

Product focused software process improvement : SPI in the
embedded software domain
Citation for published version (APA):
Solingen, van, D. M. (2000). Product focused software process improvement : SPI in the embedded software
domain. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Industrial Engineering and Innovation Sciences].
Technische Universiteit Eindhoven. https://doi.org/10.6100/IR532869

DOI:
10.6100/IR532869

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.6100/IR532869
https://doi.org/10.6100/IR532869
https://research.tue.nl/en/publications/15ee7222-b8a2-43a2-b3e8-3784ed3d06af

Product Focused

Software Process Improvement

SPI in the embedded software domain

Rini van Solingen

Eindhoven University of Technology, The Netherlands ISBN 90-386-0613-3

CIP-DATA LIBRARY EINDHOVEN UNIVERSITY OF TECHNOLOGY

Solingen, Rini van

Product Focused Software Process Improvement: SPI in the embedded software domain

by Rini van Solingen – Eindhoven:

Technische Universiteit Eindhoven, 2000

Proefschrift

ISBN 90-386-0613-3

NUGI 684

Keywords: Software Quality / Software Process Improvement / SPI / Embedded Software / Product focused

SPI / Goal Question Metric / GQM

Printed by Eindhoven University Press

English editing by: Miranda Aldham-Breary

Copyright © 2000, Rini van Solingen

All rights reserved. No part of this publication may be reproduced in any form or by any means without prior

written permission of the author

Product Focused Software Process Improvement

SPI in the Embedded Software Domain

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van

de Rector Magnificus, prof.dr. M. Rem, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen op

donderdag 2 maart 2000 om 16.00 uur

door

Dirk Marinus van Solingen

geboren te Middelburg

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. T.M.A. Bemelmans

en

prof.dr.ir. A.C. Brombacher

Copromotor:

dr.ir. J.J.M. Trienekens

Preface

The difficulties of creating high quality embedded products are addressed in this thesis.

Embedded products are integrated into daily life at all kinds of levels and in all kinds of

situations. Examples of embedded products include flight control systems, air bags,

ATMs, mobile phones, televisions, fuel pumps, and infusion monitors. The quality of these

products is an important topic, as quality has direct consequences for people’s lives,

financial situation and happiness. Although most people support the importance of quality

products, our ability to create or guarantee high quality embedded products is not very

well established. Many products are being developed, but their level of quality is often

more due to luck than judgement and sound engineering.

An approach is introduced in this thesis to manage product quality. Explicit, product

driven, customisations of the development process are recommended in tandem with

learning the effects on product quality of these changes. A conceptual model of this

approach is presented and guidelines that can be used to apply this approach in practice

are given. The thesis is rounded of with case-studies, detailing the application of the

recommended approach in an industrial setting.

With this thesis the work in this field is not finished. On the contrary; one of the

conclusions presented in this thesis is that it is currently unclear what the effects on

product quality are of most of the methods, techniques, tools, etc. that are being applied

nowadays to make embedded software products. With this thesis a modest first step is

taken towards a situation in which creating embedded product quality becomes really a

matter of ‘engineering’: a matter of taking specific actions and measuring the results of

these actions. Thus I hope to contribute, be it a small step, towards a situation in which it

is possible to design a specific development process for each embedded product that

results in a guaranteed level of product quality. I sincerely hope that the work presented in

this thesis will be adopted by other people both in industry and academia, so that the work

towards this long term objective will be continued.

vi PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Acknowledgements

This thesis was created over a period of four years, and is based on work that was

definitely not carried out by myself alone. I, therefore, want to use the opportunity to thank

a number of people for their contributions and support. Firstly, my Ph.D. project

committee: Prof. Dr. Theo Bemelmans, Prof. Dr. Ir. Aarnout Brombacher, Prof. Dr. Rob

Kusters, and Dr. Ir. Jos Trienekens, without whom this work would never have been

started, carried out, or finished.

Secondly, I would like to thank my supervisor at Schlumberger RPS/Tokheim: Erik

Rodenbach, who provided me with a context in which I could freely test all the ideas,

concepts and guidelines developed throughout the whole period. I want to thank him for

this opportunity, his supervision and support, and also thank him for the fun we had

sharing an office. In addition, I thank all my Schlumberger RPS/Tokheim colleagues who

participated in the work presented in this thesis. It is impossible to thank everyone

individually, however, in particular I want to thank: Frank Simons, Wim van der Bijl,

Henry van den Boogaert, Tjeerd Böttcher, Frans Heesters, Marc Lessage, Johan

Couwenberg, Frans ‘$narfø’ van Beers and Erich Sigrist.

Three persons were mainly responsible for motivating me to start this Ph.D. project: Egon

Berghout, Michiel van Genuchten and Frank van Latum. I am grateful for their support,

insights, knowledge transfer and co-operation during the past years. I hope that we will

continue this co-operation in the future. Egon receives a very special thanks. Not only for

the very fruitful and productive co-operation of the past years, but also for his work during

the editing process of the final draft of this thesis, which he did for me while I was taking a

three month round the world holiday.

I want to thank all my colleagues involved in the (international) research and co-operation

projects in which I participated and with whom I could share ideas. I am very grateful for

their co-operation, they are: Andreas Birk, Pieter Derks, Janne Järvinnen, Frank van

Latum, Prof. Markku Oivo, Günther Ruhe and Hans Wijnands. Furthermore I want to

thank Adriana Bicego, Adrian Cowderoy, Christiane Gresse, Dirk Hamann, Jorma

Hirvensalo, Barabara Hoisl, John Jenkins, Munish Khurana, Seija Komi-Sirvio, Pasi

Kuvaja, Dietmar Pfahl, Prof. Dieter Rombach, Mattias Vierima and all those people I have

not mentioned from the PROFES, SPIRITS, ESSI/CEMP and SPACE-UFO projects.

I thank all the master of science students, from Eindhoven and Delft University of

Technology, who supported this research by bringing their graduation work in line with

viii PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

my Ph.D. project: Roy de Jonge, Erik Kooiman, Hans Leliveld, Shyam Soerjoesing, Paul

Stalenhoef, Arnim van Uijtregt, Stephan van Uijtregt and Niels van Veldhoven.

Thanks to my unforgettable university (ITQM) and room mates: Teade Punter, Erik van

Veenendaal, Mark van der Zwan and Sjaak ‘MP3’ Bouman. Furthermore thanks to all my

colleagues in the ‘Information and Technology’ section, especially to Frans ‘lacheman’

Mouws, Bas Vermeer, Roel van de Berg, Monique Jansen, Mark Eeuwe, Ramon Caanen,

Tom Dolan, Remco Helms and Frank Berkers.

Special thanks are due to Ineke Withagen for helping me out with the final editing of the

manuscript, and to Miranda Aldham-Breary for removing the Dutch from my English,

pointing out all the ‘personifications’. This thesis takes, however, full responsibility for

any that remain.

Finally, thanks to all my friends and family. They supported me all along the journey, paid

attention to all my (often boring) stories, and provided an important stimulus for me to

finish this work. Their support has been a very important foundation of this end result,

although they may not be aware of this.

A very special thanks goes to my parents, who equipped me with the notion that a solid

education is a firm basis for a bright future. I want to express my gratitude by dedicating

this thesis to them.

Last but definitely not least, I thank my wife Patricia for her endless support and

confidence, and for regularly reminding me that I work to live, and not the other way

around.

Many thanks to all of you!

Rini van Solingen

Eindhoven, The Netherlands, December 14, 1999

Table of Contents

PREFACE v

ACKNOWLEDGEMENTS vii

1. INTRODUCTION AND PROBLEM DEFINITION 1

1.1 Embedded Products 1

1.2 Embedded Product Quality 4

1.3 Problem definition and research objective 6

1.4 Conclusions and thesis outline 6

2. RESEARCH METHODOLOGY AND APPROACH 9

2.1 Methodology 9
2.1.1 The role of case-studies within applied research 9

2.1.2 Validity of case-study results 11

2.1.3 Validation within the case-studies of this research 13

2.2 Approach 14

2.3 Scope 15
2.3.1 Focus on embedded products 15

2.3.2 Focus on improvement of embedded software development processes 15

2.3.3 Focus on integration of measurement into SPI 15

2.3.4 Operationalisation of product quality to project level 16

2.3.5 Not a ‘quality culture’ thesis 16

2.3.6 No solution to resistance to change in general 16

2.3.7 Not a CMM thesis 16

2.4 Assumptions 17

2.5 Conclusion 17

x PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

3. EMBEDDED SOFTWARE PROCESS AND PRODUCT
QUALITY 19

3.1 Introduction 19

3.1.1 History of software and software engineering 19

3.1.2 Characteristics of software 20

3.1.3 Characteristics of software engineering 20

3.1.4 Definition of quality 21

3.1.5 Co-ordination of input, process and output 23

3.2 Product orientation towards software product quality 23

3.2.1 ISO 9126 standard for software product quality 24

3.2.2 Product quality evaluation 25

3.2.3 Embedded product architecture and product quality 27

3.2.4 Problems with product oriented approaches towards software quality 28

3.3 Process orientation towards software product quality 28

3.3.1 Problems with process oriented approaches towards software quality 29

3.4 Measurement of process and product quality 30

3.4.1 Measurement of software products 32

3.4.2 Measurement of software processes 33

3.4.3 Goal/Question/Metric measurement 34

3.5 Conclusions 35

4. SOFTWARE PROCESS IMPROVEMENT 37

4.1 Introduction 37

4.2 Software Process Improvement Methodologies 37

4.2.1 Capability Maturity Model (CMM) 37

4.2.2 ISO 9000 39

4.2.3 BOOTSTRAP 40

4.2.4 SPICE 42

4.3 Experiences with using SPI in practice 43

TABLE OF CONTENTS xi

4.4 Strengths and weaknesses of SPI methodologies for embedded software 44

4.4.1 S-1: Based on best practices 44

4.4.2 S-2: Provides a vision 45

4.4.3 S-3: Management tool for improvement 45

4.4.4 S-4: Changes are prescribed 45

4.4.5 S-5: Explicit priority to quality 45

4.4.6 W-1: Product quality not addressed 45

4.4.7 W-2: Lack of measurement 46

4.4.8 W-3: No cost/benefit analysis included 46

4.4.9 W-4: Too generic 46

4.4.10 W-5: No project level support: mainly for large organisations 47

4.4.11 W-6: Continuation difficult 47

4.4.12 W-7: Dependency on individual managers 47

4.4.13 W-8: Phasing not logical 48

4.4.14 W-9: Improvement takes long 48

4.4.15 W-10: Risk for bureaucracy 48

4.5 Towards product focused SPI 48

4.5.1 C-1: Product focused SPI specifies product quality explicitly 49

4.5.2 C-2: Product focused SPI relates explicitly to product quality 49

4.5.3 C-3: Product focused SPI uses ‘best practices’ 49

4.5.4 C-4: Product focused SPI supports individual projects 49

4.5.5 C-5: Product focused SPI measures both the process and the product 49

4.5.6 C-6: Product focused SPI measures costs and benefits of its activities 50

4.6 Conclusions 50

5. CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 51

5.1 Necessary expansions for product focused SPI 51

5.1.1 Specifying product quality 51

5.1.2 Configuring project specific processes depending on product quality 52

5.1.3 Modelling of product-process relationships 52

5.1.4 Measuring product and process quality 53

5.1.5 Conformance of the four expansions to the product focused SPI criteria 53

5.2 Towards a conceptual model 55

xii PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

5.3 Requirements Engineering 55

5.3.1 Relevance of requirements engineering 57

5.3.2 Practical experiences with requirements engineering 57

5.3.3 Refined definition of requirements engineering 59

5.3.4 Focused exploration of literature on requirements engineering 60

5.3.5 Summary on requirements engineering 61

5.4 Process Engineering 61

5.4.1 Relevance of process engineering 62

5.4.2 Practical experiences with process engineering 62

5.4.3 Refined definition of process engineering 64

5.4.4 Focused exploration of literature on process engineering 65

5.4.5 Summary on process engineering 66

5.5 Measurement Programme Engineering 66

5.5.1 Relevance of measurement programme engineering 67

5.5.2 Practical experience with measurement programme engineering 68

5.5.3 Refined definition of measurement programme engineering 70

5.5.4 Literature on measurement programme engineering 70

5.5.5 Summary on measurement programme engineering 72

5.6 The RPM Conceptual model 72

5.6.1 Strengths of SPI compared to the conceptual model 75

5.7 Need to investigate learning theory 76

6. LEARNING: THE BASIS OF IMPROVEMENT 79

6.1 Restricting learning concepts 79

6.1.1 Individual learning 80

6.1.2 Group learning 81

6.1.3 Proposed incorporation of learning concepts in the RPM model 84

6.2 Improving the RPM conceptual model 85

6.2.1 Adjusting the RPM model based on learning theory 86

6.2.2 The expanded conceptual model 88

6.2.3 Operationalising the learning processes in the conceptual model 90

6.3 Learning Enablers 90

TABLE OF CONTENTS xiii

6.4 Learning Disablers 93

6.5 Learning within the RPM working areas 94

6.6 Conclusion 100

7. GUIDELINES FOR PRODUCT FOCUSED PROCESS
IMPROVEMENT 101

7.1 Guidelines for Requirements Engineering 101

7.1.1 Guidelines on Requirements Engineering inputs 104

7.1.2 Guidelines on Requirements Engineering processes 106

7.1.3 Guidelines on Requirements Engineering outputs 107

7.2 Guidelines for Process Engineering 110

7.2.1 Guidelines on Process Engineering inputs 111

7.2.2 Guidelines on Process Engineering work processes 112

7.2.3 Guidelines on Process Engineering outputs 114

7.3 Guidelines for Measurement Programme Engineering 115

7.3.1 Guidelines on Measurement Programme Engineering inputs 116

7.3.2 Guidelines on Measurement Programme Engineering work processes 117

7.3.3 Guidelines on Measurement Programme Engineering outputs 119

7.4 Conclusions 121

8. INDUSTRIAL APPLICATION OF THE RPM APPROACH 123

8.1 Introduction 123

8.2 Case-study procedure 123

8.2.1 Requirements Engineering case-study procedure 124

8.2.2 Process Engineering case-study procedure 125

8.2.3 Measurement Programme Engineering case-study procedure 126

8.3 Schlumberger RPS/Tokheim 128

8.4 Tokheim WWC-project 128

8.4.1 Experiences with Requirements Engineering 129

8.4.2 Experiences with Process Engineering 131

xiv PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

8.4.3 Experiences with Measurement Programme Engineering 131

8.4.4 Experiences with applying the RPM approach 133

8.5 Tokheim OPT-project 134

8.5.1 Experiences with Requirements Engineering 135

8.5.2 Experiences with Process Engineering 136

8.5.3 Experiences with Measurement Programme Engineering 136

8.5.4 Experiences with applying the RPM approach 138

8.6 Tokheim Omega-project 139

8.6.1 Experiences with Requirements Engineering 139

8.6.2 Experiences with Process Engineering 140

8.6.3 Experiences with Measurement Programme Engineering 142

8.6.4 Experiences with applying the RPM approach 144

8.7 Dräger Medical Technology 144

8.8 Dräger Medical Technology BSW project 145

8.8.1 Experiences with Requirements Engineering 145

8.8.2 Experiences with Process Engineering 145

8.8.3 Experiences with Measurement Programme Engineering 146

8.8.4 Experiences with applying the RPM approach 146

8.9 Benefits of RPM application in the case-studies 147

8.9.1 Benefits of Requirements Engineering 148

8.9.2 Benefits of Process Engineering 148

8.9.3 Benefits of Measurement Programme Engineering 149

8.9.4 Indirect benefits 150

8.10 Cost of RPM application in the case-studies 151

8.11 Are the benefits worth the cost? 152

8.12 Validity of the case-study findings 153

8.12.1 Contribution of RPM 153

8.12.2 Addressing the right product quality goals 154

8.12.3 Validity of the guidelines 154

8.12.4 Overall validity conclusion 155

8.13 Conclusion 155

TABLE OF CONTENTS xv

9. CONCLUSIONS AND RECOMMENDATIONS 157

9.1 Conclusions regarding product focused SPI in general 157

9.2 Conclusions regarding the RPM model 159

9.3 Conclusions regarding the RPM guidelines 163

9.4 Final conclusions 163

9.5 Recommendations for further research 165

9.6 Epilogue 166

APPENDIX A 167

REFERENCES 171

SAMENVATTING (SUMMARY IN DUTCH) 181

ABOUT THE AUTHOR 187

INDEX 189

1. Introduction and Problem

Definition

The relationship between software development processes and embedded product quality

is dealt with in this thesis. Software development processes are often changed in an

attempt to increase product quality, costs and throughput time (duration); however, the

exact impacts of the specific process changes on the quality of the product are then

unclear. The aim of this thesis is to provide a solution towards product focused software

process improvement, in such a way that the quality of an embedded product can be

controlled through specific improvements of the software development process.

1.1 Embedded Products

Life today is heavily dependent on software. Examples of software applications include:

word processors, spreadsheets, e-mail and Internet applications. When using such

applications it is quite clear that one is working with software; however, there is also a

large amount of software incorporated in (electronic) products and these are widely

present in today’s world. Such products include mechanical, hydraulic and electronic

machinery with a processor and embedded memory chips. These chips contain certain

control instructions, which is termed ‘software’. Software for such products is commonly

known as ‘embedded software’ and the whole product is termed an ‘embedded product’.

Examples of embedded products include: cellular phones, televisions, microwave ovens,

petrol-pumps, cars, coffee machines, clocks, medical equipment and payment terminals.

Embedded products range from single products to mass produced items, from 1 dollar

products to 1 million dollar products, from single user to thousand user products, from

product life times of 3 months to several decades, from single input and output to multiple

input and output products. Embedded products are used throughout society by many

different users, for many different purposes and in many different domains.

An embedded product is defined in this thesis as a physical entity consisting of hardware

and software that performs a function that results in specific output data, based on specific

input data. This product fulfils a dedicated function for which it is of no interest to the user

whether certain functionality is implemented in software or in hardware. Although the term

‘embedded system’ is also often used, the term is not used in this thesis explicitly, because

‘systems’ are also considered to contain people, experiences, procedures, etc., which are

not addressed by this thesis when talking about an embedded product.

2 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

The characteristics of embedded products are [Downes and Goldsack 1982][Kündig

1986][Taramaa et al. 1997]:

• Long operation is required; operation of more than ten years is often standard.

• Device autonomy, the product fulfils an unchangeable autonomous function.

• Reliability of the software is crucial. A first version is not allowed to contain faults

that cause fatal failures, since replacing software in thousands of already sold

products is costly, if not impossible.

• Delivery of embedded products is time critical. Deadlines are important.

• Cost of the product is important for mass markets. Small product cost reductions

may result in huge cost savings due to economy of scale.

• Low-level and high-level software implementation technologies co-exist.

• Many embedded products are subject to extreme environmental conditions, such as

heat, humidity, temperature changes, etc.

• The amount of software incorporated in embedded products grows fast.

• The product consists of parallel functions and processors, combined with many

input and output functions, all in real-time application.

• Maintainability and extendibility through new functions, technologies and

interfaces are often required.

• Interfaces and communication with other systems or embedded products are

extremely important.

• There is a close connection but strict separation between software and hardware

inside the product. Users, however, have no need to distinguish this separation:

users consider an embedded product to be one single system.

It is not necessary that a product complies to all these characteristics before it can be

classified as an embedded product. Certain products can fall into the grey area, for which

it is not fully clear whether they are an embedded or non-embedded product. Take for

example a supermarket cashing system, which consists of software that runs on a personal

computer. Some will argue that this is not an embedded system, because software can be

added or replaced using the personal computer. Others will point to the dedicated use of

this computer as a cashing device, which is not changeable by the user, and therefore

classify it as an embedded product. Carrying out such discussions to reach agreement on

whether a certain product is embedded or not, is not the purpose of this thesis. It is not the

aim of this thesis to define a cross-boarder between embedded and non-embedded

products, the intention is to resolve some problems that are clearly relevant in the

embedded product domain. So, if there is a need to improve product quality then this

thesis will be useful, and if the product at hand complies to (some of) the embedded

product characteristics than the product can be considered to be an embedded product.

INTRODUCTION AND PROBLEM DEFINITION 3

1.1.1 Embedded software

‘Embedded software is software, which determines the functionality of microprocessors

and other programmable devices that are used to control electronic, electrical and

electromechanical equipment and sub-systems. The programmable devices are often

‘invisible’ to the user’ [TickIT 1995].

The role of embedded software in products and services is increasing tremendously.

Software design is becoming the most effort-consuming task during the development of

embedded products. Take for example a television set: the effort spent to develop a new

generation of televisions has been shown to consist for more than 70% of software

development resources [Rooijmans et al. 1996]. Or take for example cellular GSM

phones: currently over 1 Mbyte of software is included in a GSM phone (Figure 1-1). This

amount of software shows an increase by a factor 10 for cellular phones over the last 12

years [Karjalainen et al. 1996]. Note that this is a factor 10 for each 1000 days. This is

both a large and fast increase in the amount of embedded software.

Generation System type Example system Software size

1984: 1
st Analogue Nordic mobile phone system (NMT) some Kbytes

1988: 2
nd Analogue NMT tens of Kbytes

1992: 1
st Digital Global system for mobile

telecommunications (GSM)
hundreds of Kbytes

1996: 2
nd Digital GSM about one million bytes

Figure 1-1: Role of embedded software in mobile phones [Karjalainen et al. 1996]

A powerful benefit of software is that it creates the possibility to provide products with

functionality that was not feasible before. Technically, almost all the features could be

built purely in hardware, however the costs for such features was simply too high, software

changes this; additional features that can be implemented using software do not increase

the production costs of an embedded product. The costs of the hardware remains the same,

but the total amount of functionality that can be sold increases, and software (once

developed) costs nearly nothing.

A benefit of embedded software is also that hardware problems or hardware defects can be

resolved using software solutions. Design mistakes in hardware are expensive to resolve,

as designs must be updated, production settings must be changed or dedicated chips must

be designed and produced. Software is, therefore, often used to fix hardware problems.

The increase in software application implies a rigorous change in the development of

embedded products. There is a shift going on from mainly hardware product development

to mainly software product development. Embedded product development is not just

hardware development with some added software. Embedded product development

4 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

becomes mainly software development with some hardware development going on in

parallel. This change, impacts organisations that develop embedded products highly. Past

knowledge on embedded product development becomes obsolete, while knowledge on

software development is lacking. Although many techniques are available to develop

software, their applicability in the embedded product domain is still unclear. The past

excellence of industry in developing high quality products is likely to deteriorate, because

the way of working will change drastically. The embedded product industry must learn to

manage the new situation by increasing their focus on software development and finding

out how to be successful in this area. Guaranteeing high quality products is becoming

more and more difficult as the application of embedded software increases.

The amount of functionality and complexity of software in embedded products is growing

rapidly. Apparently this is not a gradual change, but a paradigm shift [Gal and Genuchten

1996] [Sol 1995]: the electronics industry is becoming a software industry. Suppliers that

have many decades experience in their traditional market domain, such as automobiles,

consumer electronics, or petroleum retail, are increasingly becoming ‘software suppliers’.

Most suppliers, who until recently developed dedicated products for a dedicated market,

are confronted with new players in their market that have no history in that domain.

Embedded products bring about a move towards open systems [Gal and Genuchten 1996],

in which software can be sold independently from the hardware. In the future it might be

likely to buy a television by buying the hardware from one supplier, the audio control

software from a second, and the Internet and video software from a third.

1.2 Embedded Product Quality

The quality of embedded products is a relevant topic as more embedded software is

incorporated in life-vital applications: energy supply, transport, telecommunications,

health care, etc. The quality of embedded products is based on the quality of the hardware

and the quality of the software; however, good hardware quality and good software quality

is no guarantee for overall quality of the embedded product. The whole is more than the

sum of its separate parts.

In the above paragraphs it has been indicated that embedded product quality is a relevant

topic for research because society is highly depending on the quality of embedded

products. Take for example pacemakers, cars, aeroplanes and powerplants as examples of

embedded products and the relevance of quality embedded products becomes clear.

Society and peoples lives often depend highly on good quality embedded products.

Furthermore, the quality of these products is at risk, because time and costs are easier to

measure and manage, and this can cause product quality to be at risk.

INTRODUCTION AND PROBLEM DEFINITION 5

The emphasis on embedded product quality is often refocused onto the development

process of these products. The reason for this is that quality is created during a

development process. Quality is not something that happens by accident, nor can it be

brought in afterwards [Gilb 1994] [Humphrey 1989]. Specific actions need to be taken

during the development process to create quality embedded products. The focus on

creating quality embedded products is therefore often on managing the development

process in an appropriate way.

Managing the development of quality embedded products is both a relevant and difficult

issue. Some reasons for this are:

• Embedded product development is a complex discipline. It is a combination of

several engineering disciplines: mechanics, hydraulics, electronics and informatics,

but also ergonomics, marketing and economics. Combining disciplines means that

experts from different fields must cooperate and this may cause communication

difficulties and mistakes with consequent lower quality.

• Product quality is difficult to measure. Few objective embedded product quality

metrics exists. In some cases, quality is defined as the number of defects found in

the product, which is just one indicator of product quality. Even though measuring

embedded product defects is already a difficult task in practice, product quality is

much more than just defects, for which appropriate metrics and norms are not

available and therefore not used.

• Product quality is difficult to define. Many subjective opinions are involved in

deciding what is good quality or not. Product quality is multi dimensional: it means

different things for different people. Capturing all these views on product quality

into one single definition is often impossible.

• Traditional process quality approaches do not work. Such repeatable approaches

mainly come from manufacturing where ‘statistical process control’ is used to

manage product quality; however, embedded product development, and especially

embedded software development, does not follow a repeatable process. The

process of developing an embedded product is different every time. Direct links

between process and product quality have only occasionally been proved; this

relationship is mainly an assumption.

• Rapid technological innovation makes it impossible to learn technologies

thoroughly. Once a new technology has been applied for the first time and its

characteristics have been learned, new technologies are adopted, and the

knowledge of the previous technology may become obsolete. This does not mean

that adopting new technologies is wrong. It simply identifies that it is difficult to

manage product quality when the characteristics of a technology are unknown.

6 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

• Product costs and delivery times are often subject to discussion and negotiation,

while quality is included as a pre-requisite; however, cutting costs and shortening

development cycles also impact process actions that are linked to product quality.

The impact of costs and time on quality however, are unclear, which complicates

the trade-off discussion.

In current software engineering theory and practice solutions to embedded product quality

are sought by focusing on the development process. This is a legitimate way of working,

since the development process creates quality; however, the detailed impact of the process

on product quality is unknown.

1.3 Problem definition and research objective

The problem addressed in this thesis is the quality issue of embedded software. This issue

is related to defining embedded product quality, developing such products, and measuring

whether a quality product is being developed or not.

In this thesis the relationship between the development process and product quality is

investigated. Investigating the way in which the relationship between the process view and

the product view exist, was expected to lead to a better managerial concept for embedded

product quality.

The objective of this research was to develop a conceptual model for process improvement

for embedded product development. Starting from this conceptual model a set of

guidelines will be proposed that support improving embedded product quality. Using this

conceptual model and the guidelines, the software development processes can be

configured and tuned in such a way that this process will contribute most efficiently and

effectively to the product quality objectives.

1.4 Conclusions and thesis outline

Embedded products are integrated into daily life on all kinds of levels and in all kinds of

situations. The quality of these products is an important topic, as it has direct

consequences for people’s lives, financial situation and happiness. Although the

importance of good quality embedded products is supported by most people, creating or

guaranteeing quality is not well established. It is the intention that this thesis will

contribute to this problem by developing an approach to manage product quality through

explicitly making product-driven customisations to the development process.

INTRODUCTION AND PROBLEM DEFINITION 7

Figure 1-2 depicts the outline of this thesis. The thesis is divided into five parts:

• Part 1: Problem identification and research approach

• Part 2: Process and product quality improvement

• Part 3: Concepts for product focused SPI

• Part 4: Practical application of product focused SPI

• Part 5: Conclusions

Chapter 1: Introduction and
problem definition

Chapter 2: Research methodology
and approach

Part 1: Problem identification and
research approach

Chapter 3: Embedded software
process and product
quality

Chapter 4: Software process
improvement

Part 2: Process and product quality
improvement

Chapter 5: Conceptual model for
product focused SPI

Chapter 6: Learning: the basis of
improvement

Part 3: Concepts for product
focused SPI

Chapter 7: Guidelines for product
focused SPI

Chapter 8: Practical application of
the RPM approach

Part 4: Practical application of
product focused SPI

Chapter 9: Conclusions and
recommendations

Part 5: Conclusions

Figure 1-2: Outline of this thesis

In the first part of this thesis, an initial exploration of the problems involved with creating

high quality embedded products is provided. Furthermore, the approach used to structure

this research is presented, and the decisions made to establish validity of the research

results are discussed. The problem addressed in this thesis is based on signals from

industry and insights from literature. It identifies the difficulty of creating embedded

software and embedded product quality and identifies the need to explicitly link process

quality to product quality (Chapter 1). The approach of this research is classified as

‘applied research’ with the aim to interfere with industrial practice to solve the signalled

problems. A set of case-studies is used, for the validation of the designed solution, which

is expected to result in externally and internally valid results (Chapter 2).

Quality improvement of embedded software products and development processes is the

theme of the second part. The current state of practice and literature on embedded

software process and product quality, and software process improvement approaches is

presented in this second part. Based on an analysis of this current situation the problem

definition is refined and specified in detail. Chapter 3 starts with an overview of the

structural problems with software quality and their causes, followed by an overview of

embedded software quality literature. This overview is subdivided into a process

orientation, product orientation and measurement of these orientations. The reason to

8 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

focus on improving development processes to create product quality is clarified. This is

the reason that the current state of approaches for software process improvement (SPI) is

also presented, (Chapter 4). Based on the available approaches for SPI and the

requirements for the embedded product domain, an analysis of strengths and weaknesses

of the existing approaches is made. A selection from these weaknesses is made that will be

solved within this thesis, and a set of criteria is defined to which an approach for ‘product

focused SPI’ should comply.

In the third part of this thesis such an approach is developed. A conceptual model for

product focused SPI is designed that complies to the criteria set in chapter 4. First of all, a

set of expansions to existing SPI approaches is presented that match the criteria for

product focused SPI, and these expansions are used to design a conceptual model that is

elaborated in detail regarding available literature and practical experiences (Chapter 5).

Furthermore, it is concluded that product focused SPI requires strong learning effects and

therefore learning theory is explored. Based on findings in learning theory the conceptual

model is expanded and learning enablers for product focused SPI are presented with

detailed practical examples (Chapter 6).

The fourth part of this thesis contains the application of product focused SPI in practice.

Therefore, a set of practical guidelines is provided for applying the conceptual model, and

detailed experiences are presented from the case-studies in two international companies. In

chapter 7, detailed guidelines are provided for each of the three working areas of the

conceptual model. These guidelines and the conceptual model have been used in four

industrial case-studies of which the detailed findings and experiences are described,

together with an analysis of the benefits and costs (Chapter 8).

The final part of this thesis contains a chapter on conclusions and recommendations

(Chapter 9). Conclusions are presented on product focused SPI in general, the conceptual

model and the guidelines. Furthermore, some recommendations are provided for further

research on the topic presented in this thesis, and an epilogue is provided that looks back

on the research as a whole.

How to read this book largely depends on the personal interests of the reader; however,

four possible paths are recommended (Figure 1-2). When interested in the current state of

product and process quality for embedded product development it is recommended to read

parts 1, 2 and 5. When interested in the concepts of product focused SPI and learning

oriented process improvement, it is recommended to read parts 1, 3 and 5. Furthermore, if

the reader is a practitioner that wants to apply product focused SPI it is recommended to

read parts 1, 4 and 5, and to at least scan part 3. Finally, for those people closely interested

in the whole research, it is recommended to read part 1 to 5 sequentially.

2. Research Methodology and

Approach

A methodological overview of this thesis is provided in this chapter. A presentation is

given of the methodological justification of this research, and the approach undertaken.

Furthermore, the scope of this research is presented and the main assumptions on which it

is based.

2.1 Methodology

In management science and related disciplines two main streams of research are

distinguished [Verschuren and Doorewaard 1995] [Renkema 1996]1: ‘theoretical research’

and ‘applied research’. The first stream is mainly observing phenomena, and attempting to

find generic theory. Solving theoretical problems are the main outcomes of this type of

research. The second stream is interfering in practice and attempting to solve practical

problems by designing theoretically sound solutions. Both streams have the objective to

develop valid theories, however the first stream does this via ‘describing’, and the second

via ‘designing’.

2.1.1 The role of case-studies within applied research

This research is of the second type: applied research. An approach is designed in this

research with the intention to solve some specific problems in practice. The approach

designed in this thesis is used to take specific action in industrial practice and to observe

whether this interference solves the problems. Some people might argue that such an

approach does not result in scientific knowledge, because it only takes specific action to

solve specific problems. In this research, however, a generic problem is addressed in a

certain domain, and the research is designed as such that the proposed solution is valid

within that domain. It therefore results in ‘design knowledge’. The main methodological

instrument for the development of such design knowledge is the ‘reflective cycle’ [Aken

1994].

1 Different terms are often used for these two types of research. Theoretical research is also referred to as

empirical-analytic, fundamental, descriptive, purely scientific, or explanatory research. Applied research is also

referred to as design, action, or intervention research.

10 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Selection of
case class

Selection of
case

Identify design
knowledge

Reflection on
results

Regulative
cycle

Figure 2-1: The reflective cycle of research [Aken 1994]

The reflective cycle is an add on to the regulative cycle [Strien 1986]. This regulative

cycle is used to perform a study that consists of three characteristic phases [Renkema

1996]: a problem definition and diagnostic phase, a design and change phase, and an

evaluative phase. During the regulative phase a study is carried out in a practical context,

during which action is taken to solve a specific problem, and the effects of the action are

observed and evaluated. During the reflective cycle, knowledge is identified that can be

abstracted from the regulative cycle [Aken 1994].

Case-studies are a sound research technique during the regulative cycle. Case-studies are

most useful to perform research to answer ‘how’ and ‘why’ questions, which do not

require control over behavioural events, and which focus on contemporary events [Yin

1994]. In other words, when performing research in a practical context and clarifying

‘how’ and ‘why’ phenomena occur and interrelate, case-studies are preferred. Case-studies

are mainly performed for two purposes:

• discovery: identifying phenomena in practice and observing causal relationships,

events, etc. [Lammers 1997] [Hutjes and Buuren 1992]

• validation: checking whether certain theories are correct [Yin 1994] [Zwaan 1998]

Most literature on research methodology mainly suggests using case-studies for the first

purpose; however, the value of the second purpose is often underestimated: case-studies

can be used to validate the theoretical correctness of an approach [Yin 1994] [Zwaan

1998]. The validity of case-study results will be discussed in more detail, because in this

research case-studies were applied as the main validation technique.

RESEARCH METHODOLOGY AND APPROACH 11

2.1.2 Validity of case-study results

Validity is the term used to test the ‘quality’ of research results. Two types of validity are

relevant for this methodological discussion [Kidder and Judd 1986] [Yin 1994]:

• ‘internal validity’, establishing causal relationships, whereby certain conditions are

shown to lead to other conditions, to distinguish them from false relationships

• ‘external validity’, establishing the domain to which the findings of a study can be

generalised

Internal and external validity are related. Internal validity addresses observing causal

relationships under certain conditions, while external validity addresses the domain within

which these causal relationships are correct. In the previous section it was stated that case-

studies are internally valid: a case-study is an excellent mechanism for the regulative cycle

and for studying causal relationships within a specific context. External validity is,

however, not so obvious because the validity of the knowledge is limited to the context in

which such a causal relationship was observed. It is difficult to predict from the results in

one context what the results will be in another. In other words, it is not clear to which

extend case-study results are generic, and what needs to be done to make case-study

results as generic as possible. This section discusses the generalisability of case-studies, by

comparing them to experiments: a research technique that is considered to be highly

externally valid.

External validity of causal relationships is ideally shown by using experiments

[Verschuren and Doorewaard 1995] [Yin 1994]. In an experiment two equal contexts are

created of which one is held constant and in the other an independent variable is changed.

The impact of this change on the dependent variables is observed and used to accept or

reject the stated hypotheses. The main reasons for selecting experiments as validation

instrument is its sound comparison possibilities. Results in a stable context are compared

with results in an other context in which variables are manipulated. The correctness of the

causal theory is investigated by means of ‘falsification’: it is attempted to reject a theory

[Popper 1968]. If the theory can not be rejected it can remain; therefore, validation of

theories is based on creating a context in which validation of a theory is possible. Doing

this with experiments requires a rigorous control over the studied contexts [Zwaan 1998].

