21) = G1R1, Â13Â32Â21 = G−1
1 A13A32A21G1

together imply that a generic GR iteration driven by p has been effected on the
product A13A32A21. Similarly we have

p(A21A13A32) = G2R2, Â21Â13Â32 = G−1
2 A21A13A32G2

and

p(A32A21A13) = G3R3, Â32Â21Â13 = G−1
3 A32A21A13G3,

so the GR iteration on C implicitly effects GR iterations on the products A13A32A21,
A21A13A32, and A32A21A13 simultaneously. These are iterations of degree m with
shifts µk

1 , . . . , µk
m, whereas the iteration on C is of degree mk with shifts µiω

j , i = 1,
. . . , m; j = 0, . . . , k − 1.

This looks like a lot of work; it seems to require that we compute

p(Ak,k−1 · · ·A21A1k), p(A21A1k · · ·A32),

and so on. Fortunately there is a way around all this work. All that is needed is the
first column of one of these matrices, and this can be computed with relative ease.
We never form any of the products. We work on the factors separately, carrying out
transforms of the form

Âj+1,j = G−1

j+1
Aj+1,jGj ,(3)

as indicated in (2). If any of the factors is presented in inverse form, we perform
the equivalent transformation on the inverse. That is, if we actually have in hand
Bj,j+1 = A−1

j+1,j , instead of Aj+1,j , we do the transformation

B̂j,j+1 = G−1

j Bj,j+1Gj+1

instead of (3).

PRODUCT EIGENVALUE PROBLEMS 11

4. Efficient Implementation of GR Iterations.

Reduction to Hessenberg Form. We return to the case of a single matrix A.
Efficient implementation of GR iterations requires a preprocessing step that trans-
forms A to a condensed form, usually upper Hessenberg form. A is upper Hessenberg

if aij = 0 whenever i > j + 1. This means that A is almost upper triangular:

A =

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a32 a33 a34 a35

a43 a44 a45

a54 a55

.

The transformation to upper Hessenberg form can be achieved by stages. Starting
from a general matrix A = B0, we apply a transformation G1 of simple form such
that G−1

1 B0 has the desired zeros in the first column. G1 can be a Householder
transformation or a Gaussian elimination transformation, for example. The form of
G1 is

[

1

Ĝ1

]

,

so the first row of B0 is untouched by G−1
1 . Then when we complete the similarity

transformation to form B1 = G−1
1 B0G1, the first column is untouched, and the newly

created zeros remain intact. The second transformation G2 = diag{1, 1, Ĝ2} creates
the desired zeros in the second column of G−1

2 B1. When we complete the similarity
transformation B2 = G−1

2 B1G2, the zeros remain intact. Continuing this way, we
have, after n− 2 steps, an upper Hessenberg matrix

B = G−1
n−2 · · ·G−1

2 G−1
1 AG1G2 · · ·Gn−2.

Chasing the Bulge. Let us assume that our matrix, now called A again, is in
upper Hessenberg form. Then the iterations of the GR algorithm preserve that form,
and the iterations can be performed implicitly by an efficient procedure known as
bulge chasing. The key to effecting a GR iteration is to get the first column of the
transforming matrix right. In the GR iteration (1) the transforming matrix G is
determined by the equation f(A) = GR, where R is upper triangular. It follows that
the first column of G is proportional to the first column of f(A), so we just need the
first column of f(A) to get the iteration started. Since A is upper Hessenberg, f(A)
also has a simple form. Assuming f is a polynomial of degree m, then f(A) will be
m-Hessenberg; that is, it is zero below the mth subdiagonal. In particular, only the
first m + 1 entries of the first column can be nonzero. The computation of the first
column is simple, assuming m ≪ n:

x = f(A)e1 = (A− µ1I)(A− µ2I) · · · (A− µmI)e1,

where e1 is the vector with a one in the first position and zeros elsewhere. The
computation of x can be effected as a series of m matrix-vector products, each of
which is inexpensive and involves only a small submatrix in the upper left-hand corner
of A. The computation of (A−µmI)e1 involves only the first column of A−µmI, and
the result has only two nonzero entries; the computation of (A−µm−1I)(A−µmI)e1

12 DAVID S. WATKINS

involves only the first two columns of A−µm−1I, and the result has only three nonzero
entries, and so on. An alternative computation is given in [30].

Once we have the first column of f(A), we initiate the implicit GR iteration by
building a transformation G0 = diag{Ĝ0, In−m−1} whose first column is proportional
to the first column of f(A). Ĝ0 can be a Householder or Gauss transform, for example.
With G0 in hand, we perform a similarity transformation B0 = G−1

0 AG0, which
disturbs the upper Hessenberg form. The transformation A → G−1

0 A acts on the first
m+1 rows, and the transformation G−1

0 A → B0 acts on the first m+1 columns. The
result has the form

B0 = ,
❅

❅
❅

❅❅

where all entries outside of the outlined region are zero. There is a bulge in the
Hessenberg form, extending down to row m + 2. The remainder of the implicit GR
iteration consists of returning the matrix to upper Hessenberg form by the method
that we have already outlined above. Thus a G1 is built such that the first column
of G−1

1 B0 is restored to upper Hessenberg form. Since only the entries (3, 1), . . . ,
(m + 2, 1) need to be set to zero, G1 can be built so that G−1

1 acts on rows 2, . . . ,
m + 2 only. Then the transformation G−1

1 B0 → B1 = G−1
1 B0G1 acts on columns 2,

. . . , m+2. It leaves the newly created zeros intact, but it adds a new row to the bulge.
Therefore the bulge doesn’t shrink, it gets moved. Each subsequent transformation
removes one column from the bulge and adds a row, chasing the bulge down and to
the right. In mid-chase we have

Bk = .

❅
❅❅

❅
❅❅

Eventually the bulge is chased off the bottom of the matrix, and Hessenberg form
is restored. This completes the implicit GR step. The new iterate is Â = Bn−2 =
G−1AG, where G = G0G1 · · ·Gn−2. Because of the form of G1, . . . , Gn−2, the first
column of G is the same as the first column of G0 and is therefore proportional to
the first column of f(A). Since the first column of G is right, we have effected a GR
iteration. The general justification for this claim is given in [102]. In the QR case the
usual justification invokes the implicit-Q theorem [49, 100].

5. Implicit Product GR Iterations.

Reduction to Condensed Form. Now consider a product A = Ak · · ·A1. If we
wish to effect product GR iterations efficiently, we must transform the factors Ai to
a condensed form of some sort. Notice that if we make Ak upper Hessenberg and
all other Ai upper triangular, then the product A will be upper Hessenberg. We will
indicate how such a transformation can be effected [56] in the case k = 3. Again it is

PRODUCT EIGENVALUE PROBLEMS 13

convenient to work with the cyclic matrix

C =

A13

A21

A32

 ,

which we can write schematically as

x x x x
x x x x
x x x x
x x x x

z z z z
z z z z
z z z z
z z z z

y y y y
y y y y
y y y y
y y y y

(4)

in the case where the factors are 4 × 4. The first step of the reduction applies an
elimination matrix on the left to zero out the first column of A21 (the z-matrix)
below the main diagonal. To complete a similarity transformation on C, we apply
the inverse of the elimination matrix on the right. Since the left transformation acted
only on the second block row of C, the inverse acts only on the second block column.
That is, it affects the y-matrix only. The second step of the reduction applies an
elimination matrix on the left to zero out the first column of the y-matrix below the
main diagonal. Completing the similarity transformation on C, we apply the inverse
transformation on the right. This affects only the x-matrix. The next step creates
zeros in the first column of the x-matrix. But now we have to be cautious and zero
out only the entries below the subdiagonal. That is, we apply a transformation on the
left that operates on rows 2, 3, and 4 and creates zeros in positions (3, 1) and (4, 1) of
the x-matrix. Now when we complete the similarity transformation we operate only
on columns 2, 3, and 4. This affects only the z-matrix, and it does not disturb the
zeros that were previously created there, because it does not touch the first column.
At this point the matrix has the form

x x x x
x x x x
0 x x x
0 x x x

z z z z
0 z z z
0 z z z
0 z z z

y y y y
0 y y y
0 y y y
0 y y y

.