To check the correctness of theory in a practical context is therefore often considered to be

impossible, due to the unsuitability of practice for experimentation. A context for

falsification can, however, also be constructed within case-studies, by setting them up in a

‘quasi-experimental’ manner.

12 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

When carrying out case-studies, ‘quasi-experimental’ conditions can often be created

under which comparison is feasible [Cook and Campbell 1979] [Yin 1994] [Zwaan 1998]:

• nested case-studies make it possible that several sub-cases within one case-study

are distinguished that can be compared

• longitudinal case-studies make it possible to compare different similar situations

over time

• multiple case-studies make it possible to compare when the different cases show

similarities on the most relevant conditions

In such quasi-experimental conditions in practice it is possible to validate causal

relationships under externally valid conditions. One main prerequisite is that a set of

selection criteria is defined. The conditions that are crucial for the validation study should

be known and the case-study should comply to them [Aken 1994] [Yin 1994] [Zwaan

1998]. When following this approach, it is possible to create a ‘context for falsification’: a

set of case-studies based on which it is possible to reject a certain theory. When such a

context for falsification is established it becomes therefore possible to accept or reject a

theory based on its practical application.

For the validation of theory with multiple case-studies, two types of case selection are

distinguished that influence the boarders of external validity [Yin 1994]:

• Cases with literal replication. In such cases similar results are predicted. The same

results occur within similar case-studies, thus increasing the likelihood that these

results also occur in other (similar) cases.

• Cases with theoretical replication. In such cases contradicting results are allowed to

occur, but under explicitly stated reasons and predicted results. This constructs

generalisability for a wider scope of cases, thus expanding the domain in which the

results are externally valid.

The last type, theoretical replication, is considered to be the most economical and fruitful

approach for validation via case-studies [Zwaan 1998] [Yin 1994]. When selecting case-

studies an attempt must be made to try to cover the problem domain as best as possible,

and to make individual differences that can be expected in the case-study results explicit.

It is therefore not the objective to select case-studies that have the most in common, but to

select the case-studies that have the most differences within the problem domain. The

differences in these case-studies can influence the different results, but as long as these

different results have been predicted, the approach can still be validated.

RESEARCH METHODOLOGY AND APPROACH 13

2.1.3 Validation within the case-studies of this research

The above stated conditions for an externally valid case-study research design were

applied in the research presented in this thesis. The selection criteria for case-studies

within this research were:

1. The organisation produces embedded products.

2. The organisation has not outsourced the development of the embedded software.

3. Product quality is considered to be an important product objective.

4. The organisation is able to change its software development processes.

5. The software developers are able to spend a portion of their efforts on process

improvement.

An attempt was made to select case-studies that were scattered over the embedded product

domain, to make the results of this research broadly valid. The more diverse the case-

studies are, the better the external validity of the results becomes.

Case-studies were carried out in two organisations: Tokheim and Dräger. Both companies

produce complex embedded products but for two totally different markets: petroleum

retail, and medical equipment. Within Dräger one development project has been

supported, and within Tokheim three development projects. The case-study in Tokheim is

a combination of a nested, longitudinal and multiple case-study design. Three different

projects were guided within one organisation, making it a nested case-study. These

projects were supported sequentially during a period of four years, making it a longitudinal

case-study. Furthermore, these three projects covered all the three product lines of this

company making it a multiple case-study design, with the intention to allow theoretical

replication. Thus, the Tokheim cases provide an excellent mix to compare case-study

results to each other. The Dräger case-study is used to increase external validity by

applying the designed approached in a totally different environment within the embedded

product domain.

In this research, the four mentioned case-studies in two companies were used to validate a

conceptual model and a set of guidelines. These four case-studies were assumed to be a

sufficient mix of different projects within the embedded product domain, and were used as

a context for falsification. If the application of the approach presented in this thesis does

not fail in these case-studies, or if certain inadequacies occurred, but they had been

predicted based on characteristics of these case-studies, then it could be concluded that the

designed approach was externally valid.

14 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

2.2 Research Approach

The approach in which this research was undertaken is presented in this section. Figure 2-

2 shows this order.

Analysis

1. Inventarisation of existing literature, experiences in Tokheim and orienting cases

2. Analysis of problems and current theory

3. Identification of some structural problems in existing SPI approaches

Design

4. (Theoretical) construction of a conceptual product-focused SPI model to remedy these
errors

5. Inventarisation and analysis of learning theory: identification of key issues for product
focused SPI in a development type environment

6. Update of the conceptual product-focused SPI model to include the key issues identified in
learning theory

7. Developing practical guidelines for product-focused process improvement based on the
conceptual model and experiences in Tokheim and Dräger

Validation

8. Validating the practical guidelines through usage of this method in industrial case-studies

9. Analysing the benefits and the costs involved with applying the conceptual model in practice

Figure 2-2: Sequence of steps taken in the research

Firstly, time was spent to analyse existing literature on software process improvement and

embedded product quality. Furthermore, some small exploratory cases were carried out in

Tokheim and experiences were collected. The results of this inventarisation were analysed,

and a set of problems with existing SPI (Software Process Improvement) approaches was

identified for usage in the embedded product domain. Secondly, a solution was designed

to these problems by constructing a conceptual model for product focused SPI. This

conceptual model was enhanced based on findings in learning theory to increase the

learning effects of the conceptual model. Furthermore, a set of guidelines was designed to

support the practical application of the conceptual model in the embedded product

industry. Finally, this conceptual model and the guidelines were validated in the case-

studies. In addition an analysis was made of the benefits and the costs for product focused

SPI when using the approach presented in this thesis.

The analysis part of this research is presented in chapter 3 and 4. The first design of the

conceptual model illustrated with some practical cases is presented in chapter 5. This first

design is enhanced in chapter 6 with learning theory, and operationalised with practical

guidelines in chapter 7. The validation of the conceptual model and the guidelines are

described in chapter 8 together with the cost/benefit analysis.

RESEARCH METHODOLOGY AND APPROACH 15

2.3 Scope

This research has a specific scope, which will be described in this section. Each boundary

of the research is presented separately.

2.3.1 Focus on embedded products

The first limitation is that this research was limited to embedded product development.

Although the concept of product quality improvement by improvement of development

processes is also common outside this domain, the focus of the thesis was embedded

products. This has three main reasons. Firstly, the embedded product domain is a domain

in which the improvement of product quality via a focus on the process is specifically

relevant. Secondly, the embedded product domain is a domain in which different quality

demands exist for products, but the methods do not distinguish different processes for

different product quality demands. Finally, the organisations that were available for case-

studies were all in the embedded product domain.

2.3.2 Focus on improvement of embedded software development

processes

This research was limited to the improvement of the development processes of the

software for the embedded products. Other processes also influence embedded product

quality. For example, the development process of the hardware, but also the manufacturing

processes and the service processes influence the quality perception on the product;

however, this research was only focused on the development processes of the software.

This is done for two reasons. Firstly, the quality of the embedded product is often largely

determined by the quality of the software, as the software largely determines the

functionality of the product, and the development efforts are often largely spent on the

software developments [Rooijmans et al. 1994] [Karjalainen et al. 1996] [Taramaa et al.

1996]. Secondly, the improvement of embedded software development processes is

receiving increasing attention [Trienekens 1994]; however, the impacts of these process

improvements on the product are rarely considered. Therefore, the focus of the thesis is

specifically the software processes for embedded products.

2.3.3 Focus on integration of measurement into SPI

Measurement should be carried out together with SPI approaches [Humphrey 1989]

[Hetzel 1995] [Fenton and Pfleeger 1996]. This is, however, often not done in practice.

Even though this will be further elaborated in chapter 3 and 4, it must be stated that one of

the explicit starting points of this research was to look for possibilities to increase the

integration of software measurement into SPI.

16 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

2.3.4 Operationalisation of product quality to project level

Addressing product quality and process improvement is often an activity that focuses at

the organisational levels. Existing SPI approaches intend to increase the software

processes of the whole organisation; however, the quality of product is largely determined

in the project that develops it. Therefore, this thesis was focused on the operationalisation

of product quality and process improvement approaches to the project level. It was the

intention to make it possible to carry out project specific process improvement

programmes that focus to the project specific product quality goals.

2.3.5 Not a ‘quality culture’ thesis

The focus of this thesis was on providing practical guidelines on ‘what’ to do to improve

product quality. As such, the focus of the thesis is not on topics such as establishing a

quality culture, motivating people, management commitment, implementing Total Quality

Management, etc. This thesis is intended to provide guidelines for practice to be used

within a practical conceptual model for product focused SPI.

2.3.6 No solution to resistance to change in general

Similar to the previous topic, resistance to change is not addressed in general. Much

research has been performed and literature is available on how to change organisations and

how to make sure that the people in those organisations support such changes. This thesis

does not provide material in that domain; however, this thesis does provide practical

guidelines to carry out product focused SPI that have been tested in practice and that did

not cause significant resistance. As such, this thesis is related to change management, but it

is not the main topic.

2.3.7 Not a CMM thesis

Finally, this is not a thesis on the Capability Maturity Model (CMM) [Paulk et al. 1993].

CMM is a widespread method for software process improvement that is used in the

embedded product domain. This thesis does not attempt to validate or expand the CMM as

process improvement framework. This thesis uses the CMM as input to the research and

sees the CMM as an assessment based SPI approach, as discussed in chapter 4.

Experiences with the CMM and its strengths and weaknesses are important inputs to this

thesis. This thesis, however, constructs its own conceptual model for product focused SPI

in which the CMM has its place, but in which shortcomings are also overcome.

RESEARCH METHODOLOGY AND APPROACH 17

2.4 Assumptions

This thesis is written based on four main assumptions:

• There is no ‘silver bullet’ for embedded product quality. It is not possible to

prescribe the right process towards product quality: every organisation should

attempt to find its own situated process for each specific situation. The ‘best’

process for a product will always be a situated one, depending on a multitude of

factors such as customer needs, market, developer experience, process maturity,

etc. This assumption is a contingency-based approach [Galbraith 1977] as starting

point for designing a solution to the problem addressed in this thesis.

• It is possible to control embedded product quality by taking specific actions in the

development process. In this thesis it is assumed that creating product quality is a

matter of selecting the right development process for that specific situation. It is

assumed that product quality can be created by using a specific process. Identifying

what this specific process should be for each situation, is addressed in this thesis.

• Product quality can only be guaranteed if it is specified beforehand. Without the

explicit specification of the product quality demands it is assumed to be impossible

to create a product that is perceived as quality by its users in a predictable manner.

Specification of product quality is therefore a prerequisite to product focused SPI.

• Other factors beside process actions that may influence product quality, such as

people factors, political factors, environmental factors, are assumed not to interfere

with the approach under construction. Such factors have an important impact to

product quality, however this thesis focuses to the impact of the process.

2.5 Conclusion

In this chapter an overview has been provided on the research methodology and research

approach. The generalisability of case-study results was discussed, and the conclusion is

that the selected mix of case-studies in this research has the potential to be externally

valid. Having three multiple, longitudinal and nested cases in one organisation fully

covering all three product types can result in internally and externally valid research

results. A final external validity check in a different organisation for a different product in

the embedded software domain, completes this research and completes the drive for

external validity.

Furthermore, the steps taken in the analysis, design and validation phases of the research

were presented in this chapter, together with the scope and underlying assumptions. Based

on this methodological clarification the presentation of the research results can start,

beginning in the next chapter with an overview of the existing literature of embedded

software process and product quality.

3. Embedded Software Process

and Product Quality

In this chapter the starting points of this thesis on process and product quality are

introduced. Both the product orientation and the process orientation for embedded

software quality are addressed, and furthermore the role of measurement for embedded

software quality is clarified.

3.1 Introduction

Quality has received much attention during the last decades. Several approaches for

quality have been published and used with success [Crosby 1979] [Deming 1986] [Juran

1988]. A closer look on the essential characteristics of embedded software is needed,

because this thesis focuses on the quality of embedded software and its relationship with

the development process. Before these characteristics are considered, a short overview is

provided on the history of embedded software and its application in embedded products.

3.1.1 History of software and software engineering

Today’s world has accepted software as a normal product, and it is used to the application

of software into daily life; however, software differs in many aspects from other products.

This can best be explained by stepping back in time and looking at the history of software

engineering.

Although there were some attempts in the past to create a purely mechanic computer, the

major breakthrough came from the application of electronic computation. Electronic

circuits were constructed, containing only hardware that had one dedicated purpose. Later,

electronic circuits were developed with some flexibility in functioning, by which certain

tuning options of the hardware became possible. It enabled designers to define ‘settings’

for changing the function of the specific hardware. These tuning possibilities expanded

largely, until a machine was built for which the computation could be tuned completely.

As a result, the tuning of this machine became a job in itself: computer programming.

A computer program (the software) was stored on different kinds of media, such as punch

cards, tape, or digital videodisc. In the early days, each computer had its own way of

programming. This evolved into standard ways of programming computers and evolved

into standard hardware components and interfaces: computers became open systems [Gal

and Genuchten 1996].

20 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Together with the standardisation of the hardware and of programming software, major

application of software (and hardware) in society became possible. This evolved into the

current state of practice, which has a large degree of computer and software application.

One should remember from this short historical overview, that software is more or less a

means to tune hardware. As a result of the large tuning possibilities and flexibility of

hardware, software engineering became a discipline in itself, and the results are considered

as a separate product. Let’s take a look at the specific characteristics of software, from this

perspective.

3.1.2 Characteristics of software

Most problems with (embedded) software quality originate from some of its basic

characteristics [Fenton and Pfleeger 1996] [Genuchten 1991] [Gillies 1992] [Basili and

Rombach 1988] [Heemstra 1989]:

• Software is abstract. Software is not a physical entity: it is not possible to see, feel,

taste, hear or smell software. Human senses fail when attempting to detect software.

If a print of a software program is made on paper that can be seen and touched,

merely a static representation of that software is seen and not the software itself.

Only in operation software performs the dynamic functions it is developed for, and

only then its attributes can be appreciated.

• Software is complex. Software code can contain over hundred types of statements,

with over a thousand variables, in a sequence of over one million lines. Branches in

the software make it possible that there are millions of paths to go through a

program. The large number of program lines and exponentially growing number of

program paths, make software complex.

• Software is flexible. Compared to other products that do have a physical existence,

it seems to be easier to change software products. Although this is the largest

strength of software, it is also a weakness. Changes to software can seriously

hamper the architecture of the software, and can make the software totally different

from its initial intention.

• Software properties are difficult to measure. Originating in the absence of a

physical entity, measurement difficulties arise. Software has no weight, volume, or

colour. Visual inspections, which are common for other products, become difficult

when you can only see a representation of software. The measurement difficulty for

software is extremely relevant because measurement is needed to identify quality.

3.1.3 Characteristics of software engineering

The above characteristics of software largely influence the way in which software is

developed. Development of software is termed ‘software engineering’. Specific aspects of

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 21

the software engineering process that are related to software process and product quality

are [Basili and Rombach 1988] [Humphrey 1989] [Shaw 1990] [Genuchten 1991]

[Bemelmans 1998] [Basili 1993] [Oivo 1994] [Basili et al. 1994a] [Glass 1995] [Fenton

and Pfleeger 1996]:

• Software engineering is a creative, intelligent type of work, which highly depends

on well skilled intelligent people. Assigning well-equipped and educated people to

a software project is the most critical success factor reported from industry.

• Software engineering is a relative young discipline, which has existed for only a

couple of decades. As a consequence there is limited knowledge and experience of

‘how’ to develop quality software. Only a few ‘scientific laws’ are available for

software engineering, which indicate that it is a weak ‘engineering discipline’.

• Due to the complexity and abstractness of software, software engineering uses

processes that very often can not be clearly traced to the product. A product is

developed by means of several phases, actions and intermediate products

(documents and software); however, the individual contribution of these process

parts to the final product is often unclear.

These characteristics of software products and software engineering are the basis for many

process and product quality problems for embedded software development. Examples are

planning difficulties, unknown or bad product quality, projects that fail, milestones that are

reached months or years too late, etc.

Industry is often confronted with the above listed characteristics and problems. Developers

are confronted repeatedly with the same questions such as:

• What does ‘good quality’ mean? For whom? When?

• How can it be ensured that the different requirements of different users are all

incorporated in the product to ensure that all users find the product of good quality?

• How to create quality? How to control it during development? What to do to

resolve quality problems?

• What can be done to ensure that product problems are detected before they are

shipped to the users? Or, how can one ensure that product problems are found as

soon as possible?

• How to evaluate whether embedded software is of good quality? How to measure

quality?

• How can it be ensured that the continuous change of the software does not decrease

quality?

3.1.4 Definition of quality

Answering these questions can not be done without a framework to be used to describe

what ‘quality’ actually means. Quality means different things to different people. To define

22 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

quality might seem easy, but it is not. In an industrial context it is necessary to define

quality goals and attributes, and to take appropriate process and measurement actions to

create quality [Trienekens 1994]. Garvin classifies five different definitions of quality

[Garvin 1984]:

• Transcendent based view. A context specific interpretation of quality is defined

which is difficult to measure. It expresses that people are capable of recognising

what they perceive as quality and what not.

• Product based view. It is assumed that product quality can be created by defining

several objective measurable product attributes. Specification of software

requirements in a measurable way, and controlling quality via these measurements,

is expected to result in quality.

• User based view. In this definition the specific stated and implied needs of the user

are addressed. This resembles Juran’s definition of quality: ‘fitness for use’ [Juran

1988].

• Manufacturing based view. Through management of the process and eliminating

flaws and defects, product quality is expected to be controlled. It assumes that

when a product is made exactly according to specification (‘conformance to

requirements’ [Crosby 1979]), the resulting product is of good quality.

• Value based view. In this definition quality is related to other factors such as time,

effort and cost. This definition focuses on balancing quality to these other factors: a

certain quality for a certain price, with a certain life-time, and developed within a

certain time.

These definitions are all used in parallel by the different stakeholders for embedded

products. What should be remembered from these definitions is that selecting just one

definition of quality will not work. For example, a transcendent based definition does not

support a development team of embedded products in creating quality products. On the

other hand, fulfilling all manufacturing requirements for a product and sufficient scoring

on the product quality metrics, does not guarantee that users will experience the product as

good quality. In order to create quality embedded products, all five types of should be

considered.

For embedded software development two orientations on quality can be recognised in

practice. The first is a product orientation, which focuses on specifying and evaluating the

attributes of product quality (product based view), but also addresses the specification of

quality by the actual users (user based view). The second is a process orientation, which

focuses on continuous improvement of the development processes under the assumption

that this will improve the product as well (manufacturing based view). Both orientations

when used in practice balance against costs and time issues (value based view). This

product orientation and process orientation will be elaborated further in this chapter.

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 23

3.1.5 Co-ordination of input, process and output

The fact that both product and process orientations are being used to manage product

quality can be clarified by theory on organisational control. Mintzberg defines five co-

ordinating mechanisms that explain the fundamental ways in which organisations co-

ordinate their work. These five mechanisms are [Mintzberg 1983]:

• mutual adjustment, which achieves the co-ordination of work by the process of

(informal) communication

• direct supervision, which achieves co-ordination by having one person in charge of

the work of others, issuing instructions and monitoring actions

• standardisation of work processes, preferable when the content of the work is well

specified

• standardisation of outputs, preferable when the results of the work can be specified

beforehand

• standardisation of skills and knowledge (inputs), which is done when the other

standardisations are not possible

According to Mintzberg, these five co-ordinating mechanisms fall into an explicit order:

‘As organisational work becomes more complicated, the favoured means of co-ordination

seems to shift from mutual adjustment to direct supervision to standardisation, preferably

of work processes, otherwise of outputs, or else of skills, finally reverting back to mutual

adjustment’ [Mintzberg 1983].

Development of software can be controlled in the same way as organisational control. Co-

ordination based on mutual adjustment in a chaotic environment will be changed towards

an environment that standardises its work processes. One of the main actions by managers

to assure a successful project is to hire good people, with certain skills and knowledge.

Working towards standardisation of work processes and output products is, however, a

logical next step, which clarifies the current focus in the software industry to improve

product quality by orienting on processes and products.

3.2 Product orientation towards software product quality

The product orientation towards software product quality is based on refining quality into

attributes and sub-attributes, using hierarchical product quality models [Gillies 1992].

Product quality standards exist, which refine quality in characteristics and/or sub-

characteristics. Quality characteristics are used as attributes to describe a software product.

Some quality models in which the relationships between the quality characteristics are

determined are described in the literature. Examples can be found in [Cavano and McCall

1978], [Boehm 1981], [ISO 9126 1991] and [Quint 1991].

24 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

3.2.1 ISO 9126 standard for software product quality

For dividing product quality into attributes, the ISO 9126 quality model is used in this

thesis [ISO 9126 1998]. This is an international standard that addresses user-needs of a

product explicitly. In ISO 9126 six quality characteristics are distinguished: Functionality,

Reliability, Usability, Efficiency, Maintainability and Portability. Each of these quality

characteristics is further refined into sub-characteristics. For example the quality

characteristic ‘maintainability’ is divided into five quality sub characteristics:

analysability, changeability, stability, testability and compliance. A common vocabulary is

provided by ISO 9126 to express quality of user needs. An overview of the ISO 9126

standard is presented in Figure 3-1.

Functionality - the capability of the software to provide functions which meet stated and implied
needs when the software is used under specified conditions.

• Suitability -the capability of the software to provide an appropriate set of functions for
specified tasks and user objectives.

• Accuracy - the capability of the software to provide right or agreed results or effects.

• Interoperability - the capability of the software to interact with one or more specified systems.

• Security - the capability of the software to prevent unintended access and resist deliberate
attacks intended to gain unauthorised access to confidential information, or to make
unauthorised modifications to information or to the program so as to provide the attacker with
some advantage or so as to deny service to legitimate users.

• Compliance - the capability of the software product to adhere to standards, conventions, or
regulations in laws and similar prescriptions

Reliability - the capability of the software to maintain the level of performance of the system when
used under specified conditions

• Maturity - the capability of the software to avoid failure as a result of faults in the software.

• Fault tolerance - the capability of the software to maintain a specified level of performance in
cases of software faults or of infringement of its specified interface.

• Recoverability - the capability of the software to re-establish its level of performance and
recover the data directly affected in the case of a failure.

• Compliance - the capability of the software product to adhere to standards, conventions, or
regulations relating to reliability

Usability - the capability of the software to be understood, learned, used and liked by the user,
when used under specified conditions.

• Understandability - the capability of the software product to enable the user to understand
whether the software is suitable, and how it can be used for particular tasks and conditions of
use.

• Learnability - the capability of the software product to enable the user to learn its application.

• Operability - the capability of the software product to enable the user to operate and control it.

• Attractiveness - the capability of the software product to be liked by the user.

• Compliance - the capability of the software product to adhere to standards, conventions, or
regulations relating to usability

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 25

Efficiency - the capability of the software to provide the required performance, relative to the
amount of resources used, under stated conditions.

• Time behaviour - the capability of the software to provide appropriate response and
processing times and throughput rates when performing its function, under stated conditions.

• Resource utilisation - the capability of the software to use appropriate resources in an
appropriate time when the software performs its function under stated conditions.

• Compliance - the capability of the software product to adhere to standards, conventions, or
regulations relating to efficiency

Maintainability - the capability of the software to be modified.

• Analysability - the capability of the software product to be diagnosed for deficiencies or
causes of failures in the software, or for the parts to be modified to be identified.

• Changeability - the capability of the software product to enable a specified modification to be
implemented.

• Stability - the capability of the software to minimise unexpected effects from modifications of
the software.

• Testability - the capability of the software product to enable modified software to be validated.

• Compliance - the capability of the software product to adhere to standards, conventions, or
regulations relating to maintainability

Portability - the capability of software to be transferred from one environment to another.

• Adaptability -the capability of the software to be modified for different specified environments
without applying actions or means other than those provided for this purpose for the software
considered.

• Installability - the capability of the software to be installed in a specified environment.

• Co-existence - the capability of the software to co-exist with other independent software in a
common environment sharing common resources.

• Replaceability - the capability of the software to be used in place of other specified software
in the environment of that software.

• Compliance - the capability of the software product to adhere to standards, conventions, or
regulations relating to portability.

Figure 3-1: ISO 9126 standard for quality characteristics and sub-characteristics [ISO 9126 1998]

3.2.2 Product quality evaluation

The ISO 9126 standard can be used for product quality evaluation. Evaluations of a

software product must be objective - based upon observation, not opinion. They should be

reproducible. Evaluation of the same product to the same evaluation specification by

different evaluators should produce results that can be accepted as identical and

repeatable. To do so, procedures for project control and judgement are necessary; an

evaluation process is required. Such an evaluation process was defined during the

‘SCOPE’ project [Robert 1994]. This project was the basis for the international standard

ISO 14598, which is visualised in Figure 3-2. The standard also distinguishes three

perspectives on evaluation: developer, acquirer and evaluator.

26 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Analysis Specification Design Execution

Process for
Developers

14598-3

definition of
quality
requirements and
analysis of their
feasibility

quantification of
quality
requirements

planning of
evaluation during
development

monitoring of quality
and control during
development

Process for
Acquirers

14598-4

establishing
purpose and
scope of
evaluation

defining the
external metrics
and corresponding
measurements to
be performed

planning,
scheduling and
documentation of
evaluation

evaluation shall be
performed,
documented and
analysed

Process for
Evaluators

14598-5

describing the
objectives of the
evaluation

defining the scope
of the evaluation
and the
measurements

documenting the
procedures to be
used by the
evaluator

obtaining results from
performing actions to
measure and verify
the software

Figure 3-2: ISO 14598 definition of evaluation process [ISO 14598 1996]

Products with different application risks must also be evaluated differently. For example a

mobile phone has a lower application risk than the security system of a nuclear power

plant. Four levels are distinguished by decreasing risk: A to D. Figure 3-3 presents a

proposal of evaluation techniques for these four levels and quality characteristics [Rae et

al. 1995].

Level A Level B Level C Level D

Functionality formal proof component testing review (checklists) functional testing

Reliability formal proof reliability growth
model

fault tolerance
analysis

programming
language facilities

Usability user mental
model

laboratory testing conformity to
interface standards

user interface
inspection

Efficiency performance
profiling analysis

algorithmic
complexity

benchmark testing execution time
measurement

Maintainability traceability
evaluation

analysis of
development
process

static analysis inspection of
documents
(checklists)

Portability program design
evaluation

environment
constraints
evaluation

conformity to
programming rules

analysis of
installation

Figure 3-3: Evaluation techniques for various levels and quality characteristics [Rae et al. 1995]

The thoroughness of an evaluation is reflected in the evaluation techniques used. Different

evaluation levels result in different levels of confidence in the quality of a software

product. Different embedded products with different application risks should also be

evaluated differently.

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 27

3.2.3 Embedded product architecture and product quality

One specific area of product evaluation is the evaluation of the architecture to determine

the quality of a product. This is based on the notion that [Clements et al. 1995] [Clements

and Northtrop 1996] [Bass and Kazman 1999]:

• An architecture permits or precludes the achievement of a system’s targeted quality

attributes. Making a ‘good’ architecture is the first order approach to achieving

product quality attributes.

• It is possible to predict certain qualities about a system by studying its architecture.

• The architecture is the main object for communication and understanding the

system and its development.

• The architecture is the embodiment of the earliest design decisions.

Two types of architectures are relevant in the context of embedded systems. Firstly, there

is the product architecture, which contains both the hardware and the software. For the

construction of the product architecture decisions are taken on including certain features or

qualities or not, and decisions on whether certain features or qualities are provided by the

hardware or by the software. Secondly, there is the software architecture, which is the

structure of the components of a program or system, their interrelationships, principles and

guidelines governing their design and evolution over time [Garlan and Perry 1995]. For

the software architecture decisions are taken on the general structure and subdivision of

the software. Architectural decisions have a large influence on product quality since they

provide the structure of a product or software that enables or disables the possibility to

address certain product quality attributes.

‘ It is important to understand, however, that an architecture alone cannot

guarantee….the quality of a system. Decisions at all stages of the life cycle – from high

level design to coding and implementation – affect system quality. Therefore, quality is

not completely a function of an architectural design. A good architecture is necessary, but

not sufficient, to ensure quality’ [Clements and Northtrop 1996].

In this thesis, architectural design of both the product and the software will not be

addressed separately. Designing an architecture in which the product quality is sufficiently

addressed is assumed to be a default step in the software development process. The

importance of a good architecture is, however, underlined. During the collection of

product quality requirements and the development of the product, architectural issues

deserve special attention.

28 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

3.2.4 Problems with product oriented approaches towards software

quality

The starting point of product oriented approaches is the specification of quality of the

product. An objectively measurable specification of product quality is a prerequisite for

the product oriented approaches; however, this specification of product quality is not

always available, nor is it easy to specify.

It is not clear what this product exactly is. Is it the software code? With or without

documentation or other means of support? Is it the software programme in operation? Or

is evaluation of the product architecture sufficient? These questions are not easy to answer.

From the user point of view, it is at least necessary to look at the software in operation,

because in that case the software performs the function it is intended for.

One other issue for product oriented software quality creation is the notion that product

quality can not be brought in at the end. Once a product is finished its quality is

determined. Bad quality can not be easily changed into good quality by carrying out some

adjustments. Quality must be created along the path of product development. Intermediate

checks and improvements are necessary. This refers to the necessity of a process-oriented

approach towards software quality.

3.3 Process orientation towards software product quality

In contrast to the product orientation to software quality, there is the process orientation.

This is based on the assumption that a 'quality process' results in a 'quality product'.

Improvements to the product should therefore be created by the process. ‘The process is

the key to understanding and solving product problems. Product problems must be related

back to the process - how the software was developed, it is necessary to learn what factors

are important in the process‘ [Yeh 1993]. It must be noted, however, that a single focus

on the development process can not guarantee the quality of the end product.

The process orientation towards product quality improvement originates from the

manufacturing industry, where the production process is managed through application of

statistical process control. Quality methods such as the Shewart-Deming cycle

Plan/Do/Check/Act [Deming 1986] are based on this process orientation. It is however,

questionable to what extend such a process focus is applicable to software processes, since

these are different from production processes. One other argument to support this doubt is

that there are almost no norms to compare software processes to. Since software

engineering is such a young discipline, it is unknown what the best way is to build certain

software, in a certain context, for a certain domain.

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 29

By improving and controlling the quality of the software development process, the quality

of the product is expected to become more constant, with higher, better predictability and

to be better controllable. ‘Just as manufacturers look for ways to assure the quality of the

products they produce, software engineers should find methods to assure that their

products are of acceptable quality’ [Pfleeger 1991]. The most well known standards for

evaluating the quality of the software development process are the ISO 9000-3 quality

standard [ISO 9000-3 1997], the Capability Maturity Model (CMM) [Paulk et al. 1993]

and the SPICE standard (ISO 15504) [ISO 15504 1998].

Within the process orientation techniques are used such as process modelling and process

assessments. Assessments are used to evaluate the status of an organisation’s processes to

a normative model. An assessment is a review of a software organisation to provide a

clear and factual understanding of the organisation’s state of software practice

[Humphrey 1989]. The result of an assessment is an analysis of the current processes in

the organisation and the extent to which they comply to industry ‘best practice’. The

current capabilities of the organisation are listed in this analysis, including a proposal for

further improvements of the processes. Based on the assessment, a process improvement

plan is developed that specifies which processes have to be improved and the actions to be

taken to implement these improvements.

3.3.1 Problems with process oriented approaches for software quality

Even though industry has reported many successes with the process orientation, the

question is still open as to what the impact is of each specific part of the process on

product quality. Firstly, the experiences from practice claim product quality improvement

by increasing the ‘maturity’ of the organisation [Goldenson and Herbsleb 1995]; however,

each capability consists of several specific improvement actions, for which it is not clear

what the single contribution to product quality is. Secondly, the benefits from literature

mainly focus on product defects. Although product defects are part of quality, they are

only one single aspect. Other aspects of product quality improvement are rarely

investigated.

The focus on the process should be complemented with a focus on the product. ‘One of the

best ways to evaluate a software organisation is to examine the quality of its products.

Product quality is a key measure of the software process. It provides a clear record of

development progress, a basis for setting objectives, and a framework for current action’

[Humphrey 1989].

Summarising, improving the processes to create product quality is the focus of the process

orientation. This is done because quality is created during this process and not after it is

finished. This is a logical starting point to focus on the process; however, the impacts of

process improvements on product quality should be clear in that case to control product

30 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

quality. It is clearly not a matter of choosing between a product or process orientation;

both types need to be applied together.

3.4 Measurement of process and product quality

‘Measurement’ is the process by which numbers or symbols are assigned to attributes of

entities in the real world in such a way as to describe them according to clearly defined

rules [Fenton and Pfleeger 1996]. Measurement can be used on both a software

development process and a software product. It can be used to measure quality

characteristics of a certain software product, or to measure effects of a certain software

process. Software measurement is the continuous process of defining, collecting, and

analysing data on the software development process and its products in order to

understand, control and optimise that process and its products.

Five types of measurement scales are commonly distinguished: nominal, ordinal, interval,

ratio and absolute [Fenton and Pfleeger 1996]. These scale types (Figure 3-4) have

increasing levels of richness, which means that the scales become more sophisticated and

allow stronger statistical analysis methods.

Measurement has an important role in ‘real’ engineering disciplines [Shaw 1990].

‘Professor Mary Shaw of Carnegie Mellon University points out that mature engineering

fields codify proved solutions in handbooks so that even novices can consistently handle

routine designs, freeing more talented practitioners for advanced projects. No such

handbook yet exists for software, so mistakes are repeated on project after project, year

after year’ [Gibbs 1994]. An empirical factor is added to the research on software

engineering by using measurement, New methods, techniques and tools are measured to

understand how good they are, which problems they solve, which they do not, and the

basic needs to apply them. ‘There has always been this assumption that if I give you a

method, it is right just because I told you so. People are developing all kinds of things,

and it’s really quite frightening how bad some of them are’: Victor Basili in [Gibbs 1994].

Basili supports that measurement provides an excellent mechanism to learn what works

and what does not. He promotes the existence of software engineering laboratories that

investigate specific aspects through empirical evaluation, after which upscaling to

industrial application can be started; unfortunately, few such software engineering research

labs exists. The only well-known laboratory is the NASA-SEL [McGarry et al. 1994],

which was started and is directed by Basili himself.

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 31

Scale Explanation

Nominal scale

Nominal measurement consists of assigning items to groups or categories. No
quantitative information is conveyed and no ordering of the items is implied.
Variables measured on a nominal scale are often referred to as categorical or
qualitative variables. Some examples:

• classifying origin of defects into classes like design error, not tested fully,
external reasons.

• classifying failure detection phases into classes like field, integration, and
testing.

Ordinal scale

The ordinal scale is similar to the nominal scale, but has the additional
characteristic that the categories can also be ranked in that one class is better, or
higher than another class. The ranges between two classes have no meaning for
the ordinal scale. Some examples:

• classifying failures into severity classes like fatal, major and minor.

• classifying complexity into classes like high, medium and low.

Interval scale

The interval scale is an ordinal scale with equal differences between the classes.
Interval scales do not have a true zero point, and therefore it is not possible to
make statements about how many times higher one score is than another. A
common example is the Celsius scale for indicating temperature, where a 10
degree difference has the same meaning anywhere along the scale; however,
because the zero point is arbitrary, it is not possible to say that a temperature of
30 degrees is twice as warm as a temperature of 15 degrees.

Ratio scale

Ratio variables are very similar to interval variables; in addition to all the properties
of interval variables, they feature an identifiable absolute zero point, allowing
statements such as x is two times more than y. A much used example to describe
the distinction between interval and ratio scales is temperature. In contrast to the
Celsius scale it is allowed to say on the Kelvin temperature scale that a
temperature of 200 degrees is twice as high as one of 100 degrees.

Absolute scale

The measurement for an absolute scale is simply made by counting the number of
elements that needs to be measured. The absolute scale resembles the ratio
scale strongly. The difference is that for the absolute scale the scale is unique (i.e.
there is only one scale allowed for the measurement). The absolute scale is the
most restrictive scale.

 Figure 3-4: Five types of measurement scales [Fenton and Pfleeger 1996]

A valuable tool is provided by measurement to understand the effects of specific process

actions that are implemented to improve a software development process. Examples of

results are [Möller and Paulisch 1993][Pfleeger 1991]:

• increased understanding of software development processes

• increased control of the software development process

• increased capacity to improve the software development process

• more accurate estimates of software project costs and schedule

• more objective evaluations of changes in technique, tool, or methods

• more accurate estimates of the effects of changes on project cost and schedule

• decreased development costs due to increased productivity and efficiency

• decrease of project cycle time due to increased productivity and efficiency

• improved customer satisfaction and confidence due to higher product quality

Software measurement data is interpreted by people to provide information that can be

used for three different purposes: understanding, control and improvement [Basili and

32 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Rombach 1988]. In the first place, the data makes the current development process visible

and the characteristics of the software products. This visibility is required to reduce

complexity and increase understanding of the process and products. Once basic

understanding has been established, the collected and analysed data can be used to control

the process and the products, by defining corrective and preventive actions. Furthermore,

based on analysis, the collected measurement data can be used to assess the process, and

therefore act as an indicator of development process problem areas, from which process

optimisation can be established. This hierarchy of measurement is illustrated in Figure 3-5.