We now continue the reduction by making another round of the matrix, creating zeros
in the second column of the z-matrix, the y-matrix, and the x-matrix in turn. At

14 DAVID S. WATKINS

each step our choice of how many zeros to create is just modest enough to guarantee
that we do not destroy any of the zeros that we had created previously. After n − 1
times around the matrix, we have reduced all of the blocks to triangular form, except
for Ak, which is upper Hessenberg. The condensed C matrix looks like

x x x x
x x x x

x x x
x x

z z z z
z z z

z z
z

y y y y
y y y

y y
y

(5)

in our special case.
This procedure looks like a nice generalization of the standard reduction to Hes-

senberg form outlined in section 4, but Kressner [65] has shown that it is actually just
an instance of the standard reduction. To see this, consider what happens when we
do a perfect shuffle of the rows and columns of (4). That is, we reorder the rows and
columns in the order 1, 5, 9, 2, 6, 10, 3, The result is

x
z

y

x
z

y

x
z

y

x
z

y
x

z
y

x
z

y

x
z

y

x
z

y
x

z
y

x
z

y

x
z

y

x
z

y
x

z
y

x
z

y

x
z

y

x
z

y

.(6)

Now think about applying the standard reduction to upper Hessenberg form to this
matrix. First we zero out the first column below the subdiagonal. Since there are
only a few nonzeros in that column, the transformation needs only to act on rows 2,
5, 8, and 11, making zeros in positions (5, 1), (8, 1), and (11, 1). This transformation
affects only the elements labeled z. The similarity transformation is completed by
an operation on columns 2, 5, 8, and 11. This touches only elements labeled y. The
second step is to zero out the second column below the subdiagonal. Since there are
only a few nonzeros in this column, the transformation acts only on rows 3, 6, 9, and
12, and it touches only entries labeled y. The similarity transformation is completed
by an operation on columns 3, 6, 9, and 12, which touches only entries labeled x.
Continuing in this manner, we reduce the matrix to upper Hessenberg form, ending

PRODUCT EIGENVALUE PROBLEMS 15

with

x
z

y

x
z

y

x
z

y

x
z

y
x x

z
y

x
z

y

x
z

y
x x

z
y

x
z

y
x x

z
y

.(7)

A moment’s thought reveals that this is just the shuffled version of (5). Thus (5) is just
a disguised upper Hessenberg matrix. Moreover, one easily checks that the operations
in the reduction of (4) to (5) are identical to the operations in the reduction of the
shuffled matrix (6) to the Hessenberg form (7). Thus the reduction of (4) to (5) is
really just a very special instance of the standard reduction to Hessenberg form.

The Product GR Step. Once we have the upper Hessenberg matrix (7), we can
perform implicit GR steps by bulge chasing. It turns out to be easier to think about
the unshuffled version (5). We will continue to use the case k = 3 for illustration,
although what we have to say is valid for any positive integer k. Now let

C =

H13

T21

T32

denote the cyclic “Hessenberg” matrix (5). We know from section 3 that if we want to
execute a GR iteration on C with a shift µ, then we should also apply shifts µω and
µω2 (ω = e2πi/3) at the same time to preserve the cyclic structure. In other words,
the polynomial that drives the GR iteration should have the form p(C3). The degree
of p is the number of triples of shifts, and the degree of the GR iteration on C is three
times the degree of p. To keep the discussion simple, let us suppose that we are going
to apply just one triple of shifts: µ, µω, µω2. Thus we will perform a GR iteration
of degree 3 on C. As we observed in section 3, this is equivalent to a GR iteration
of degree 1 with shift µ3 applied to the product matrices H13T32T21, T21H13T32, and
T32T21H13 simultaneously. We have p(C3) = C3 − µ3I.

From section 4 we know that the key to performing an implicit GR iteration is
to get the first column of the transformation matrix right, and this is proportional to
the first column of p(C3). However, the observations of section 4 apply to Hessenberg
matrices, so we should really be working with the shuffled version (7) instead of (5).
But the shuffled and unshuffled versions (of C, C3, p(C), etc.) have the same first
column, up to a permutation of the entries, so it is okay to work with the unshuffled
version. Recall that

C3 =

H13T32T21

T21H13T32

T32T21H13

 ,

16 DAVID S. WATKINS

so the first column of p(C3) = C3 − µ3I is essentially the same as the first column of
the shifted product H13T32T21 − µ3I. This column has only two nonzero entries, and
it is trivial to compute, since the two T matrices are upper triangular. Proceeding
as in section 4, we build a transforming matrix G0 whose first column is proportional
to the first column of p(C). We apply G−1

0 to C on the left, affecting only the first
two rows. When we apply G0 on the right, it affects the first two columns, creating
a bulge, denoted by a plus sign, in the “z” part of the matrix:

x x x x
x x x x

x x x
x x

z z z z
+ z z z

z z
z

y y y y
y y y

y y
y

.

The rest of the GR iteration consists of returning the matrix to the Hessenberg-
triangular form (5) by the algorithm outlined earlier in this section. The first trans-
formation acts on rows 5 and 6, returning the bulge entry to zero. When the similarity
transformation is completed by applying a transformation to columns 5 and 6, a new
bulge is created in the y-matrix. The next transformation acts on rows 9 and 10,
annihilating this bulge. Completing the similarity transformation, we create a new
bulge in the x-matrix. Next we apply a transformation to rows 2 and 3, annihilating
the new bulge. When we complete the similarity transformation, the bulge shows up
in the (3, 2) position of the x-matrix. We have now chased the bulge once around the
cycle, and it has ended up down and over one position from where it began. Contin-
uing this process, we chase the bulge around and around the matrix until it falls off
the bottom.

We have described a cyclic GR step of degree 3. Iterations of degree 6, 9, or higher
generally follow the same pattern, except that the bulge is bigger. This is called
the periodic GR algorithm [56]. It appears to be a generalization of the standard
GR algorithm, but the observation of Kressner [65] shows that it is really just a
special case. The reader is invited to check how these operations look in the shuffled
coordinates. One easily sees that the periodic GR algorithm is just an ordinary
(though very special) bulge chase of degree 3 on the upper Hessenberg matrix (7).

6. The Case k = 2. We have used the case k = 3 for illustration. In some
applications k is 3 or larger, but in most of our illustrations we will have k = 2.
Therefore we pause to consider what the matrices look like in this case. We have
A = A2A1. The corresponding cyclic matrix is

C =

[

A2

A1

]

,

PRODUCT EIGENVALUE PROBLEMS 17

which looks like

x x x
x x x
x x x

y y y
y y y
y y y

.

The Hessenberg form is

x x x
x x x

x x
y y y

y y
y

.

The shuffled versions are

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

and

x
y

x
y

x
y

x x
y

x
y

x x
y

.

In this case the GR iterations are always of even degree, with the shifts occurring
in ±µ pairs. A typical driving polynomial looks like

f(C) = p(C2) = (C2 − µ2
1I)(C

2 − µ2
2I) · · · (C2 − µ2

mI).

7. The Generalized Eigenvalue Problem. We begin our discussion of special
cases by considering the generalized eigenvalue problem (A − λB)v = 0. This is
equivalent to the eigenvalue problem for B−1A or AB−1. The corresponding cyclic
matrix is

C =

[

A
B−1

]

.

Operations on C entail operations on B−1, but, as we have already said, we need not
work with B−1 explicitly. If we need to effect, say, the transformation G−1

2 B−1G1,
we will instead perform the equivalent transformation G−1

1 BG2.
The presence of the inverse changes the details of the reduction to Hessenberg-

triangular form. The basic idea is to triangularize B first (implying that B−1 is then
also triangular), then gradually reduce A to upper Hessenberg form while defending
the triangular form of B. For details see [76], [49], or [100], for example.

Once the condensed form has been reached, GR iterations can be effected by
bulge chasing. Chasing a bulge in B−1 is equivalent to chasing a bulge in B, since
B has a bulge of a certain size in a certain location if and only if B−1 has a bulge of
the same size in the same location. If we run the double (resp., quadruple) shift QR
algorithm on the cyclic matrix (working with B instead of B−1), we get exactly the
single (resp., double) shift QZ algorithm of Moler and Stewart [76].

18 DAVID S. WATKINS

A nice feature of this algorithm is that it works perfectly well even if B−1 does
not exist. In this case there are infinite eigenvalues. The analyses in [95] and [99] show
that the infinite eigenvalues emerge rapidly at the top of B and can be deflated out.
Meanwhile the presence of infinite eigenvalues does not interfere with the functioning
of the algorithm. An alternative is to deflate out the infinite eigenvalues before the
QZ iterations are begun [49, section 7.7.5], [99].

Van Loan’s Extension. In 1975 Van Loan [92] published the V Z algorithm, which
computes the eigenvalues of a matrix of the form AB(CD)−1. In the case when
B = C = D = I, it reduces to the QR algorithm on the single matrix A. When
B = D = I, it reduces to the QZ algorithm on the pencil A− λC. When C = D = I
and A = BT , it reduces to the Golub–Kahan QR algorithm for the SVD. When
A = BT and C = DT , it yields an algorithm for computing eigenvalues of pencils of
the form BTB − λDTD.

If we apply the QR iterations of degree 4 or 8 to the cyclic matrix

A
C−1

D−1

B

,

we obtain the V Z algorithm. It is understood that the inverse matrices are handled
as outlined for the generalized eigenvalue problem above.

Periodic Control Systems. Hench and Laub [56] and Bojanczyk, Golub, and
Van Dooren [18] studied discrete-time periodic control systems that lead to eigenvalue
problems of the form

E−1

k Fk · · ·E−1
2 F2E

−1
1 F1

and developed the periodic QZ algorithm for solving them. The product is a formal
product only, as many of the Ei are normally singular matrices. Fortunately the
periodic QZ algorithm functions just fine even when some of the Ei are not invert-
ible. Kressner [63] studied carefully the implementational details of the periodic QZ
algorithm.

The periodic QZ algorithm also plays a role in the stable numerical solution of
Hamiltonian eigenvalue problems arising from continuous-time optimal control prob-
lems [12, 13].