Understand

Purpose 1

Control

Purpose 2

Optimise

Purpose 3

Figure 3-5: Applying measurement for 3 purposes

Two main problem areas exist for the measurement of software development: the product

area and the process area. Firstly, a software product is abstract, complex and difficult to

measure. Since software has no physical existence, measurement problems arise. Secondly

software engineering is a young discipline with a lack of scientific laws, in which

measurement is not a common routine. On the contrary: for measurement of software

special attention is required, and when used in the wrong way measurement may causes

resistance on behalf of the developers. Summarising, both the product and the process

orientation for software measurement have special demands and problems. These will be

further elaborated in the next sections on product and process measurement.

3.4.1 Measurement of software products

Product measurements can be divided over external and internal product measurements

[Humphrey 1989] [Fenton and Pfleeger 1996]. External product measurement measures

the external (dynamic) behaviour of the product. Examples are function response times,

number of screens, time to add a feature, mean time to failure, etc. Internal product

measurement measures the internal (static) structure of the software product. Examples are

measurements of lines of code, cyclomatic complexity, test defects found, number of

comment lines, etc. Both types of measurement are used in practice. External measurement

is more interesting from a user point of view, while internal measurement is more

interesting from a developer point of view.

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 33

The relationship between internal product measurements and their external product

characteristics, however, is largely unknown. A clear example is described in the paper of

[Gentleman 1994]. This paper compares internal and external software product

measurement with the measurement of audio speakers. For these speakers hundreds of

internal technical metrics existed; however, these metrics only become of interest, once

their values could be correlated to what people experienced as being a ‘good sound’. The

relation between internal and external product quality metrics is relevant for software

engineering, but has not been established yet.

Available methods for external product measurement, can be used, for example, to

evaluate conformance of a product to user needs. These approaches assume that user-

needs are known, and made explicit. Examples of such methods are: Scope [ISO 14598

1996], Space-Ufo [Trienekens et al. 1997] and the ISO 9126 part III [ISO 9126 1998].

The methods are based on the specification of product quality and evaluating the end-

product to this specification. The more objective and concrete these specifications are, the

better it can be evaluated. Specification of product quality in measurable terms is therefore

recommended [Gilb 1994].

In the available methods for internal product measurement, it is mainly the static attributes

of a product that are measured. These measurements can be used to compare internal

product measurements to (company specific) norms and standards to achieve a certain

level of quality. Software measurement literature contains many examples of internal

software metrics (see for example: [Shepperd 1993] [Shepperd and Ince 1993] [Cook and

Roesch 1994] [Zuse 1991] [Albrecht and Gaffney 1983] and [Halstead 1977]). These

metrics are also easy to measure due to the availability of automated calculation tools for

these metrics.

The main benefit of both internal and external product measurement is that objective

numbers are provided to characterise a software product. The same stands for process

measurements. Even though the limitations of metrics are still questionable, they are in

some way objective. Remembering that this level of objectivity is crucial for co-ordination

using standardising processes or products, their benefits for control of product quality are

clear. Current practice has insufficiently adopted this kind of measurement working to

achieve quality products, which is a big shortcoming in the current state of practice.

3.4.2 Measurement of software processes

A partial solution to the unknown relationship between process and product quality is

provided by software process measurement, as it supports in the discovery of the impact of

process actions on product quality in a specific context. Through measurement and

analysis of the development process and its success in achieving the intended product

qualities, an evaluation instrument becomes available. As explained before, data collection

34 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

and analysis of software engineering processes is rarely executed in current practice. Many

authors have insisted on expanded application of measurement during software

development, however industry still has not adopted this sufficiently [Hatton 1995].

By monitoring the performance of the software development process, it is possible to

provide an overview on actual results of that process, and to take corrective action based

on these results. Measurement is an excellent mechanism for control of a software process.

Several methods are available that describe how to carry out process measurement. The

Goal/Question/Metric approach [Basili and Weiss 1984] was used for this research and

will therefore be explained in detail.

3.4.3 Goal/Question/Metric measurement

In the GQM method a systematic approach is represented for tailoring and integrating

goals to models of the software processes, products and quality perspectives of interest,

based upon the specific needs of the project and the organisation [Basili et al. 1994b]. The

result of the application of the GQM method is the specification of a measurement system

targeting a particular set of issues and a set of rules for the interpretation of the

measurement data.

By using GQM a certain goal is defined, this goal is refined into questions, and metrics are

defined that should provide the information to answer these questions. By answering the

questions, the measured data can be analysed to identify if the goals are attained. Thus, by

using GQM, metrics are defined from a top-down perspective and analysed and interpreted

bottom-up, as shown in Figure 3-6.

Goal

Question

Metric

Implicit models

Q3 Q4Q1 Q2

M1 M2 M3 M4 M5 M6 M7

D
ef

in
iti

on

In
te

rp
re

ta
tio

n

Figure 3-6: The GQM Paradigm [Basili and Weiss 1984]

The GQM model is started top-down with the definition of an explicit measurement goal.

This goal is refined into several questions that break down the issue into its major

EMBEDDED SOFTWARE PROCESS AND PRODUCT QUALITY 35

components. Each questions is then refined into metrics that should provide information to

answer those questions. Measurement data is interpreted bottom-up. As the metrics are

defined with an explicit goal in mind, the information provided by the metrics should be

interpreted and analysed with respect to this goal to conclude whether or not it is attained.

GQM trees of goals, questions and metrics are built on knowledge of the experts in the

organisation: the developers [Basili and Rombach 1988]. Knowledge acquisition

techniques are used to capture the implicit models of the developers built during years of

experience. Those implicit models give valuable input to the measurement programme and

will often be more important than the available explicit process models.

Even though the GQM approach is mostly considered to be a process measurement

approach, it can also be used to measure product quality [Solingen and Berghout 1999].

3.5 Conclusions

It has been stated in this chapter that the creation of embedded software quality is difficult;

the characteristics of software and the current state of software engineering mainly cause

this. Control of embedded software product quality is established by two orientations: a

product orientation and a process orientation on software quality.

Managing embedded software quality can be done by standardisation of work products

and standardisation of work processes. Standardisation of product quality can be done

through the use of standard product quality terminology, and specifying product quality in

measurable terms. Such standard terminology supports in dividing quality into attributes

and sub-attributes, making the abstract concept of quality better manageable. Furthermore,

the definition of the product depends on its use. User views on product quality are

reflected in this product quality specification. If possible, product quality is specified in

measurable terms.

Standardisation of work processes can be done through modelling and assessment of

established software development processes. These approaches support in carrying out a

standard process and documenting this process. The main reason for a focus on the

process is the notion that product quality is created by that process, and that quality can

not be created by making some adjustment to the product when it is already available.

Both the software development process and the software product can be measured.

Increased control and early feedback on results are the outcome of measurement; therefore

it is recommended to use measurement, both of product quality and of process

performance. The Goal/Question/Metric approach provides a goal-oriented way of

measurement that can be used in the context of this thesis.

36 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

For the development of embedded products, there is a focus on product quality, because

the product is being sold, not the process; however, once a product is finished its quality is

already determined and it is difficult to improve it. This clarifies why often emphasis is put

on improving the embedded software development process, because this impacts product

quality. The assumption is that better processes lead to better products. To support this

approach, the embedded software industry uses software process improvement (SPI)

methods to implement continuous improvement of their processes. SPI is the topic of the

next chapter.

4. Software Process

Improvement

Software Process Improvement (SPI) is described in this chapter. An overview of SPI

methodologies is provided, and the strengths and weaknesses of these methodologies are

discussed. Furthermore, a set of criteria is identified in this chapter to which a methodo-

logy for product focused SPI for embedded product development should comply.

4.1 Introduction

Software Process Improvement (SPI) is the set of activities with which an organisation

attempts to reach better performances on product cost, time-to-market and product quality,

by improving the software development process. Changes are made to the process based

on ‘best practices’: experiences of other, not necessarily similar organisations. Within SPI

methodologies there is a focus on the software development process, because it is based on

the assumption that an improved development process positively impacts product quality,

productivity, product cost and time-to-market. Note that the changes to the development

process do not guarantee that these intended impacts will indeed occur.

The identification of the criteria to which a SPI methodology for embedded software

development should comply is the objective of this chapter. These criteria are identified

based on the strengths and weaknesses of existing SPI methodologies.

4.2 Software Process Improvement Methodologies

The four SPI methodologies that are most referred to in literature are: CMM, ISO 9000-3,

SPICE and BOOTSTRAP. Those methodologies will be described in more detail.

4.2.1 Capability Maturity Model (CMM)

Based on best practices from industry, the Software Engineering Institute (SEI) developed

the Capability Maturity Model (CMM). The model was originally developed to assess the

software development process of third party suppliers, of the US Department of Defence;

however, this model also helped those suppliers to improve their process. Organisations

are supported with the CMM to improve the maturity of their software process through an

evolutionary path, of five maturity levels (Figure 4-1), from 'ad hoc and chaotic' to 'mature

and disciplined' management. As organisations become more ‘mature’, risks are expected

to decrease and productivity and quality are expected to increase.

38 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Initial

Level 1

Repeatable

Level 2

Defined

Level 3

Managed

Level 4

Optimised

Level 5

Figure 4-1: Capability Maturity Model (CMM) [Humphrey 1989] [Paulk et al. 1993]

Each CMM maturity level contains a set of Key Process Areas (KPA’s) which describe the

main capabilities for that level. The KPA’s of the CMM are listed in Figure 4-2.

Level Key Process Areas (KPA)

1. Initial

The software process is characterised as ad hoc,
occasionally or chaotic. Few processes are
defined, and success depends on individual effort
and heroics.

2. Repeatable

Basis project-management processes are
established to track cost, schedule and
functionality. The necessary process discipline is
in place to repeat earlier successes on projects
with similar applications.

• Requirements management
• Software project planning
• Software project tracking & oversight
• Software subcontract management
• Software quality assurance
• Software configuration management

3. Defined

The software process for both management and
engineering activities is documented,
standardised, and integrated into a standard
software process for the organisation. All projects
use an approved, tailored version of the
organisation’s standard software process for
developing and maintaining software.

• Organisation process focus
• Organisation process definition
• Training program
• Integrated software management
• Software product engineering
• Inter-group co-ordination
• Peer reviews

4. Managed

Detailed measurements of the software process
and product quality are collected. Both the
software process and products are quantitatively
understood and controlled.

• Quantitative process management
• Software quality management

5. Optimising

Continuous process improvement is enabled by
quantitative feedback from the process and from
piloting innovative ideas and technologies.

• Defect prevention
• Technology change management
• Process change management

Figure 4-2: The five levels and KPA’s of the CMM [Paulk et al. 1993]

SOFTWARE PROCESS IMPROVEMENT 39

4.2.2 ISO 9000

An other well-known methodology for SPI is the ISO 9000 approach. The assumption

behind the ISO 9000 standards is that a well-managed organisation with a defined

engineering process is more likely to produce products that consistently meet the

purchaser’s requirements, within schedule and budget, than a poorly managed organisation

that lacks an engineering process. ISO 9001 describes ‘Quality systems - model for quality

assurance in design/development, production, installation and servicing’. A representation

of the structure of the ISO 9000 standards is given in Figure 4-3.

ISO 9000
Standards

ISO 9000
Introduction

ISO 9000-1
Select ion and Use of

ISO 9001, 9002, 9003

ISO 9000-2
Application of ISO
9001, 9002, 9003

ISO 9000-3
Application of ISO
9001 for Software

ISO 9000-4
Dependabi l i ty
Programme

Management

ISO 9001-9003
Certif ication/
Registrat ion

ISO 9001
Design, Development,

Prod., Install., Servicing

ISO 9002
Production, Installation,

Servicing

ISO 9003
Final Inspection

and Test

ISO 9004
Qual i ty Management

ISO 9004-1
Guidel ines

ISO 9004-2
Services

ISO 9004-3
Processed Mater ials

ISO 9004-4
Qual i ty Improvement

Figure 4-3: The structure of the ISO 9000 standards

ISO 9001 is a set of quality system requirements that consists of twenty clauses that

represent requirements for quality assurance in design, development, production,

installation and servicing, that defines which aspects of a quality system have to be

available within an organisation. Details on how these aspects should be implemented and

institutionalised are not provided by ISO 9001. As ISO 9001 was written to be used in all

kinds of industries, ISO 9000-3 was added specifically for software-development:

‘Guidelines for the application of ISO 9001 to the development, supply and maintenance

of software’. ISO 9000-3 provides guidelines for applying ISO 9001 to the specification,

40 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

development, supply and maintenance of software [ISO 9000-3 1997]. The requirements

for ISO 9000-3 certification are divided over twenty requirements classes (Figure 4-4).

Nr. Guideline classes
4.1 Management responsibilities
4.2 Quality system requirements
4.3 Contract review requirements
4.4 Product design requirements
4.5 Document and data control
4.6 Purchasing requirements
4.7 Customer-supplied products
4.8 Product identification and tracing
4.9 Process control requirements
4.10 Product inspection and testing
4.11 Control of inspection equipment
4.12 Inspection and test status of products
4.13 Control of non-conforming products
4.14 Corrective and preventive action
4.15 Handling, storage and delivery
4.16 Control of quality records
4.17 Internal quality audit requirements
4.18 Training requirements
4.19 Servicing requirements
4.20 Statistical techniques

Figure 4-4: ISO 9000-3 Guideline classes [ISO 9000-3 1997]

Receiving ISO 9000-3 certification assures customers that in an audited company all its

processes and work instructions documented conform the ISO requirements, and that these

processes and work instructions are being followed on a continuous basis. ISO

certification does not give any guarantee for product quality, it only indicates that the

procedures are used to a certain extent.

4.2.3 BOOTSTRAP

The BOOTSTRAP method [Kuvaja and Bicego 1994] [Bicego et al. 1998] is the result of

an European project under the auspices of the European Strategic Programme for Research

in Information Technology (ESPRIT). It provides an alternative for organisations that are

interested in improving their software development process and attaining ISO 9001

certification, as it combines and enhances the methods provided by the CMM and the ISO

9000 quality standards.

The basis of the BOOTSTRAP methodology is established by CMM. Like the CMM, an

assessment is based on five maturity levels, but the BOOTSTRAP method uses a different

scale to measure an organisations’ or projects’ overall strengths and weaknesses. The ISO

9000 quality standards (ISO 9001 and ISO 9000-3) are incorporated in the methodology

because they provide guidelines for a company-wide quality system. The CMM does not

SOFTWARE PROCESS IMPROVEMENT 41

include such guidelines. Furthermore, many European companies use ISO 9000 as a

primary quality standard. BOOTSTRAP can be used by organisations to determine

readiness for ISO 9001 certification.

• SUP.1 Documentation
• SUP.2 Configuration

Management
• SUP.3 Quality Assurance
• SUP.4 Verification
• SUP.5 Validation
• SUP.6 Joint Review
• SUP.7 Audit
• SUP.8 Problem Resolution

• ENG.1 System Requirements Analysis
• ENG.2 System Architecture Design
• ENG.3 Software Requirements Analysis
• ENG.4 Software Architecture Design
• ENG.5 Software Detailed Design
• ENG.6 Software Implementation and

Testing
• ENG.7 Software Integration and Testing
• ENG.8 System Integration and Testing
• ENG.9 Maintenance
• ENG.10 Migration
• ENG.11 Retirement

• ORG.1 Business
Engineering

• ORG.2 Human Resource
Management

• ORG.3 Infrastructure
Management

• PRO.1 Process Definition
• PRO.2 Process

Improvement

• TEC.1 Technology
Innovation

• TEC.2 Technology
Support for Life Cycle
Processes

• TEC.3 Technology
Support for Life Cycle
Independent Processes

• TEC.4 Tool Integration

• CUS.1 Acquisition
• CUS.2 Customer Need

Management
• CUS.3 Supply
• CUS.4 Operation
• CUS.5 Customer Support

• MAN.1 Project Management
• MAN.2 Quality Management
• MAN.3 Risk Management
• MAN.4 Subcontractor

Management

Organization Methodolo gy Technolo gy

MATURITY LEVEL

Life-c ycle
dependent

Life-c ycle
inde pendent

Process-
related

Management Support Customer-
supplier

Figure 4-5: BOOTSTRAP methodology [Kuvaja and Bicego 1994]

BOOTSTRAP distinguishes three areas that identify the maturity of an organisation:

technology, methodology and organisation. Methodology is sub-divided into a life-cycle

42 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

dependent, life-cycle independent and process related area, of which the life-cycle

independent area is further divided into management, support and customer-supplier. For

each area in this BOOTSTRAP tree, a number of ‘processes’ are defined. Each process

has a number of ‘key-practices’ that need to be addressed for that process. Furthermore,

each process has a ‘capability dimension’, which identifies the current status of that

process on a scale from 0 to 5. Unlike the CMM, quartiles between these levels are

distinguished, which make it possible to assess on organisation on for example level 2.5,

expressing that level 2 is established and that 50% of the level 3 capabilities are in place.

4.2.4 SPICE

SPICE (Software Process Improvement & Capability dEtermination) is a major

international initiative to develop a Standard for Software Process Assessment [ISO 15504

1998]. ISO 15504 (Figure 4-6) is used as a reference framework for software process

capability determination. It is based on other popular approaches, mainly on

BOOTSTRAP, CMM and ISO 9001.

REFERENCE
MODEL

ISO 15504

PROCESS DIMENSION

Process categories
Processes
(with definition

of process purpose)

Indicators of
Process performance

- Base Practices

- Work Products &

WP Characteristics

Assessment
indicators

CAPABILITY DIMENSION

Capability levels
Process Attributes

Indicators of
Process capability

- Management practices

- Practice performance
Characteristics

- Resource & Infrastructure
Characteristics

ASSESSMENT MODEL
(ISO 15504 Part 5)

Figure 4-6. The ISO 15504 framework

Changes with respect to the CMM are [Sassenburg et al. 1996]:

• a broader scope: processes that are indirectly related to the software development

processes are also considered

• a different architecture: levels are distinguished in all Key Process Areas, whereas

specific Key Process Areas within the CMM are only of importance within a

certain level

• an integration of other SPI-models, such as ISO 9000, TickIT and Trillium

SOFTWARE PROCESS IMPROVEMENT 43

4.3 Experiences with using SPI in practice

In the foregoing section four well-known methodologies for SPI were presented. These

methodologies are being used in practice, and results are being reported.

Several software companies have reported large benefits from adopting SPI methodologies

[Daskalantonakis 1994] [Dion 1993] [Rooijmans et al. 1996] [Humphrey et al. 1991]

[Wohlwend and Rosenbaum 1994] [Kuvaja and Bicego 1994]. The benefits reported are

positive cultural change, increased productivity, shorter time-to-market, better

communication, increased product quality, and improved customer satisfaction. It should

be noted that many companies only report successes and not the failures, and that results

are sometimes biased on how benefits have been measured.

Some embedded product companies report large benefits. Hughes Aircraft claims to save

$2 million per year using SPI [Humphrey et al. 1991]. Furthermore, the work conditions

and the work ethic are improved. Schlumberger claims that the amount of projects

delivered in time has increased from 51% to 94%, and that engineer productivity has

doubled [Wohlwend and Rosenbaum 1994]. This increase was realised by using SPI over

a period of three years. Raytheon notes a doubling productivity and a return of $7.7 on

every dollar invested into SPI [Dion 1993]. The amount of rework as a percentage of the

total costs of a project decreased from 40% to 10% in four years. The absolute costs

associated with fixing defects remained approximately constant. The prevention costs

decreased to the same extend as the total project costs. As a result the total project costs

decreased about 30%. Goldenson and Herbsleb have shown that SPI application has a

cost-benefit ratio that varies from 1:4 to 1:9 [Goldenson and Herbsleb 1995].

The Software Engineering Institute (SEI) has made an analysis of Software Process

Assessments results [Hayes and Zubrow 1995] from 48 organisations undertaking 2 or

more CMM assessments. The analysis focuses on the time required to increase process

maturity, as well as the most prevalent process issues faced by the 48 organisations. On

average, organisations moving from CMM level 1 to level 2 did so in approximately 30

months, between the first assessment that found them at level 1 and the subsequent

assessment that found them to be at CMM level 2. Organisations moving from CMM level

2 to level 3, on the other hand, did so within an average of 25 months. The most important

finding of this particular analysis is that there is much more variability in the amount of

time organisations take to move from level 1 to level 2 than there is in the time it takes to

move from level 2 to level 3.

These positive results are also criticised, regarding the validity of these findings, especially

the performance measurements are criticised, and it is noted that the answers the managers

gave to questions of the SEI inquiries were much more positive than the answers of the

software engineers [Hetzel 1995].

44 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

4.4 Strengths and weaknesses of SPI methodologies

The available methods for SPI have been presented together with an overview of results of

applying these methods in practice. As the development of a conceptual model for SPI,

specifically aimed at creating embedded product quality was the objective of this thesis, it

was necessary to analyse the currently available methods on their fitness for the embedded

product domain. This analysis of the strengths and weaknesses of the existing SPI

approaches is presented in this section.

Strengths Weaknesses

S-1. Based on best practices W-1. Product quality not addressed

S-2. Provides a vision W-2. Lack of measurement

S-3. Management tool for improvement W-3. No cost/benefit analysis included

S-4. Changes are prescribed W-4. Too generic

S-5. Explicit priority to quality W-5. No project level support: mainly for large
organisations

W-6. Continuation difficult

W-7. Dependency on individual managers

W-8. Phasing not logical

W-9. Improvement takes long

W-10. Risk for bureaucracy

Figure 4-7: Strengths and weaknesses of existing SPI methodologies

The analysis of strengths and weaknesses of SPI methodologies will be done on a general

level. The main reason for this is that it is not the goal to compare SPI methodologies or to

decide which one is ‘best’. In this thesis the aim was to create a conceptual model for

embedded product focused SPI. To create such a conceptual model it should be clear what

the strengths and weaknesses of the existing methodologies are for the embedded product

domain. Based on such an overview, it becomes possible to point out the main criteria for

methodologies for product focused SPI that suit the embedded product domain.

4.4.1 S-1: Based on best practices

Current SPI methodologies show large improvements in organisational performance

[Goldenson and Herbsleb 1995]. The recent increase in professionalism in software

engineering in practice has been facilitated through the use of SPI methodologies.

Although the scientific grounds for these methods have been criticised [Bach 1994],

practice has shown them to be useful. Many positive experiences and results with SPI

methodologies are reported (section 4.3).

SOFTWARE PROCESS IMPROVEMENT 45

4.4.2 S-2: Provides a vision

A vision for practice is provided by SPI methodologies on ‘how’ professional software

engineering should be done [Humphrey 1989]. Changes to software development

processes are proposed in a specific sequence. This prescribed sequence makes SPI easy

to apply, because it provides organisations with guidelines on the activities to carry out.

The main goal of existing SPI methodologies is that they are implicitly aimed at

establishing the right process. SPI methodologies have a strong assumption that the ideal

process is known and only needs to be established in an organisation; however, software

engineering is still an immature discipline for which valid knowledge is lacking [Shaw

1990] [Basili 1993]. This indicates that the available SPI methodologies include a

paradox: they provide a vision, but this vision is based on missing knowledge.

4.4.3 S-3: Management tool for improvement

Stimulating improvement is one of the tasks of management [Humphrey 1989]; however,

the tools for management to steer are limited. A clear path to follow is prescribed by SPI

methodologies such as the CMM, and a tool for management is therefore included.

Companies set objectives such as ‘level 3 within 3 years’, or ‘ISO 9000-3 obliged for all

our suppliers’.

4.4.4 S-4: Changes are prescribed

High-level quality models such as Plan-Do-Check-Act [Deming 1986] mainly describe an

organisational context for improvement, instead of describing the things to do. Explicit

criteria to comply to are set by SPI methodologies [Paulk et al. 1993] [Kuvaja and Bicego

1994]. These criteria are based on best practices, and therefore clearly indicate what an

organisation has to do, to comply to a specific maturity level.

4.4.5 S-5: Explicit priority to quality

Using SPI methodologies gives explicit attention to process quality [Humphrey 1989].

Practice often supports the importance of quality, but rarely takes explicit action to create

quality. Process quality is addressed explicitly in SPI methodologies and the priorities for

process quality are being increased.

4.4.6 W-1: Product quality not addressed

The process is the main focus of current SPI methodologies. Product quality is not

explicitly addressed [Trienekens 1994] [Bach 1994]. The explicit specification of product

quality is, however, a pre-requisite for product focused process improvement, as explained

in chapter 3. This lack of addressing product quality explicitly is a major weakness of

46 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

existing SPI methodologies. Especially in the embedded product domain, where the

product is sold, and not the process. Existing SPI methodologies are based on the

assumption that a quality process will lead to a quality product [Humphrey 1989];

however, the individual contributions of parts of the process, such as specific phases,

methods, techniques or tools, to product quality are not considered. Such explicit

relationships between process actions and product quality attributes should be explicitly

included.

4.4.7 W-2: Lack of measurement

Measurement is an excellent tool to guide process improvement; however, existing SPI

methodologies insufficiently apply measurement as a tool to guide improvements [Bach

1994] [Hetzel 1995]. Software engineering should fully apply measurement to obtain

knowledge on its merits [Basili et al. 1986] [Basili 1993]. Measurement should be used in

product focused SPI programmes to evaluate product impacts of process changes, monitor

process change progress, and to learn current statuses and effects. As stated before, SPI

methodologies operate under the assumption that a specific change has certain impacts.

Such changes are often called ‘improvements’ already before the improvements have been

realised. Evaluating whether a change really was an improvement should, however, be also

measured, which is not included in the available SPI methodologies. This lack of

measurement in existing SPI methodologies is considered to be a major weakness.

4.4.8 W-3: No cost/benefit analysis included

Benefits and costs of improvement are not made explicit. Without an integrated

cost/benefit analysis in SPI methodologies, the use of these methods in practice is likely to

disappear. Without evidence that the benefits of SPI are higher than the cost, organisations

are likely to abandon SPI usage. Analysis of costs and benefits should, therefore, be an

integrated part of any SPI methodology. Such cost/benefit analyses are not included in

existing SPI methodologies, which is not a surprise because there is already a lack of

measurement in the first place. Even though, analysis of costs and benefits is promoted in

existing SPI methodologies, the collection of data on costs and benefits is not explicitly

included.

4.4.9 W-4: Too generic

One normative way to improve software development for any organisation is prescribed by

existing SPI methodologies. Existing SPI methodologies are based on ‘best practices’:

success stories from industry with the application of certain capabilities. No distinction is

made over different types of organisations, markets, products, cultures, previous

experiences, etc. The flexibility and knowledge to tune to the application context is not

SOFTWARE PROCESS IMPROVEMENT 47

incorporated in current SPI methodologies. This is necessary, because it is unlikely that

the best development process of, for example, mobile phones, hart monitors, cashing

systems, and televisions is completely identical. It is probably even so that the best

development process is also different for different generations of such products.

4.4.10 W-5: No project level support: mainly for large organisations

Successes with existing SPI methodologies are mainly reported by large organisations.

Project level guidance to improve development processes is not the main focus of the

existing methods: they focus on the whole organisation. For product focused SPI,

however, support should be given to project teams because they develop the product,

independent of whether they are part of a small or large organisation. This absence of

project level support and main focus on large organisations is considered to be a weakness

of existing SPI methodologies.

4.4.11 W-6: Continuation difficult

Continuation of SPI is difficult and experiences show that it also disappears. Although,

SPI is still widely used in industry, some early adopters have already abandoned it, the

reasons for this are unknown. Success stories are published in the literature, but failures

rarely. One of the reasons that SPI projects die in the long run might be that it is just a

separate project from the many other projects that are ongoing. SPI programmes are not

linked to development projects, but mainly focus on the whole organisation in which

software is being developed. The improvement programme centres around the yearly cycle

of assessments from which many follow-up actions are defined. After the assessors have

left the company, most actions remain pending until the next assessment is coming up.

This separate nature of SPI programmes frequently causes them to be temporary and not

continuous. Another issue that might influence continuation is the dependency on

management commitment.

4.4.12 W-7: Dependency on individual managers

As SPI programmes are separate projects within organisations, the priority given to these

programmes depends highly on the support of the individual managers [Humphrey et al.

1991] [Goldenson and Herbsleb 1995]. Since improvement of the processes and product is

not part of every single development project, but more a parallel task, it is dependent on

the support of individual managers. As management of organisations change, sometimes

even very often, there is a big chance that SPI usage also disappears.

48 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

4.4.13 W-8: Phasing not logical

There appears to be a non-logical construction in SPI methodologies such as the CMM.

This weakness is that improvement of practices is not done immediately after introduction.

'Optimisation' is postponed to the highest levels. This distracts organisations from

optimising their current ways of working, and has the danger that growth on the maturity

scale becomes the main objective [Bach 1994]. New and current process actions should

indeed be understood and implemented correctly, however improvement and optimisation

should not be postponed for several years.

4.4.14 W-9: Improvement takes long

The success of SPI activities needs to be made visible. Improvements should therefore be

realised in short cycles. Existing SPI methodologies require years before results become

visible [Hayes and Zubrow 1995] [Dion 1993]. Attaining goals of a project or organisation

is an excellent means to show success. Progress is expressed in existing SPI

methodologies, by noting an increase in maturity level [Bach 1994] [Hayes and Zubrow

1995]. Feedback on improvement should however be related to the projects and business

performance, and not to an abstract structure of ‘levels’.

4.4.15 W-10: Risk for bureaucracy

Another weakness is that due to the total emphasis on process control, a bureaucracy can

be installed. Creating procedures and manuals, and checking on their usage can become an

objective, instead of a means. This risk of bureaucracy is remarkable: the path from a

flexible but chaotic way of working (level 1) to a structured flexible way of working (level

5), is established through a situation that has the risk to become overly bureaucratic.

4.5 Towards product focused SPI

Based on the above listed set of problems, a set of criteria was defined to which a

conceptual model should comply, to address the specific needs of embedded product

focused SPI.

Criterion Description

C-1 Product focused SPI specifies product quality explicitly

C-2 Product focused SPI relates process improvements explicitly to product quality

C-3 Product focused SPI uses knowledge and experiences from ‘best practices’

C-4 Product focused SPI supports individual projects with process improvement

C-5 Product focused SPI measures both the process and the product

C-6 Product focused SPI measures costs and benefits of the SPI activities

Figure 4-8: Criteria for product focused SPI for embedded software

SOFTWARE PROCESS IMPROVEMENT 49

4.5.1 C-1: Product focused SPI specifies product quality explicitly

 It essential to specify product quality for product focused SPI. Without such a

specification it will be impossible to focus on process improvement the product quality

attributes of interest. It supports in the explicit addressing of product quality (S-3, S-5, W-

1), supports in making project specific improvements (S-2, W-4, W-5), and shortens the

time in which improvements become visible (W-9).

4.5.2 C-2: Product focused SPI relates process improvements explicitly

to product quality

Relationships between process actions and product quality should be made explicit. This

supports in selecting the right process improvements for the right product quality attributes

(S-5, W-1, W-5, W-8). It supports in making a specific improvement programme for

specific projects (S-2, S-4, W-4, W-5, W-10).

4.5.3 C-3: Product focused SPI uses knowledge and experiences from

‘best practices’

Best practices from other projects within the same organisation or best practices from

other organisations should be used to identify suitable improvements. Process actions that

result in a certain level of product quality in one project can also be used in other projects

(S-1, S-4, W-5).

4.5.4 C-4: Product focused SPI supports individual projects with process

improvement

Creating product quality is often a project specific task; therefore, a product focused SPI

methodology should be capable of supporting individual projects with SPI (W-4, W-5, W-

7, W-10). This enables project management to control product quality explicitly (S-3, S-5,

W-1). Furthermore, it stimulates continuation of SPI, at least within the project, and makes

results visible within a reasonable time (W-6, W-9).

4.5.5 C-5: Product focused SPI measures both the process and the

product

Application of measurement is a prerequisite for product focused SPI, because it provides

feedback on effects of process actions on product quality (W-2). Measurement enables

objective control of both the software process and product quality (S-3), and can be used

in individual projects (W-5, W-9).

50 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

4.5.6 C-6: Product focused SPI measures costs and benefits of the SPI

activities

Changes to a process can be regarded as ‘improvements’ once they result in measurable

benefits. These benefits and the costs to achieve these benefits should be an explicit task in

a SPI methodology, because it supports management with feedback on effects of

investments in SPI (S-3, W-6). Carrying out a cost/benefit analysis using measurement will

provide an objective overview on the value of SPI (W-2, W-3, W-6).

4.6 Conclusions

Software process improvement is a movement in the software industry, which has many

positive effects. Experiences in industry show beneficial results in product quality

increase, reduction of costs and shortening of cycle times. In this chapter, the strengths and

weaknesses have been identified of applying these SPI methodologies for the improvement

of embedded software processes. The most important points of critique to existing SPI

methodologies are that product quality is not explicitly specified, measurement is not

sufficiently integrated with process improvement, the specific needs of an organisation or

project are not sufficiently adopted, and the cost/benefits of SPI are not measured.

In this chapter a set of criteria was specified to which methodologies for product focused

SPI should comply. These criteria will be used in the next chapter to design a conceptual

model for product focused SPI.

5. Conceptual model for

product focused SPI

The conceptual model for product focused software process improvement (SPI) is

constructed in this chapter. Firstly, four required expansions to existing SPI approaches

are presented that comply to the criteria for product focused SPI defined in chapter 4.

Secondly, three working areas are identified that need to be addressed in the conceptual

model under construction. An elaboration is provided that for each of these working areas:

• works towards a textual definition for each working area

• provides some sample practical experiences for each working area

• presents existing literature relevant to each working area

Finally, a conceptual model is presented for product focused SPI, and based on this model

the chapter concludes that learning theories need to be explored.

5.1 Necessary expansions for product focused SPI

It was concluded in the previous chapter that a method for product focused SPI should

comply to a set of six criteria. Based on these criteria and the available approaches, a

conceptual model for product focused SPI will be constructed. The demands set in the

previous chapter indicate four major expansions of current SPI approaches:

• specifying product quality

• modelling of product-process relationships

• configuring a project specific process model depending on the product quality

specification

• measuring product and process quality

The rationale that clarifies how these four expansions comply to the chapter 4 criteria is

included in section 5.1.5. These four major expansions of current approaches will be

discussed in more detail. A conceptual model for product focused SPI approaches was

designed based on these major enhancements of existing SPI approaches,.

5.1.1 Specifying product quality

In order to create product quality, it must be addressed explicitly. Current SPI approaches

address product quality often only implicitly, which will be solved by the approach for

product focused SPI. The notion was adopted that quality is not something that can be

brought in after a product has been created. It must, therefore, be clear from the start of a

52 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

development project, what the product quality objectives are. Defining product quality

objectives can be done from several viewpoints. For example, from the viewpoint of an

end-user, service engineer, marketing manager, or software engineer. In chapter 3 it was

concluded that all such viewpoints need to be considered; however, special attention was

given in this research to specifying the customer wishes for quality of an embedded

product. Specification of user-based product quality is a prerequisite in an approach for

product focused SPI. User needs for a product should be captured and made explicit in a

product quality specification.

From now on, in this thesis the term ‘Requirements engineering’ will be used for the

specification of product quality. Requirements engineering will be further elaborated in

section 5.3. It will be made clear that requirements engineering is more than just a

specification of quality: it covers a negotiation process in which a trade-off is made

between several issues such as product quality, product functionality, cost, duration, and

the possible development process.

5.1.2 Configuring project specific processes depending on the product

quality specification

In chapter 4 it was concluded that each development project needs its own specific process

in order to create an effective and efficient product. This product-specific process contains

a set of process actions that contribute to product quality. In order to let the process be

most effective and efficient, this set of process actions should be selected based on the

product quality requirements.

Once a set of relevant process actions has been selected a project specific process model

can be constructed. Such a model represents the phases, activities and deliverables of a

specific development project.

From now on, in this thesis the term ‘Process engineering’, will be used to represent the

configuring of a situated development process that guarantees the required product quality.

In order to facilitate the selection of process actions, an overview should be available on

the impact of individual process actions on product quality. For this purpose process-

product relationship models are used, which are part of process engineering.