8. The Singular Value Decomposition. Suppose we wish to compute the SVD
of a matrix B ∈ R

n×m. This is equivalent to computing the eigensystems of BTB
and BBT or the cyclic matrix

[

BT

B

]

.(8)

The Golub and Kahan computation [46, 47] begins by reducing B to bidiagonal form.
The result of Kressner [65] implies that this is equivalent to reducing the shuffled
version of (8) to upper Hessenberg form. If

B =

b11 b12
b21 b22
b31 b32

 ,

PRODUCT EIGENVALUE PROBLEMS 19

then the shuffled version of (8) is

0 b11 0 b21 b31
b11 0 b12 0 0
0 b12 0 b22 b32
b21 0 b22 0 0
b31 0 b32 0 0

.

The shuffle is not quite perfect, because there is one row of B (resp., column of BT) left
over, but this does not matter. After the reduction (using orthogonal transformations
only), the matrix is actually tridiagonal due to symmetry:

0 α1 0 0 0
α1 0 β1 0 0
0 β1 0 α2 0
0 0 α2 0 0
0 0 0 0 0

.

This is the shuffled version of

α1 0 0
β1 α2 0

α1 β1

0 α2

0 0

.(9)

Once the reduction to bidiagonal form has been achieved, we might as well assume
B is square, since its nontrivial part is square. There is a block of zeros that can be
disregarded, either below or to the right of the diagonal part. For example, if B is
3 × 2, we can get rid of the bottom row of zeros. This is the same as dropping the
last row and column of (9).

Let us now assume that B is square and bidiagonal. In the 3 × 3 case we have

B =

α1 β1

α2 β2

α3

 .

We can assume without loss of generality that all of the αi and βi are nonnegative.
If any of them are zero, we can immediately do a deflation [49]. We will assume,
therefore, that all of the αi and βi are positive. If we embed B in the cyclic matrix
(8) and shuffle the rows and columns, we obtain the irreducible, symmetric, tridiagonal
matrix

α1

α1 β1

β1 α2

α2 β2

β2 α3

α3

.(10)

If we apply the double-shift QR algorithm to this matrix with paired shifts ±µ, we
are doing exactly the Golub–Kahan QR algorithm for the SVD. In his 1968 paper
[45] Golub stopped just short of making this observation.

20 DAVID S. WATKINS

Accurate Computation of Singular Values. Demmel and Kahan [27] made an
important improvement to the algorithm. First they made the observation (which
was already implicit in Kahan’s 1966 technical report [60]) that the entries of the
bidiagonal B determine the singular values to high relative accuracy. This means
that if we make a small relative perturbation in each of the αi and βi in B, the
relative perturbation in each of the singular values is comparably small. Thus if we
change each entry of B in the fifteenth decimal place, this will cause a change in
each singular value in about the fifteenth decimal place. This is true even for very
tiny singular values. For example, if a singular value has magnitude about 10−60,
the magnitude of the perturbation will be about 10−75. Thus there is the possibility
of computing all singular values, even the very tiny ones, to high relative accuracy.
Demmel and Kahan showed how to do this in practice: In the Golub–Kahan QR
algorithm with a zero shift, the arithmetic can be reorganized so that the entire step
is performed without any subtractions. All additions in the step involve only positive
numbers. Since there is no possibility of cancellation, all quantities are computed
to high relative accuracy. Therefore, the zero-shift QR algorithm can be used to
extract the tiniest singular values to high relative accuracy. This will take only a
few iterations. The convergence of the QR algorithm depends upon ratios of singular
values σj+1/σj . If σj+1, . . . , σn are tiny and σj is not, the ratio σj+1/σj will be
favorable. Once the tiny singular values have been extracted, the others can be found
by the standard shifted algorithm.

We must state an important caveat here. This algorithm can compute singular
values of a bidiagonal matrix to high relative accuracy, but it cannot do the same for
a general matrix. If the matrix must first be reduced to bidiagonal form, the roundoff
errors in the preliminary reduction will normally destroy the accuracy of the tiny
singular values. The following MATLAB experiment confirms this:

format

B = toeplitz([1 0 0],[1 1234567 0])

format long e

Singular_Values = svd(B)

SV_product = prod(Singular_Values)

This produces a 3×3 bidiagonal matrix and computes its singular values. Here is the
output:

B =

1 1234567 0

0 1 1234567

0 0 1

Singular_Values =

1.234567500000506e+06

1.234566500000506e+06

6.561009579066186e-13

SV_product =

1.000000000000000e+00

PRODUCT EIGENVALUE PROBLEMS 21

Two of the singular values are large, and one is tiny. MATLAB uses the Demmel–
Kahan variant of the Golub–Kahan QR algorithm, so it computes all of the singular
values to high relative accuracy. This is confirmed by computing the product of the
singular values, which equals the determinant of B. MATLAB gets the correct value
1 to full precision. This would not have happened if the tiny singular value had not
been computed to high relative accuracy. Now look at what happens when MATLAB
computes the singular values of BT :

Singular_Values_2 = svd(B’)

SV_product_2 = prod(Singular_Values_2)

MATLAB does not notice that BT is the transpose of an upper bidiagonal matrix.
Instead it simply applies the reduction algorithm to transform it to upper bidiagonal
form. Then it applies the Demmel–Kahan procedure. Here is the output:

Singular_Values_2 =

1.234567500000506e+06

1.234566500000506e+06

6.561418075532522e-13

SV_product_2 =

1.000062261220840e+00

The large singular values are still computed to full accuracy, but the tiny one is not.
It is correct to only about four decimal places. The product of the computed singular
values is correspondingly correct to only about four places. This is a mild example. It
is easy to build more extreme examples in which the tiny singular value is computed
as 0. (Just make the matrix bigger.)

Zero-Diagonal Symmetric Problem. The tridiagonal matrix (10) is special; all
of its main-diagonal entries are zero. Matrices of this type arise in certain applications,
for example, the computation of points for Gaussian quadrature formulas [41, 42, 43,
44, 50]. Given a positive weight function w(x) on an interval [a, b], we seek a formula

m
∑

i=1

wif(ti) ≈
∫ b

a

f(t)w(t) dt

for approximating integrals weighted by w. It is a familiar fact that the optimal
sample points t1, . . . , tm for an m-point formula are the zeros of the mth orthogonal
polynomial ψm with respect to the weighted inner product

〈f, g〉 =

∫ b

a

f(t)g(t)w(t) dt.

It is perhaps not so well known that t1, . . . , tm are also the eigenvalues of a certain
symmetric, tridiagonal matrix that can be built from coefficients generated in the
process of constructing the orthogonal polynomials [50]. Thus the quadrature points
can be obtained by solving a symmetric, tridiagonal eigenvalue problem. The main
diagonal entries of the tridiagonal matrix are of the form

∫ b

a

tψi(t)
2w(t) dt, i = 0, 1, . . . , m.(11)

22 DAVID S. WATKINS

If the interval [a, b] is symmetric (a = −b) and the weight function is even, then each
of the integrals in (11) is zero. Thus the tridiagonal matrix has zeros on its main
diagonal; it has the form exemplified by (10). Deshuffling the matrix, we find that its
eigenvalue problem is equivalent to the singular value problem for a bidiagonal matrix
B. For each singular value σ, the special tridiagonal matrix has eigenvalues ±σ.

Obviously this observation can be extended to symmetric, tridiagonal matrices
with constant main diagonal τ . A shift by τ puts us in the zero-diagonal case [96].

The Skew-Symmetric Eigenvalue Problem. The skew-symmetric eigenvalue
problem was analyzed by Ward and Gray [96]. If we wish to compute the eigen-
values of a skew-symmetric matrix A ∈ R

n×n, we can begin by reducing it to upper
Hessenberg form. The principle of preservation of structure dictates that we should
use orthogonal transformation matrices to preserve skew symmetry. Thus the upper
Hessenberg form is actually tridiagonal. Moreover, the main-diagonal entries are zero.
In the 6 × 6 case, the matrix looks like this:

α1

−α1 −β1

β1 α2

−α2 −β2

β2 α3

−α3

.(12)

We have labeled the entries with a bit of foresight and a peek at (10). Deshuffling
this matrix, we obtain

α1

β1 α2

β2 α3

−α1 −β1

−α2 −β2

−α3

,

and it becomes clear that the skew-symmetric tridiagonal eigenvalue problem is equiv-
alent to the SVD problem for a bidiagonal matrix B. If we apply the double-shift QR
algorithm to (12) with paired shifts ±iµ, we are doing exactly the Golub–Kahan QR
algorithm with shift µ on B. For each singular value σ of B, the tridiagonal matrix
has a complex conjugate pair of eigenvalues ±iσ.

The SVD of a Product. Before leaving the SVD, we take a slight digression.
Golub, Sølna, and Van Dooren [48] considered the product SVD problem: Find the
SVD of B = BkBk−1 · · ·B1, given the factors B1, . . . , Bk.

4 This is not as straightfor-
ward as it might at first seem. To understand the difficulties, consider the case of a
product of two matrices B = B2B1. The SVD problem for B2B1 is equivalent to the
eigenvalue problems for the products BT

1 B
T
2 B2B1 and B2B1B

T
1 B

T
2 , so it would seem

that we should build an algorithm based on the cyclic matrix

BT
1

B1

B2

BT
2

.