5.1.3 Modelling of product-process relationships

This thesis is based on the assumption that product quality can be managed by taking

specific actions in the software development process. In order to identify which process

actions are required in a specific situation, the effects of a process action on product

quality has to be made explicit. The individual effects of these specific process actions on

product quality attributes should therefore be modelled. Such models reflect the expected

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 53

impact of a process action on attributes of product quality, such as reliability,

maintainability or usability. These effects can be positive or negative. Examples of process

actions that have a positive impact on reliability are the use of static code analysers, test

techniques, or inspections. Process actions can have several impacts. Take for example the

use of a graphical user interface, which on one hand is intended to have a positive effect

on usability, but which on the other hand needs more resources and therefore has a

negative impact on efficiency.

5.1.4 Measuring product and process quality

In chapters 3 and 4 it was concluded that ‘measurement’ is a prerequisite for successful

process improvement. Measurement should be used for two purposes:

• evaluating conformance of a product to the product quality specification

• evaluating process-product relationships

 The previous chapters also concluded however that this usage of measurement together

with process improvement is rarely practised. The conceptual model under construction

should therefore include measurement explicitly and apply it for these two purposes.

From now on, this thesis will use the term ‘Measurement programme engineering’ for the

evaluation of process-product relationships, and evaluation of end product quality.

5.1.5 Conformance of these four expansions to the product focused SPI

criteria

In this section it is clarified why these four expansions solve the problems with existing

SPI methods listed in chapter 4. This is done by presenting the relationship between the

criteria for product focused SPI of chapter 4 and the proposed expansions.

In chapter 4 criteria were defined to which an approach for product focused SPI needs to

comply. These criteria are depicted in Figure 5-1, together with an overview of the

relationships between these criteria and the proposed expansions.

These criteria have been designed to overcome the fundamental problems of existing SPI

approaches for improving embedded product quality. The criteria are addressed using the

four proposed expansions. It is therefore possible to construct a conceptual model for

product focused SPI based on these four expansions. Referring to the underlying problems

and criteria is then no longer required. The relationship of each criterion to the four

proposed expansions is discussed briefly below.

Criterion 1: Specification of product quality needs is included. This criterion is covered

because the first expansion is the specification of product quality (section 5.1.1) as an

explicit step for the development of a product. This is called requirements engineering.

54 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Criterion 2: The relationship between process and product quality is addressed explicitly.

The second proposed expansion is the modelling of product-process relationships (section

5.1.3). These models make these relationships explicit, and they can be used explicitly to

control product quality. These models are used by both requirements engineering and

process engineering during the negotiations on what quality will be built, and which

process will be used. Criteria 2 is related to both working areas.

Criteria Expansions

1. Explicit specification of product quality Requirements engineering

2. Explicitly relating process to product quality

3. Using ‘best practices’ Process Engineering

4. SPI support for individual projects

5. Measurement of process and product quality Measurement programme
engineering

6. Measurement of costs and benefits of SPI activities

Figure 5-1: Relation between proposed expansions and criteria for product focused SPI

Criterion 3: Knowledge from ‘best practices’ is included. This criterion is covered with the

second expansion: the modelling of product-process relationships (section 5.1.3). Best

practices are captured by modelling these relationships and packaging experiences with

applying these models. These process-product relationship models will be continuously

updated with experiences on these relationships in practice. These models are part of

process engineering.

Criterion 4: SPI for projects is possible. This criterion is covered because the third

expansion is the configuration of project specific processes depending on a product quality

specification (section 5.1.2). Due to the configuration of such a project specific

development process, software process improvements can be specifically implemented for

a project. Process engineering designs this project specific process. Furthermore, a

measurement programme is put in place to support each individual project in measuring its

performance and providing specific information to improve (section 5.1.3).

Criterion 5: Measurement of process and product quality is included. This criterion is

covered because the fourth expansion is the measurement of product and process quality

(section 5.1.3). This is called measurement programme engineering.

Criterion 6: Cost and benefits of the SPI activities are measured. This criterion can be

covered by the fourth expansion: measuring product and process quality (section 5.1.3).

Benefits in product or process quality improvement are measured by this expansion, but

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 55

costs are not explicitly stated; however, when measuring process and product quality the

main costs are effort spent, which is often included in the measurement of processes. Costs

and benefits are measured during measurement programme engineering

5.2 Towards a conceptual model

Based on existing SPI approaches and the expansions proposed in section 5.1, a

conceptual model for product focused SPI was developed. In this model three working

areas for product focused SPI must be included: requirements engineering, process

engineering and measurement programme engineering.

Each working area addresses a range of activities that needs to be executed. Several

methods, techniques or tools can be used to support each working area. The three working

areas of product focused SPI, depicted in Figure 5-2, also seem to be interrelated. These

interrelationships are currently not defined and will be tackled in section 5.6 of this

chapter. In order to work towards a full model, in which these interrelationships are also

defined, a first elaboration of the three working areas is necessary.

Requirements
Engineering

Process Engineering

Measurement Program-
me Engineering

Figure 5-2: Requirements, process and measurement programme engineering

In the following sections an elaboration is included of the three working areas. Each

section is started with a definition of the working area from literature. Based on literature

and practical experiences, a renewed definition is created for each working area. Based on

this ‘thesis-specific’ definition, the existing software engineering literature is explored for

relevant issues regarding these three working areas. The findings of this literature

exploration are listed and will be used in chapter 7 of this thesis to construct practical

guidelines for product focused SPI.

5.3 Requirements Engineering

The traditional definition in literature defines requirements engineering as the process in

which complete, consistent, unambiguous specifications have to be developed, which can

serve as a basis for common agreement among all parties concerned and that describe what

a product will do [Boehm 1981].

56 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

A distinction can be made between ‘what’ a product should do, and ‘how’ it should be

implemented. Although it is sometimes difficult to make this distinction, traditional

literature states that requirements engineering has to focus on the ‘what’ aspect [Boehm

1981] [Faulk 1996]. This makes a distinction between the ‘logical’ and the ‘technical’

specification, and states that requirements engineering should focus on the logical

demands for a product. The technical specification and architectural design of how things

are implemented is of later concern.

The logical requirements can be subdivided into functional requirements and quality, non-

functional, requirements. Functional requirements specify the operation of a system, and

quality requirements specify the non-functional aspects of a system such as performance,

maintainability, or reliability. Such quality requirements receive, however, little attention

while being equally important as functional requirements [Yeh and Ng 1990]. These two

types of requirements can be distinguished, but their specification is one activity:

functional and quality requirements are closely related. A certain function can be

developed with different levels of reliability, security, maintainability, etc. Specification of

functional and quality requirements should therefore not be seen as separated tasks.

Focusing on functional requirements only and not considering the quality requirements at

the same time is a mistake often made in practice [Bemelmans 1998].

Furthermore, requirements engineering results in a ‘common agreement among all parties

concerned’ [Boehm 1981]. This underlines the negotiation character of requirements

engineering. Specifying requirements deals with a trade-off between functional and quality

requirements on one hand and development effort, costs and duration on the other hand

[Bemelmans 1998]. Supporting this negotiation process and setting priorities to certain

product quality attributes is presented in [Heemstra et al. 1995].

The end result of requirements engineering is a product requirements specification

document [Leite 1987]. Four requirements engineering subtasks are distinguished [Thayer

and Dorfman 1997]:

• elicitation: the process through which customers and developers discover, review,

articulate and understand users’ needs

• analysis: the process of analysing users’ needs to arrive at a definition of

requirements

• specification: the development of a document that clearly and precisely records

each of the requirements of a product

• verification: the process of ensuring that the requirements specification complies to

the product needs

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 57

So, requirements engineering is not just the development of a product requirements

specification, it is the whole range of activities in which requirements are elicited,

analysed, specified and verified.

5.3.1 Relevance of requirements engineering

The reason that requirements engineering is one of the working areas for product focused

SPI, is because requirements engineering has a large impact on product quality [Thayer

and Dorfman 1997]. The accuracy with which a development process is able to create a

quality product is dependent on the accuracy of the product quality requirements [Davis et

al. 1988]. Neglecting requirements may result in an insufficient product, no matter how

elegant the design and its implementation are [Stevens and Paltu 1994]. Alford and

Lawson state that the major cause of insufficient product quality, is in non-stated

requirements [Alford and Lawson 1979]. These references support that requirements

engineering for product quality requirements deserves to be a working area for product

focused SPI.

Along side the fact that performing good requirements engineering prevents project

failure, is the fact that it is also cost effective. Boehm states that the later mistakes are

found the more expensive they are: mistakes found in the requirements phase cost only 1-

2% per defect compared to defects found in the maintenance phase [Boehm 1981].

The importance of requirements engineering is also underlined by SPI approaches. The

Capability Maturity Model (CMM) presented in chapter 4, addresses a key process area to

requirements management as one of the first improvement areas [Paulk et al. 1993]. This

means that one of the prerequisites for successful software development is, according to

the CMM, the management of the requirements engineering process.

5.3.2 Practical experiences with requirements engineering

During the course of the research several industrial cases were carried out on requirements

engineering. One of them will be used to illustrate some of the aspects involved in product

quality requirements engineering in practice. The details of this case and the method used

to perform the requirements engineering work have been published [Kusters et al. 1997]

and will therefore not be included.

This example deals with a requirement stated by the purchase manager of an oil-company,

regarding a cashing system:

‘Each new version of the cashing system should first be installed in a pilot installation

where it should be operational for at least three months before the final role-out of more

cashing systems to other fuel stations can proceed.’

58 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

In this requirement a demand on the release process of a product is described, to evaluate

the quality of the product.

What also becomes clear from this requirement is that it is not a product quality

requirement in the sense that it specifies performance of a product. On the contrary, this is

a demand from a stakeholder on a process. This requirement does address the specific

expectations on the product by that person; however, product requirements are needed to

communicate with the product developers. Without product requirements, the developers

do not know what to build. If they know that a field-test will be held, it is still not clear to

them what they will check during that field-test. So, quality requirements should also be

stated regarding a product.

The underlying product quality requirement of this process requires can be abstracted

based on one specific role of the person in question [Kusters et al. 1997]:

Role A: Buying a cashing system that is operational, contains the necessary

functionality and works correctly

This role shows the underlying product quality requirements behind the demand for a

field-test:

• the product should be available

• all functionality needed for operation on a fuel-station are included in the cashing

system

• the product should only make correct transactions

The first requirement: ‘availability’ is a requirement on product reliability according to

ISO 9126. This is a more general terminology for the requirement: developers understand

what ‘reliability’ for a cashing system means.

This availability requirement is however not so stringent as stated. The cashing system is

allowed to be out of operation, as long as it is not longer than 5 minutes and this should

not happen more than once a week. With this information the requirements become

objectively measurable: Maximum time to failure should be 7 days, and the maximum time

to recover should be 5 minutes. If requirements are formulated in such a way, developers

can start making design decisions to comply to these requirements.

What became clear from this case was that user based quality could be implemented by

stating the product quality needs of the product stakeholders. Preferably in such a way that

the stakeholder could express what was needed, while on the other hand, developers

understood what they had to build. Specifying requirements in measurable terms (if

possible) supports this.

During the case it also became clear that requirements elicitation, analysis and

specification is a difficult task. Practical guidelines are required on how to carry out this

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 59

process in practice. During this case, mainly open interviews were used, but other means

are probably possible.

Some problems became clear for product quality requirements engineering:

• Creating a ‘good’ set of product quality requirements is difficult. On the one hand

these requirements are needed to express stakeholder perceptions, on the other

hand these requirements should guide developers in their implementation work.

This set of requirements should also be consistent, complete, unambiguous, etc.

[IEEE 1994] [Davis et al. 1993]. Shortly, it is a complex and difficult task.

• It is not always practically feasible to fulfil stated requirements from stakeholders.

Some requirements stated were, for example, considered to be technically

unfeasible, or too expensive. This shows that analysis of the stated wishes is

necessary, which is a delicate task, because once stakeholders have stated a wish

they expect it to be granted.

• Once the product quality requirements are specified, it is still not clear how to fulfil

them. Selecting specific actions in the process that contribute to the stated quality

requirements should still be carried out, and it is not always clear how a certain

product quality requirement needs to be fulfilled.

5.3.3 Refined definition of requirements engineering

This elaboration was started with a definition of requirements engineering from the

literature; however, in this thesis requirements engineering is only partly handled in the

way defined in the literature. In this section, a refined definition of requirements

engineering is introduced based on the way the topic is handled in this thesis.

Firstly, product quality requirements are the focus of this thesis. This does however not

mean that it is propagated to deal with functional and quality (non-functional)

requirements separately in practice. It is recommended to address both functional and

quality requirements at the same time; however, when current practice deals with

requirements engineering it mainly focuses on the specification of functional requirements

while ignoring quality requirements. In this thesis emphasis is therefore placed on quality

requirements specifically and it is not intended in this thesis to specify functional

behaviour of embedded products. The available approaches to specify functional

requirements are assumed to be sufficient. As such product quality requirements

engineering is an important source of information for the design of a product architecture

that addresses both functional and non-functional requirements.

Secondly, in this thesis product quality requirements engineering is regarded as a support

for product focused SPI. The main objective of requirements engineering in the context of

this thesis is that it provides a product quality specification.

60 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Thirdly, for elicitation of requirements there is a need to focus on product stakeholders.

This is done, because chapter 1 indicated that user-based quality is important in the

context of this thesis. Specification of product requirements is a sound step towards

product quality, but these requirements should also include the user perception of quality.

All stakeholders should therefore, have the possibility to make their product wishes

explicit, in order to be considered for a product quality requirements specification.

Fourthly, these product quality wishes will be described in a measurable way to provide

the product developers with an objective and unambiguous specification of product quality

requirements [Gilb 1994].

Finally, these considerations lead to a refined definition of requirements engineering.

Within this thesis requirements engineering is defined as the process of collecting the

wishes of all product stakeholders and transforming these wishes into a complete,

consistent, unambiguous, and measurable product quality specification.

5.3.4 Focused exploration of literature on requirements engineering

Much literature is available on requirements engineering. In this section only those

findings from the literature will be presented that are in accordance with the previous

refined definition of requirements engineering, and that will be used in the context of this

thesis to construct practical guidelines for product focused SPI.

The findings from literature are presented along with the requirements engineering

subtasks presented above. These findings are [ISO 9126 1991] [Gilb 1994] [Rumbaugh

1994] [Kotonya and Sommerville 1996] [Finkelstein et al. 1992] [Leite 1987] [Nissen et

al. 1996] [Goguen and Linde 1993] [Siddiqi and Shekaran 1996] [Davis and Olsen 1985]:

• On product quality requirements elicitation:

− An important aspect of requirements engineering is the existence of different

stakeholders, each having a different viewpoint and therefore different

requirements.

− Inventarising the product stakeholders and their interrelationships is a first

step for requirements elicitation. After that each stakeholder need to be

involved to capture his or her wishes on product quality.

− Techniques applicable for product quality requirements elicitation are:

questioning, i.e. questionnaires and interviews, referencing, i.e. looking at

previous similar products, analysing, i.e. refining from object and context

models, and iterating, i.e. pilots and prototyping.

• On product quality requirements analysis:

− Product quality requirements can be conflicting over stakeholders.

• On product quality requirements specification:

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 61

− Once a selection is made from the product quality wishes they need to be

transformed into a language understood by product developers.

− It is most objective and therefore most practical to specify product quality

requirements in measurable terms. Without measurable objectives it is

difficult to fulfil quality requirements.

• On product quality requirements verification:

− To support evaluation each requirement stated should be accompanied with

a set of metrics and target values to those metrics.

5.3.5 Summary on requirements engineering

Requirements engineering is defined within this thesis as the process of collecting the

wishes of all product stakeholders and transforming these wishes into a complete,

consistent, unambiguous, and measurable product quality specification. Explicitly

addressing stakeholders is a prerequisite of successful requirements engineering, since

many stakeholders have their own demands regarding a product and its quality. The

impact of requirements engineering on product quality is high, since without a clear and

measurable specification of product quality it becomes difficult to guarantee that the

development process will create a quality product. Requirements engineering is therefore

definitely a working area for product focused SPI.

5.4 Process Engineering

Process engineering is often resembled with a concept which is discussed in literature

under the term ‘Method Engineering’ [Hanani and Shoval 1986] [Wrycza 1990]

[Brinkemper 1996] [Slooten 1995] [Punter and Lemmen 1996]. According to this

literature, process engineering is the engineering discipline to design, construct and adapt

methods, techniques and tools for the development of a specific software product [based

on Brinkemper 1996]

Many standard development methods for software are available. Examples are Yourdon,

ISAC, NIAM, SDM and SSADM. Each of these methods is based on generic development

models such as the waterfall model [Royce 1970], the spiral model [Boehm 1987], or

prototyping model [Gomaa 1990]. Such development methods consist of several actions

that are taken to achieve explicit results. Examples of such actions are: requirements

reviews, architectural design, sub-system implementation, unit testing, module inspection,

etc.

These methods or parts of these methods, are differently used in different contexts. The

(re)design of these methods and the sequence in which they are used is process

engineering. Process engineering consists of [Brinkemper 1996]:

62 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

• characterisation of the project, during which the project is described according to a

list of contingency factors, including the project objectives

• selection of process actions that suit the project, during which process actions are

selected based on the project characterisation

• specification of the development process, during which the unrelated process

actions are assembled into a project specific development process

• implementation of a process in the project, during which the designed development

process is used within the project

So, process engineering contains a whole range of activities involved in designing a

specific development process based on the specific needs of a specific project.

5.4.1 Relevance of process engineering

Process engineering is necessary, because, the best suitable development process for a

specific project needs to be designed for its specific situation [Slooten 1995]. A generic

development process for any type of product does not exist [Malouin and Landry 1983]

[Benyon and Skidmore 1987]; dogmatic application of generic development processes is

ineffective and inefficient [Rees 1982]. To have an effective and efficient development

process, each development method therefore needs to be tailored to the organisation,

project, and product needs and characteristics [Basili and Rombach 1988].

Process engineering is based on the notion that, development methods have to be

continuously customised to the objectives [Davis et al. 1988]; however, such

customisations are often done implicitly [Slooten 1995]. Process engineering strives to

make these process adaptations explicit, thereby admitting that process customisation is a

basic step in each development project.

5.4.2 Practical experiences with process engineering

During the course of the research several industrial cases were carried out on process

engineering. One of them will be used to illustrate some of the aspects involved in process

engineering. The details of this case have been published [Solingen and Uijtregt 1997].

In this case a focus is put on a product that had a severe reliability requirement. In the

development process it was therefore decided to trial installations at pilot fuel-stations to

test the reliability of the product, and detect any failures that were still present in the

product. The main reason that this process action was selected, was that the organisation

did not know the impact of other process actions, which meant that only one option for a

final product reliability test remained: use in a real-life fuel station situation. Field tests are

a means to retrieve objective information on the quality of a product, which often largely

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 63

differs from the quality predictions based on prediction methods [see e.g. Brombacher

1992 and Brombacher et al. 1996].

A field test is a specific process action in which behaviour of a product is observed, when

it is exposed to field conditions [Solingen and Uijtregt 1997]. The field testing phase is the

part of the development process during which a product is actually used at a customer site,

while being closely observed. The output of a field test is a set of data on product

performance during practical use.

During this field test specific product performance was monitored using internal problem

data storage. This means that the product detects and reports problems by itself. One

example from this field test is depicted in Figure 5-3. In this figure it can be seen that the

product signals four defects every morning just before shop opening.

0

1

2

3

4

5

1/
5-

07
:0

0

1/
5-

23
:0

0

2/
5-

15
:0

0

3/
5-

07
:0

0

3/
5-

23
:0

0

4/
5-

15
:0

0

5/
5-

07
:0

0

5/
5-

23
:0

0

6/
5-

15
:0

0

7/
5-

07
:0

0

7/
5-

23
:0

0

8/
5-

15
:0

0

N
um

be
r

of
 fa

ilu
re

s

Figure 5-3: Occurrence of card-transaction failures

In Figure 5-3 the number of occurrences of a specific card transaction failure are shown. It

appeared that there was a fault remaining in the start-up procedure of the card-server. This

became clear, because this failure occurred four times every morning when the product

contacted the national card-transaction network. Triggered by the data shown in Figure 5-

3, the problem was fixed.

The effects of field tests on product quality could be evaluated in practice. During two

field tests of a cashing system, measurements were conducted to find effects of field tests.

Relevant data collection was defined in accordance to the measurement programme

engineering guidelines presented in chapter 7. This resulted in several measurement results

on the field test. It also became clear that the measurement outcomes from these two field-

tests were by no means a guarantee that any following field-tests would yield similar

64 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

results. Many context factors impact the effects of a field test, which makes its results

difficult to predict.

Furthermore, it appeared at the end of the two field-tests that the field-test process action

was the only process action in that organisation on which such knowledge was now

available. On no other process actions taken in the development projects, did baselines

exist for their performances, nor for their impact on quality.

What became clear from this case was that the selection of process actions for a specific

project is a difficult task. One of the main reasons is that the organisation was not aware of

what the impacts were on product quality of the different steps in their process, which

makes the tuning of that process difficult. The absence of valid process-product

relationships makes it difficult to ‘prove’ the effects of a development process.

Furthermore, the case concluded that the impacts of process actions on product quality can

not be guaranteed. The impacts of a certain process action might be totally different in

different situations.

5.4.3 Refined definition of process engineering

This elaboration started with a definition of process engineering taken from the literature;

however, this thesis handles process engineering only partly in the way as defined in this

definition. In this section, a refined definition of process engineering will be introduced,

based on the way this topic is handled in this thesis.

Firstly, a limitation is put on product quality. Process engineering is therefore limited to

those process actions that contribute to product quality.

Secondly, process engineering is carried out as a support for product focused SPI. The

main objective of process engineering in this context is to design a project specific

development process, which is likely to develop a product that complies to the product

quality requirements. Process engineering therefore focuses on the identification and

selection of those process actions that contribute to the required product quality, and the

specification of these process actions in a development process model.

Thirdly, during execution of the specified development process, this process is measured.

Measurement is carried out to evaluate whether the expected effects of process actions

actually occur. If so, the effects of process actions are confirmed. If not, corrective action

can be taken. The development process that is designed during process engineering,

therefore needs to be ‘measurable’.

Within the remainder of this thesis, process engineering is considered to be the design of a

measurable development process for the development of a specific product that complies

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 65

to the product quality specification. A development process contains a set of process

actions with explicit expected effects on product quality.

5.4.4 Focused exploration of literature on process engineering

Much literature is available on process engineering. In this section only those parts of the

literature are presented that are in accordance with the previous refined definition of

process engineering, and that will be used in the context of this thesis to construct practical

guidelines for product focused SPI.

Before going to the findings of literature, one should note that to carry out process

engineering correctly, the individual impacts of specific process actions should be known.

In recent research it has been concluded that there is only a small number of publications

that specifies the impacts of specific process actions on product quality [Soerjoesing

1998]. The main stream publications only contain a description of a technique, method or

tool. This unavailability of validated process-product relationships confirms that software

engineering is still an immature engineering discipline [Gibbs 1994] that lacks knowledge

on its merits.

Findings from literature on process engineering are [Paulisch and Carleton 1994]

[Humphrey 1989] [Davis et al. 1988] [Hamann et al. 1998a] [Hamann et al. 1998b]

[Soerjoesing 1999] [Punter and Lemmen 1996] [Basili et al. 1994a] [Clements et al.

1995]:

• On characterisation of a project:

− Make the project objectives explicit in a measurable way.

− Use the product architecture as basis for communicating the system, its

development and earliest design decisions.

• On selection of process actions:

− Use process assessments to identify a baseline overview of the development

process that normally is followed before designing a project specific

process. Such a baseline can be used to indicate which process actions that

contribute to product quality are usually used, and at which time, to which

extend, by whom, etc.

− Process modelling is a prerequisite to make the development process steps

explicit, and should therefore be carried out for the ‘normal’ process. This

process model also makes the development process baseline explicit.

− To carry out process engineering in a right way, knowledge is needed on the

individual effects of process actions on product quality.

− Create models of the relationships between process actions and product

quality. In this thesis such models are termed process-product relationship

models.

66 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

• On the specification of the development process:

− Make an explicit model of the project specific process.

− Consider a process to be a set of phases that consist of a set of interrelated

steps that each apply one or more techniques and result in one or more

products.

− Several modelling techniques are available to make such process models.

• On implementation of the process:

− Activities need to be undertaken to implement the designed process model,

actually in the development project.

− The sequence of steps in process model should therefore be included in the

project planning, procedures and reports.

The details involved in the implementation work are indeed relevant; however, it is outside

the scope of this thesis. For example the importance of designing a good product

architecture and the impact of this architecture on product quality has been addressed in

chapter 3. The product architecture is the object used for communicating system issues and

discussing what can be done or cannot be done by the system under development. How

this architecture is developed best is, however, out of the scope of this thesis. In the

context of this thesis, the delivery of a project specific development process model is

sufficient. This thesis assumes that the actual development process is carried out as

described.

5.4.5 Summary on process engineering

Summarising, process engineering is defined in this thesis as the design of a measurable

development process for the development of a specific product that complies to the

product quality specification.

It was concluded that the current state of knowledge on software engineering lacks

validated models of the relationships between process actions and product quality. Such

product-process relationship models (PPRM) should therefore be created and validated. If

a relationship is confirmed in one situation there is no guarantee that that relationship also

exists in a different situation, and therefore it needs to be monitored if the expected effects

of process actions (re-)occur. This monitoring by means of measurement will be further

described in the next section on measurement programme engineering.

5.5 Measurement Programme Engineering

Measurement programme engineering is described in the literature as the design and

implementation of a set of process, product and resource metrics, to achieve predefined

objectives within an organisation [based on Fenton and Pfleeger 1996].

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 67

The design and implementation of a measurement programme carried out in practice

contains three main phases [Solingen and Berghout 1999]:

• Definition of the measurement goals, questions, metrics and hypotheses. During

this phase the actual design of the measurement programme is carried out.

• Data collection of the measurement data according to the plan. During this phase

the data collection procedures are designed and implemented in the organisation.

• Interpretation of the measurement data by the software development team. During

this phase feedback is given to the project team, and the collected data is analysed

to evaluate hypotheses, answer questions, and attain the measurement goals.

Conclusions on the measurements and knowledge packages are stored for future

application.

So, measurement programme engineering contains a whole range of activities involved in

designing and carrying out measurement in practice.

5.5.1 Relevance of measurement programme engineering

Measurements are objective and can therefore be used as a mechanism for feedback and

evaluation, such as for model building, abstracting knowledge, validating process actions,

creating management information, evaluating projects, etc. [Basili et al. 1994b] [Grady

1994] [Briand et al. 1996] [Fenton and Pfleeger 1996] [Stark et al. 1994]. Although,

subjective measurements are also often taken, these are more general and better

comparable than the subjective expression of a person’s perception on a specific topic.

The main benefits of software measurement are [Hall and Fenton 1994]: objectivity in

process management, improved product quality, increased engineer productivity,

improved organisational communication, and improved engineer work pride.

The main purpose of measurement programme engineering in the conceptual model is to

provide feedback to the project. First of all, measurement enables the provision of

information on conformance of the (intermediate) product to the product quality

specification. With this information, progress of the project can be traced and corrective

action can be taken. Secondly, measurement enables the evaluation of the extend in which

process actions result in the intended effects. Especially for new process actions with

which less experience is available, measurement is a powerful tool. It is also possible to

provide information on performance indicators of process actions that much experience is

available on, in order to support better control of, or even optimisation of, such process

actions.

68 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

5.5.2 Practical experience with measurement programme engineering

During the course of the research several case-studies were carried out on measurement

programme engineering. One of them will be used to illustrate some of the aspects

involved in measurement programme engineering in practice.

In this case-study a project is described during which product reliability was measured.

The measurement programme was active for a development project that developed a low-

end cash register. The results consisted of more than the measurement data alone. They

also contained conclusions drawn by the project team during feedback sessions, and

corrective actions that were defined based on the measurement data.

It was decided to have product reliability as measurement goal. This was done because

'reliability' was the most important quality requirement for the product, and the practical

relevance of reliability measurement was clear to the project team. A selection of

conclusions drawn and actions taken by the project members based on the measurement

results is presented, and illustrated along the product failure trend in Figure 5-4.

0

25

50

75

100

125

Ja
n-

Y
1

M
ar

-Y
1

M
ay

-Y
1

Ju
l-Y

1

S
ep

-Y
1

N
ov

-Y
1

Ja
n-

Y
2

M
ar

-Y
2

M
ay

-Y
2

Ju
l-Y

2

S
ep

-Y
2

N
ov

-Y
2

Time (months: year 1 and year 2)

N
um

be
r

of
 r

ep
or

te
d

fa
ilu

re
s

Figure 5-4: Number of failure reports on product under development

In Figure 5-4 the amount of failures is shown that were reported on the product over time.

Each failure is recorded only once: at the moment it is detected for the first time. In Figure

5-4 a peak is present in April and November of year 1. The number of failure reports on

the product approaches zero at the end of year 2. During this period changes were made to

the product to solve detected problems, and to expand the functionality of the product. As

such this figure does not present a reliability trend of a product in operation, but presents

the amount of known problems in the product. Each known problem is expected to result

in regularly failures, thus influencing product reliability.

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 69

The evaluation of conformance to the reliability requirements of the product is supported

by this chart, because it provides an objective overview of the failures of the product.

Beside the fact that this chart shows an aspect of product reliability, it also supports in the

evaluation of effects of process actions. For example in April of year 1, a Novice User

Test was executed and therefore the number of failure reports was high. One of the

conclusions was that such a Novice User Test is useful and contributes to product

reliability. Of course other prerequisites were stated for such tests, but based on other

measurements and experiences.

Measurements such as in Figure 5-4, should always be fed back to the project team for

interpretation to prevent drawing wrong conclusions. For example, the low number of

failures during July and August of year 1 reflect the summer holidays during which no

detection activities were executed on the project. A person that did not know these process

details might have concluded, wrongly, that the product was becoming reliable.

The project team also learned that drawing conclusions on the current reliability of the

product based only on Figure 5-4 is not possible, because information is not included on

the amount of effort spent on finding failures. For example, in May of year 1, twice the

amount of failures occurred than in June of that year. Conclusions on reliability can not be

drawn, because it is not clear how much effort was spent to find these failures. If other

measurements had shown that in both months the amount of effort spent on testing was the

same, better conclusions on reliability could have been drawn.

Finding out such relationships is an important aspect of measurement programmes:

measurement supports a learning process in which project teams learn to distinguish which

aspects are important and how process-product relationships exist.

Other aspects that were learnt from this project were:

• Modules with high user interaction produce much more failures whenever a fault is

present and should therefore be reviewed quite intensively.

• Module size in e.g. number of source lines appears to be an indicator for faults.

This conclusion is drawn based on the increasing fault density for large modules.

The measurement programme also confirmed that there is a relationship between

cyclomatic complexity and module size.

• Availability of the right test equipment increases detection of faults before delivery.

This conclusion is based on the identification of the project team that most failures

found after release were caused by a different configuration than available during

test. They took action to make sure the appropriate equipment became available.

The measurements supported them to convince management to make this

investment.

70 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

What became clear from this case-study was that measurement programmes indeed have

two purposes for product development:

• to monitor current status of the product, and as such the conformance of the product

to the requirements

• to observe the relationship between a process action and its impact on product

quality

Relationships between a process action and the product were monitored to find out

whether they re-occurred as expected, but such relationships were also discovered if the

project team did not know they existed. So process-product relationships can be

determined and evaluated.

In this case it is also illustrated that practical guidelines on carrying out measurement

programme engineering in practice are needed. Setting up a measurement programme is a

difficult task and should be carried out correctly. Support from guidelines needs to be

available for practice. Furthermore it appeared that feedback to the project team, and

interpretation of measurement data by the project team is crucial to the success of

measurement programmes. In fact it became clear that measurement programmes are

learning processes, in which project developers learn about the impacts of their way of

working [Latum et al. 1996][Solingen et al. 1997].

5.5.3 Refined definition of measurement programme engineering

The definition of measurement programme engineering as defined at the start of this

section will be refined to fit this thesis. There are no issues for a major change of the

definition; however, the objectives of measurement programme engineering in this thesis

are defined, and can therefore be integrated in the definition. The two objectives of

measurement programme engineering as defined in section 5.1.3 are:

• to evaluate conformance of the end product to the product quality requirements

• to evaluate relationships between process actions and product quality

Measurement programme engineering is therefore defined in this thesis as the design and

implementation of a set of process, product, and resource metrics, to evaluate product

quality and evaluate process-product relationships.

5.5.4 Literature on measurement programme engineering

Much literature is available on measurement programme engineering. This section will

only present those findings from the literature that are in accordance with the previous

definition of measurement programme engineering, and that will be used in the context of

this thesis to construct practical guidelines for product focused SPI.

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 71

Measurement programme engineering is centred around explicitly stating measurement

goals. Measurement goals focus on understanding, controlling or improving [Basili 1993]

[Fenton and Pfleeger 1996] [Solingen and Berghout 1999]. Within this thesis this means:

• understanding: learning effects of process actions

• controlling: comparing effects of process actions with the expected effects, or

monitoring the product

• optimising: improving effectiveness and efficiency of specific process actions

General findings on measurement programme engineering in literature are [Hall and

Fenton 1994] [Paulisch and Carleton 1994] [Basili et al. 1994b] [Basili and Rombach

1988] [Latum et al. 1996] [Latum et al. 1998] [Briand et al. 1996] [Pfleeger 1991] [Fenton

and Pfleeger 1996] [Möller and Paulisch 1993] [Grady and Caswell 1987] [Grady 1992]:

• On definition of a measurement programme:

− Measurement should be performed towards explicitly stated goals. This

‘goal-oriented measurement’ helps to provide traceability between

improvement goals, measurement goals, and measurement.

− Have baseline performance data available before improvements are

implemented: combine measurement with process improvement goals.

− Subjective as well as objective metrics are required to attain measurement

goals.

− Most aspects of software processes and products are too complicated to be

captured by a single metric.

− The measurement process must be top-down rather than bottom-up to define

a set of operational goals, specify the appropriate metrics, permit valid

contextual interpretation and analysis, and to provide feedback for

tailorability and tractability.

− The development and maintenance environments must be prepared for

measurement and analysis.

• On data collection for a measurement programme:

− Multiple mechanisms are needed for data collection and validation.

− To evaluate and compare projects and to develop models we need a

historical experience base that should evolve into a knowledge base.

− Collect data on the development process only: do not measure people: do

not ignore the fear of people for metrics.

• On interpretation within a measurement programme:

− Interpret measurement information based on characterisation and

understanding of the organisational context, environment and goals. Make

effective use of graphics for presenting measurement results.

72 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

− Models and metrics cannot be directly transferred between different

environments.

− Metrics must be associated with interpretations, but these interpretations

must be given in context.

− Crucial to the success of measurement programmes is the analysis of the

measurement data. This analysis should be carried out by those people that

have knowledge on the context in which the data was collected, and ideally

consists of those people that actually collected the data.

− Use measurement feedback sessions to analyse data, answer questions and

define actions.

− Integrate software measurement in the development process. Prevent

separate ‘metrics’ groups that perform ‘ivy tower’ analysis.

5.5.5 Summary on measurement programme engineering

Measurement programme engineering is defined in this thesis as the design and

implementation of a set of process, product, and resource metrics, to evaluate product

quality and to evaluate process-product relationships. As this definition indicates,

measurement programmes has two purposes:

• the evaluation of the conformance of a product to the product quality requirements

specification

• the evaluation of the relationship between process actions and product quality

These two objectives of measurement are highly relevant when considering product

focused SPI. Measurement programme engineering is therefore definitely a working area.

A set of findings from the existing literature was listed to be considered for measurement

programme engineering as it is used in this thesis. Furthermore, the case-study concluded

that a measurement programme is a learning process, in which developers learn about the

impacts of their way of working.

5.6 The RPM Conceptual Model

An elaboration of the three working areas of product focused SPI were presented in the

previous sections. In this section these working areas are combined into a conceptual

model, which structures and operationalises product focused SPI. This conceptual model

is a control model that defines the control loops present for product focused SPI. Product

quality will be controlled within this model, through controlling the development process

and the product quality requirements specification.

The conceptual model for product focused SPI is called the RPM model and consists of

the three working areas (section 5.2):

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 73

• Requirements engineering, which is the process of collecting the wishes of all

product stakeholders and transforming these wishes into a complete, consistent,

unambiguous, and measurable product quality specification

• Process engineering, which is the design of a measurable development process for

the development of a specific product that complies to the product quality

specification

• Measurement programme engineering, which is the design and implementation of a

set of process, product, and resource metrics, to evaluate product quality and

evaluate process-product relationships

Furthermore, the conceptual model contains three work products:

• Product quality specification, which are the documented product quality

requirements, specified in a complete, consistent, unambiguous, and measurable

way.

• Development process model, which is the project specific model of the steps

performed to result in an embedded product. Some of these steps are what this

thesis calls ‘process actions’, which are selected for their explicit expected effect on

product quality.