4For some of the factors, we might be given B−1

i
instead of Bi.

PRODUCT EIGENVALUE PROBLEMS 23

If we reduce this matrix to the Hessenberg-triangular form by the algorithm described
in section 5 (using orthogonal matrices, as this is an SVD problem), we lose some of
the important structure. We obtain

H4

T1

T2

T3

,

where H4 �= TT
1 and T3 �= TT

2 . The algorithm does not realize that certain of the
blocks are related and that these relationships should be maintained. What is needed
is a reduction to a form

B̂T
1

B̂1

B̂2

B̂T
2

,

in which, say, B̂1 is bidiagonal and B̂2 is diagonal, making B̂ = B̂2B̂1 also bidiagonal.
Such a reduction may be hard to come by.

Golub, Sølna, and Van Dooren took a different approach. They transformed
B = Bk · · ·B1 by an orthogonal equivalence transformation to a form B̂ = B̂k · · · B̂1,
in which each of the factors B̂i is upper triangular, none of the B̂i is bidiagonal, but
the product B̂ is bidiagonal. In floating-point arithmetic the computed B̂ will not
be bidiagonal. However, one can compute its main diagonal and superdiagonal and
ignore the rest. The method works better than expected. See [48] for details.

9. The Symmetric Eigenvalue Problem. Given a symmetric, tridiagonal matrix
A, we can make it positive definite by applying a sufficiently positive shift. Let us
suppose that A is symmetric, tridiagonal, and positive definite:

A =

γ1 δ1
δ1 γ2 δ2

δ2 γ3

. . .

. . .
. . . δn−1

δn−1 γn

.

Without loss of generality we can assume that all of the δj are nonzero. In fact, we
can even assume that they are positive, since they can be made positive by a diagonal
orthogonal similarity transformation (entries on main diagonal are ±1). The γj are
positive as well.

In the Cholesky decomposition A = BTB, B is bidiagonal,

B =

α1 β1

α2 β2

α3

. . .

. . . βn−1

αn

,(13)

and the αj and βj are all positive. Clearly these 2n− 1 parameters encode the same
information as the γj and δj do. However, in the realm of uncertain data and floating-
point arithmetic, the entries of B somehow do a better job. The result of Demmel

24 DAVID S. WATKINS

and Kahan [27] mentioned previously guarantees that the entries of B determine the
singular values of B, and hence the eigenvalues of A, to high relative accuracy. In
contrast, the entries of A do not, as is demonstrated by the simple example

A =

[

1 + ǫ 1
1 1 + ǫ

]

,

where ǫ is tiny. The eigenvalues of A are λ1 = 2 + ǫ and λ2 = ǫ. If we double ǫ, we
double the tiny eigenvalue λ2. Doubling ǫ amounts to relatively small perturbations
of γ1 = γ2 = 1 + ǫ. This causes a relatively huge (100%) change in λ2.

Early in this paper we stated that if we want the eigenvalues of BTB, we should
definitely work with B itself, rather than computing the product BTB explicitly, since
information is lost when BTB is computed in floating-point arithmetic. The result
of Demmel and Kahan gives a more precise view of the situation. If B is given, we
should definitely compute the singular values of B and infer the eigenvalues of A. If
A is given, there can be no harm in computing B and working with B instead of A.
If we work with A directly, there is no hope of computing its tiny eigenvalues (if there
are any) to high relative accuracy.

Quotient-Difference (qd) Algorithm. Another way to deal with a positive-
definite tridiagonal matrix is to perform a diagonal similarity transformation, de-
liberately breaking the symmetry, to transform A to

T = D−1AD =

γ1 1
δ21 γ2 1

δ22 γ3

. . .

. . .
. . . 1
δ2n−1 γn

.(14)

This matrix has a decomposition T = LR, where L is unit lower (or left) triangular
and R is upper (or right) triangular:

L =

1
l1 1

l2 1
. . .

. . .

ln−1 1

, R =

r1 1
r2 1

r3
. . .

. . . 1
rn

.

This is what is commonly called an LU decomposition. In the context of eigenvalue
computations, the symbol R is often used instead of U . Once again we have a set of
2n− 1 parameters encoding the matrix.

Obviously the decomposition T = LR must be closely related to the Cholesky
decomposition A = BTB. Indeed, if one looks for the relationship, one easily finds
that lj = β2

j for j = 1, . . . , n − 1, and rj = α2
j for j = 1, . . . , n, where the αj and

βj are as in (13). It follows that the lj and rj parameters determine the eigenvalues
of T and A to high relative accuracy, just as the αj and βj do. It may therefore be
possible to produce high-accuracy algorithms that operate on the entries of L and R.

Let us take the L and R and place them in the cyclic matrix

C =

[

L
R

]

.

PRODUCT EIGENVALUE PROBLEMS 25

For illustration, the 4 × 4 case looks like this:

C =

1
l1 1

l2 1
l3 1

r1 1
r2 1

r3 1
r4

.

The shuffled version is

0 1
r1 0 1

l1 0 1
r2 0 1

l2 0 1
r3 0 1

l3 0 1
r4 0

.

This special form is preserved by the LR algorithm. Of course, the degree of the LR
iterations has to be even, with shifts in pairs ±µ. Let us consider a step of degree 2
with shifts ±0. We will work with the unshuffled form. The iteration is set in motion
by a transformation whose first column is proportional to the first column of

C2 − 02I =

[

LR
RL

]

,

which is r1
[

1 l1 0 · · · 0
]T

. The LR algorithm performs similarity transforma-

tions C̃ → L̃−1C̃L̃, where L̃ is a unit lower triangular matrix built up from Gaussian
elimination transforms (with no pivoting). Thus our first transform will have the form

L̃ =

1
l1 1

In−2

 , L̃−1 =

1
−l1 1

In−2

 .

The transformation C → L̃−1C subtracts l1 times the first row from the second row.
The sole effect of this is to transform the entry l1 to 0 in C. This zero is important;
it is the consequence of using a zero shift. The transformation L̃−1C → L̃−1CL̃,
completing the similarity transformation, adds l1 times the second column to the first
column, creating a bulge to the left of r2. In the case n = 4 the result looks like this:

1
0 1

l2 1
l3 1

r̂1 1
b r2 1

r3 1
r4

,

where r̂1 = r1 + l1, and b = r2l1.

26 DAVID S. WATKINS

We pause to note the general rule of Gaussian elimination similarity transforma-
tions: If the left transformation subtracts m times row i from row j, then the right
transformation (completing the similarity transformation) adds m times column j to
column i.

The rest of the LR iteration consists of chasing the bulge from the matrix. Ac-
cordingly, the second transformation subtracts b/r̂1 times row n+1 from row n+2 to
annihilate the bulge. It will soon become clear that a good name for this multiplier
is l̂1. Thus we are subtracting l̂1 = b/r̂1 times row n + 1 from row n + 2. We then

complete the similarity transformation by adding l̂1 times column n + 2 to column
n+ 1 to yield

1

l̂1 1

l2 l̂1 l2 1
l3 1

r̂1 1
0 r̃2 1

r3 1
r4

,

where r̃2 = r2 − l̂1. The entry l2 l̂1 is the new bulge. The subtraction in the for-
mula for r̃2 is unwelcome. Fortunately there is a second formula that requires only
multiplication and division:

r̃2 = r2 − l̂1 = r2 − r2l1
r1 + l1

=
r2r1
r̂1

.

To chase the new bulge forward we must subtract the appropriate multiple of row 2
from row 3. Clearly the appropriate multiple is l2. It is important that the submatrix

[

l̂1 1

l2 l̂1 l2

]

has rank 1. Therefore, when we subtract l2 times the second row from the third row,
we zero out both the bulge and the entry l2. We complete the similarity transformation
by adding l2 times column 3 to column 2. The result is

1

l̂1 1
0 0 1

l3 1
r̂1 1
0 r̂2 1

r3l2 r3 1
r4

,

where r̂2 = r̃2 + l2. The next step works out just the same as the previous step: We
subtract l̂2 = r3l2/r̂2 times row n + 2 from row n + 3 to chase the bulge, and we

add l̂2 times column n + 3 to column n + 2 to create a new bulge l3 l̂2 to the left of
l3. The step creates an intermediate quantity r̃3 = r3 − l̂2, which fortunately can be
computed by the alternate formula r̃3 = r3r̃2/r̂2. Also, the 2 × 2 submatrix in the

PRODUCT EIGENVALUE PROBLEMS 27

vicinity of the new bulge has rank 1, which guarantees that the transformation that
chases the bulge further will also set the entry l3 to zero. The algorithm continues in
this fashion until the bulge has been chased off the bottom. The complete algorithm
is quite succinct:

r̃1 ← r1
for j = 1, . . . , n− 1

r̂j ← r̃j + lj
l̂j ← lj(rj+1/r̂j)
r̃j+1 ← r̃j(rj+1/r̂j)

r̂n ← r̃n

(15)

As it turns out, this is not a new algorithm; it is the differential form of the
quotient-difference (qd) algorithm of Rutishauser. This observation is certainly of
historical interest, as the qd algorithm was the first GR algorithm ever [83, 84, 85].
The differential form of the algorithm appeared in [86], which was published posthu-
mously. The algorithm is not just of historical interest. Inspecting (15), we see that
all of the operations are either multiplications or divisions, except for one addition in
the loop. This is a sum of two positive numbers; all of the quantities appearing in (15)
are positive. Therefore, there is no possibility of cancellation, and all quantities are
computed to high relative accuracy. Consequently the algorithm is able to compute
eigenvalues to high relative accuracy.

Fernando and Parlett [34, 80] resurrected the differential qd algorithm and advo-
cated its use. In related work, Parlett and Dhillon [28, 81] have shown how to compute
eigenvectors efficiently and accurately. The name holy grail has been attached to this
work. Although the name strikes this author as grandiose, these algorithms do appear
to have a bright future.

Anyone who looks at the derivation of the zero-shift QR algorithm of Demmel
and Kahan [27] will be struck by its resemblance to the differential qd algorithm, as
presented here. Indeed, the two algorithms are closely related. An old result [105,
p. 545] implies that one zero-shift QR step is equivalent to two zero-shift qd steps.

An advantage of the qd algorithm is that shifts can be introduced easily. To
shift by µ, make the following two changes to (15): Replace the lines r̃1 ← r1 and
r̃j+1 ← r̃j(rj+1/r̂j) by r̃1 ← r1 −µ and r̃j+1 ← r̃j(rj+1/r̂j)−µ, respectively. See [80]
or [100, section 6.6]. As long as µ is smaller than the smallest eigenvalue (and here, if
some eigenvalues have already been deflated, we do not need to consider them), high
relative accuracy is guaranteed.

Since the L and R matrices are just rescalings of the matrix B of (13), it is
clear that the differential qd algorithm can also be used for SVD calculations. The
algorithm can also be used in the nonpositive case (i.e., shift larger than the smallest
eigenvalue), and it can even be applied to nonsymmetrizable tridiagonal matrices
((14) with some of the δ2k replaced by negative numbers), but in either case, negative
values of rk and lk enter the computation, and the accuracy guarantee is lost. This
does not necessarily imply that the algorithm will perform badly.

10. Totally Nonnegative Matrices. A matrix A ∈ R
n×n is called totally positive

(TP) if all of its minors of all sizes are positive. In other words, for any k, given
any k rows and k columns of A, the corresponding k × k submatrix has a positive
determinant. A matrix is totally nonnegative (TN) if all of its minors are nonnegative.
TN and TP matrices arise in a variety of situations [23, 39, 61]. For example, the
Vandermonde matrix of a positive increasing sequence is TP.

28 DAVID S. WATKINS

Every TN matrix has a decomposition into a product of bidiagonal matrices, the
entries of which parametrize the family of TN matrices. We will not describe this
decomposition in detail. In the 3 × 3 case it has the form

1
1
a2 1

1
b1 1

b2 1

c1
c2

c3

1 d1

1 d2

1

1
1 e2

1

 .

In the parametrization of a TP matrix all of the parameters a2, b1, . . . , e2 are positive,
but in a TN matrix certain of them can be zero. An interesting example is the TP
Pascal matrix [21, 31]

1 1 1
1 2 3
1 3 6

 ,

which has the bidiagonal decomposition

1
1
1 1

1
1 1

1 1

1
1

1

1 1
1 1

1

1
1 1

1

 .

The bidiagonal decomposition has its origins in the papers [104] and [73]. See also
[32, 36, 40].

Koev [62] has shown recently that the parameters of the bidiagonal factorization
determine the eigenvalues and singular values of a nonsingular TN matrix to high
relative accuracy. Koev has also developed algorithms that compute the eigenvalues
and singular values to high relative accuracy, given that the matrix is presented in
factored form. This is another example of a product eigenvalue problem. We want
the eigenvalues (or singular values) of the product of the bidiagonal factors, but we
work with the factors themselves, never forming the product. Koev’s algorithm for
the eigenvalues performs a similarity transformation to tridiagonal form by a sequence
of Neville eliminations. These are Gaussian eliminations in which a multiple of one
row is subtracted from the row immediately below it to create a zero in that row. The
key to high accuracy is this: the Neville elimination in the TN matrix is equivalent
to setting one parameter to zero in the factored form. Thus the elimination incurs
no error (and it is practically free). The similarity transformation is completed by
adding a multiple of one column to an adjacent column. This is not free, but it can
be done with high relative accuracy while working with the factored form. See [62]
for details. Once the matrix is in (factored) tridiagonal form, it can be symmetrized,
and its eigenvalues can be computed to high relative accuracy by either of the two
methods discussed in the previous section, the zero-shift QR algorithm [27] or the
differential qd algorithm [34, 80, 86].

This is the first example of a class of (mostly) nonsymmetric matrices whose
eigenvalues can be determined to high relative accuracy.

11. Pseudosymmetric Matrices. A real, tridiagonal matrix

A =

γ1 δ1
β1 γ2 δ2

β2 γ3

. . .

. . .
. . . δn−1

βn−1 γn

PRODUCT EIGENVALUE PROBLEMS 29

is called pseudosymmetric if βj = ±δj for j = 1, . . . , n− 1. Almost every real n× n
matrix can be reduced by a similarity transformation to pseudosymmetric tridiagonal
form in finitely many steps [11, 105]. However, the transformation cannot always be
done stably. If the nonsymmetric Lanczos process [69] is applied in the usual way,
it generates a pseudosymmetric tridiagonal matrix whose eigenvalues must then be
computed. As we shall see, Hamiltonian and symplectic eigenvalue problems can be
reduced to pseudosymmetric eigenvalue problems in a natural way.

Our objective is always to compute eigenvalues as accurately as possible. The
algorithms to be discussed in this and the next two sections do a good job in the vast
majority of cases, but there are no a priori stability or accuracy guarantees. There
are, however, ways of checking a posteriori whether or not the results are any good.

One sees easily that a tridiagonal A is pseudosymmetric if and only if it can be
expressed as a product

A = TD =

a1 b1

b1 a2 b2

b2 a3

. . .

. . .
. . . bn−1

bn−1 an

d1

d2

d3

. . .

dn

,

whereD is a signature matrix ; that is, it is diagonal with each dj equal to 1 or −1. T is
symmetric, and we can even make all the bj nonnegative. Thus the pseudosymmetric
eigenvalue problem can be treated as a product eigenvalue problem. Placing the
factors T and D in a cyclic matrix, we have

C =

[

T
D

]

.(16)

Illustrating with the 3 × 3 case, we have

C =

a1 b1
b1 a2 b2

b2 a3

d1

d2

d3

.

The shuffled version is the Hessenberg matrix

a1 b1
d1

b1 a2 b2
d2

b2 a3

d3

.

In the class of GR algorithms, the one that preserves pseudosymmetric structure
is called HR [22, 24]. The H stands for hyperbolic. An HR iteration on A = TD has
the form

p(A) = HR, Â = H−1AH,

30 DAVID S. WATKINS

where R is upper triangular and H has the special property

HTDH = D̂,

D̂ being another signature matrix. Then Â = T̂ D̂, where T̂ is tridiagonal and sym-
metric. Thus pseudosymmetric structure is preserved.

Equivalently we can do an HR iteration on the cyclic matrix C defined in (16).
Here we are in the case k = 2, so the driving function f(C) for the iteration must be
a function of C2, say f(C) = p(C2). Thus

f(C) = p(C2) =

[

p(TD)
p(DT)

]

.(17)

The HR decomposition of p(C2) is built up from HR decompositions of p(TD) and
p(DT). These are fortunately related. If p(TD) = HR with HTDH = D̂, then
p(DT) = Dp(TD)D = DHRD = (DHD̂)(D̂RD) = H̃R̃, where H̃ = DHD̂ = H−T

satisfies H̃TDH̃ = D̂, and R̃ is upper triangular. Here we have used repeatedly the
fact that a signature matrix is equal to its inverse. Thus the HR decomposition of
f(C) looks like

[

p(TD)
p(DT)

]

=

[

H
H−T

] [

R

R̃

]

.(18)

Performing the similarity transformation with the H factor from this decomposition,
we complete the HR iteration on C:

Ĉ =

[

T̂

D̂

]

=

[

H−1

HT

] [

T
D

] [

H
H−T

]

(19)

=

[

H−1TH−T

HTDH

]

.

This implicitly effects HR iterations on TD and DT simultaneously:

p(TD) = HR, T̂ D̂ = H−1(TD)H

and

p(DT) = H̃R̃, D̂T̂ = H̃−1(DT)H̃.

In practice the HR iteration is implemented by bulge chasing, as described in
section 5. Each elimination in the bulge chase is done by either an orthogonal trans-
formation

[

c −s
s c

]

, c2 + s2 = 1,

or a hyperbolic transformation
[

c s
s c

]

or

[

s c
c s

]

, c2 − s2 = 1.

An orthogonal (resp., hyperbolic) transformation is used if the two rows that the
transformation affects correspond to entries of D that have the same (resp., opposite)
sign. In this way, the signature matrix structure of D is preserved. The algorithm is
quite straightforward.