• Measurements, which are the collected data and their analysis by the development

team regarding the conformance of the product to the product quality specification,

or regarding the effectiveness of specific process actions.

These working areas, their work products and interrelationships are depicted in Figure 5-5.

RE
Product Quality

Specification

PE
Development

Process Model

ME
Product & Process

Measurements

Figure 5-5: The RPM conceptual model for product focused SPI

Requirements engineering is carried out to capture the quality requirements for a product.

The resulting product quality specification is used by process engineering to design an

appropriate development process. During process engineering it might become clear that

74 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

some requirements can not be fulfilled. These requirements are fed back to requirements

engineering to adapt the requirements specification. Requirements engineering and process

engineering perform an iterative negotiation process in which a trade-off is made between

the product quality requirements and the related options in the development process.

The architecture of both the product and the software is a useful object in this

communication process. The architecture enables the discussion of such early design

decisions and it is possible to estimate based on an architecture the feasibility to fulfil

certain product quality requirements [Clements and Northtrop 1996].

In addition, a measurement programme is started that monitors the process in its ability to

result in the expected effects on product quality, and furthermore measures the

conformance of a product to the product quality specification. Measurement programme

engineering feeds back information to process engineering on the effectiveness and

efficiency of certain process actions, and to requirements engineering on the conformance

of a product to the specification.

The conceptual model in Figure 5-5 contains 3 control loops (see Figure 5-6):

• Product quality loop, which controls the extend in which a product under

development complies to the product quality requirements

• Product-process loop, which controls the extend in which the development process

is capable of fulfilling the product quality specification

• Process quality loop, which controls the extend in which specific process actions

result in the expected effects

Product
quality loop

Process
quality loop

Process-
product

loop

RE
Product Quality

Specification

PE
Development

Process Model

ME
Product & Process

Measurements

Figure 5-6: The RPM conceptual model and its control loops

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 75

5.6.1 Strengths of SPI compared to the conceptual model

In section 5.1 the extent was discussed to which the proposed expansions matched the

criteria for product focused SPI in chapter 4. These criteria were designed to overcome

some fundamental weaknesses of existing SPI approaches for embedded product

development. The conceptual model constructed in this chapter should not only solve

those weaknesses, but also maintain the strengths of existing SPI methods. The extent to

which the strengths of existing SPI approaches are maintained within the conceptual model

of Figure 5-5, is therefore discussed in this section.

The following strengths are also covered by the RPM model:

• SPI is based on best practices. This strength is retained, because the application of

assessments during process engineering is recommended as a characterisation of

current practices. The ‘best practice’ knowledge from assessment approaches is

therefore also included in the RPM conceptual model.

• SPI is a management tool for improvement. Since, the RPM conceptual model

explicitly addresses the formulation of product quality goals, it provides a

management tool for improvement. The objectives for a product are set, the process

is defined based on these objectives, and a measurement-based evaluation is carried

out. This structure can be used to manage a project, and is therefore a management

tool to control product quality improvement.

• SPI gives explicit priority to quality. It might be clear by now that the RPM

conceptual model puts product quality as the basic objective, thereby giving

explicit priority to quality of both the product and the process.

There are also some strengths of existing SPI approaches, however, that are not covered

by the RPM conceptual model:

• SPI changes are prescribed. Current SPI approaches prescribe the process areas in

which an organisation needs to change. This is different from what the RPM

approach does. The RPM approach prescribes tasks to do to identify what to

change. Instead of prescribing general process changes for every software

development process, it prescribes a process that helps in learning where the

changes are mostly needed. This is fundamentally different from existing SPI

approaches; however, this is probably better, because the end result is the same: a

list of improvement areas, while the RPM approach also guarantees that these

proposed changes are relevant to the specific project. No action will be taken to

overcome this issue.

• SPI provides a vision. The RPM conceptual model links product quality goals to

the development process that has to create that quality. This goal-oriented structure

is, however, mainly focused to control product quality within one specific project.

Improvement over projects is not included, which causes long term improvements

76 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

of the development processes not to be established. This will be addressed further

in this thesis.

The main conclusion of this section is that the RPM conceptual model presented in Figure

5-5, contains the strengths of existing SPI approaches that were identified in chapter 4

largely; however, a long term vision of improvement over projects is missing.

5.7 Need to investigate learning theory

Until now this chapter has introduced the RPM conceptual model, investigated the

components of this model, and presented practical experiences with each component.

Based on this, it becomes time to investigate whether this RPM model can work in

practice.

The practical experiences with the three working areas already indicated that there are

some specific issues related to the practical implementation of the RPM model:

• For requirements engineering there are difficulties in creating a ‘good’ set of

product quality requirements, because there is not much knowledge on creating

good requirements. Furthermore it is not always feasible to fulfil stated

requirements from stakeholders.

• For process engineering there is a clear absence of knowledge on valid process-

product relationship models, which makes it difficult to ‘guarantee’ the effects of a

development process. Furthermore, the impacts of process actions on product

quality are not generic. The impacts of a certain process action might be totally

different for different situations.

• It was identified for measurement programme engineering that such programmes

should be carried out carefully to be successful, and that feedback to the project

team, and interpretation of measurement data by the project team is an important

success factor due to the transfer of knowledge among the people.

Furthermore, it was concluded that, although the RPM model contains most strengths of

existing SPI approaches, a long-term improvement vision is lacking. Knowledge transfer

from one project to the other is not included in the RPM model.

All these issues are centred around one problem: missing knowledge, and especially

missing knowledge in the software engineering domain. This is a problem that can not be

solved within this thesis. There is, however, a basic solution to missing knowledge, and

that is learning. When certain knowledge is not available it can be acquired. Product

requirements can be determined by making them explicit, implementing them and carrying

out an evaluation. Feasibility of product requirements can be determined through trying to

fulfil them. Product-process relationships can be determined by stating expectations and

evaluating whether these expectances were right. Situational effects of process actions can

CONCEPTUAL MODEL FOR PRODUCT FOCUSED SPI 77

be determined by measuring them. Carrying out measurement programmes is an

organisational learning process in which knowledge is created from current practices

[Basili et al. 1986] [Solingen et al. 1997].

From now on, this thesis will take the view that product focused SPI is a learning process;

therefore, a more thorough analysis of learning processes is relevant. The need for

integrating learning concepts into software engineering has been supported by several

authors before [Brooks 1975] [Bemelmans 1998] [Basili et al. 1994a]. It seems, therefore,

wise to integrate concepts from learning theory into the RPM conceptual model to include

such learning cycles explicitly. The lack of knowledge on software engineering cannot be

solved within this thesis, however, it is possible to make sure that the RPM approach

works towards a solution.

So, learning theory needs to be investigated to provide guidelines on how to carry out the

model of Figure 5-5 in a good learning way. From these learning theories it is expected to

comprise concepts and guidelines that will support in making the RPM model practically

applicable in industrial contexts. The learning literature is investigated in the following

chapter.

6. Learning: the basis of

improvement

In the previous chapters a conceptual model was constructed for product focused SPI.

Based on an analysis of this model it was concluded that learning theory needs to be

incorporated. Learning is often the main process in organisations [Garvin 1993], and it is

definitely so for software development, because this development consists of mainly

cognitive tasks.

In this chapter learning theory is explored and an indication is given of which parts of

learning theory are applicable within the context of product focused SPI. Based on the

learning concepts found in learning theory, the RPM conceptual model is adjusted. A set

of learning enablers is also identified and it is discussed how these enablers should be

interpreted within the three working areas of the RPM conceptual model.

6.1 Restricting learning concepts

This thesis does not contain a full analysis of learning theory or an extensive discussion of

the pros and cons of certain views. Learning theory is addressed in this thesis with an

explicit purpose: retrieving operational guidelines to increase the effectiveness of the

learning processes that are present during product focused SPI. In order to do so, in this

thesis only those parts of learning literature will be addressed that contribute to this

objective.

Learning is the process by which existing knowledge is enriched or new knowledge is

created [Weggeman 1997]. Learning deals with expanding knowledge. Knowledge is the

personal ability that enables a person to perform a certain task [Weggeman 1997]. This

ability is the product of information (I), experience (E), skill (S) and attitude (A) of a

person at a certain time (K=I·ESA) [Weggeman 1997].

Not all types of knowledge are relevant for this thesis. Knowledge is often subdivided into

declarative knowledge and procedural knowledge [Anderson 1990]. Declarative

knowledge is knowledge about facts and things, often learned in a classroom setting.

Procedural knowledge is knowledge about how to perform various cognitive activities,

often learned in a ‘community of practice’ [Wenger 1990]. Since, in this thesis learning

theory is investigated with respect to the impacts of processes on product quality in a

practical environment, the focus of this chapter is on procedural knowledge. Declarative

80 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

knowledge on the relationships between process and product are unexplored for software

engineering (see chapter 5), and thus not part of computer science curricula in education.

Several classifications of the process of learning are described in the literature. For

example: cognitive versus motor learning [Ayas 1997], explicit versus implicit learning

[Swieringa and Wierdsma 1990], or rationalistic versus empirical learning [Weggeman

1997]. Nonaka and Takeuchi distinguish four different learning processes [Nonaka and

Takeuchi 1995]:

• ‘socialising’: a learning process between people in which implicit (tacit) knowledge

is transferred by copying, imitating, master/pupil relationships, and experiencing by

trial and error

• ‘externalising’: a learning process, individual or between people, in which implicit

knowledge is made explicit by for example model building, dialogues, and

hypothesis formulation

• ‘combining’: a learning process in which explicit knowledge from different sources

is combined by for example: studying, analysing, reconfiguring, and integrating

• ‘internalising’: an individual learning process in which explicit knowledge is made

implicit through learning by doing, creating routines, and enlarging operational

efficiencies

Although, all four learning processes are present during, and relevant for, product focused

SPI, this thesis focuses on the explicit learning processes: externalising and combining.

This decision was made because the approach that is constructed addresses learning as an

explicit task and provides guidelines to perform these tasks. This is by definition an

explicit process.

With the decision to focus on explicit learning processes and on procedural knowledge in

mind, this thesis continues with an exploration of learning theory. First, individual learning

will be considered, followed by group learning.

6.1.1 Individual learning

During individual learning, the knowledge of one single person expands. A well-known

theory is Kolb’s Experiential Learning theory [Kolb 1984] that defines an explicit learning

process. According to Experiential Learning theory, learning is a process in which

experiences are transformed into knowledge, through model building and model testing.

Experiences are divided into concrete experiences: observations like seeing, feeling or

hearing, and abstract conceptualisations: theories and models about observations and their

relationships. Transformations are divided into reflective observations: analysing

observations and developing new models and theories, and active experiments: testing

LEARNING: THE BASIS OF IMPROVEMENT 81

models and theories in practice. According to Experiential Learning theory, neither the

experience nor the transformation alone is a sufficient condition to achieve learning.

A
ct

iv
e

E
xp

er
im

en
ta

tio
n R

eflective O
bse

rva
tion

Abstract Conceptualization

Concrete Experience

Divergent
learning

Accommodative
learning

Convergent
learning

Assimilative
learning

Figure 6-1: Experiential Learning [Kolb 1984]

Following the different classes of experience and transformation, four different modes of

learning are distinguished. These modes are:

• ‘divergent learning’ during which observations are analysed

• ‘assimilative learning’ during which models are built

• ‘convergent learning’ during which models are tested in practice

• ‘accommodative learning’ during which experiments are observed

According to Kolb, the combination of these four modes of learning produces the highest

level of learning. The combination requires the learning process to include: ‘observing

phenomena, analysing them, developing models and theories about them and testing these

theories and models in practice’ [Kolb 1984]. In fact this is what was identified in chapter

5: product quality control in practice is enabled through model building and model testing

of process product relationships.

6.1.2 Group learning

When considering learning in software process improvement, it is important to realise that

work is performed in an industrial environment. An industrial environment demands group

learning. Software development and process improvement is carried out within teams,

projects, departments or companies; it always concerns a group of people. The

improvement objectives and learning processes are therefore shared.

The term ‘group learning’ indicates that a set of people, over a period of time, share the

same learning goals and learning process. In such a situation, knowledge has to be shared

82 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

among organisational members and to contribute to the synergy of the organisation

[Jelinek 1979]. This is also often termed: ‘organisational learning’.

Organisational learning is defined as a skilled process in which knowledge is created,

acquired, and transferred, and through which behaviour is modified based on the new

knowledge and insights [Garvin 1993]. It is important to note that organisations cannot

learn: the individual people can learn and learn together [Weggeman 1997].

This definition reflects that learning happens when new insights arise. Sometimes they are

newly created, sometimes they arrive from outside the organisation or are communicated

by knowledgeable insiders. Such new insights are, however, not enough. Without

accompanying changes in the way that work gets done, only the potential for

improvement exists [Garvin 1993]. George Huber states similarly that learning occurs

when ‘the potential behaviours are changed’ [Huber 1991]. Behaviour does not need to

be changed for every situation, but the potential ways of working need to be expanded. So,

effective learning results in altering (potential) behaviour. If behaviour is not changed,

learning has apparently not occurred.

Argyris and Schön make a distinction between two modes of learning: single loop and

double loop [Argyris and Schön 1978]:

• Single loop learning. This is learning in which the actor only learns within the

confines of his or her theory in use. There is a focus on the operational level: based

on detecting and correcting errors, competencies and routines.

• Double loop learning. Double loop learning starts when an event is diagnosed as

incompatible with the actor’s current theory in use. With double loop learning

current theory and models are altered through new insights.

In practice most organisations are only focussed on single loop learning [Argyris 1993].

Optimisation is only done within the current way of working. This in itself is not wrong.

Through repetitive experiences, organisations get skilled in their work, and create

competitive advantages based on these skills.

Sometimes new approaches become available that an organisation has no experience with.

In such cases it might be better to switch to such a new approach, because it fits better than

the historic approaches. This is double loop learning, which many organisations tend to

see as a threat because it conflicts with existing and established habits.

It is also dangerous for an organisation to constantly adopt new ways of working, because

all knowledge gained until then might immediately become outdated. ‘The known can be

in many situations be preferred over the unknown’ [March 1991]. A balance should be

found in optimising the current processes (single loop learning) and experimenting with

new theories and approaches to find out whether those are much better than existing ones

(double loop learning). So, learning theory promotes a parallel application of optimisation

LEARNING: THE BASIS OF IMPROVEMENT 83

of current practices and experimentation with new ones. This idea should be considered

for the RPM conceptual model.

The skills and capabilities of learning organisations are divided over three classes [Senge

1990]:

• ‘aspiration’: the capacity of individuals, teams, and eventually larger organisations

to orient toward what they truly care about, and to change because they want to, not

just because they need to

• ‘reflection and conversation’: the capacity to reflect on patterns of behaviour and

assumptions deeply hidden in a persons behaviour, both individually and

collectively

• ‘conceptualisation’: the capacity to see larger systems and forces at play and to

construct public, testable ways of expressing these views

According to Senge, there are three groupings of learning skills. Firstly, there is the

motivation to learn and improve. This includes having time for learning, learning

objectives, interest in learning, etc. Management commitment for learning tasks is also one

of the aspects that falls under aspiration. Secondly, there is the willingness to discuss deep

assumptions. This is what Argyris and Schön call ‘double loop learning’. Finally, there is

conceptualisation, which corresponds with model building and testing of the experiential

learning theory [Kolb 1984]. These three skills and capabilities for establishing learning

need to be addressed by the RPM conceptual model.

Learning theory supports that a learning method should specify learning goals explicitly

[Garvin 1993]. Defining these goals is difficult, but in a business environment it makes

sense to base them on business goals. These goals can be different for different

organisations. Differences include the market in which an organisation operates, the type

of product that is delivered, the organisation of the development teams, or the country in

which the products will be used. Learning practices should be directed to goals of the

organisation, which can be made operational by, for example, managing on performance

indicators [Garvin 1993]. Goals for learning always vary between organisations, because

of different strategies [Agarwal et al.1997]. So, learning theory indicates that learning

objectives should be situational, depending on the specific needs of an organisation.

In chapter 5 it was indicated that the RPM conceptual model does not prescribe generic

process improvement goals for all organisations. This is different from current SPI

approaches that prescribe a generic set of priorities and sequence in which improvements

should be implemented. In chapter 5 it was discussed that defining organisation specific

improvement objectives is probably better. Learning theory appears to support this

decision. The way in which these goals are reached is not prescribed: the learning process

of each organisation can be different, because the context in which learning is established

is also different.

84 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

The final aspect of organisational learning relevant for this thesis is based on a

phenomenon called ‘creative tension’ [Senge 1990]. This is the difference between current

reality and a desired future. The gap between the current reality and the desired future

should not be too large, because the objectives of the people become too abstract and

concrete actions towards improvement are not clearly visible. On the other hand the gap

between current reality and the desired future should not be too small either, because this

will result in no action at all, since the need for action might seem unnecessary. Note the

resemblance between ‘creative tension’ and ‘assessment based’ improvement programmes

for software engineering, in which yearly benchmarks are used to set next years objectives.

This creative tension principle will be adopted, because it appears practical to steer

learning towards reachable objectives. So an improvement method for embedded product

development should focus on goals that are reachable and within the principle of ‘creative

tension’.

Beside general guidelines on implementing organisational learning, learning theory also

provides several criteria for successful learning. Such ‘learning enablers’ are also relevant

for this thesis and are therefore be handled in the next section.

6.1.3 Proposed incorporation of learning concepts in the RPM

conceptual model

Based on the foregoing analysis of learning theory, the time has come to summarise which

concepts need to be incorporated in the RPM conceptual model for product focused SPI,

which was presented in chapter 5. The following learning concepts will be incorporated:

1. Learning is the process by which existing knowledge is enriched or new knowledge

is created [Weggeman 1997]. Knowledge is the personal ability that enables a

person to perform a certain task [Weggeman 1997]. Transferring implicit (tacit)

knowledge is not addressed in this thesis.

2. Organisational learning is defined as a skilled process in which knowledge is

created, acquired, and transferred, and through which (potential) behaviour is

modified based on new knowledge [Garvin 1993]. Organisational learning is done

within groups of people. Organisations do not learn, but the people in those

organisations are learning.

3. During learning experiences are transformed into knowledge, through model

building and model testing. A learning process contains: observing phenomena,

analysing them, developing models and theories about them and testing these

theories and models in practice [Kolb 1984].

4. Two types of learning exist in a learning organisation [Argyris and Schön 1978]:

− Single loop learning: during which the current way of working is optimised.

LEARNING: THE BASIS OF IMPROVEMENT 85

− Double loop learning: during which current ways of working are rigorously

changed by adopting alternative theories.

5. Establishing skills and capabilities of a learning organisation consist of [Senge

1990]:

− Aspiration: Creating a context in which people are willing, motivated and

able to learn.

− Reflection and Conversation: Creating a context in which double loop

learning is established.

− Conceptualisation: Creating a context in which knowledge is made explicit

by model building and model testing.

6. Learning goals are different for different situations, and these learning goals should

be stated explicitly [Garvin 1993] [Agarwal et al. 1997]. These goals should be in

accordance to the principle of ‘creative tension’ [Senge 1990], which means that

they are a challenge to reach them, but that it is also feasible to reach them.

Although learning theory provides insights in how to increase learning within product

focused SPI, learning theory provides no practical guidelines on how work gets done in a

learning organisation. Organisational learning theorists themselves confess that their

concepts do not provide any framework for action in reality [Garvin 1993] [Senge et al.

1994]. It is, however, indicated that cyclic models from the ‘quality area’, such as Plan-

Do-Check-Act [Deming 1986], provide systematic methods that can be used to integrate

learning into practice [Garvin 1993] [Senge et al. 1994].

6.2 Improving the RPM conceptual model

In chapter 5, the RPM conceptual model was presented, this contains the three main

working areas and their inter-relationships for product focused SPI: requirements

engineering, process engineering and measurement programme engineering. In this section

the RPM conceptual model will be altered based on the selected learning concepts. What

does learning theory confirm or potentially change in the RPM conceptual model of

chapter 5?

Firstly, definitions of learning, knowledge and organisational learning are provided (6.1.3

point 1 and 2). It becomes clear that the focus of learning within an organisational setting

should focus on the learning process of people, and on the group learning process of these

people. Improving software process and product quality requires a focus on the people that

develop these products and use these processes.

Secondly, in learning theory centring the learning process around model building and

model testing is promoted (6.1.3 point 3). This confirms that the modelling of process-

product relationships is a good approach, and furthermore confirms that measurement is

86 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

rightfully selected as a major component of the model, as it supports in objectively testing

and evaluating of the models built. Measurement is used in the conceptual RPM model to

learn the effects of process actions on product quality, and to evaluate the conformance of

the end-product to product quality needs. These two purposes are both based on model

building and model testing and therefore stimulate learning.

Thirdly, there is a need to distinguish two types of learning: single loop learning and

double loop learning (6.1.3 point 4). For the conceptual RPM model this implies that

single loop improvement must be distinguished from double loop improvement. This was

not done in chapter 5, and this concept should therefore be included.

Fourthly, learning theory indicates that there are three types of skills and capabilities for

successful learning: aspiration, reflection & conversation, and conceptualisation (6.1.3

point 5). This confirms that the organisational context and culture are an important

prerequisite for success, which is also the case for improvement programmes. Furthermore

it confirms that, making implicit models explicit and testing and measuring them, supports

a learning approach.

Finally, making goals explicit and obtainable using the principle of ‘creative tension’ is

prescribed in learning theory (6.1.3 point 6). This confirms that learning should be a direct

objective in SPI programmes. Furthermore, the learning objectives must be made explicit.

It also confirms that assessments are a powerful tool for process improvement, as they are

based on the creative tension principle. Assessments can be used to determine the baseline

for the current status of the software process and should therefore remain as an important

component. This is already the case in the conceptual model, since process assessments

are part of process engineering.

6.2.1 Adjusting the RPM model based on learning theory

It is indicated in learning theory that many learning concepts are already included in the

RPM conceptual model of chapter 5; however, two changes were proposed from learning

theory in section 6.1.3:

• distinguish between single loop and double loop improvement

• make learning goals explicit and address them explicitly

LEARNING: THE BASIS OF IMPROVEMENT 87

Product
quality loop

Process
quality loop

Process-
product

loop

RE
Product Quality

Specification

PE
Development

Process Model

ME
Product & Process

Measurements

Figure 6-2: The RPM conceptual model (from chapter 5)

In Figure 6-2 the conceptual model as presented in chapter 5 is shown. Three main

processes are included: requirements engineering (RE), process engineering (PE) and

measurement programme engineering (ME). During requirements engineering a product

quality specification is developed. During process engineering a development process

model is developed, which contains a specification of the process that should be followed

to result in a product that complies to the product quality targets. The results of

measurement programme engineering are process and product measurements that identify

discrepancies on the product level when product measurements differ from their product

targets, and discrepancies on the process level when process measurements differ from

their expected effects. Figure 6-2 includes three control loops:

• The product quality loop, which controls the compliance of the developed product

to its product quality requirements.

• The process product loop, which controls the ability of the process model to

comply to the product model, and in case of differences adapts the process model

or the product model. This loop expresses the trade-off between process aspects:

cost, duration, risk, etc. and product aspects: quality, functionality, etc.

• The process quality loop, which controls the compliance of the development

process to its expected effects.

The conceptual model of Figure 6-2 should be expanded to include the two proposed

changes from learning theory: distinguishing between single and double loop

improvement, and explicitly addressing learning objectives.

Taking a closer look on Figure 6-2 it becomes clear that this conceptual model only

addresses the single loop improvements. This conceptual model focuses on optimising

current practices by tuning the development process to the product quality requirements.

88 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

The process that is being tuned only consists of those process actions that the specific

organisation is familiar with. In other words: the conceptual model of chapter 5 only uses

those capabilities that the organisation possesses, but overlooks the expansions with new

capabilities. New capabilities, such as new ways of working, new techniques, methods, or

tools, need to be considered for double loop improvement. Double loop improvement

focuses on changes to the available capabilities. Expanding capabilities, however, is a

difficult process. The conceptual model of Figure 6-2 should therefore be expanded with a

double loop process that helps in selecting the right capabilities. This process should

support in identifying and introducing those capabilities that are mostly needed by the

organisation.

Once it has been decided to expand the current set of capabilities with a new capability,

this should be introduced. Introduction of a new capability requires a learning process that:

• teaches the organisation the skills for applying that capability

• teaches the impact that the capability has on product quality.

This last point is important. For each new capability it is necessary to learn what the

impact is on product quality. Even though experiences from other organisations might

indicate certain effects, it is not guaranteed that these effects also occur in the own

organisation. It is therefore necessary to guide the introduction of a new capability with

measurements to evaluate its effects, and develop the PPR model accordingly. The

knowledge on effectiveness of new capabilities can then be used by process engineering

for designing the process models for other products.

6.2.2 The expanded conceptual model

The expansion of the conceptual model with a double loop improvement process is

visualised in Figure 6-3.

RE
Product Quality

Specification

PE
Development

Process Model

ME
Product & Process

Measurements
Measurement

model

Process
model

Product
model

DLExternal
sources

Figure 6-3: The conceptual RPM model with double loop improvement

In Figure 6-3 the conceptual model of chapter 5 is shown expanded with a double loop

improvement decision (DL) and the corresponding processes (the dashed lines). Each of

LEARNING: THE BASIS OF IMPROVEMENT 89

the three working areas: requirements engineering, process engineering and measurement

programme engineering, use an underlying set of assumptions. In this set of assumptions

the ‘best practices’ of that organisation are ‘stored’. Experiences during single loop

learning can indicate that a rigorous change of working is required when these underlying

assumptions appear to be no longer correct. These assumptions are visualised with a

product model, a process model, and a measurement model.

The product model contains assumptions on product quality that are normally used during

requirements engineering. An example of such a product assumption is that product

reliability and functionality are the most critical product quality attributes. When

developing an embedded product for users with no experience at all with technology there

might be a need to refocus to usability.

The process model contains assumptions on process actions and these are used during

process engineering. An example of such a process model is that testing is an important

contributor to product quality. When quality requirements increase, the time required for

testing is increased; however, during testing it is often difficult to correct major quality

problems. The introduction of software inspections is a more likely, double loop,

improvement.

The measurement model contains assumptions on measurements and these are used during

measurement programme engineering. An example is the use of the Mean Time Between

Failure (MTBF) for product reliability. When experiences indicate that ‘reliability’ is

much broader than defects, and involves soft issues such as ‘trust’ and ‘confidence’ the

measurement of reliability is likely to change largely.

Additional capabilities that will be adopted, read: double loop improvements, are selected

based on their impact on product quality. It is therefore important to know which product

quality attributes normally give many problems, or that need improvement for the future.

Such information comes from single loop learning processes. Information on process

actions that are not successful are also a good source of information to select additional

capabilities.

Rigorous changes during double loop improvement (DL) are selected. Input to this

selection process comes from all three processes: requirements engineering, process

engineering and measurement process engineering. Furthermore, external sources are also

a source to identify potential improvement opportunities, since successful experiences

from other organisations might point to additional capabilities that are also relevant for the

own organisation. These external sources can indicate that new process actions have been

developed that have a higher or better guaranteed impact on a product quality attribute

than the ones currently used. For example, newly developed usability techniques become

90 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

available that replace the need for a field test to test the usability perception of the end-

user. A set of improvement opportunities is defined based on these multiple sources.

The new double loop improvement process that was introduced in Figure 6-3, has made

the necessary changes to the conceptual model of chapter 5, because it now distinguishes

single loop and double loop improvement processes. Furthermore, it includes addressing

explicit learning goals and incorporates an explicit learning process.

6.2.3 Operationalising the learning processes in the conceptual model

The conceptual model presented in Figure 6-3 contains a description of the processes, and

work products for product focused SPI; however, this is still just a conceptual model.

Using such a model in a practical environment still requires some work to be done. The

operationalising of each of the processes in the model is done in chapter 7 by providing a

set of guidelines for each of the three working areas.

Learning theory can again be of use to support this process. Operationalising the processes

and improvement loops of the conceptual model, requires setting up procedures to carry

out the required work. As discussed before, process improvement is a learning process. So,

operationalising such a learning process can also be supported by learning theory.

Learning theory contains several publications on successful learning processes. It

describes process conditions that should be in place to enable learning in practice. These

process conditions should also be considered in this thesis when operationalising the

conceptual model.

Learning enablers are therefore discussed in the next section, and further details to

operationalise these learning enablers for product focused SPI are provided.

6.3 Learning Enablers

The literature on learning theory presents multiple criteria for a successful learning process

and organisation. As this chapter has the objective to explore learning theory as a support

to increase learning effectiveness of product focused SPI, these criteria also need to be

explored. These criteria taken from several sources, will be used to define a set of learning

enablers that contain those process conditions that increase the learning effectiveness of

product focused SPI. These learning enablers are elaborated in such a way that their goal

is made clear, their meaning for the conceptual model is made clear, and the way in which

they can be used for the improvement loops is also made clear.

LEARNING: THE BASIS OF IMPROVEMENT 91

Three sources that present learning process success criteria will be handled, in historical

order. Firstly, Peter Senge introduces the five learning disciplines in his book ‘The fifth

discipline: The art and practice of the learning organisation’, [Senge 1990]:

• ‘systems thinking’, which means the use of a modelling viewpoint to analyse

situations and clarify causes and effects. This is done by the identification of for

example: processes, products, interrelationships, causal impacts, controls, etc.

• ‘personal mastery’, which means the drive of an individual continuously to

improve herself and increase her skills and capabilities

• ‘mental models’, which means making the underlying deep implicit models explicit

and evaluating whether they are correct or need adjustment.

• ‘shared vision’, which means the development of a common vision for the future

that is accepted and adopted by the people of the organisation

• ‘ team learning’, which means the process in which the learning processes of the

individual members are combined, the learning results are shared, and the total

learning result is more than the sum of the individual learning results.

These five ‘disciplines’ appear to be quite abstract. Systems theory is considered to be an

important baseline for organisational learning. Furthermore personal learning, on an

individual level as well as on a team level is emphasised. These five dimensions might

seem simple; however, using these dimensions in practice, and applying its principles in

actual organisations is not so easy [Senge et al. 1994]. Take for example the first

dimension: systems thinking. Much theory and literature is behind such a topic [see e.g.

Leeuw 1986 and Veld 1975]. Applying these principles in practice requires a lot of work

and the application of principles that are not always fully elaborated.

With the ideas and concepts of Senge in mind, Garvin defined that learning organisations

are skilled in [Garvin 1993]:

• ‘systematic problem solving’, which means relying on a scientific method, such as

Plan/Do/Check/Act, insisting on measurement data, and use of (simple) statistical

analysis

• ‘experimentation with new approaches’, which means the systematic searching for

and testing of new knowledge on new ways of working

• ‘ learning from own experiences and past history’, which means the review of

successes and failures, systematic assessment, and recording of lessons learned in

an easy to find and accessible way.

• ‘ learning form experience and best practices of others’, which means to look for

powerful insights and new perspectives outside the individuals direct environment

• ‘ transferring knowledge over the organisation quickly’, which means spread

knowledge quickly and efficiently throughout the organisation and making learning

more than a local affair

92 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Again, these five skills appear trivial; however, they are not that easy to apply in practice.

For example, ‘learning from past history’ does not occur automatically, and it is not clear

how this should be enabled and supported. As support a ‘systematic assessment’ is

mentioned: But what is this? How do you do that? With which information? Who takes

care of that? With what skills? etc. These questions remain unanswered and express the

difficulty of creating a learning organisation.

Garvin also supports the systems theoretical perspective. The personal learning aspects are

grouped over learning processes: learning from experiments, past experiences and external

experiences. Furthermore, Garvin mentions the distribution of knowledge as an explicit

process.

Ten facilitating factors for organisational learning are described by Nevis, based on

previous work by e.g. Senge and Garvin, are [Nevis 1995]:

• ‘scanning imperative’, the gathering of knowledge about conditions and practices

outside the direct environment.

• ‘performance gap’, establishing a shared perception of the gaps between actual and

desired state of performance or situations

• ‘concern for measurement’, defining metrics, collecting and analysing data to

create specific quantitative knowledge

• ‘experimental mind-set’, establishing an openness to trying new things and learn

about them, failures are accepted without punishment

• ‘climate of openness’, establishing a context with free flow of information, open

communication, sharing of problems and lessons learned, and open debate of ways

to solve problems

• ‘continuous education’, an ongoing commitment to education on all levels of the

organisation, both individual and team learning

• ‘operational variety’, the appreciation of diversity: variety of methods, procedures,

and systems

• ‘multiple advocates’, new ideas and methods are supported at all levels

• ‘ involved leadership’, leaders articulate vision and take part in the implementation

of ideas, and are actively involved in the learning processes

• ‘systems perspective’, problems and solutions are seen in terms of systemic

relationships among processes and products.

Nevis also addresses systems theory perspective explicitly. Still these dimensions remain

quite abstract. It is for example still unclear how these facilitating factors should be

implemented in practice, what management exactly has to do to facilitate learning along

these directives, etc.

LEARNING: THE BASIS OF IMPROVEMENT 93

The above ten facilitating factors will be used in this chapter for abstracting

recommendations to increase the learning effects of the RPM conceptual model. Not every

facilitating factor is, however, equally useful for this purpose and not all these facilitating

factors will therefore be addressed. A selection will be made from these facilitating factors

that will be provided with more detail. The ones that will not be used because they are the

basic starting points for the RPM conceptual model and already fully covered are:

‘concern for measurement’, ‘experimental mind-set’ and ‘operational variety’. The fact

that these factors are already included in the RPM conceptual model indicates that this

model already addresses these learning enablers. From the factor ‘continuous education’

we will only address the team education issues, because this process is most relevant for

the RPM conceptual model, so ‘team learning’ will be applied. Furthermore, the ‘systems

perspective’ will be more detailed, because this appears to be one of the basics of learning,

but is still quite abstract. From systems theory we will use the five criteria for control to

cover the systems perspective [Leeuw 1986]:

• ‘explicit goal definition’, targets are made explicit in an objective and measurable

way

• ‘modelling of the system under control’, the process that will be followed will be

modelled

• ‘ information on context and current state’, the current status of a project, product

and the organisation will be made explicit

• ‘possibilities for control’, it is possible to take (corrective) actions by executing

new or additional process actions to create certain effects

• ‘sufficient resources’, the execution of the learning processes will never be limited

due to a lack of resources

This last criterion will not be used further on, because having all necessary resources

available is one of the main assumptions for the RPM conceptual model. Of course this

will not be the case in practice, but this thesis will not investigate this allocation process.

6.4 Learning Disablers

Beside learning enablers there are also learning disablers: factors that negatively influence

learning processes. If an organisation attempts to increase the learning effects of SPI by

installing several learning enablers, but forgets the learning disablers the learning process

is still not ideal.

Examples of learning disablers include: not providing feedback on product quality and

having information in this feedback loop that is not correct [Brombacher et al. 1995],

using product and process quality information to evaluate people [Goodman 1993]

[Solingen et al. 1997], having a long period between information gathering and

information feedback [Grady 1992], and ad-hoc ‘fire fighting’ management instead of

94 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

looking at the underlying causes of problems and learning how to tackle these problems

[Garvin 1993] [Senge 1990] [Agarwal et al. 1997] [Humphrey 1989].

This thesis does not have the objective to provide a complete list of the learning disablers

that an organisation has to abandon, nor does it present how to abandon those disablers.

The statement should, however, be made that in addition to focusing on learning enablers,

it should no be forgotten to get rid of the learning disablers.

6.5 Learning within the RPM working areas

In this section it will be analysed for each of the learning enablers what these learning

enablers imply for learning in each working area.

6.5.1 Interpreting the learning enablers

The learning enablers that were presented in the previous section will be used to identify

how the learning effects of the RPM conceptual model can be increased. The learning

enablers are analysed and an attempt is made to operationalise them for the RPM

approach.

For each enabler a description will be provided of what the enabler means within the

context of the RPM conceptual model, and the purpose will be made explicit.

Furthermore, each enabler will be operationalised in such a way that is clarified what this

enabler means for the RPM model.

Enabler 1: Climate of openness

A climate of openness addresses the establishment of an environment in which free flow of

information, open communication, sharing problems and lessons learned, and open debate

of ways to solve problems, is available. Such a climate or ‘learning culture’ seems a

simple concept, but is difficult to establish in practice. Research has indicated that current

structures for control and management in organisations tend to disable such climates of

openness and with that decrease the commitment of their people [Amabile 1998] [Ulrich

1998]. The intrinsic motivation of people especially is crucial for establishing a creative

and learning oriented environment. Practical actions that managers can take to increase the

intrinsic motivation of people are grouped in six categories [Amabile 1998]:

• ‘Challenge’, by matching the right people with the right job assignments in such a

way that employees definitely do not feel bored, but neither are overwhelmed or

threatened by a loss of control.