PRODUCT EIGENVALUE PROBLEMS 31

12. The Hamiltonian Eigenvalue Problem. A matrix H ∈ R
2n×2n is called

Hamiltonian if it has the form

H =

[

A K
N −AT

]

, where K = KT , N = NT .(20)

A more compact way of stating the definition makes use of the matrix

J =

[

0 I
−I 0

]

.(21)

It is easy to check that H satisfies (20) if and only if (JH)T = JH.
Hamiltonian eigenvalue problems arise in a variety of settings, including linear-

quadratic optimal control problems [17, 26, 68, 70, 71, 74], determination of corner
singularities in anisotropic elastic structures [6, 75], and stability of gyroscopic systems
[67]. Various algorithms of GR type for the Hamiltonian eigenvalue problem, as well
as some background theory, are addressed in [3, 4, 13, 26, 78, 82, 93].

A matrix S is called symplectic if STJS = J , where J is as in (21). It is easy
to check that if H is Hamiltonian, and S is symplectic, then S−1HS is Hamiltonian.
Thus the Hamiltonian structure will be respected by GR algorithms for which the
transforming matrix is symplectic. These are the so-called SR algorithms [26].

In [26] Bunse-Gerstner and Mehrmann showed that every Hamiltonian matrix is
similar by a symplectic similarity transformation to a matrix of the highly condensed
form

[

E T
D −E

]

,(22)

where E andD are diagonal and T is tridiagonal (and symmetric). There is some slack
in the reduction algorithm: the main-diagonal entries of E can be chosen arbitrarily,
while those ofD must be nonzero but can be rescaled up or down. Bunse-Gerstner and
Mehrmann advocated choosing the entries with an eye to making the transformation
as stable as possible. This is a laudable goal. A more aggressive approach is to choose
the entries to make the condensed form (22) as simple as possible. If one decides to
do this, then the logical choice for E is the zero matrix. We can also scale D so that
each of its main-diagonal entries is either +1 or −1; that is, it is a signature matrix.
With these choices, the condensed form becomes

C =

[

T
D

]

,(23)

with T tridiagonal and symmetric and D a signature matrix. This is exactly the form
of the cyclic matrix C (16) that arose in the discussion of pseudosymmetric matri-
ces. Thus the Hamiltonian eigenvalue problem is equivalent to the pseudosymmetric
product eigenvalue problem.

If we wish to apply the SR algorithm to the condensed C of (23) or to any Hamil-
tonian matrix, we must choose shifts in a way that respects Hamiltonian structure.
The eigenvalues of a real Hamiltonian matrix possess the symmetry illustrated in Fig-
ure 1. If λ is an eigenvalue, then so are −λ, λ, and −λ. In particular, the eigenvalues
occur in ±λ pairs. Thus the shifts should also be chosen in plus-minus pairs. In other
words, the driving function for a Hamiltonian SR iteration on C should be a function
of C2: f(C) = p(C2), just as in (17). Now consider the HR decomposition (18). It is

32 DAVID S. WATKINS

Fig. 1 Hamiltonian eigenvalue symmetry.

a simple matter to check that for any real nonsingular matrix V , the block-diagonal
matrix

[

V
V −T

]

is symplectic. Therefore the HR decomposition (18) is also an SR decomposition,
and the HR iteration (18), (19) is also an SR iteration on C. In conclusion, if
the condensed form (23) for Hamiltonian matrices is used, then the Hamiltonian
SR algorithm is identical to the HR algorithm for pseudosymmetric matrices. This
observation was made previously in [15] and put to use in [101].

13. The Symplectic Eigenvalue Problem. As we stated above, a matrix S ∈
R

2n×2n is symplectic if STJS = J , where J is as in (21). The symplectic eigenvalue
problem arises in discrete-time linear-quadratic control problems [58, 68, 74, 79]. Since
the set of symplectic matrices forms a group, symplectic structure is preserved by sim-
ilarity transformations by symplectic matrices. Therefore, the SR algorithms preserve
symplectic structure. The details of applying SR algorithms to symplectic matrices
have been discussed in [9, 10, 14, 16, 33, 35].

Banse and Bunse-Gerstner [9, 10] showed that every symplectic matrix can be
reduced by a symplectic similarity transformation to a condensed butterfly form

B =

[

E T1

D T2

]

,(24)

where E and D are diagonal and T1 and T2 are tridiagonal. The submatrices are not
uniquely determined; there is some slack in the choice of parameters. If one is after
the simplest possible butterfly form, then one can choose E = 0, which immediately
forces T1 = −D−1 by the symplectic property of B. The main-diagonal entries of D
can be rescaled by arbitrary positive factors, so we can rescale it to make it a signature
matrix. Suppose we do that. Then the symplectic property of B also implies that
the matrix defined by T = DT2 = D−1T2 is symmetric. With these choices, the
symplectic butterfly matrix takes the form

B =

[

0 −D
D DT

]

,(25)

PRODUCT EIGENVALUE PROBLEMS 33

Fig. 2 Symplectic eigenvalue symmetry.

where D is a signature matrix (i.e., diagonal with main-diagonal entries ±1) and T is
symmetric and tridiagonal. Notice that the characteristics of D and T are the same
as those possessed by the same symbols in the previous two sections.

If we want to apply the SR algorithm to the condensed symplectic matrix B of
(25), how should we choose the shifts so that the symplectic structure is respected?
The eigenvalues of a real symplectic matrix possess the symmetry structure illustrated

in Figure 2. If λ is an eigenvalue, then so are λ−1, λ, and λ
−1

. In particular, the
eigenvalues occur in λ, λ−1 pairs. Therefore we should choose shifts in µ, µ−1 pairs.
An SR iteration on B has the form

f(B) = SR, B̂ = S−1BS.

If the driving function f is a polynomial, then its factors should appear in pairs of
the form B − µI, B − µ−1I. Multiplying these factors together, we obtain

B2 − (µ+ µ−1)B + I.

Notice that if we multiply this product by B−1, we obtain an interesting result:

B−1(B − µI)(B − µ−1I) = (B +B−1) − (µ+ µ−1)I,

which suggests that it might be advantageous to take f to be a rational function of
B instead of a polynomial. If we want to apply shifts µ1, . . . , µk and their inverses,
we can take f(B) = p(B + B−1), where p is the kth-degree polynomial whose zeros
are µ1 + µ−1

1 , . . . , µk + µ−1

k .
This idea relies on the accessibility of B−1. Fortunately it is a simple matter to

invert any symplectic matrix; the equation STJS = J implies S−1 = −JSTJ . You
can easily check that

B−1 =

[

TD D
−D 0

]

.

This has the happy consequence that

B +B−1 =

[

TD
DT

]

34 DAVID S. WATKINS

and

f(B) = p(B +B−1) =

[

p(TD)
p(DT)

]

.

Compare this with (17). In order to do an iteration of the SR algorithm, we need an
SR decomposition of f(B). However, as we already observed in the previous section,
the HR decomposition (18) is also an SR decomposition, because the matrix

S =

[

H
H−T

]

is symplectic. We complete an SR iteration by performing a similarity transformation
with this matrix:

B̂ = S−1BS =

[

H−1

HT

] [

0 −D
D DT

] [

H
H−T

]

=

[

0 −H−1DH−T

HTDH (HTDH)(H−1TH−T)

]

=

[

0 −D̂
D̂ D̂T̂

]

,

where

T̂ = H−1TH−T and D̂ = HTDH.

In conclusion, if the condensed form (25) is used, the symplectic SR algorithm is
equivalent to the pseudosymmetric HR algorithm. This observation was made previ-
ously in [15] and put to use in [101].

14. The Unitary Eigenvalue Problem. As our final example of an eigenvalue
problem that is best handled in product form, we briefly consider the unitary eigen-
value problem. Gauss–Szegö quadrature rules are numerical integration formulas of
optimal degree for measures with support on the unit circle. Computation of the
points and weights for a Gauss–Szegö rule require the computation of the eigensys-
tem of a unitary upper Hessenberg matrix [51, 53].

Every unitary proper upper Hessenberg matrix U ∈ C
n×n can be expressed as a

product

U = G1G2 · · ·Gn−1Gn,(26)

where each Gk has a very simple form:

Gk =

Ik−1

−γk σk

σk γk

In−k−1

, σk > 0, |γk |2 + σ2
k = 1,

for k = 1, . . . , n− 1, and

Gn =

[

In−1

−γn

]

, |γn | = 1.

PRODUCT EIGENVALUE PROBLEMS 35

The Schur parameters γk and complementary Schur parameters σk are uniquely de-
termined. This factorization allows us to express the unitary Hessenberg matrix in
terms of the n complex parameters γk and the n−1 real parameters σk, which is much
less than the O(n2) matrix entries in the conventional representation of U . Certainly
we would prefer to work with the factored form. In principle we can get rid of the
parameters σk as well; they are redundant, since

σk =

√

1 − |γk |2.
However, in the face of error, this formula is unable to produce an accurate value for
σk when |γk | is close to 1, because cancellation occurs when |γk |2 is subtracted from
1. It is therefore necessary to keep the σk in practice.

The unitary factorization (26) does not fit the pattern established in section 5,
in which one of the factors is upper Hessenberg and the others are upper triangular.
Therefore the methodology outlined in this paper cannot be applied directly to this
factorization. Several alternative approaches have been developed. Gragg [52] showed
how to effect iterations of the QR algorithm in terms of the Schur parameters. That
algorithm turned out to be unstable, but M. Stewart [90] showed how to stabilize
it. Ammar, Gragg, and Reichel [1, 2, 54] proposed two other methods for the real,
orthogonal eigenvalue problem. One method breaks the problem into two half-size
SVD problems, and the other uses a divide-and-conquer approach.

Other approaches are based on an odd-even factorization. In [1] it was shown
that the unitary matrix U (26) is unitarily similar to

V = (G1G3G5 · · ·)(G2G4G6 · · ·).
If one lets Ho = G1G3G5 · · · and He = G2G4G6 · · ·, then

V = HoHe,(27)

and each of the factors is block diagonal:

Ho =

−γ1 σ1

σ1 γ1

−γ3 σ3

σ3 γ3

. . .

and

He =

1
−γ2 σ2

σ2 γ2

−γ4 σ4

σ4 γ4

. . .

.

The factorization (27) also does not fit the pattern established in section 5, since
neither of the factors in (27) is upper triangular. Bunse-Gerstner and Elsner [25]
reformulated the product (27) as a generalized eigenvalue problem

Ho − λH−1
e

and developed a backward stable QZ algorithm for this “odd-even” pencil.

36 DAVID S. WATKINS

15. Concluding Remarks. A wide variety of algorithms for computing eigenval-
ues of products of matrices can be viewed as GR algorithms on an associated cyclic
matrix or its shuffled version [65]. These include the QZ algorithm [76] for the gen-
eralized eigenvalue problem and its extensions [18, 56, 92], the Golub–Kahan QR
algorithm [46] and its high-accuracy improvement [27] for the SVD, the QR algo-
rithm for the skew-symmetric and zero-diagonal symmetric eigenvalue problems [96],
and the high-accuracy differential quotient-difference algorithm [34, 80, 86] for the
symmetric, positive-definite eigenvalue problem or the SVD. The totally nonnegative
eigenvalue problem can be reduced (with high relative accuracy) to a positive definite,
symmetric, tridiagonal eigenvalue problem, which can then be solved accurately by
methods just mentioned [62]. The pseudosymmetric eigenvalue problem can be viewed
as a product eigenvalue problem, which can then be solved by an HR algorithm on a
cyclic matrix

C =

[

T
D

]

.

This version of the HR algorithm is also an SR algorithm and can be used to solve
the Hamiltonian and symplectic eigenvalue problems, once they have been reduced
to suitable condensed forms [15]. The unitary eigenvalue problem is also best viewed
as a product eigenvalue problem. However, the two known useful factorizations of
unitary matrices do not fit the same mold as the other factorizations considered in
this paper.

REFERENCES

[1] G. Ammar, W. Gragg, and L. Reichel, On the eigenproblem for orthogonal matrices, in
Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece, 1986,
pp. 1963–1966.

[2] G. Ammar, W. Gragg, and L. Reichel, Determination of Pisarenko frequency estimates as
eigenvalues of an orthogonal matrix, in Advanced Algorithms and Architectures for Signal
Processing II, F. T. Luk, ed., Proc. SPIE 826, SPIE, Bellingham, WA, 1987, pp. 143–145.

[3] G. S. Ammar, P. Benner, and V. Mehrmann, A multishift algorithm for the numerical
solution of algebraic Riccati equations, Electron. Trans. Numer. Anal., 1 (1993), pp. 33–
48.

[4] G. S. Ammar and V. Mehrmann, On Hamiltonian and symplectic Hessenberg forms, Linear
Algebra Appl., 149 (1991), pp. 55–72.

[5] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, Std. 754-1985 ed., IEEE,
New York, 1985.

[6] T. Apel, V. Mehrmann, and D. Watkins, Structured eigenvalue methods for the computa-
tion of corner singularities in 3D anisotropic elastic structures, Comput. Methods Appl.
Mech. Engrg., 191 (2002), pp. 4459–4473.

[7] Z. Bai and J. Demmel, On a block implementation of the Hessenberg multishift QR iteration,
Internat. J. High Speed Comput., 1 (1989), pp. 97–112.

[8] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for
the Solution of Algebraic Eigenvalue Problems, SIAM, Philadelphia, 2000.

[9] G. Banse, Symplektische Eigenwertverfahren zur Lösung zeitdiskreter optimaler Steuerungs
probleme, Ph.D. thesis, University of Bremen, Germany, 1995.

[10] G. Banse and A. Bunse-Gerstner, A condensed form for the solution of the symplectic
eigenvalue problem, in Systems and Networks: Mathematical Theory and Applications,
U. Helmke, R. Menniken, and J. Sauer, eds., Akademie Verlag, Berlin, 1994, pp. 613–616.

[11] F. L. Bauer, Sequential reduction to tridiagonal form, J. Soc. Indust. Appl. Math., 7 (1959),
pp. 107–113.

[12] P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical Computation of Deflating
Subspaces of Embedded Hamiltonian Pencils, Tech. Rep. 99-15, SFB 393, Fakultät für
Mathematik, TU Chemnitz, Chemnitz, Germany, 1999.

PRODUCT EIGENVALUE PROBLEMS 37

[13] P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical computation of deflating
subspaces of skew-Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., 24
(2002), pp. 165–190.

[14] P. Benner and H. Fassbender, The symplectic eigenvalue problem, the butterfly form, the
SR algorithm, and the Lanczos method, Linear Algebra Appl., 275–276 (1998), pp. 19–47.

[15] P. Benner, H. Fassbender, and D. S. Watkins, Two connections between the SR and HR
eigenvalue algorithms, Linear Algebra Appl., 272 (1998), pp. 17–32.

[16] P. Benner, H. Fassbender, and D. S. Watkins, SR and SZ algorithms for the symplectic
(butterfly) eigenproblem, Linear Algebra Appl., 287 (1999), pp. 41–76.

[17] J. Bittanti, A. J. Laub, and J. C. Willems, eds., The Riccati Equation, Springer-Verlag,
New York, 1991.

[18] A. Bojanczyk, G. H. Golub, and P. Van Dooren, The periodic Schur decomposition;
algorithm and applications, in Advanced Signal Processing Algorithms, Architectures,
and Implementations III, Proc. SPIE 1770, SPIE, Bellingham, WA, 1992, pp. 31–42.

[19] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part I: Maintaining
well-focused shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002),
pp. 929–947.

[20] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part II: Aggressive
early deflation, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 948–973.

[21] R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl.,
174 (1992), pp. 13–23.

[22] M. A. Brebner and J. Grad, Eigenvalues of Ax = λBx for real symmetric matrices A and
B computed by reduction to pseudosymmetric form and the HR process, Linear Algebra
Appl., 43 (1982), pp. 99–118.

[23] F. Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A, 71 (1995), pp. 175–
218.

[24] A. Bunse-Gerstner, An analysis of the HR algorithm for computing the eigenvalues of a
matrix, Linear Algebra Appl., 35 (1981), pp. 155–173.

[25] A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary
eigenproblem, Linear Algebra Appl., 154–156 (1991), pp. 741–778.

[26] A. Bunse-Gerstner and V. Mehrmann, A symplectic QR-like algorithm for the solution
of the real algebraic Riccati equation, IEEE Trans. Automat. Control, AC-31 (1986),
pp. 1104–1113.

[27] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 873–912.

[28] I. S. Dhillon, A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigen-
vector Problem, Ph.D. thesis, University of California, Berkeley, 1997.

[29] A. A. Dubrulle, The Multishift QR Algorithm—Is It Worth the Trouble?, Tech. Rep. G320-
3558x, IBM Corp., Palo Alto, CA, 1991.

[30] A. A. Dubrulle and G. H. Golub, A multishift QR iteration without computation of the
shifts, Numer. Algorithms, 7 (1994), pp. 173–181.

[31] A. Edelman and G. Strang, Pascal matrices, Amer. Math. Monthly, 111 (2004), pp. 189–
197.

[32] S. M. Fallat, Bidiagonal factorizations of totally nonnegative matrices, Amer. Math.
Monthly, 108 (2001), pp. 697–712.

[33] H. Fassbender, Symplectic Methods for the Symplectic Eigenproblem, Kluwer Aca-
demic/Plenum Publishers, New York, 2000.

[34] K. V. Fernando and B. N. Parlett, Accurate singular values and differential qd algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[35] U. Flaschka, V. Mehrmann, and D. Zywietz, An analysis of structure preserving meth-
ods for symplectic eigenvalue problems, RAIRO Automat.-Prod. Inform. Ind., 25 (1991),
pp. 165–190.

[36] S. Fomin and A. Zelevinsky, Total positivity: Tests and parametrizations, Math. Intelli-
gencer, 22 (2000), pp. 23–33.

[37] J. G. F. Francis, The QR transformation: A unitary analogue to the LR transformation. I,
Comput. J., 4 (1961), pp. 265–272.