• ‘Freedom’, by giving people autonomy concerning the processes they apply.

Management needs to set the goals, preferably as clear as possible, but the way to

achieve these goals should be left to the people themselves.

LEARNING: THE BASIS OF IMPROVEMENT 95

• ‘Resources’, by carefully allocating time and money. Time pressure can increase

motivation providing that deadlines are for real and not too tight. Money should be

assigned properly to prevent people trying to find additional money themselves

instead of doing their work.

• ‘Work-group features’, by carefully designing teams that are diverse, excited about

on the goal, willing to support team-mates through difficult periods, and where

each member contributes a unique significant amount of knowledge.

• ‘Supervisory encouragement’, by praising creating efforts spent by their people.

Appraisals are not considered to be effective when they are given in extrinsic

rewards such as financial bonuses. Freely and generously recognising creative work

by employees already encourages largely. Managers should not be sceptical

towards new and rigorous ideas.

• ‘Organisational support’, by establishing sufficient organisational support for the

people in the organisation. This organisational support should enable learning

efforts and support learning processes. Furthermore, the value of learning should be

emphasised by the procedures and systems in the organisation.

A climate of openness appears to be one of the most crucial prerequisites for

organisational learning. It requires a context in which people are willing to learn from their

mistakes and willing to discuss underlying causes and models for these mistakes. For

example, handling software failures as personal error disables learning largely, because

software failures will always be a structural problem (see chapter 3). The way in which

they are inserted and what to do to prevent them is an important learning topic, which will

not be explored if software failures are considered to be personal failures of the software

developers.

Enabler 2: Scanning for knowledge

In the broadest sense this means that there should be a continuous search for knowledge

that could be relevant or applicable in the specific learning situation.

Scanning for knowledge from previous products, competitor products, similar products, or

new methods is an important input to requirements engineering. The main point is that this

loop does not build product quality requirements every time from scratch but attempts to

learn from previous experiences. Furthermore, knowledge can be collected from previous

projects that created similar products. Carrying out post-mortem analysis to find out

whether a certain used process model was sufficient, is a good source of knowledge to

increase the learning effects. Double-loop learning also requires scanning for knowledge.

External knowledge on process actions that the organisational has no experience with

should be collected and analysed. Specific process actions that other organisations apply

and that create specific product qualities are of interest. Reading publications on

achievements in software engineering by the software developers, is a way to scan

96 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

knowledge. Experiences from other organisation are in that way fed into the own

organisation. Sending people to conferences, seminars and training is also a solution.

What, for example, can be done is to have a weekly ‘work lunch’ in which one employee

presents the contents of a paper he or she has read recently and clarifies the way the

contents can be used within or influences the own organisation.

Enabler 3: Information on context and current state of the system

Learning adds knowledge to an existing situation and is influenced by the state of external

influences. Information is needed on the context and current state to learn appropriately,

and select the best suited additions.

The retrieval of information on the context and current state of product and process quality

is an important part of the RPM approach. This learning enabler is already partially

incorporated in the conceptual model; however, additional attention is required. Making

processes explicit, measuring the performance of processes, or the current state of product

quality is a useful source of information for this learning enabler. On the double loop

level, typical structural problems or product quality attributes that require extra attention

can be identified. Based on such insights, corrective action can be taken to change the

current way of working to cope with such structural problems.

For example, carrying out software process assessments frequently supports in making

current processes explicit. Knowing explicitly what the capabilities of an organisation are

and making explicit which process actions they can use, contributes to this learning

enabler. If for example, process assessments indicate that configuration management is a

weakness in the organisation, projects that have high product maintainability targets will

know that they need to take some specific action.

Enabler 4: Team learning

Team learning is an important part of an organisational learning process. It means that

learning is established within groups of people that work together towards a shared vision

and mutual objectives. Joint formulation of learning objectives, information sharing,

discussion, and drawing conclusions together takes place within team learning.

Team learning can be used to find out a good way in which product quality requirements

need to be specified to let the final product comply to them. Not every way of specifying

product quality requirements will be equally effective. In this thesis, the multi-party chain

approach [Kusters et al. 1997] has been used, but for different projects different

approaches might be better. It is also important that development teams learn the

behaviour of different development processes. A specific process action may not always

give the same effect within different projects, for different products, with different team

members. These differences and the causes for these differences need to be determined.

Measurement is a powerful mechanism to enable this group learning, and discussing these

LEARNING: THE BASIS OF IMPROVEMENT 97

measurement results within a project team and challenging a team‘s interpretations, is a

means to establish team learning.

Furthermore, teams should determine why certain product quality attributes are

structurally problematic in projects. Based on such understanding, corrective process

actions can be introduced and learnt by the teams to overcome such problems. It can also

be determined which product quality requirements are always difficult to comply to, or

difficult to specify. Corrective action can be taken once it is learnt what the causes for such

issues are.

An example of team learning in one of the case-study companies has been published

[Solingen and Berghout 1999]. In one of the development projects, a group of new

engineers was hired for the software development work. These people were experienced in

software development, but had no knowledge of the system that was developed in this

department. As a solution the whole team decided to carry out ‘reviews’ of documents and

software code to teach the new people the content of the system. As a consequence, the

new engineers were trained remarkably fast; however, one of the side effects was

considered to be an even more important benefit. This benefit was that due to the mutual

reviews, the team started to structure and write their software in a more common manner.

The team determined together what they considered to be ‘good’ coding and established

this in their department, both the new and the already available engineers. This had never

been done before and was largely contributed by the reviewing process.

Enabler 5: Modelling of the system under control

In order to control a system, a model needs to be created form this system and its

influencing factors. In the RPM model this can be modelling of process actions, their

relationship to the product quality requirements, and the effects of the process actions.

Another example of modelling is the development of a development process model, or the

modelling of user groups and their mutual relationships to support the identification of all

stakeholders.

Examples from practice are that in projects explicit models are made from the process that

is intended to be used, or models are made of the expected impacts of a certain process

action. In one of the case-study companies for example, they introduced ‘incremental

development’ by which the product was developed in three sequential increments, each

expanding the previous one with specific functionality. The expectations of this change

were modelled by making them explicit and identifying whether these expectations were

legitimate. The measurements and observations showed indeed that these expectations

were valid. The explicit model of this process-product relationship is now used in that

organisation.

98 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Enabler 6: Possibilities for control

In order to be able to steer a process towards the required outcomes, possibilities for

control need to be available. This means that during an improvement programme

(corrective) action can be taken whenever necessary. For example, when it appears that the

intended reliability level can not be reached, it should be possible to take action to

improve that situation. Such possibilities for control are a prerequisite for systems theory,

and are a basic foundation of the RPM conceptual model.

The idea of the RPM approach is that a product specific development process is designed

for each project separately. This process is designed during process engineering. Process

engineering should therefore have a sufficient set of process actions available to choose

from. From this set, a selection can be made that suits product quality specification. In a

double-loop fashion, the available set of process actions should be expanded with new

ones that suit the specific organisation. Additional process actions should therefore be

found that provide support for those product quality attributes that need such expansions

most.

Enabler 7: Involved leadership

Managers should articulate vision, take part in the implementation of ideas, and be

actively involved in the learning processes. The role of a manager for the establishment of

organisational learning, and motivating the people in the organisation is crucial [Senge

1990] [Garvin 1993] [Amabile 1998]. In a learning organisation managers and the role of

the manager is changed largely compared to traditional management styles. The largest

differences are that the manager is a designer of the learning organisation, a teacher of the

view on reality, and a steward for the people they manage [Senge 1990]. According to

Senge these special roles require the five special skills described in section 6.3.

Practical implementation of such a different management style is not always easy, because

both the manager and the people that are managed are used to a different style. In an

organisation where a manager always defines the procedures that are to be used, and the

manager suddenly leaves the freedom for the process to his people, it is likely that people

might abuse this freedom. Such a change in management style should therefore be

carefully planned and a smooth transition should be established. In creative intellectual

work, however, such management styles are often already present. Furthermore, the

manager has a large influence on the working environment, which should be a ‘climate of

openness’.

Enabler 8: Explicit goal definition

In order to have clear targets towards learning, these goals should be defined and made

explicit. Learning processes benefit if it is clear what the goals are and in which area

learning is required to attain such goals.

LEARNING: THE BASIS OF IMPROVEMENT 99

The whole RPM conceptual model is based on setting explicit goals for product

development. Both product quality and process goals are explicitly stated. Product quality

demands are made explicit and targets are set. For the process, measurement goals are set

to monitor the performance of specific process actions, and the measurements are analysed

explicitly to learn the effects of such a process action. For double-loop learning, explicit

learning goals are defined to learn effects of process actions with which no experience

exists. This learning purpose is already an explicit goal within the RPM conceptual model;

however, this learning enabler confirms the importance of defining quality goals and

learning goals. Formulating expectations (hypothesis) for the effects contributes to

attaining these learning goals, because expectations can be compared to actual values and

reasons for differences can be identified.

An example of the use of explicit goals for learning was the identification of re-use effects

in one of the case-study organisations [Solingen and Berghout 1999]. The project team

defined the explicit goal to measure the effects of software re-use on product reliability.

Their expectation was that this contribution was high. The measurements showed indeed

that the defect level of fully re-used modules was remarkably low. An important learning

point from this project was the indirect effect of re-use on reliability. The project team

learned that they were more strictly reviewing and testing re-used modules, because they

did not ‘trust’ them as much as the one they had developed themselves. As a consequence

these modules were much more reliable, because the reliability problems that did exist

were already identified before release. The project team concluded that both direct and

indirect effects of re-use largely influence product reliability. This learning point was

packaged in a process-product relationship model and stored in the experience base.

Enabler 9: Monitoring performance gap

Monitoring the differences between target and actual situations is an important

prerequisite for learning. It supports in identifying what is going well, and what needs

improvement. Through this performance monitoring, people get feedback on their way of

working and learn where to improve. Measurement programme engineering is an

important contributor to this learning enabler in the RPM conceptual model.

The performance gaps between stated product quality requirements and the actual product

quality is monitored in the RPM approach and this gives information on the predictability

of the software development process. Specifying product quality requirements in

measurable terms makes the monitoring of these gaps even easier. Monitoring

performance gap is not only done for the product, but also for the process in the RPM

conceptual model. The performance of process actions is monitored, and if differences

exist between expected and real effects of process actions, corrective action can be taken.

In fact, one of the main purposes of measurement programme engineering is to monitor the

performance gaps on the product and the process.

100 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

For example, in one of the case-study companies a structural problem was present. Due to

the large number of countries being supplied and the large differences in government

regulations across the countries, it was difficult to address all country specific

requirements. This caused many ‘change requests’ after products were released to the

national representatives in the countries. The performance gaps between wanted and actual

product quality could be made explicit for this organisation, and corrective action was

defined. One example solution was to develop the country specific requirements in close

co-operation with the national representatives and use these requirements as input to the

product architecture design. As a result, a product architecture was designed that was

capable of attaching product specific software customisations after release of the product.

6.6 Conclusion

In this chapter learning theory was explored to find relevant recommendations for product

focused SPI. Based on this investigation, the RPM conceptual model was enhanced with a

double loop learning process.

Furthermore, a set of learning enablers was identified that can increase the learning effects

of the RPM conceptual model when addressed properly. These enablers were further

analysed and operationalised for the learning processes in the RPM conceptual model.

Using these learning enablers from this chapter and the findings from software engineering

literature presented in chapter 5, practical guidelines can be designed for operationalising

the RPM conceptual model in order to make it applicable in industry. This will be done in

the next chapter.

7. Guidelines for product

focused process improvement

A conceptual model for product focused SPI was constructed in chapter 5 and enhanced

according to learning theories in chapter 6. The model contains three working areas for

product focused SPI: requirements engineering, process engineering and measurement

programme engineering.

Additional support is required to facilitate the usage of this model, and to integrate its

application into practice. Such support is described in this chapter by a set of guidelines

for each of the three working areas. These guidelines originate from multiple sources:

literature on the working areas, literature on learning theory, and experience from applying

the conceptual model in industrial projects.

The guidelines in this chapter mainly describe ‘what’ can be done to support product

focused SPI in the three working areas. As such, these guidelines point to the tasks and

activities that are part of each of these working areas. These guidelines do not present

‘how’ this should be done, because it is assumed that ‘how-guidelines’ largely depend on

the specific context. It is impossible to describe non-situated ‘how-guidelines’; however,

the case-studies and case-study procedures in chapter 8 can work as an example how to

apply these guidelines in industrial projects.

7.1 Guidelines for Requirements Engineering

Requirements engineering was defined in chapter 5 as the process of collecting wishes of

product stakeholders and transforming these wishes into a product quality specification.

The product quality specification is used for two purposes:

• to design a development process that will produce the specified product quality

within the constraints of the development project

• to evaluate compliance of the final product to the product quality requirements

The guidelines will be structured along the three mechanisms for standardisation presented

in chapter 3 [Mintzberg 1983]: inputs, work processes and outputs. Firstly the guidelines

regarding the inputs of requirements engineering will be presented, followed by the

guidelines regarding the process of requirements engineering, and finalising with the

guidelines on the outputs. This is depicted in Figure 7-1.

102 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

R-1
R-2
R-3
R-4

Inputs OutputsWork
Processes

R-7
R-8
R-9
R-10

R-5
R-6

Guidelines:

Figure 7-1: Guidelines on inputs, work processes and outputs of requirements engineering

Figure 7-1 contains the subdivision of the guidelines for requirements engineering over

inputs, process and outputs. These guidelines are:

R-1. Identify all stakeholders for the product, and involve each stakeholder in the

requirements engineering process.

R-2. Let stakeholders state their product quality wishes in their 'own terminology', and

transfer those wishes into (standard) engineering quality terminology.

R-3. Use experience with a similar type of product or older version that already exists,

as input to the creation of a product quality specification.

R-4. Make a distinction between essential, stringent and additional wishes.

R-5. Requirements engineering should be considered to be a negotiation process during

which decisions are made on the level of satisfying product quality wishes. This

negotiation process should discuss both functional and non-functional product

wishes.

R-6. Communicate rejection or selection of a product quality wish to the stakeholders.

R-7. Handle the abstract concept of product quality by subdividing quality into

operational attributes.

R-8. Specify the (relative) importance of product quality attributes for a new product,

and visualise this in a Product Quality Profile (PQP).

R-9. Specify product quality requirements in measurable terms.

R-10. Show the trade-off between quality demands and the incurring cost/effort to realise

these demands.

These guidelines will be described in detail in the next section. Some terminology

confusion might occur; therefore Figure 7-2 clarifies and visualises the terms used.

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT103

Product Quality
Specification

Product Quality
Wishes

Product Quality
Requirements

Implicit
Stakeholder

Needs

• Textual description
• Engineering quality language

(class)
• Priority

• Arguments
• Metric

• Ideal value
• Target value
• Estimated value
• Actual value

• Stated Wish (stakeholder
language)

• Priority
• Arguments

• Engineering quality language

Make explicit

Negotiate

Consists of

Documented as

Documented as

Figure 7-2: Terminology clarification

Stakeholders have, often implicitly, various wishes and demands for product quality.

These needs have to be made explicit and expressed in ‘product quality wishes’. A wish is

preferably expressed in the language of the stakeholder, will get a priority and has

arguments for this priority, after which all wishes are expressed in an engineering quality

language. Not all wishes can be fulfilled: some are accepted, others rejected, wishes are

reformulated, or tuned to the possibilities within certain conditions. The total set of

product quality wishes that are intended to be fulfilled are documented in the ‘product

quality specification’. This is the main deliverable of requirements engineering and

contains the complete set of ‘product quality requirements’. Each product quality

requirement contains an exact specification. This specification consists of a textual

description of the product quality requirement, the product quality class which it

addresses, a priority (and arguments) and metrics. These metrics are used to identify how

attainment of the product quality requirement can be tested and validated. Possible values

that are stored for these metrics are the target value, goal within the project, maximum

value, if all wishes of all stakeholders are addressed, estimated value, what is expected,

and the actual value, measured once it is possible.

104 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

7.1.1 Guidelines on Requirements Engineering inputs

R-1: Identify all stakeholders for the product, and involve each stakeholder in the

requirements engineering process

Each product goes through several stages as it is designed, produced, transported to the

customer, installed, used, repaired and recycled, etc. For each of these stages in the

product life-cycle, ‘users’ can be distinguished that use the product; however, the way of

use and the related quality needs for this use, will be different per user. In chapter 3, it has

already been stated that product quality is multi-dimensional: it means different things to

different people. Within this research a modelling technique has been created, which

distinguishes product users as being ‘stakeholders’, while every stakeholder possesses one

or more responsibilities (roles) [Kusters et al. 1997] [Kusters et al. 1999]. For each

product a model can be made that identifies the stakeholders for a product and their

interrelationships. This guideline is based on the assumption that making a quality product

implies addressing the specific needs of specific stakeholders, their specific roles and their

specific personal interests.

A stakeholder is defined as an identifiable person, or homogeneous group of persons that

has a legitimate interest in the degree of quality of the product. A role is defined as an

area of responsibility of a stakeholder, determining a view on the type and degree of

quality required [Kusters et al. 1997]. Interrelationships between stakeholders and roles

are especially interesting, because they reflect the mutual dependencies and therefore the

related requirements.

The guideline to identify all stakeholders and their roles might seem easy; however, this is

quite complex, because the number of stakeholders and their roles expands fast. Take for

example the well-known ITIL method for information systems maintenance [ITIL 1987].

ITIL describes several stakeholders, including a helpdesk, problem management, change

management, application management, configuration management, financial management

and capacity management. Each of these stakeholders consists of several roles, for

example the helpdesk has operator roles, management roles, service roles, etc. Identifying

stakeholders and roles is a difficult task, and it is much more difficult to make sure that the

specific demands from these stakeholders and roles are sufficiently addressed.

Ideally each stakeholder is involved in the process of requirements engineering. Their

demands and wishes regarding a product can then be captured. The product quality wishes

from a stakeholder are related to the role of that stakeholder. The way in which the

stakeholders are consulted can be different, depending on the best way to capture the

knowledge of each stakeholder. It will often be infeasible to consult all roles and

stakeholders directly, because this could mean that, in some cases, hundreds of people

should be consulted. A practical alternative to this is to consult key-people in the

organisation that have much knowledge and experience, and that are able to represent

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT105

other stakeholders in their specific roles. For example, a marketing manager that

previously worked as a service department manager can be used as a representative of the

service and customer stakeholder, due to his past experiences.

R-2: Let stakeholders state their product quality wishes in their ‘own terminology’,

and transfer those wishes into (standard) engineering quality terminology

Stakeholders have implicit ideas and needs for product quality. In order to prevent

formulation problems it is recommended that stakeholders express their product quality

wishes in their own language. This has several benefits: firstly, the stakeholder can express

implicit needs more easily, making his explicit wishes more reliable. Secondly, many

stakeholders have no experience with a standard quality terminology, nor are they always

willing to learn it. Furthermore, it prevents that each stakeholder has its own interpretation

of such a standard terminology and mistakes are prevented; however, when stakeholders

state their wishes in their own terms, these wishes have to be transferred to engineering

quality terminology. During this translation step, wishes can be expressed in a standard

quality language, such as for example ISO 9126 [ISO 9126 1991].

This step is not only a translation step. In many cases it will be mainly a classification step,

in which stakeholder wishes are classified over product quality attributes. On the other

hand, there will be cases in which the wish expressed by the stakeholder should be

translated to a language that can be understood by developers. Specifying quality wishes in

such a standard quality terminology will also help in communicating issues on product

quality to all stakeholders and will support in the reuse of the product quality wishes for

future products.

R-3: Use experience with a similar type of product or older version that already

exists, as input for the creation of a product quality specification

If an older version of the product or a similar type of product is already used in practice,

experience with this product can be a valuable reference for requirements engineering

(‘anchoring and adjustment’: [Davis 1982]). This guideline resembles the concept of

‘product families’ (see e.g. [Erens 1996]), which is based on the notion that next

generations of products have a close resemblance and are based on previous generations.

Such experiences can lead to expressions such as: ‘reliability should be equal to the

previous version’, ‘usability needs to be higher’ and ‘the functionality was fair but needs

some specific expansions’. Such references make clear for developers, what needs to be

focused on. It provides them with information on where ‘they did well’ and where ‘they

need to make things better’. Experiences with older versions of a product are also an

excellent source to find out the way in which a stakeholder uses the product.

106 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

R-4: Make a distinction between essential, stringent and additional wishes

Not every product quality wish is equally strong. It is recommended to make a distinction

between:

• essential wishes that must be addressed by the product. Without addressing these

strong demands the product will be useless

• stringent wishes, for which it is highly recommended that they are addressed;

however, under certain conditions it is possible to ignore such wishes

• additional wishes that are not essential nor stringent, but it can be beneficial if they

are addressed

This distinction supports the requirements engineering, because it indicates the level of

negotiation that is possible for each wish. To support in the selection of stringent and

additional wishes, it is recommended that their relative importance is made explicit

through assigning priorities and noting the arguments for these priorities.

7.1.2 Guidelines on Requirements Engineering processes

R-5: Requirements engineering should be considered as a negotiation process

during which decisions are made on the level of satisfying product quality wishes. This

negotiation process should discuss both functional and non-functional product wishes

Based on the total set of stakeholder product quality wishes, a selection will be made from

this set. The decision to which extent a certain product quality wish will be satisfied is a

complex negotiation process. Criteria that play a role in the acceptance or rejection of a

wish are: costs, benefits, technological feasibility, efforts involved, time-to-market, level

of contradiction with other wishes, or risks. It is advised not to limit this negotiation only

to the quality aspects of a product. The functional demands also need to be discussed,

because functional and non-functional wishes are related. This negotiation process also

addresses investment issues, because a decision is made where to invest resources for the

product. These resources can be used for both functional and non-functional properties of

a product, and should therefore be discussed at the same time.

This negotiation process is not part of requirements engineering alone. It is done in

iteration with process engineering, because process engineering provides insights on the

costs and time issues for each specific product quality requirement. This negotiation

process does not end. When additional requirements are formulated during the project,

which is the case for almost every software development project, again a trade-off and

negotiation will be made. Ideally a product quality specification is made once and never

changed, but this is rarely the case in practice.

In the case where wishes are rejected for a valid reason (too expensive, not feasible, etc.),

this can have serious consequences for some stakeholders. These stakeholders deserve to

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT107

get the opportunity to restate the wish, to make it for example less strict, or to have the

opportunity to repeat that a specific wish has a high priority. This already points to the

next guideline on communication of the outcomes of the negotiation.

R-6: Communicate rejection or selection of a product quality wish to the

stakeholders

Given that there is a process during which all product quality wishes are evaluated and a

decision is taken to accept or reject a wish, the outcome of this decision process must be

communicated. The main reason for this is that the approach presented in this thesis

addresses product quality explicitly. The decisions taken should therefore also be made

explicit and communicated to the people involved.

Furthermore, this communication is necessary to manage the expectations of stakeholders.

Stakeholders implicitly expect that wishes be fulfilled, when stated. This creates high

expectations. Once the product is delivered and does not comply to those wishes,

stakeholders will be disappointed and perceive the product as being of low quality. If the

decisions on the level of satisfying a certain product quality wish are communicated, a

stakeholder has the opportunity to adapt expectations, early on in the product development

process.

7.1.3 Guidelines on Requirements Engineering outputs

R-7: Handle the abstract concept of product quality by subdividing quality into

operational attributes

Quality has many dimensions. Examples are: maintainability, usability, reliability, etc.

These dimensions are termed ‘quality attributes’ when considering a product. In order to

make the abstract concept of quality more operational, it should be specified in operational

quality attributes. Even though these attributes might also have multiple meanings, they are

at least more concrete than the general term ‘quality’. Several product quality standards

exist (chapter 3), which mostly use a hierarchical structure in which quality is refined to

attributes, each attribute to sub-attributes, etc., sometimes going as far as detailed metrics

for each attribute.

For software product quality, this thesis proposes to apply the ISO 9126 standard for the

division of product quality into the attributes: Functionality, Reliability, Usability,

Efficiency, Maintainability and Portability [ISO 9126 1998]. ISO 9126 calls these

attributes ‘characteristics’, and refines them into sub-characteristics followed by several

metrics for each sub-characteristic.

108 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

R-8: Specify the (relative) importance of product quality attributes for a new

product, and visualise this in a Product Quality Profile (PQP)

If product quality is specified by means of product quality attributes, it is recommended to

visualise this in a Product Quality Profile (PQP). A PQP visualises the product quality

along the product quality attributes.

Functionality

Reliability

Usability

Efficieny

Maintainability

Portability

Maximum Quality

Target Quality

Figure 7-3: Example Product Quality Profile (PQP)

In Figure 7-3 an example of a PQP is presented. Two lines are included along the six

product quality characteristics:

• maximum product quality, which express product quality if complied to all wishes

stated by all stakeholders

• target product quality, which express the product quality if complied to all selected

wishes that are included in the product quality specification

The sum of all quality wishes belonging to a specific class indicates the maximum level of

quality. If the product complies to all wishes it is experienced as high level quality by all

stakeholders. The sub-set of wishes that is selected based on the trade-off with other

conditions is specified in the product quality specification. In the chart of Figure 7-3 an

example profile is shown in which the maximum quality and the target quality are

visualised. Such a chart can be expanded by adding lines, such as the actual product

quality once developed, or the estimated quality when using a specific process. Such charts

A

B

C

D

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT109

do not contain all underlying details, but provide an overview of product quality and can

therefore be used to communicate and discuss quality issues [Gillies 1992].

The scale of Figure 7-3 is the A to D scale, introduced in chapter 3. This thesis does not

address how such scales need to be designed. Some ideas have been published [Uijtregt

1998]. In this example each attribute uses the same scale, it is however also possible to use

a different scale per attribute including for example: costs in dollars, time in person

months, reliability in MTBF and usability on a high, medium, low scale.

Priorities are not included in Figure 7-3. It is visualised which targets are set, but it is not

indicated whether it is more important to fulfil the reliability targets or the maintainability

targets. Setting priorities is done during the negotiation process, which is carried out in

iteration with process engineering.

R-9: Specify product quality requirements in measurable terms

Ideally, product quality targets are specified as objectively as possible; therefore it is

recommended that product quality needs are specified in measurable terms [Basili and

Rombach 1988] [Gilb 1994]. By specifying requirements measurably, explicit goals

become available, and the performance gap between target and actual quality can be

monitored. This creates the benefit that the way in which these targets are fulfilled is left

open, creating possibilities for variation and control by the developers. After all,

requirements engineering specifies ‘what’ to build, and not ‘how’.

R-10: Show the trade-off between quality demands and the incurring cost/efforts to

realise those demands

The results of the trade-off of quality to cost and effort should be made explicit and

communicated. The highest level of quality is often not the objective for embedded

products. High quality costs money and often only a few customers require that high level

and are therefore willing to pay for it. In chapter 3 it has already been concluded that

quality should be viewed in a value-based way [Garvin 1984], by balancing it against other

conditions such as cost, effort and time-to-market. This balancing should be done

explicitly and the relationships between quality and cost should be made clear.

Making such a trade-off means investigating, for each wish, how it is possible to address

it, and what it costs. This involves looking at the process and looking at the available

resources that are capable of addressing each wish. Furthermore, addressing certain wishes

may have impacts on time-to-market i.e. development duration. Balancing wishes to their

incurring costs involves an iterative process between requirements engineering and

process engineering.

110 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

7.2 Guidelines for Process Engineering

Process engineering is defined in chapter 5 as the design of a measurable development

process for the development of a specific product that complies to the product quality

specification. A development process consists of a set of process actions with explicit

expected effects on product quality. During process engineering a set of process actions is

selected that contribute to the required product quality. These process actions are then

assembled into a product specific development process model. A process action is an

action, taken to achieve an explicit expected effect. Process engineering can also be seen

as configuring and tuning a situated software development process, based on the product

quality specification.

P-1
P-2
P-3

Inputs OutputsWork
Processes

P-9
P-10

P-4
P-5
P-6
P-7
P-8

Guidelines:

Figure 7-4: Guidelines on inputs, work processes and outputs of process engineering

Figure 7-4 contains the division of process engineering over inputs, process and outputs.

P-1. Only start with process engineering if the stakeholders wishes for product quality

are made explicit.

P-2. Make the set of essential process actions and the set of supplementary process

actions explicit.

P-3. File the expected effect of process actions on product quality in an experience base.

P-4. Develop, for each specific product, a separate development process model that

makes the set of process actions, taken to control product quality, explicit.

P-5. Consider that effects of a specific process action can be both positive and negative,

and that they can be different for different projects, because context factors vary.

P-6. Estimate whether the selected set of process actions is capable of complying to the

product quality targets.

P-7. Use the information in the experience base for the selection of process actions.

P-8. Innovate by introducing new process actions with which no experience exist, in

order to improve and learn.

P-9. Make the learning objectives for the application of certain process actions explicit.

P-10. Revise the development process model when significant changes occur.

These guidelines are described in detail in the next sections.

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT111

7.2.1 Guidelines on Process Engineering inputs

P-1: Only start with process engineering if the stakeholders wishes for product

quality are made explicit

The main objective of process engineering is to configure a product specific development

process. This can only be done if the implicit needs from the stakeholders are made

explicit: process engineering depends on the results of requirements engineering. The

exact product quality targets are, however, set in iteration with requirements engineering

because deciding what the targets will be is always a trade-off with aspects such as

feasibility, time-to-market, effort, costs, etc. Process engineering enables estimating what

product quality will be when using a certain process within certain conditions. In iteration

with requirements engineering, a development process is designed and the product quality

targets are set.

During requirements engineering product quality is refined in relevant attributes, such as

functionality, cost, reliability and maintainability. The wishes that exist for a product

should be available before process engineering can start. Without an overview of product

quality wishes, it is not clear what the specific demands regarding product quality are, and

therefore it becomes impossible to implement product focused SPI. Without an explicit

specification of product quality it is not possible to focus the improvement efforts to the

product, because it is not possible to identify which product quality attribute(s) need

improvement.

P-2: Make the set of essential process actions and the set of supplementary process

actions explicit

Configuring a development process for a specific product is never started from scratch.

Every organisation has its own ‘standard way’ of doing projects and its own ‘standard’ set

of process actions. This set of essential process actions, always taken in development

projects, must be made explicit. In addition to this it must be made explicit what the

experiences (expectations) are of the impact of each process action on product quality.

Beside a set of essential process actions that are always taken, there is also a set of

supplementary process actions that can be taken if the specific situation demands it. This

supplementary set must also be made explicit, together with the experiences (estimates) of

effects on product quality.

P-3: File the expected effect of process actions on product quality in an experience

base

The essential and supplementary process actions that the people in the organisation are

capable of using, and the effects of these process actions on product quality, should be

modelled explicitly and stored in an experience base. This experience base is a dynamic

and evolving storage medium in which new experiences and measurements with effects of

112 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

process actions can be stored, and adapted based on new insights. The experience base is

also consulted to support in decision making during process engineering.

For the set up of such an experience base and its structure we refer to the literature [Basili

and Rombach 1988] [Genuchten 1991] [Hamann et al. 1998a] [Hamann et al. 1998b]. A

prototype was developed, and used in the case-studies of this research (see Appendix A).

7.2.2 Guidelines on Process Engineering work processes

P-4: Develop, a separate development process model for each specific product that

makes the set of process actions, taken to control product quality, explicit

This thesis is based on the assumption that there is no one best way of making a quality

product, because product quality depends on the specific needs of all stakeholders and the

context in which it is being developed and used. In line with this assumption, every

product requires its own development process to result in the specific product quality. This

process needs to be made explicit.

Making process actions explicit needs to be done at several different moments of

development. For example: during project planning when the intended set of process

actions is defined, during project execution if certain process actions are omitted or

additional ones are taken, and after project finalisation when it becomes more clear what

the right set of process actions would have been.

Making these process actions explicit means identifying for each process action the time

when it should be taken, in what way, using which technique, by whom, with what

expected effect, etc. Most process actions have effects on more than one product quality

attribute. For example the use of fault tolerance techniques has a positive effect on product

reliability, but a negative effect on product efficiency and project duration. For embedded

products it is recommended to make a distinction between overall process actions,

hardware specific process actions and software specific process actions, and their intended

effects.

Practical experiences identified that what this thesis addresses as ‘process engineering’

resembles what is done in practice during ‘project planning’, although implicitly. During

project planning, project managers define a development process with deliverables,

deadlines, resources, etc., that is intended to result in a product that fulfils the project

targets; however, this process rarely addresses product quality explicitly. The

customisation of the development process towards the project targets is mainly done

implicitly; however, the point of time in which such a project plan is made, suits the point

of time on which process engineering could be performed. It is therefore recommended to

bring process engineering in line with the project planning work. Ideally they become one

single task.

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT113

P-5: Consider that effects of a specific process action can be both positive and

negative, and that they can be different for different projects, because context factors

vary

Process actions that influence a specific goal in one area might decrease the effectiveness

of the development process in another. This is often overlooked. It is recommended

always to consider the multiple effects of process actions. Not only to focus on the product

quality attribute that requires improvement, but also to consider the effects on the other

product quality attributes. This ensures that an increase of product quality on one product

quality attribute does not imply a decrease in another.

Although it might be likely that a certain process action will result in certain product

quality, the effects of a process action on product quality can almost never be guaranteed.

Multiple factors influence process actions, such as people experiences, project pressure,

other process actions and current status of product quality; however, it can be made likely

that certain effects will occur if the process action is taken in a similar project, under

similar conditions, for a similar product, etc. The decision to take, or not take, a certain

process action should be made for each project separately, dependent on the confidence

(expectation) that the intended effects of a process action will occur.

In order to support this decision it is recommended to store in the experience base for

every process action what effects were observed (measured) under which conditions.

Examples of such conditions are: experience with the process action, product type,

differences in process action application, type of technology, etc. These conditions that

influence success or failure of process actions also vary per situation. It is therefore

recommended to consult the development team for the identification of conditions in the

project that had a clear influence on the effects of the process action [Hamann et al.

1998b] [Birk et al. 1999].

P-6: Estimate whether the selected set of process actions is capable of complying to

the product quality targets

It is recommended to make an estimate of the product quality that a certain development

process is likely to deliver. This estimated product quality can be compared with the

product quality targets to identify whether the selected set of process actions is sufficient,

or that corrective action should be taken. This corrective action can be changing the set of

process actions, or changing the product quality targets, or both. From the experience base

expected effects for this set of process actions can be retrieved, and an estimate can be

made of what product quality will be created.

P-7: Use the information in the experience base for the selection of process actions

If a change has to be made to the already selected set of process actions, the experience

base can be used to identify the process actions that have an effect on the specific product

114 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

quality attribute that needs additional attention. These changes can be twofold: additional

process actions need to be selected, or already selected process actions need to be omitted.

It should therefore be possible to search the experience base to find process actions that

have a positive or negative impact on a specific product quality attribute. Furthermore, this

experience base can be used to visualise which process actions have already been selected

and which not, and what the impacts of each process action are on the other product

quality attributes. It is for example possible that in a project additional attention is required

for product reliability, while the project is exactly on track. Selecting process actions on

the critical path that have a negative impact on project duration might in that case be not

preferrable, because they will negatively influence the schedule of the project.

P-8: Innovate by introducing new process actions with which no experiences exist,

in order to improve and learn

The experience base with models of process product relationships needs to be expanded

with information on new process actions. Not every project will be suitable to experiment

with innovative process actions on which hardly any knowledge is available. For example

a product with high product performance requirements will not necessarily be favourable

for experimenting with a new technique that focuses on product efficiency; however,

experiments should be carried out to establish double loop learning (chapter 6). It is

therefore recommended to assess the possibility for every project to experiment with new

process actions, and to learn its effects on product quality. These process actions can for

example be on a less critical product quality attribute, and used in a project with less

critical deadlines.

7.2.3 Guidelines on Process Engineering outputs

P-9: Make the learning objectives for the application of certain process actions

explicit

It has been identified in chapter 6 that learning should be a direct objective in process

improvement programmes. For process engineering this implies that the learning

objectives are stated explicitly. Learning objectives are defined for specific process

actions. On these process actions the objective can be, for example, to identify what the

effects are on product quality, what the conditions are under which these effects occur, or

to monitor whether the intended effects occur and what the reasons for discrepancies are.

P-10: Revise the development process model when significant changes occur

The main product of process engineering is a development process model that indicates

which process actions are taken, at what time, with what amount of effort, by whom, etc.

This development process model is the main deliverable that ensures that the development

process is capable of addressing the product quality targets. It should therefore be

complete, correct and consistent with the work carried out in the development process.

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT115

This process model is not static: it evolves over time, based on changes in the project.

Such changes can occur for a number of reasons such as: additional requirements are

stated, expected effects of process actions do not occur, targets are set higher, or process

actions are omitted due to time constraints.