[38] J. G. F. Francis, The QR transformation. II, Comput. J., 4 (1961), pp. 332–345.
[39] M. Gasca and C. A. Micchelli, eds., Total Positivity and Its Applications, Kluwer Aca-

demic, Dordrecht, The Netherlands, 1996.
[40] M. Gasca and J. M. Peña, On factorizations of totally positive matrices, in Total Positivity

and Its Applications, M. Gasca and C. A. Micchelli, eds., Kluwer Academic, Dordrecht,
The Netherlands, 1996, pp. 109–130.

38 DAVID S. WATKINS

[41] W. Gautschi, Construction of Gauss-Christoffel quadrature formulas, Math. Comp., 22
(1968), pp. 251–270.

[42] W. Gautschi, On generating Gaussian quadrature rules, in Numerische Integration,
G. Hämmerlin, ed., Birkhäuser Verlag, Basel, 1979, pp. 147–154.

[43] W. Gautschi, Is the recurrence relation for orthogonal polynomials always stable?, BIT, 33
(1993), pp. 277–284.

[44] W. Gautschi, Orthogonal polynomials: Applications and computation, Acta Numerica 1996,
Cambridge University Press, Cambridge, UK, 1996, pp. 45–119.

[45] G. H. Golub, Least squares, singular values, and matrix approximations, Apl. Mat., 13
(1968), pp. 44–51.

[46] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205–224.

[47] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions,
Numer. Math., 14 (1970), pp. 403–420.

[48] G. H. Golub, K. Sølna, and P. Van Dooren, Computing the SVD of a general matrix
product/quotient, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 1–19.

[49] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[50] G. H. Golub and J. H. Welsh, Calculation of Gauss quadrature rules, Math. Comp., 23
(1969), pp. 221–230.

[51] W. B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators,
and Gaussian quadrature on the unit circle, in Numerical Methods in Linear Algebra, E. S.
Nikolaev, ed., Moscow University Press, 1982, pp. 16–23 (in Russian).

[52] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,
16 (1986), pp. 1–8.

[53] W. B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators,
and Gaussian quadrature on the unit circle, J. Comput. Appl. Math., 46 (1993), pp. 183–
198 (English translation of [51]).

[54] W. B. Gragg and L. Reichel, A divide and conquer algorithm for the unitary eigenproblem,
in Proceedings of the Second Conference on Hypercube Multiprocessors, SIAM, Philadel-
phia, 1987, pp. 639–647.

[55] C. R. Hadlock, Field Theory and Its Classical Problems, The Carus Mathematical Mono-
graphs, Mathematical Association of America, Washington, DC, 1978.

[56] J. J. Hench and A. J. Laub, Numerical solution of the discrete-time periodic Riccati equa-
tion, ACM Trans. Automat. Control, 39 (1994), pp. 1197–1210.

[57] G. Henry, D. Watkins, and J. Dongarra, A parallel implementation of the nonsymmetric
QR algorithm for distributed memory architectures, SIAM J. Sci. Comput., 24 (2002),
pp. 284–311.

[58] D. Hinrichsen and N. K. Son, Stability radii of linear discrete-time systems and symplectic
pencils, Int. J. Robust Nonlinear Control, 1 (1991), pp. 79–97.

[59] J. E. Jackson, A User’s Guide to Principal Components, John Wiley and Sons, New York,
1991.

[60] W. Kahan, Accurate Eigenvalues of a Symmetric Tridiagonal Matrix, Tech. Rep. CS 41,
Computer Science Department, Stanford University, Stanford, CA, 1966.

[61] S. Karlin, Total Positivity, Stanford University Press, Stanford, CA, 1968.
[62] P. Koev, Accurate eigenvalues and SVDs of totally nonnegative matrices, SIAM J. Matrix

Anal. Appl., to appear.
[63] D. Kressner, An efficient and reliable implementation of the periodic QZ algorithm, in

IFAC Workshop on Periodic Control Systems, 2001; available online from www.math.tu-
berlin.de/˜kressner/.

[64] D. Kressner, Numerical Methods and Software for General and Structured Eigenvalue Prob-
lems, Ph.D. thesis, TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.

[65] D. Kressner, The periodic QR algorithm is a disguised QR algorithm, Linear Algebra Appl.,
2004, to appear.

[66] V. N. Kublanovskaya, On some algorithms for the solution of the complete eigenvalue
problem, USSR Comput. Math. and Math. Phys., 3 (1961), pp. 637–657.

[67] P. Lancaster, Strongly stable gyroscopic systems, Electron. J. Linear Algebra, 5 (1999),
pp. 53–66.

[68] P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press,
Oxford, UK, 1995.

[69] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear dif-
ferential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp. 255–281.

PRODUCT EIGENVALUE PROBLEMS 39

[70] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat.
Control, AC-24 (1979), pp. 913–921.

[71] A. J. Laub, Invariant subspace methods for the numerical solution of Riccati equations, in
The Riccati Equation, J. Bittani, A. J. Laub, and J. C. Willems, eds., Springer-Verlag,
Berlin, 1991, pp. 163–196.

[72] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,
SIAM, Philadelphia, 1998. ARPACK homepage, http://www.caam.rice.edu/software/
ARPACK/index.html.

[73] C. Loewner, On totally positive matrices, Math. Z., 63 (1955), pp. 338–340.
[74] V. L. Mehrmann, The Autonomous Linear Quadratic Control Problem, Lecture Notes in

Control and Inform. Sci. 163, Springer-Verlag, Berlin, 1991.
[75] V. Mehrmann and D. Watkins, Structure-preserving methods for computing eigenpairs of

large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Comput., 22 (2001),
pp. 1905–1925.

[76] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

[77] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM,
Philadelphia, 2001.

[78] C. C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear
Algebra Appl., 41 (1981), pp. 11–32.

[79] T. Pappas, A. Laub, and N. Sandell, On the numerical solution of the discrete-time alge-
braic Riccati equation, IEEE Trans. Automat. Control, AC-25 (1980), pp. 631–641.

[80] B. N. Parlett, The new qd algorithms, Acta Numerica 1995, Cambridge University Press,
Cambridge, UK, 1995, pp. 459–491.

[81] B. N. Parlett and I. S. Dhillon, Relatively robust representations of symmetric tridiago-
nals, Linear Algebra Appl., 309 (2000), pp. 121–151.

[82] A. C. Raines, III and D. S. Watkins, A class of Hamiltonian-symplectic methods for solving
the algebraic Riccati equation, Linear Algebra Appl., 205/206 (1994), pp. 1045–1060.

[83] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys., 5 (1954),
pp. 233–251.

[84] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Mitt. Inst. Angew. Math. ETH 7,
Birkhäuser, Basel, 1957.

[85] H. Rutishauser, Solution of eigenvalue problems with the LR-transformation, Nat. Bur.
Standards Appl. Math. Ser., 49 (1958), pp. 47–81.

[86] H. Rutishauser, Lectures on Numerical Mathematics, Birkhäuser, Basel, 1990. (Translation
of Vorlesungen über numerische Mathematik, 1976.)

[87] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method for linear
eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.

[88] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[89] D. Sorensen, Numerical methods for large eigenvalue problems, Acta Numerica 2002, Cam-
bridge University Press, Cambridge, UK, 2002, pp. 519–584.

[90] M. Stewart, An Error Analysis of a Unitary Hessenberg QR Algorithm, Tech. Rep. TR-CS-
98-11, Department of Computer Science, Australian National University, Canberra, 1998;
available online from http://eprints.anu.edu.au/archive/00001557/.

[91] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood
Cliffs, NJ, 1973.

[92] C. F. Van Loan, A general matrix eigenvalue algorithm, SIAM J. Numer. Anal., 12 (1975),
pp. 819–834.

[93] C. F. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian
matrix, Linear Algebra Appl., 61 (1984), pp. 233–251.

[94] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[95] R. C. Ward, The combination shift QZ algorithm, SIAM J. Numer. Anal., 12 (1975),

pp. 835–853.
[96] R. C. Ward and L. J. Gray, Eigensystem computation for skew-symmetric and a class of

symmetric matrices, ACM Trans. Math. Software, 4 (1978), pp. 278–285.
[97] D. S. Watkins, Shifting strategies for the parallel QR algorithm, SIAM J. Sci. Comput., 15

(1994), pp. 953–958.
[98] D. S. Watkins, The transmission of shifts and shift blurring in the QR algorithm, Linear

Algebra Appl., 241–243 (1996), pp. 877–896.

40 DAVID S. WATKINS

[99] D. S. Watkins, Performance of the QZ algorithm in the presence of infinite eigenvalues,
SIAM J. Matrix Anal. Appl., 22 (2000), pp. 364–375.

[100] D. S. Watkins, Fundamentals of Matrix Computations, 2nd ed., John Wiley and Sons, New
York, 2002.

[101] D. S. Watkins, On Hamiltonian and symplectic Lanczos processes, Linear Algebra Appl.,
385 (2004), pp. 23–45.

[102] D. S. Watkins and L. Elsner, Chasing algorithms for the eigenvalue problem, SIAM J.
Matrix Anal. Appl., 12 (1991), pp. 374–384.

[103] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the
eigenvalue problem, Linear Algebra Appl., 143 (1991), pp. 19–47.

[104] A. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952),
pp. 88–92.

[105] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.
[106] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 5th ed., Butterworth-

Heinemann, Boston, 2000.