As the development process model makes explicit ‘how’ the product is developed, it is

essential to keep this model up to date during project execution. Especially since

measurement programme engineering depends on this process model, it should be ensured

that its content is correct and complete.

7.3 Guidelines for Measurement Programme Engineering

Measurement programme engineering is defined in chapter 5 as the design and

implementation of a set of process, product and resource metrics, to evaluate product

quality and to evaluate process-product relationships. During measurement programme

engineering a set of metrics is defined, collected and analysed with two purposes:

• evaluating the compliance of embedded product quality with the stated product

quality targets

• evaluating the effects of a certain process action on product quality, when used

within a specific context in a specific way

Measurement programme engineering can also be seen as the process that provides

feedback on the effectiveness of the process actions, and facilitates learning as was

introduced in the conceptual model presented in chapter 6.

M-1
M-2

Inputs OutputsWork
Processes

M-8
M-9
M-10

M-3
M-4
M-5
M-6
M-7

Guidelines:

Figure 7-5: Guidelines on inputs, work processes and outputs of measurement programme
engineering

116 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

The guidelines for measurement programme engineering are also structured along inputs,

work processes and outputs (Figure 7-5). These guidelines are:

M-1. Prepare the software developers for participating in measurement programmes.

M-2. Know what the product quality targets, process model and learning objectives are

before starting measurement programme engineering.

M-3. Measurement programme engineering should be goal-oriented to ensure that a

limited but relevant set of measurements is collected.

M-4. Specify expectations (hypothesis).

M-5. Analyse and interpret measurement data regularly, which preferably needs to be

done by those people that have performed the actual measurements.

M-6. Focus analysis and interpretation of the measurement data on: a specific process

action, the overall process, or to the product quality targets, but not on the

performance of individuals.

M-7. Assign dedicated resources to support the development team in measurement

programme engineering.

M-8. Evaluate the differences between actual and target product quality.

M-9. Evaluate the effects of process actions.

M-10. Store the knowledge on the effects of a process action within a specific situation in

the experience base.

These guidelines are described in detail in the next sections.

7.3.1 Guidelines on Measurement Programme Engineering inputs

M-1: Prepare the software developers for participating in measurement programmes

Measurement of software processes and products is not something that can be immediately

done. Experiences in research identified that to carry out software measurement

successfully the development context including the developers should be prepared [Basili

and Rombach 1988] [Goodman 1993] [Fenton and Pfleeger 1996] [Solingen and Berghout

1999]. This is not only a finding from the software engineering field, but also a finding

from learning literature which clearly emphasises the establishment of a ‘learning

environment’ before organisational learning will occur [Senge 1990] [Garvin 1993]

[Senge et al. 1994].

While both software engineering and learning literature recommend the preparation of an

organisation and its people for measurement programmes, neither field states explicitly

what this preparation consists of. The objective is to decrease the resistance to

measurement and to establish a ‘culture’ that is willing to measure and improve itself;

however, how this should be done is not made clear.

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT117

During application of these ideas in industry, this has been done by presenting the benefits

of measurement in other projects or companies, and by making the exact impact of

measurement for the developers explicit. The developers were told upfront what their

involvement would look like, what they needed to prepare and carry out, what time it

would cost and what benefit it would bring. Furthermore, it was arranged that only those

issues would be measured that the developers supported, and that the developers were

always in control of the work and direction of the improvement programme. If the

development team decided that they had attained their goals and wanted to stop or refocus

measurement, this was done, since they were the owners of the measurements. These

actions were taken to prepare the organisation for measurement.

M-2: Know what the product quality targets, process model and learning objectives

are, before starting measurement programme engineering

The role of measurement in this thesis during measurement programme engineering

implies that the goals are available upfront. Measurement programme engineering starts

whenever the measurement goals are defined. These goals are stated in the product quality

targets, and learning objectives that result from both requirements and process

engineering. With the product quality targets it is possible to measure during product

development what the conformance of the actual product quality with the targets is. The

learning objectives specify which process actions need to be measured and the purpose of

these measurements. The process model specifies the process actions taken and sequence

of activities in the project.

7.3.2 Guidelines on Measurement Programme Engineering work

processes

M-3: Measurement programme engineering should be goal-oriented, to ensure that

a limited but relevant set of measurements is collected

One of the findings in chapter 5 was that measurement should be driven by goals [Basili

and Rombach 1988]. This has the benefit that measurements are only collected towards an

explicit stated purpose and that only those measurements are taken that are necessary. This

limits the costs (and burden) of measurement and supports in focusing measurement on

only those process and product aspects of interest. Refining goals into metrics is a difficult

process, which can be facilitated by specifying an intermediate level of ‘questions’, which

at the same time provides a framework for interpretation of these measurements [Basili

and Weiss 1984]. Operational support and guidelines for using goal-oriented measurement

(GQM) is described in the literature [Solingen and Berghout 1999].

118 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

M-4: Specify expectations (hypothesis)

In order to increase the learning effects of measurement, it is necessary to make explicit

what the expectations for the measurements are. These hypotheses need to be defined

before the measurements are taken. Discrepancies between hypotheses and actual values

trigger causal analysis of such differences and support in learning the effects of process

actions [Entwistle 1981] [Basili and Rombach 1988] [Solingen et al. 1997]. Without the

specification of hypotheses, learning effects tend to be much lower.

During the industrial work of this research, no hypotheses were defined in some cases,

because the development teams had no idea what measurement results to expect. In these

cases the development teams did not provide hypothesis. When the actual measurements

became available they tended to conclude that these measurements where exactly

according to their expectations: they had already forgotten that upfront they had no idea of

the expected outcome. As such, the development teams learned less.

M-5: Analyse and interpret measurement data regularly, which preferably needs to

be done by those people that have performed the actual measurements

In chapter 5 it was stated that measurement data should be interpreted in context [Basili

and Rombach 1988]. This means that the analysis of measurements should be carried out

by those people that have knowledge on the context in which the data was collected, and

therefore ideally consists of those people that actually collected the data. In order to

support the group learning aspect of measurement, chapter 6 found that analysing and

interpretation of measurement data should be done in groups of people. A way in which

this can be operationalised is organising so-called ‘feedback sessions’ in which the

measurements are presented to the development team in order to draw conclusions about

the measurements, make decisions, or take action [Latum et al. 1996] [Latum et al. 1998]

[Solingen and Berghout 1999].

Interpretations of measurement data can be mostly twofold. If for example the number of

defects found in a software module is relatively high, the conclusion can be that the

module is of poor quality because it has many defects, but the opposite conclusion can be

that the product is of excellent quality because nearly all defects are removed. In almost

every case, measurement data can be interpreted differently. As developers tend to have a

positivistic attitude and people have the general tendency to look for the first plausible

interpretation, the opposite interpretation is often overlooked. It is therefore useful that

someone takes the ‘devil’s advocate role’ during the interpretation of measurements and

challenges and questions the various interpretations from opposite viewpoints. The

discussions that result from such opposite statements support better interpretation and

create deeper insights [Solingen et al. 1997].

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT119

M-6: Focus analysis and interpretation of the measurement data on: a specific

process action, the overall process, or on the product quality targets, but not on the

performance of individuals

Interpretation of measurements should also be done towards the measurement goals. If the

intermediate level of ‘questions’ is used this interpretation is much easier, because the

measurement data should provide ‘answers’ to these ‘questions’ [Solingen and Berghout

1999]. The measurements are always taken to support a learning process. As such, these

measurements may not be used to judge people [Humphrey 1989] [Goodman 1993]

[Solingen et al. 1997], because this will directly block the learning process of the people,

and as a consequence the complete improvement programme might fail.

M-7: Assign dedicated resources to support the development team in measurement

programme engineering

The development team will have both project and learning objectives. The project

objectives are often much more concrete and attainment of these objectives is possible in

shorter time. In the case of deadlines or project pressure, there is a risk that the learning

objectives will be put on hold. To tackle this risk, it is recommended to limit the effort of

the development team and involve them only in those elements of measurement

programme engineering that add to the learning process. The non-learning tasks can be

performed in parallel by other dedicated resources. These resources can be software

developers that work on the product, but that have dedicated time to spend on the

improvement programme. It is also possible to establish these dedicated resources in an

external group, such as a quality assurance department; however, one of the findings of

chapter 5 was to prevent the establishment of separate metrics groups that perform ‘ivy

tower’ data analysis. These dedicated resources should therefore be facilitators of the

improvement programme and not substitutes. They provide a service to the development

team by taking over all tasks that do not necessarily require the involvement of the

development team.

7.3.3 Guidelines on Measurement Programme Engineering outputs

M-8: Evaluate the differences between actual and target product quality

One of the reasons that measurement programme engineering is carried out is to evaluate

the conformance of the (final) product with the product quality targets. The product is

therefore measured and it is evaluated whether differences between the actual quality and

target quality of the product exist.

120 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

If it is indicated during measurement programme engineering that there is a negative gap

between actual and expected effects of the set of measures, corrective action should be

taken. This corrective action can be:

• taking additional process actions to influence the specific product quality attributes

positively

• altering the product quality targets to the current product quality

This last option should not be overlooked. Product quality is always a trade-off decision

with time and cost. In many situations it might be acceptable not to spend time and money

to make improvements when the product quality level is lower than the target. This

depends on the market situation, competition, financial situation etc. The only

recommendation is to make this decision an explicit one, and to analyse the consequences

of not improving product quality towards the targets. This shows the relationship of

measurement programme engineering with process engineering and requirements

engineering.

It can also be possible that the evaluation shows that product quality is higher than

intended. This may be a reason to start new negotiations or take specific action. Although

unlikely, action can be taken to decrease the quality. A better option might be to consider

increasing the product’s price.

M-9: Evaluate the effects of process actions

The other purpose of measurement programme engineering within this thesis is to identify

and learn the effects of process actions on product quality. Process actions are taken with

an explicit purpose in mind; however, it can not always be guaranteed that these effects

actually occur, because these effects depend on several (possibly unknown) conditions. In

cases where there is a high dependency on the effectiveness of a process action it can be

decided that measurements are required to monitor its results. These measurement results

have to be analysed and compared with the expected results (hypothesis). In the case of

discrepancies it is necessary to identify the causes (conditions) for these flaws. When it is

clear that a certain process action does not give the intended effect, or produces

unexpected side effects, corrective action can be taken.

As discussed before, it is also possible to monitor process actions with an explicit learning

objective. This can be done for new process actions, or process actions for which it is still

unclear what their detailed effects, or success-factors are. In such measurement

programmes there is a clear learning objective and the focus is therefore not just on

monitoring, but on reflection, conversation and conceptualisation (see chapter 6).

GUIDELINES FOR PRODUCT FOCUSED PROCESS IMPROVEMENT121

M-10: Store the knowledge on the effects of a process action within a specific

situation in the experience base

When the goals of a measurement programme are attained, a lot has been learned. This

knowledge must be stored in the experience base of process-product relationship models.

Besides the effects of a certain process action on product quality, context information also

needs to be stored in the experience base. Context information means for example:

information on the specific situation in which the effects occurred, success factors and

context conditions. Such information is necessary for future decision making, because it

helps in making an estimation of the likelihood that a process action will give a certain

effect, and therefore supports in the estimation of product quality during process

engineering. If the type of product, development team and external conditions largely

resemble a past situation in which a certain effect occurred, it is more likely that the same

effects will occur then when all context factors are different. This context information is

equally important as the information on the effects on product quality that have been

measured.

7.4 Conclusions

In this chapter, a set of guidelines for each of the three working areas of the RPM

conceptual model was presented. These guidelines focus on ‘what’ should be done and do

not describe ‘how’ this should be done. The main contribution of this chapter was to

operationalise the RPM model of chapter 6, and to provide support for practical usage of

the RPM model in practice.

Validating the model and these guidelines still needs to be done. This is the topic of the

next chapter that presents practical experience of using the RPM conceptual model and the

guidelines in industrial case-studies.

8. Industrial application of the

RPM approach

In this chapter the case-studies of this research are presented. The chapter contains

experiences and results from applying the RPM conceptual model and the guidelines in

four industrial projects. Furthermore it contains an analysis of the costs and benefits

involved in applying the RPM approach.

8.1 Introduction

Case-studies are an important foundation for the methodological justification of this

research, as presented in chapter 2. The case-studies are designed to validate both the

RPM conceptual model and the guidelines.

In this chapter the companies and projects in which the RPM approach was used, is

described. These projects were carried out over a period of four years and involved many

people. It is out of the scope of this thesis to present here all the details from these case-

studies. Details can be found in the individual papers that have been published on these

projects [Solingen et al. 1999a] [Solingen et al. 1999b] [Oivo et al. 1999] [Bicego et al.

1999].

A section is provided for every case-study that briefly presents the results of requirements

engineering, process engineering, and measurement programme engineering in that case-

study. Examples are provided from the case-studies to support the findings and to illustrate

what was actually done in practice when carrying out the RPM approach. Before these

results of the case-studies are presented, the procedure used during the case-studies will be

described.

8.2 Case-study procedure

The procedure that was used when applying the RPM conceptual model and the guidelines

in the industrial case-studies, is presented in this section. The steps that were taken and the

deliverables that were produced are presented. In this section, a reference to the guidelines

of chapter 7 is presented in brackets. The case-study procedure consists of three parts: one

for each of the three RPM working areas.

124 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

8.2.1 Requirements Engineering case-study procedure

The procedure applied for requirements engineering is depicted in Figure 8-1. The main

deliverable of this procedure is a product quality specification. The negotiation process on

product quality wishes and the feasibility to realise them within process engineering, and

negotiating regarding costs and time-to-market is part of this procedure. Even though it

was shown in chapter 5 that this is a negotiation process between requirements and process

engineering, the case-studies carried out this negotiation process during requirements

engineering. This also has the benefit that the switching between requirements and process

engineering is not explicitly included in these procedures.

Identify product
stakeholders

Collect stakeholder's
product quality

wishes

Product quality
specification

Overview of product
stakeholders and

interrelations

Overview of product
quality wishes

Negotiate and specify
product quality

targets

Quality specification
and experiences from

previous products

Figure 8-1: Requirements engineering procedure

In Figure 8-1, the process of requirements engineering is depicted. The input to

requirements engineering is the quality specification of a previous product and experiences

on quality with such previous products (R-3). First the stakeholders that have quality

demands for a product are identified (R-1). Second, those stakeholders are consulted to

collect the wishes they have for product quality. These wishes are specified in an overview

INDUSTRIAL APPLICATION OF THE RPM APPROACH 125

that describes the wishes in both the natural language of the stakeholder (R-2) and a

generic engineering quality language (R-7). During the negotiation process (R-5) the

product quality targets are set and the whole set of product quality requirements is

documented in a product quality specification (R-8, R-9). This negotiation process looks at

all wishes, their priorities (R-4), their cost, their feasibility and the time required to fulfil

that wish (R-10). The output of requirements engineering is the product quality

specification, which is an input to process engineering but should also be communicated to

the stakeholders (R-6).

8.2.2 Process Engineering case-study procedure

Design product
specific development

process model

Estimate expected
product quality

Experience Base

Product quality
specification

Proposed
development process

model

Predicted product
quality deficiences Select new process

actions

External information

Learning objectives

Development process
model

Figure 8-2: Process engineering procedure

The procedure applied for process engineering is depicted in Figure 8-2. The main

deliverable of this procedure is a product specific development process model.

126 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Furthermore, learning objectives are defined. The negotiation process on product quality

wishes and the feasibility to realise them within process engineering, is considered to be

part of requirements engineering. It is therefore not included in Figure 8-2.

Figure 8-2 has three input sources: the product quality specification from requirements

engineering (P-1), an experience base on effects of process actions in the specific

organisation (P-2, P-3), and external information on generic (effects of) process actions.

Based on the product quality specification, a product specific development process is

constructed (P-4) based on information from the experience base (P-7). Using the

information in the experience base an estimation is carried out (P-6) of the product quality

that can be expected if that process is used (P-5). When this expected product quality is

compared to the product quality specification it is possible to identify deficiencies of

product quality. In an iterative manner an (improved) development process is designed.

The result from these iterations is a development process model that will be applied to

develop the product (P-10). Furthermore, some learning objectives are defined that specify

which process actions should be monitored, because their effects are uncertain (P-9).

In addition, process engineering contains the double-loop learning concept that identifies

the need to select new process actions, or change the current way of working rigorously

(P-8). This selection of new process actions is based on product quality deficiencies and

external information. If a new process action is selected that will be introduced, learning

objectives are also defined regarding the effects of this process action on product quality

(P-9).

8.2.3 Measurement Programme Engineering case-study procedure

The procedure applied for measurement programme engineering is depicted in Figure 8-3.

The main deliverables of this procedure are the measurement results. These measurements

provide evaluation results on:

• actual product quality compared to the product quality specification

• process action effects compared to the expectations

Measurement programme engineering is depending on the outputs of both requirements

and process engineering.

INDUSTRIAL APPLICATION OF THE RPM APPROACH 127

Prepare
measurement

programme

Set up measurement
programme

Experience base

Collect measurement
data

Product quality
specification

Learning objectives

Measurement resultsAnalyse
measurement data

Measurement data

Measurement
programme

documentation

Planning

Figure 8-3: Measurement programme engineering procedure

Measurement programme engineering has two inputs (M-2): the learning objectives for

which measurement goals should be defined, and the product quality specification to

which the actual product should comply. First, the measurement programme is prepared by

assigning dedicated resources for measurement support (M-7), training the software

developers on software measurement programmes (M-1), and making a planning. After

that, the measurement programme is set up along measurement goals, questions and

metrics (M-3). Important input for this are the opinions, experiences and expectations (M-

4) of the software development team. These people are consulted during the set up of the

128 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

measurement programme. The documentation of the programme, such as measurement

plan, measurement goals, and data collection forms are used during data collection and

data analysis. Based on this documentation, the measurement data is collected and

analysed (M-6). The analysis is done in ‘feedback sessions’: interactive sessions with the

software development team in which the team interprets the data, draws conclusions and

defines action (M-5). The results coming out of these feedback sessions are evaluations of

product quality (M-8) and evaluations of process action effects (M-9). This information is

stored in the experience base for use in future projects (M-10).

8.3 Schlumberger RPS/Tokheim

Three of the four case-studies were carried out at the Bladel site of Schlumberger Retail

Petroleum Systems. This division of Schlumberger was sold in October 1998 to Tokheim,

the world market leader for retail petroleum products and services.

Tokheim produces Fuel Dispensers, Point of Sales, Electronic Funds Transfer equipment,

Back-Office and Forecourt Controllers. The impact of software in the Tokheim products is

increasing rapidly. In some cases 80% of a project’s budget is spent on software

development. The case-studies were carried out at the software development department in

the Bladel site in the Netherlands. The software practices used at the Bladel site are

certified according to TickIT [ISO 9000-3 1997] and ISO 9001 [ISO 9001 1994].

8.4 Tokheim WWC-project

The first case-study was the World Wide Calculator (WWC) project. In this project the

central control unit, called: ‘calculator’ was developed for the new product family of

dispensers. A calculator is the central component in a dispenser, which measures the

amount of fuel taken by a customer. The calculator displays the amount of fuel, the price

for the fuel transaction and the fuel price. A calculator controls the whole dispenser,

meaning it controls the pumps and valves, but also communicates with the cash register or

payment device. The WWC project was a sub-project of a larger project to develop a new

product family of fuel dispensers. The main driver for this new product family was a 30%

product cost reduction compared to the previous dispensers, and therefore the WWC

project had also a 30% cost reduction target. Cost meant in this case: material and

production costs of the hardware.

The WWC project was carried out in two sites: the Bladel site in the Netherlands and the

Schwelm site in Germany. The team consisted of 3 hardware engineers, 4 software

engineers, and a project manager. The project had a total duration of two years of which

the first year resulted in a first increment of the product, which was expanded with

functionality in the second year.

INDUSTRIAL APPLICATION OF THE RPM APPROACH 129

8.4.1 Experiences with Requirements Engineering

In this case-study, requirements engineering was used for the specification of product

quality. All product quality wishes were evaluated by the project manager to decide to

what extent a wish would be accepted or rejected. The result of this work was a product

quality specification, in line with the guidelines of chapter 7.

During the inventory of the product quality wishes, eleven stakeholders were identified.

The product quality wishes were captured in three interviews with stakeholders and

representatives of stakeholders. This first case-study did not take into consideration that

the development department was also a stakeholder.

The resulting product quality profile from this work is depicted in Figure 8-4. This figure

shows the target quality, after selection by the project manager, for the product along the

product quality dimensions. This figure was used to summarise the findings of

requirements engineering and to provide a qualitative overview of what product quality is.

The dimensions are the ISO 9126 characteristics expanded with time and cost. The scale

of the axes is the A, B, C, D risk classification as presented in chapter 32. Figure 8-4 shows

that for this product: Cost, Time, Functionality and Usability have the highest values on

this scale: C, which indicates a large financial impact when compliance to these

requirements is absent. Figure 8-4 also contains the estimated product quality, a result of

process engineering. Comparing the targets with the estimation reveals insights into which

targets are least likely to be fulfilled and therefore require special attention.

The estimation of portability identified that it was unlikely that the targets would be

reached. This mismatch between estimation and target was discussed with the project

manager. He decided that the portability targets had been set too high and that the

developers would not have sufficient time in the project to fulfil those targets. The project

manager decided to decrease the portability target, as the result of an analysis carried out

by him and a discussion on the impact of lower portability with the development team.

This decrease of the portability target to the same value as the estimation is not yet visible

in Figure 8-4.

2 This scale was expanded with intermediate levels to make a better distinction between the quality

characteristics. This expanded scale provides three intermediate levels [Uijtregt 1998]. For example from C to D

the scale is: C, C-, D++, D+, D.

130 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

A

B

C

D

Functionality

Reliability

Usability

Efficieny

Maintainability

Portability

Cost

Time

Target Quality

Estimated Quality

Figure 8-4: Product Quality Profile of the WWC product

Some wishes from manufacturing and service were deliberately rejected by the project

manager, and therefore were not included in the target. Once the first version of the

product was available these stakeholders restated the rejected requirements, because the

current state of the product was insufficient for them. Corrective action was taken to

improve the situation. This issue shows that rejecting stakeholder requirements does not

necessarily imply that such requirements will not have to be addressed. Addressing these

issues in later stages of the project is often much more expensive.

One of the experiences gained from this first RPM application was learning that the

development department is also a stakeholder, and that its wishes should also be made

explicit. For example, the product quality profile indicates that reliability is expected to be

according to target; however, the development team had many arguments to support the

idea that this would be a major risk area. The targets for costs and duration were so strict

that the development team expected that they would have to squeeze their efforts at the

end of the project during the testing and release work.

As a result of these arguments the project manager and team decided to select product

reliability as improvement goal. During process engineering the development team

therefore looked at process solutions that support in improving product reliability.

INDUSTRIAL APPLICATION OF THE RPM APPROACH 131

8.4.2 Experiences with Process Engineering

Process engineering was started with an assessment of the processes carried out, with an

explicit focus on those process actions to create a reliable product. All process actions that

influenced reliability were identified according to the development team. These process

assessment results and the process-product relationship knowledge base were used to

estimate product quality as has been visualised in Figure 8-4. This estimation was based on

the process actions that the development expected to apply. Their impact on product

quality was estimated and was compared to the product quality targets. Discrepancies

between the two were used to set the product quality improvement goals, in this case:

product reliability.

The findings of the process assessment and the comparison of estimated with target

product quality did not result in major changes. The development team was confident that

their normal way of working was sufficient to create the required quality, as long as they

had sufficient time available to follow their normal procedures. Their expectation was that

the time pressure in the project would negatively influence this and therefore negatively

impact product reliability. The process improvement focus was therefore placed on the

testing process, because this was the main risk and main contributor to product reliability

in the final stages. Changes made to the testing process were: setting up test reporting,

setting up test planning, assigning a dedicated test resource, reusing reliable software

components and cross-personnel testing.

8.4.3 Experiences with Measurement Programme Engineering

A conclusion from the measurement programme was that in the project all software tests

were carried out according to the test plan. The development team concluded that this was

enabled by several reasons, such as a stable product architecture and some delays in

mechanics development, but also for a large portion by the reliability focus of the

measurement programme and the feedback sessions. The field test results showed that the

test process was sufficient in identifying the main reliability problems.

It was shown in the case-study that measurement is a sound technique that can be used by

a whole development team for focusing on a specific product quality attribute. Beside the

explicit attention for reliability, the project manager noticed that reliability was also

addressed in the implicit actions of the developers. The experience was that the

measurement programme gave testing a higher priority in the process.

A set of questions is defined in a measurement programme, which are refined to a set of

metrics. Data is collected for those metrics during the software development work. In this

case-study the following metrics were collected:

• size of the tested object in source lines of code

132 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

• complexity of the tested object divided over three classes: high, medium and low

• type of the test performed divided over eight test types: module, integration,

communication, system, stress, pre-approval, approval and field test

• test effort per tested object divided over three stages: test preparation, test

execution and repair work

• number of defects found per tested object divided over three classes: minor, major

and fatal

• test dates: planned and actual start date and planned and actual end date

• reason to stop testing divided over six classes: test plan completely executed, time

for testing is spent, ‘good feeling’ that the tested object is ok, sufficient period

without failures, sufficient external testing, other reason: explained in text

• stakeholder that detects a defect found after the test phase

• reason that a defect found after the test phase was not found before

An example of the feedback on one of these metrics that was provided to the development

team is depicted in Figure 8-5.

0 50 100 150

Sub-system 1

Sub-system 2

Sub-system 3

Sub-system 4

Mainboard

P
ro

du
ct

 s
ub

-s
ys

te
m

 n
am

es

Effort in person-hours

Expected test effort

Actual test effort

Figure 8-5: Test effort on the product sub-systems; expected versus actual

In Figure 8-5 it is shown that the effort spent on testing the sub-systems of the product,

compared to expectations. In this chart it is visualised that in most cases more effort was

INDUSTRIAL APPLICATION OF THE RPM APPROACH 133

spent than expected on testing the sub-systems and mainboard and accompanying

software. This was used by the development team to clarify why product reliability was

better than they initially expected: they could spend more time on testing than planned

originally.

An other experience of this measurement programme was that the test report was not a

good medium for collecting all the measurement data. In the project all tests were carried

out as planned, but reporting on these tests was incomplete. As a result there were quite

some measurements missing. This made a large portion of the GQM questions difficult to

answer because of this missing information. This might also be caused by the lack of

explicit learning goals in this project. As the development team had no clear learning

objective for the measurement programme, it was sufficient for them to carry out the tests

to attain their goal: product reliability.

Comparing product quality metrics of the final product with the targets, identified that the

overall targets were met. Some targets were set outside the needs or decreased during

requirements engineering due to the estimated quality. As a consequence it appeared that

the service departments were not so happy with the first version of the product, because

the cost reductions caused lower serviceability than this stakeholder required.

Furthermore, the manufacturing people were less happy, because the product cost

reduction made the calculator less manufacturable. The calculator contained several

electronic boards that had to be installed separately, increasing the time to install a

calculator in a dispenser. Currently action is being taken to redesign the calculator as a

generic box, which will decrease this production effort and increase the serviceability.

8.4.4 Experiences with applying the RPM approach

This case-study applied the RPM approach completely. Relevant product quality

improvements were set and attained, process improvements were implemented, and the

application of the RPM approach was integrated with the development project work.

The focus of the case-study was on requirements engineering and measurement

programme engineering, but the reason for this was the specific demands of the project.

So, it was shown that the RPM conceptual model is sufficiently flexible to address the

specific needs of a specific project. Process engineering was carried out, but did not make

major changes to the process. Merely a refocus of priority and effort assignment to testing

was established which contributed to the attainment of the reliability targets.

Estimating product quality based on the intended process provided feed-forward

information, and enabled the proactive control of product quality. One mistake made

during requirements engineering was to leave out development as a stakeholder during the

134 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

interviews, but this was corrected by using their input for the selection and attainment of

the product quality improvement goals.

Insufficiently addressing guidelines R-1, R-4, R-5 and R-6 during requirements

engineering caused some product quality problems in a later stage of the project and

corrective action was taken. This confirms the importance of these guidelines for

requirements engineering.

Applying RPM appeared to be no burden for the project team, they were motivated to

participate and experienced that their effort spent on these quality activities was relatively

low. Evaluating the costs to the benefits showed the investment to be cost effective. The

close co-operation of the development team especially with the QA department that

supported the RPM application, was experienced as beneficial. The project manager

experienced this co-operation as beneficial and expressed the view that this caused ‘quality

awareness’ within his team.

Investigating the main success factors of this project revealed that having highly skilled

and experienced engineers was one of the most effective reasons for the success of the

project. Although the development team was happy with the result of RPM application,

they expressed the view that good people remain a major condition for a successful

project.

8.5 Tokheim OPT-project

The second case-study was the OPT project. The family of Outdoor Payment Terminal

Products (OPT) are products that provide the facility to purchase fuel without the

necessary intervention of a station operator or cashier. The fuel purchaser can initiate and

complete a fuel purchase transaction with the use of an OPT. The OPT is equipped with

several peripherals (functions):

• card reader: to pay with cards;

• cash acceptor: to pay for the fuel with cash

• user keyboard: to interact with the system

• user display: to interact with the system

• receipt printer: to provide a receipt

The OPT project was carried out at the Bladel site in the Netherlands, with a team of 3

software engineers and a project manager. The project was supported with the RPM

approach for a period of six months.

INDUSTRIAL APPLICATION OF THE RPM APPROACH 135

8.5.1 Experiences with Requirements Engineering

During requirements engineering product quality was made explicit through interviews

with stakeholders or representatives of stakeholders. The wishes from all stakeholders

were made explicit and a selection was made for the product quality specification. In total

nine stakeholders were identified and three interviews were held. During requirements

engineering in this second case-study, development was considered to be a stakeholder.

The results of requirements engineering are visualised in Figure 8-6. In this figure the

quality targets are shown for the product along the ISO 9126 characteristics on the A, B,

C, D scale explained in chapter 3. In Figure 8-6 it is shown that the Functionality,

Reliability and Efficiency product targets have the highest value. Furthermore this figure

contains an estimation of product quality as a result of process engineering.

A

B

C

D

Functionality

Reliability

Usability

Efficieny

Maintainability

Portability

Target Quality

Estimated Quality

Figure 8-6: Product Quality Profile of the OPT product

In Figure 8-6 it is shown that the estimated values of functionality and reliability are lower

than the targets. Furthermore, the maintainability estimation is higher than the targets,

which is remarkable. Discussing this finding with the development team revealed that they

confirmed that their way of working results in a level C maintainability, but according to

them this was necessary. The development team took the position that the maintainability

target was too low. After discussing this issue with them it appeared that the development

team puts the emphasis on maintainability because it makes the work for them easier when

136 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

changes are required. Investigation of the stakeholder wishes showed that this is mainly a

wish from the developers and that this emphasis on maintainability could be decreased;

however, the development team decided not to change their process, because they were

quite happy with the current maintainability of their software.

8.5.2 Experiences with Process Engineering

The process assessment results and the PPR knowledge base were used to estimate product

quality, as visualised in Figure 8-6. Comparing these estimates with the targets revealed

that functionality and reliability were expected not to fulfil the targets, while

maintainability was expected to become higher than the target. The development team did

not share the estimate of ‘too low reliability’; therefore they decided to investigate

reliability using a measurement programme.

Initially process engineering was only carried out to create an estimate of product quality.

The next part of process engineering: configuring a process was deliberately not done: the

development team did not support the need for a process change and wanted to investigate

product reliability first, before making changes.

The reason that product reliability was estimated lower than the target was because it

appeared that the development team did not apply all process actions for reliability

completely. Trade-off decisions on time and expected outcome were made in the project

implicitly by the engineers, which meant that in certain cases process actions were partly

taken. As a consequence the effects of these process actions became insecure and this

caused the product reliability estimate to be low. So, it was decided to first measure

product reliability before making changes. This is typical single loop learning; no double

loop learning goals were set.

8.5.3 Experiences with Measurement Programme Engineering

The product measurements led to the conclusion that product reliability complied to the

targets. The trade-off decision of the development team on application of the reliability

process actions appeared to have been done sufficiently. No big changes were required.

One improvement that was carried out was the design and distribution of a test checklist to

be used by the service departments. This was expected to detect problems in the most

critical product areas before the product was installed in the field.

The metrics that were collected in this measurement programme were:

• size of a module in source lines of code

• complexity of a module divided over three classes: high, medium and low

• amount of reuse of a module divided over five classes: 0%, 25%, 50%, 75% and

100%

INDUSTRIAL APPLICATION OF THE RPM APPROACH 137

• level of review divided over two classes: review has been done and review has not

been done

• number of defects found per module divided over three classes: minor, major and

fatal

• reason that a defect found after release was not found before, divided over seven

classes: no module test, no regression test, too little test time, not possible to test,

hardware reasons, not reviewed, external reasons

• detector of each defect found after release divided into three detector classes:

engineering, service department, end-users (field)

• type of service problem report divided over failures and change requests

One feedback example with one of these metrics is depicted in Figure 8-7.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Expected Actual

P
er

ce
nt

ag
e

of
 fa

ilu
re

s
fo

un
d

Field

Service

Engineering

Figure 8-7: Chart that shows the stakeholder that detects a failure versus the hypothesis

In Figure 8-7 the percentage of failures detected by the three product stakeholders that

identify failures is shown. It appears that the development team is much more important

for the detection of failures than the other stakeholders. This gave them the insight not to

rely too much on other stakeholders for making the product reliable. This learning point

had occurred before in the company in another project [Latum et al. 1998] [Solingen and

Berghout 1999], in which the detectors of product failures were also measured. In this

project it also became clear that 75% of the product failures are found by the developers,

while the assumption is made that other stakeholders are also important failure detectors.

138 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

This insight mainly caused the development team to set up this testing checklist for the

service department, because they were of the opinion that the service departments were a

good source for finding failures, but that this was apparently not yet established.

After the first feedback session in which the goals had already been attained, the project

leader (senior engineer) and one of the developers left the company. They could not be

replaced immediately, because of a shortage of qualified people. The vacuum that was

created because of this change, caused the product development to be put on hold, and

influenced the continuation of the improvements. New objectives were not defined, since

the project manager wanted to wait until a new team had been established.

8.5.4 Experiences with applying the RPM approach

This case-study was a relatively small application of RPM. It was carried out over a short

period of time with a small development team for a relatively small project. This case-

study applied the RPM approach only partially, since the role of process engineering was

quite limited; however, the experiences showed that RPM supports the identification and

attainment of product quality targets. The activities for RPM were integrated in the

development project activities, and the developers experienced that the effort required was

small and the benefits exceeded the cost. The specific wishes of the development team

were considered and the RPM approach provided sufficient flexibility to support them in

developing a quality product. The development team was enthusiastic and motivated about

the RPM approach. They experienced that the approach addresses issues that are relevant

for them and that it is not a burden in their work. It also resulted in improved visibility of

product reliability and some process improvements.

The need for process changes did not become clear from the product quality requirements.

Therefore a measurement programme was set up to investigate product quality and to

identify the necessary process changes. This is a different role for measurement

programme engineering than it was designed for, but it appeared also to suit this purpose.

Although costs and time issues were not considered during requirements engineering, they

appeared to be clearly present. For example: during the measurement programme it

became clear that certain defects were not detected in the testing phase due to the limited

amount of test time available. This was acceptable for the team, because this shortened

their time to market, although it negatively influenced the reliability of the product. The

conclusion from this experience is that costs and time issues should also be considered as

part of product quality during requirements engineering.

The final observation from this case-study was that a change of development team

members endangers continuation of the RPM application. In this case-study half the

INDUSTRIAL APPLICATION OF THE RPM APPROACH 139

people of the development team left the company after the first feedback session. As a

result the improvement programme was stopped earlier than intended.

8.6 Tokheim Omega-project

The Omega project was aimed at the functional extension of an existing fuel-station

management system. The project consisted of several sub-projects to build additional

functionality. Omega is a retail automation system designed and developed specifically for

the needs of service station managers and operators. The Omega system is modular and

configurable from a simple fuel pump console to a comprehensive multi Point Of Sales

(POS) configuration with a dedicated ‘Back Office’ workstation for site management

purposes. The Omega system is a PC-based embedded system. It consists of several

computers that are linked and in this way are used to manage a fuel station. Proprietary

hardware is included to perform communication with the fuel dispenser calculators,

outdoor payment terminals and other external equipment on the station forecourt. A large

part of the system functionality is developed in software (C++ on an OS/2 platform).

The Omega project was carried out at more than ten development sites. The central

development was initially carried out at three sites, but is currently dealt with at one site.

At this central site ten developers work on the project. In total about 25 persons are

developing software for this product line. Initially this improvement programme focused

on the whole development team, but in the later stages the focus moved to the system

testing process of the test team. The test team consisted of three testers and a manager.

8.6.1 Experiences with Requirements Engineering

Requirements engineering was carried out for the specification of product quality. Twelve

stakeholders were identified and five interviews were held with these stakeholders or

representatives of these stakeholders.

Figure 8-8 shows the product quality targets of the Omega product along the ISO 9126

characteristics. The scale of the axes is the A, B, C, D scale explained in chapter 3. The

chart in Figure 8-8 shows that functionality, reliability and maintainability have the highest

scores. Furthermore, Figure 8-8 contains the results of estimating product quality when

using the set of process actions identified during a process assessment. This product

quality estimation is a result of process engineering.

140 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

A

B

C

D

Functionality

Reliability

Usability

Efficieny

Maintainability

Portability

Target Quality

Estimated Quality

Figure 8-8: Product Quality Profile of the Omega product

It is shown in Figure 8-8 that Functionality is an area that requires the most improvement.

The product is sold to a large number of different countries and different customers, for

which the functional product requirements are often unknown, resulting in a too low score

on estimated functionality. Furthermore, reliability and maintainability were expected to

be lower than required. The chart in Figure 8-8 appeared to be a good tool to provide an

overview for the development team on product quality targets and the status of their

process. The development team supported the findings; however, they had the opinion that

the product functionality issue was not something they were responsible for, or could do

something about.

Maintainability was expected to become too low, as a direct consequence of the

functionality problems. Due to insufficient functionality, many changes could be expected

to the product in the future, creating higher maintainability requirements. This illustrates

that product quality attributes are interrelated.

8.6.2 Experiences with Process Engineering

The results of a process assessment were used to estimate product quality for the quality

profile. Based on the findings displayed in Figure 8-8, product reliability and functionality

were selected as product improvement goals.

INDUSTRIAL APPLICATION OF THE RPM APPROACH 141

The two main changes that were implemented in this project were:

• the introduction of multi-site configuration management

• the installation of an independent dedicated test team

The PPR knowledge base was used for the selection of these process improvements. The

selected process changes and their expected impact on product reliability and functionality

are visualised in Figure 8-9 (++ means a medium positive impact, +++ means a high

positive impact).

Process actions Reliability Functionality

Put all Omega deliverables under CM ++

Detailed process for CM ++

Module audits ++

Full regression testing +++ +++

Full system testing +++

New test methods +++

Automate testing +++

Requirements acquisition in planning ++

Figure 8-9: Selected process actions and their expected effects

Experience with using the PPR knowledge base for identification of additional process

actions shows that many process actions are not selected because their impacts occur after

a period in which the development team learns to apply it. Most process actions do not

give their effects immediately after initial introduction. This supports the finding that

additional learning goals are necessary to experiment with new process actions on less

critical product issues in order to train developers in applying such a process action.

Learning a new technique that does not result directly in the intended effects will not be

selected if that effect is critical. The consequence is that one focuses on single loop

learning, and the double loop learning effects are disabled.

Performing queries to the PPR knowledge base to provide information on possible process

actions was successful. The knowledge base was able to provide optional process actions

for all product improvement targets. This depends of course on the amount of knowledge

stored in the knowledge base. In this case-study, the knowledge base was filled with more

than one hundred process actions [Soerjoesing 1998].

142 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

8.6.3 Experiences with Measurement Programme Engineering

The measurement programme for the Omega project was focused on the independent and

dedicated test group. The measurement goal was to understand the relevant parameters for

the testing process, in such a way that a decision could be made on balancing the testing

efforts to cost, duration and Omega product quality. The project has been guided using

measurement for one year at the moment of writing this thesis. Measurement and feedback

is still being continued.

The test team learned their baseline performances, such as the amount of time they need to

test certain functionality, time required to set up the test environment, duration of a full

system test cycle, etc. Furthermore, the measurement programme identified that the test

team under the current circumstances is unable to carry out full system test cycles. The

frequency in which they are confronted with new versions of the product is too high to

carry out a full test cycle. This information was used to clarify why certain failures were

not detected, and to communicate and negotiate this release frequency. During the

feedback sessions of the measurement programme, the test team also performed causal

analysis on the defects found in the field. These causal analysis had the objective to

identify the reasons that certain failures were found under field conditions and not by the

test group. In most cases the reasons appeared to be that functionality had not been tested

because of the time pressure. One of the other reasons appeared to be the ‘positivistic test

style’ of the test team: they did not test to find failures, they tested to prove that the

product ‘worked’. Special training was held for the test group to provide them with the

skills to carry out good system testing and to decrease the number of failures that slip

through their test process.

Several metrics were collected to support in answering the questions set in this

measurement programme. The GQM questions specified for this measurement programme

were:

1. What are the preconditions for good testing, and are these preconditions met in

practice?

2. What are the costs of testing?

3. What is the contribution of the testing process to Omega product quality?

4. What is the duration of the test process?

5. What are good criteria for the decision to stop testing and release software for field

testing?

6. What are the rules of thumb on the test process of the testing group?

INDUSTRIAL APPLICATION OF THE RPM APPROACH 143

These questions were refined into the following set of metrics:

• availability and perceived quality of test script and software specification

• effort spent on testing subdivided over: test script definition, test script selection,

test script execution, and testing the failure resolution

• severity of detected failures divided over four classes: cosmetic, minor, major and

fatal

• status of a failure divided over five classes: open, ready for testing, pending, killed

verified

• duration of a test cycle for a pre-release and for a full release

A feedback example on one of these metrics to support in answering question 3: ‘What is

the contribution of the testing process to product quality?’ is depicted in Figure 8-10.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Expected failure severity Actual failure severity

P
er

ce
nt

ag
es

 o
f s

ev
er

ity

Cosmetic

Minor

Major

Fatal

Figure 8-10: Chart that shows the severity of failures found by the test group versus their expectations

It is shown in Figure 8-10 what the differences are between the severity of the failures

found by the test group and their expectations (hypotheses). It appears that the severity of

the failures found is much higher than expected. The test group initially expected to be

confronted with a quite stable product in which they would try to find the deeply hidden

problems. Practice showed them that this was not the case. They were confronted with

large numbers of serious problems, which caused the number of minor issues to be much

lower than expected. Furthermore, this high number of serious issues was also one of the

main reasons for the high release frequency, because the test group was often required to

144 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

have a new release in which these problems had been solved, before they could restart

testing. The information in the measurement programme enabled the test group to evaluate

their own work and learn basic rules of thumb for their work. In addition to that they had

enough information to show the effectiveness of their work process and to communicate to

others what the causes of ineffectivities were. The information in Figure 8-10 could, for

example, be used to communicate to the development team that their module testing

process was inadequate, and that this was the main cause for the insufficient regression

testing by the test team. The test group is still active in improving their process and trying

to improve the conditions under which they have to carry out their testing work.

8.6.4 Experiences with applying the RPM approach

This case-study was a full application of the RPM approach. Requirements engineering

was used for product quality needs identification, process engineering was used for

product quality improvement identification and process change selection, and

measurement programme engineering was used to guide the improvements and learning

the effectiveness of the process changes.

The RPM approach was integrated in the daily work of the testing team. The QA

department supported them in the non-learning tasks, and the test engineers participated in

those RPM activities that required their involvement, such as interviews, target setting, and

feedback sessions.

Focusing the improvements efforts on those product quality attributes that required the

most improvement was supported by the RPM approach; however, even though the largest

problem area in this case-study appeared to be functionality, the decision was taken to

focus on the reliability aspects. This decision was made by the development team because

they had the feeling that they had no impact on this functionality problem. Only

improvement areas were identified by the RPM approach that the team supported which is

a strength of the approach; however, the largest problem was still not addressed in this

specific case.

The overall conclusion is that the RPM approach supported the project well, and the RPM

activities were integrated in the work of the test team. Analysing the costs of doing the

RPM work versus the benefits showed that RPM application was cost effective.

8.7 Dräger Medical Technology

Dräger is a 1.4 billion DM multinational operating primarily in the fields of medical and

safety technology, with limited operations in aerospace technology. It has about 8100

employees. The three divisions of Dräger are Medical Technology, Safety Technology and

Aerospace. The core business of Dräger Medical Technology is the development,

INDUSTRIAL APPLICATION OF THE RPM APPROACH 145

production and service of gas monitors, single and multi-parameter patient monitors, fluid

pumps, incubators and defibrillators for application in anaesthesia, intensive care, neonatal

and emergency care. These products have recently been extended with network and central

station capabilities to enable parallel monitoring of a number of patients as well as to

enable central documentation.

8.8 Dräger Medical Technology BSW project

Dräger MT-M, the monitoring sub division of Dräger MT, developed a complete new line

of patient monitoring devices. This family of devices can be used to create a BedSide

Workstation (BSW) around each bed location in a department in a hospital. The BSW’s

are intended for use at the intensive care stations and in the operation room. The system

incorporates network connections between various elements of the system, and allows

patient data exchange and the viewing of patient data at several locations.

The development of BSW was organised in a project. The development activities took

place on two sites: at Lübeck, the home city of Dräger in Germany, and at Best in the

Netherlands. To develop the BSW product, multiple disciplines were required. Five

Dräger hardware engineers designed the electronic components. All the software, both for

the embedded systems and the PC products, was developed at the Dräger office by a team

of 30 software engineers.

8.8.1 Experiences with Requirements Engineering

Requirements engineering was not carried out as described by the RPM approach. No

product quality requirements were specified as described in this thesis. The product

improvement targets were set, however, they were based on the opinion of the project

manager and the developers, and not based on consulting the multiple product

stakeholders and comparing the wanted quality with the current or expected quality. These

targets were specified in ISO 9126 terms, and a product quality profile was made.

The impact of this lack of product quality requirement specification is not as yet clear. The

company has considerable experience in the field, so it is well possible that the people

have indeed selected the right quality improvements; however the project has still not been

introduced to the market, so this feedback has not been provided for the case-study. The

focus of the project has been on improving product reliability and usability.

8.8.2 Experiences with Process Engineering

The development team specified the product improvement targets based on their personal

experience and knowledge, and based on the outcome of the process assessments. During

146 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

assessments, the interviewees and the assessors identify product improvement areas that

served as an input to set improvement targets.

Changes to the processes were made in this project, based on these product improvement

targets. The organisation did not have access to a PPR knowledge base, so the process

changes were not identified from the knowledge base. The process changes were based on

expected effects on product quality, or, in other words: based on implicit PPR models of

the development team and the project manager. These implicit PPR models were made

explicit by stating the expectations (hypothesis) and measuring whether these expectations

were valid during measurement programme engineering.

The changes made to improve product reliability were:

• incremental development

• implementation of test strategy

• inspection of design documentation

• design robust system and software architecture

This approach of selecting process actions is limited to the knowledge of the project

manager and the developers, and therefore is limited to single loop learning. A double

loop learning strategy would also look at process actions that are not so obvious at first

glance, or that the people have no experience with.

8.8.3 Experiences with Measurement Programme Engineering

Measurement programme engineering was carried using the GQM approach [Basili and

Weiss 1984] [Solingen and Berghout 1999]. Measurement programmes were implemented

to measure product reliability, the effectiveness of inspections, and the effectiveness and

efficiency of the testing process.

In total six feedback sessions were held in which the data was analysed by the

development teams. These feedback sessions were held with a large number of people (30-

50), which made discussion difficult. As a solution the results were discussed in a smaller

session with the group leaders.

The measurement programme is still in progress and product reliability is still being

measured.

8.8.4 Experiences with applying the RPM approach

Applying the RPM conceptual model was integrated with the development practices, and

the development team was enthusiastic about the results. This case-study applied RPM

only partially. Requirements engineering was implemented only implicitly. The product

quality improvement targets were directly specified by the development team and their

INDUSTRIAL APPLICATION OF THE RPM APPROACH 147

manager, without consulting stakeholders and comparing the wanted quality with the

current or expected quality. The impact of insufficiently addressing the requirements

engineering guidelines is not clear currently because the project is not finished yet.

Two ways of organising the application of RPM were tested. In this case-study firstly, no

dedicated support team was established for RPM application. Two software developers

were scheduled part-time to work on the improvement programme. When product

development came to a critical phase, this effort was reduced, putting the whole

improvement programme at risk. After a period without activities on the improvement

programme, a dedicated resource was hired to perform the work as a separate resource,

which guaranteed continuation better.

It became clear that using the concept of PPR models is also feasible in a situation in

which no knowledge base is available. The goal-driven concept that changes should have

specific expected effects that would contribute to the product targets, was perceived as

valuable. This could be made explicit from the process changes in the project, because

almost all process actions that were established had an implicit PPR model behind them.

8.9 Benefits of RPM application in the case-studies

A cost/benefit analysis was carried out on RPM application in the three Tokheim case-

studies. Not enough data was available for the Dräger project to carry out such a

cost/benefit analysis within the scope of this research.

The direct benefits of RPM application at Tokheim are presented in this section, divided

over the three working areas separately. In addition some indirect benefits are also

identified.

Identifying the benefits of RPM application was done in two ways:

• analysing the measurement results

• observing the people in the organisation and discussing effectiveness of the

approach with them

First of all, the benefits of RPM application become clear from the explicit improvements

taken in the projects and measuring their results. This explicit information can be used to

identify the impacts and benefits of RPM application.

Furthermore, the observations of the researcher have been an important source of

information for the identification of benefits. The researcher was present for all activities

carried out for RPM application and could see what the effects were in the development

projects. The researcher discussed results with the people in the improvement programme

meetings, and during informal off-line conversations. The researcher relied on observation

to measure the perceptions by the development teams and their experiences with RPM

148 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

application. An alternative could have been questioning the development teams using for

example a structured survey; however, this would have been overkill in this environment,

and would probably not have been appreciated by the development teams.

8.9.1 Benefits of Requirements Engineering

During the case-studies it was confirmed that requirements engineering is important. The

specification of what product quality actually means improves the way in which product

quality is addressed by the developers. During all the case-studies at Tokheim a full

requirements engineering phase was carried out in which the requirements of all

stakeholders were specified. As a consequence the requirements for product quality were

openly discussed, and the outcomes were commonly accepted. Furthermore, it became

possible to evaluate compliance of product quality once the product was available.

Specific observations in the case-studies triggered the importance of requirements

engineering. For example in the Tokheim WWC case-study some product quality targets

were set lower than the needs, because of costs and duration reasons. These product

requirements were restated as soon as the product became available, and were addressed in

this later stage. This showed the importance of requirements engineering and the

importance of seriously considering all stakeholder requirements.

Another example of an observed benefit of requirements engineering was that in the

Tokheim Omega case-study, the requirements engineering work identified that there was

clearly a product functionality problem. The development team supported this conclusion

but had the opinion they could not take action on this; however, the results of requirements

engineering gave them some additional arguments to convince higher management to take

action, and to support them in solving this product quality problem. This example supports

the benefits that can be achieved by addressing product quality explicitly, and making an

explicit product quality specification for a product.

8.9.2 Benefits of Process Engineering

The case-studies supported in the configuration of a product specific process depending on

the specific project targets. In all case-studies specific improvement objectives were set

and corresponding specific process changes were selected and implemented.

The case-studies revealed that an overview on the current established process actions

supports in the selection of product improvement targets. Estimations were made of the

product quality that was expected to come out of a certain process. Comparing this

estimated product quality with the target product quality revealed those product quality

attributes that were at risk. In the case-studies it was also shown that such graphical

INDUSTRIAL APPLICATION OF THE RPM APPROACH 149

representations of the product quality profile, could be discussed with all kind of

stakeholders and were a suitable medium to communicate results of process engineering.

The selection of product quality improvement goals was supported by process engineering,

which also supported the projects in selecting the process actions to attain these goals.

During the case-studies some specific observations triggered the importance of process

engineering and identified its benefits. For example during the Tokheim WWC project

explicit priority was set for the testing process and a dedicated resource was installed for

product testing. Making such explicit process changes, based on the product quality

improvement objectives, is a benefit of process engineering. During process engineering

explicit attention is paid to the tuning of the development process to the project objectives.

An important benefit of the combination of process engineering and requirements

engineering is that the right product quality and process improvement goals are selected.

At Tokheim there was already much experience with measurement based improvement

programmes, however, selecting goals appeared to have been difficult in the past [Latum

et al. 1998]. The iteration between requirements engineering and process engineering

supported in selecting the right goals.

8.9.3 Benefits of Measurement Programme Engineering

The benefits of measurement programme engineering are divided over the two purposes:

evaluation of product quality, and evaluation of process effects.

Regarding the evaluation of product quality it was shown in the case-studies that

measurement programme engineering is a relatively fast and easy way to perform this

evaluation. The product quality specification already contained the metrics and the target

values, and feedback was provided to the development teams regarding compliance to

these targets. Furthermore, the measurements made it feasible to provide feedback to

stakeholders in their own language, because information was available on product quality

according to the metrics specified by the stakeholders. Thanks to the regular feedback

sessions in which the measurements were analysed, early feedback on product quality

could be provided to the development team making corrective action possible in earlier

stages than in situations where feedback on product quality was given during field tests or

system tests.

Regarding the evaluation of process effects, all case-studies identified that measurement

programme engineering is the main facilitator for learning such effects. During the

measurement programme, and especially during the feedback sessions, the development

team learned the effects of their own work. Specific process actions were closely

monitored with measurement to determine the detailed impacts and success factors. This

learning process focuses especially on the product quality goals of interest and therefore is

150 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

a beneficial activity. The feedback sessions appeared to be the most effort consuming part

of the improvement programme, but at the same time the part that all the people

appreciated most.

During the case-studies specific observations were made that triggered the confirmation

that a measurement programme is beneficial. For example, during the Tokheim Omega

case-studies, the independent test team thoroughly evaluated the problems that slipped

through their test process, and that were detected in field situations. These analyses were

normally not made, but because of the measurement programme they were carrying out,

objective feedback was provided on where to look for improvement. An other example of

the benefits of measurement programme engineering comes from the Tokheim OPT case-

study where the feedback sessions were the forum in which representatives of

development, marketing and quality assurance discussed the status of the product, and

balanced corrective action against the cost and duration issues.

8.9.4 Indirect benefits

The application of the RPM approach also had some indirect benefits that are significant,

and that might in some cases be worth the investment.

The establishment of a ‘quality culture’ or ‘improvement focus’ in the development teams

is an important benefit. Due to the special attention paid to product quality, the explicit

specification of product quality targets, explicitly linking the process improvements to

these targets contributed to those benefits. The teams became interested in product quality

and started implicitly to take actions for product quality. Furthermore, it appeared that as

long as the teams were the ones that defined the process changes, they were motivated to

participate in the improvement programme. There was no ‘resistance to change’ because

the team decided on the changes, and the changes were explicitly related to the objectives

of the project.

An other indirect benefit was the co-operation between the quality assurance department

and the development teams. Historically the quality assurance department had a role in

which it dealt with only checking available procedures and audited projects on compliance

to these procedures. Application of the RPM approach changed this role. The quality

assurance people became actively involved with product development and supported the

development team in setting the right product targets and supported them in configuring

the right process and providing the feedback on the execution of that process. This

increased co-operation was experienced as beneficial for both the development teams and

the quality assurance people.

The last indirect benefit of RPM application that was observed was the learning processes

within the teams. Mainly due to the feedback sessions, the development teams evaluated

INDUSTRIAL APPLICATION OF THE RPM APPROACH 151

their own work, discussed this within the team, and concluded on the effectiveness of their

processes. This learning process was an important benefit of the RPM approach, because

learning is explicitly addressed.

8.10 Cost of RPM application in the case-studies

The main costs for RPM application are in the time spent by the people on the

improvement programme. The cost of RPM application in the Tokheim case-studies are

measured via the effort spent on the improvement programme. The effort spent on a task

was stored for each task carried out during RPM application. Transforming these effort

numbers to financial values could be done using the costs for one person-hour.

Figure 8-11 contains an overview of the effort spent on the case-studies distributed over

the three working areas, and over the roles involved with RPM application. Two roles are

discerned: development team and facilitators. The ‘development team’ is the people that

design and build a product. These people are supported by the RPM approach to address

the right product quality goals. Much of the RPM work does not necessarily have to be

done by the development team, but is done by ‘facilitators’. These facilitators were people

from the quality assurance department that supported the development teams with an

improvement programme.

Requirements
Engineering

Process
Engineering

Measurement
Programme
Engineering

Total

WWC project

Development team 16 12 45 73 (24%)

Facilitators 40 40 156 236 (76%)

Total 56 (18%) 52 (17%) 201 (65%) 309 (100%)

OPT project

Development team 18 5 15 38 (18%)

Facilitators 54 35 80 169 (82%)

Total 72 (35%) 40 (19%) 95 (46%) 207 (100%)

OMEGA project

Development team 20 16 48 84 (25%)

Facilitators 50 63 137 250 (75%)

Total 70 (21%) 79 (24%) 185 (55%) 334 (100%)

Figure 8-11: Table with effort expenditure on RPM application (in person hours)

The effort spent by the development team was about 1% of their time. This is considered

to be low according to the development team standards. For example, compare this 1% on

152 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

product focused SPI with the 20% effort they spent on the non-planned interruptions of

daily work [Solingen et al. 1998]. Support given to the development teams by the

facilitators was about 75% of the costs of the improvement project, the remaining 25%

effort was spent by the development team.

Other data shows that the effort required for RPM application was roughly distributed over

the three working areas as follows: Requirements engineering: 25%, Process engineering:

25% and Measurement programme engineering: 50%. It shows that measurement

programme engineering requires most effort, and especially the feedback sessions.

Figure 8-11 only contains the operational ‘cost’ for applying the RPM approach. The

initial costs required before an organisation can apply an improvement concept such as

RPM are not included, nor are the costs for the maintenance of an infrastructure that

supports RPM application included in this table. These cost data can not be acquired from

the case-studies, because the initial costs are not representative since the RPM approach

was also developed in this period, and the maintenance costs are unclear because the

period in which the approach was applied was too short to draw such conclusions. It is,

however, expected that these costs will be considerably lower than the operational cost for

applying the RPM approach, depending on the motivation and willingness of the people

for improvement and learning.

8.11 Are the benefits worth the cost?

The total effort spent per project was less than 3 person months each year, of course

depending on the number of developers in a project. Of this effort only 25% (3 person

weeks) was spent by the development team, which is less than 1% of their time. The

facilitators spent the remaining effort (9 person weeks). The amount of effort spent on an

improvement programme using RPM is rather small, and it should be clear that not many

benefits are required to make application of RPM cost effective. For example, past

measurements at Tokheim have shown that a problem detected early in a development

project saves 2 weeks of development effort [Solingen and Berghout 1999]. If RPM

application results in 2 problems detected early, its application is already cost effective for

the development team. If 7 problems are detected early due to RPM the whole

improvement programme is paid back.

The section on RPM benefits has revealed that many benefits could be identified during

RPM application. This large amount of benefits and the relative low costs for RPM

application leads to the conclusion that RPM application will be cost effective in most

cases, and that the pay back time can be short.

INDUSTRIAL APPLICATION OF THE RPM APPROACH 153

8.12 Validity of the case-study findings

After looking at the results of these case-studies, the question remains whether the RPM

approach and its guidelines are valid. In the case-studies it is shown that using the RPM

approach results in: a product focus, the definition of specific product targets, process

changes, and attainment of product targets. As such one can conclude that the approach

fulfils its promises, which leads to the conclusion that internal validity is confirmed. In

chapter 2 it was discussed that the selection of the case-studies promises to result in

externally valid results, because they sufficiently cover the embedded product domain.

One questions still remains before it can be concluded that the approach is indeed valid.

This question is:

What would have happened if the RPM approach had not been applied in the case-

studies?

The positive results in the case-studies are claimed to be caused by the application of

RPM; however, these results might have been similar without applying this approach. To

answer this question, a closer look was taken at the contribution made by RPM to the

selection and attainment of the product goals. Furthermore, it will be analysed whether

these goals were the right goals for the projects in the case-studies.

8.12.1 Contribution of RPM

It is difficult to determine objectively what the contribution of RPM was, because one can

not compare it with a situation in which RPM was not applied. The solution found for this

validation was twofold. Firstly, to look at the specific changes in the working processes

and the causes for these changes. If such a change was caused by RPM application, it is

assumed that this change would not have been made without RPM. Secondly, the

development team was asked what their opinion was about the impact of RPM application,

and whether the changes to the process were beneficial and would have been made without

RPM.

The impact of the RPM approach on the changes in the process and the impact of these

changes on the product was investigated. According to the findings, requirements

engineering largely supported in the identification of the product quality targets. The

results also showed that process engineering, and especially process assessments, had an

impact in the selection of the product quality improvements. The process assessments

supported in identifying these improvements, but were also an important source of

information to carry out the product quality estimations. The impact of measurement was

different for the projects. The impact of the measurements in the WWC project were low,

although the development team claimed that the feedback sessions supported them in their

focus on product reliability. In the OPT project the measurements were only used to

154 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

confirm expectations, since no unexpected issues arose; however, in both the Omega and

BSW projects, measurement played an important role in learning effects of certain process

actions, and in identifying and monitoring the changes to the processes. The impact of the

measurement programmes was considered higher when it had an explicit learning purpose.

The development teams claimed that the impact of RPM application was higher than the

study showed3. The main reason for this is probably that the RPM approach not only

causes changes to occur, but also supports in the establishment of a quality-oriented

improvement ‘culture’, which was also a major change for most of the people. Learning

and improvement had not been one of their objectives before, and it was observed in the

projects that these cultural aspects also caused some impacts on working processes

implicitly. One of the project managers stated that the ‘quality awareness’ of people

increased largely because of the application of the RPM approach and the co-operation

with the quality assurance department.

8.12.2 Addressing the right product quality goals

When looking at the product after field introduction, it is possible to identify the main

problems, and to identify whether these were also identified by the RPM approach.

Analysis of quality problems with the product after development, showed that the RPM

approach successfully identified the right product quality attributes that needed

improvement. Those were, in all cases, also the attributes for which the improvement goals

were defined. One exception was the Omega project that decided not to address the

functionality issues sufficiently, since the development team took the position that they

were not able to solve these problems. Analysis of the main product problems showed that

these were directly related to this issue: suitability was weak and as a result changeability

became a much stronger requirement which was also no longer sufficient. The overall

conclusion is that the RPM approach sufficiently supports in identifying the right product

and process quality objectives.

8.12.3 Validity of the guidelines

The last validation issue is the validity of the guidelines. It is impossible to validate each

guideline individually in industrial case-studies, because they are all applied at the same

time, influenced by external variances and also influencing each other. What can be done,

3 Hawthorne effects are unlikely due to these experiences because there was no explicit research carried out. The

RPM application was carried out as facilitator of an improvement programme and the objective was to make

changes and measure the impacts of these changes. The fact that this was part of a research project is expected

to have no impacts to the outcomes of the improvement programme.

INDUSTRIAL APPLICATION OF THE RPM APPROACH 155

however, is to identify the coverage of the guidelines by the approach used, and analyse

whether non-appliance of a certain guideline resulted in specific problems.

The guidelines were largely covered by the approach applied in the case-studies. One

major difference was the BSW project in which requirements engineering was not carried

out, because the development team decided on the product quality targets. As this project

is still in progress, it is difficult to identify the impact of this difference.

Regarding the guidelines the final validity conclusion is difficult, however, the case-

studies did not falsify the usefulness of the guidelines. The guidelines appeared to be

practical and to support in applying the RPM approach in industrial projects; however, it is

recommended to apply this approach and its guidelines also in more projects to acquire

experience in applying the approach and enhance the set of guidelines.

8.12.4 Overall validity conclusion

In chapter 2 it was concluded that the selected mix of case-studies in this research had the

potential to be externally valid. In the case-studies it was shown that the approach could be

applied in practice, that no major problems occurred with integrating the approach in

development projects, and that the right product focus was established. The validation

approach was to establish a ‘context for falsification’ (see chapter 2). Within this context

all four case-studies did not fail. The three multiple, longitudinal and nested cases at

Tokheim fully covering all three product types, and the final external validity check at

Dräger, did not show failure of the RPM approach. This mix of case-studies and their

positive results lead to the conclusion that the approach is externally valid for the

embedded product domain.

8.13 Conclusion

In this chapter the results of applying product focused SPI in four industrial projects, using

the RPM conceptual model and the guidelines, were presented. The three working areas

appeared to be a good combination that covered the work to be done for product focused

SPI. In all cases these three working areas could be recognised, although its specific

application was shown to be quite flexible, and was customised to the specific situations.

This flexibility is considered to be an important strength.

Application of the RPM conceptual model and the guidelines did not fail in four industrial

projects. It can be concluded that both the model and the guidelines have passed the

industrial tests. In each case-study a product focused SPI programme was established that

focused its improvements to the product quality attributes that had the highest priority for

improvement. The improvement goals were attained resulting in significant product quality

improvements. Overall it became clear that the application of the RPM approach had quite

156 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

some impact on product quality, however it became also clear that a major success-factor

for product quality in these projects was also the highly skilled and experienced

developers.

The people in the development teams were enthusiastic about RPM application. They

especially appreciated the specification of product quality, and the identification of

product quality improvement areas. The analysis of measurements in the feedback sessions

was also experienced as useful, and learning by the developers could be observed.

Furthermore, the development teams stated that they appreciated the co-operation with the

quality assurance department, which was shifted from ‘procedure checking’ to close

participation in creating product quality.

Analysis of the costs and benefits of RPM application showed that the effort spent by the

development teams is relatively low: less than 1% of their effort is spent on the

improvement programme. The return on this investment was significant when considering

the direct effects of the improvement programme, and the payback period was about three

calendar months. These results show that RPM application is cost effective. The managers

of the projects were also enthusiastic about the approach and claimed that the indirect

benefits such as the establishment of a quality culture, and the group learning effects, were

already worth the investment.

It was furthermore identified in the case-studies that learning is essential for motivating the

development team. In chapter 6 it was identified that not only single loop learning, but

also double loop learning should be established. The case-studies showed that double loop

learning is not done automatically. Although the case-studies mainly focused on single

loop learning, some double loop learning principles were applied; however, full

application of double loop learning was not established in the case-studies. This is not so

strange, as research identified that only few organisations succeed immediately in

implementing double loop learning [Senge 1990] [Garvin 1993].

9. Conclusions and

Recommendations

The research objective of this thesis was to develop a conceptual model for product

focused process improvement for embedded product development. Furthermore a set of

guidelines for practical usage of this model was developed. The conceptual model for

product focused SPI was introduced in chapter 5 and enhanced in chapter 6 based on

learning theory. Furthermore, practical guidelines were presented in chapter 7 for the

conceptual model. These guidelines were used in several case-studies which were

presented in chapter 8.

Conclusions on this research are provided in this chapter. The conclusions are subdivided

in conclusions on product focused SPI in general, conclusions on the RPM conceptual

model, and conclusions on the RPM guidelines. These conclusions are summarised in a

section with final conclusions. Furthermore, this chapter contains a section that discusses

opportunities for further research. This chapter ends with an epilogue that looks back on

the research.

9.1 Conclusions regarding product focused SPI in general

The main idea of the product focused SPI approach presented in this thesis is that the

software development processes are tuned in such a way that this process contributes most

efficiently and effectively to the specific product quality objectives. ‘Improving the

process’ is not an objective in itself, as it is for existing SPI approaches, but is considered

as a means to achieve product quality. In that sense, the approach presented in this thesis is

a significant improvement, as it expands the rigorous process focus of existing SPI

approaches, such as the CMM, to address product quality as an explicit objective.

The research presented in this thesis was carried out to improve existing SPI approaches.

Especially, when existing SPI approaches are used in the embedded software domain,

some specific problems occur that need to be resolved. These problems are described in

chapter 4, and based on a sub-set of these problems a list of criteria was presented to

which product focused SPI should comply. A conceptual model was constructed that

complies to these criteria and therefore should overcome the problems with current SPI

approaches when applied to improve embedded product quality.

158 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

A focus on product quality is required

The approach presented in this thesis focuses on product quality. Improvements to the

process are made based on their impact on those product quality attributes that have the

highest priority for improvement.

Measurement is required

The approach presented in this thesis reserves one of its three main working areas for

measurement. Measurement is one of the key practices carried out to improve product

quality and software development processes. Measurement is used for two purposes: for

the evaluation of product quality, and for the evaluation of process effects.

Analyse costs and benefits

The approach presented in this thesis is goal driven. The attainment of goals is a benefit

that can be related directly to the use of SPI. This makes the benefits of SPI more visible.

Furthermore, the use of measurement is an important source of information to visualise

benefits; both direct and indirect, and measurement is also useful to identify the costs of

SPI. It is highly recommended to integrate an analysis of costs and benefits into every

investment in process improvement.

Focus improvements on projects

The approach presented in this thesis dedicates one of its three main working areas to the

configuration of a product specific process, based on the specific product quality

requirements. The approach presented in this thesis focuses on specific products and

projects, which reduces the risk of a bureaucracy; however, the risk that process

improvement results in an overkill of procedures can not be fully disabled.

Management commitment and continuation

The approach presented in this thesis still needs management support, but the commitment

requirements have been partly transferred to lower management. Commitment from a

project manager is sufficient to carry out product focused SPI, already establishing

improvements within the project and improvements in product quality. The improvements

therefore occur faster than with existing SPI approaches. Furthermore, continuation of the

process improvements within the project is made more likely, since these improvements

address the specific project objectives. Continuation outside the project can not be

guaranteed, and still depends on management commitment; however, the cost effectiveness

and the short payback time of the approach as identified in the case-studies, are results that

stimulate continuation.

CONCLUSIONS AND RECOMMENDATIONS 159

Process improvement is a learning process

The final conclusion on product focused SPI is that learning should be the main objective

for process improvement. Software process improvement in general focuses on the

continuous improvement of software processes. The impacts of changes to software

processes are often unclear, although normally expectations are formulated. Unknown

impacts can, however, be learned.

9.2 Conclusions regarding the RPM model

This research was started due to the lack of a product focus in existing SPI approaches.

During this research a conceptual model was designed that incorporates a product focus

into SPI. This model is based on multiple sources: existing SPI approaches, software

engineering literature, learning theory and practical experiences from industrial

companies. This conceptual model has a sound theoretical foundation and provides a clear

direction for use of product focused SPI in practice.

Conceptual model is practically applicable

Application of this conceptual model in industrial case-studies was relatively easy and

appeared to be useful. The RPM conceptual model presented in this thesis improved the

product focus of SPI. Using this model in practice could be fully integrated with

development projects. Improving the processes of these projects, and addressing the

product quality targets of these projects, was established. As such, the RPM conceptual

model was shown to be beneficial for industrial development projects, and its applicability

proved to be feasible. The case-studies showed that a specific focus was put on those

product areas of interest, and that effort was only spent on improving those processes that

contributed to the product qualities of interest. As such, the presented approach can be

used for industrial product focused SPI.

Three working areas for product focused SPI

Product focused SPI can be established under conditions such that three separate working

areas are explicitly addressed:

• Requirements engineering, during which product quality targets are set

• Process engineering, during which the development process is tuned to address the

product quality targets

• Measurement programme engineering, during which product quality and the effects

of process actions are measured and these measurements are analysed

Requirements engineering

Requirements engineering is the main starting point for product focused SPI. It makes

product quality explicit. This can be done by making the multiple stakeholder views on

160 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

quality explicit. Following such an approach it becomes feasible to address the multi-

dimensional aspect of quality, which is not done in existing SPI approaches, nor is it

sufficiently addressed by the existing software engineering literature. The main output of

requirements engineering is a product quality specification, which describes the quality

that is intended to be developed, in a standard quality terminology, and if possible in

measurable terms. Requirements engineering is not a task that stands on its own: it is

carried out in close interaction with process engineering.

Process engineering

The design of a product specific development process is supported by process engineering.

In iteration with requirements engineering, a trade-off is made between ‘what’ is

developed and ‘how’ it is developed. During these iterations product quality is balanced to

criteria such as cost, duration, feasibility, functionality, experience, preferences, etc.

During this negotiation process a decision is made on the product and on the process. The

main output of process engineering is a development process model that describes the

steps taken in the project to develop the required product quality. Monitoring the

execution of this development process and evaluating its effects, is done by measurement

programme engineering.

Measurement programme engineering

During measurement programme engineering the collection and analysis of software

measurements is implemented. These measurements are closely related to the development

process and the product. Evaluating the quality of the product, and evaluating the

effectiveness of (parts of) the process, is supported by measurement programme

engineering. It is important to focus measurements on the important areas. During this

research this was done effectively by refining measurement goals to questions, and by

refining these questions to metrics [Basili and Weiss 1984]. This approach supported the

definition of the right metrics and, especially, the interpretation of the measurement

results. Effects of certain process actions could be learned by a careful analysis of the

measurements, and by discussing these measurements within the development teams. It

was shown that measurement programme engineering is capable of providing feedback to

requirements engineering on the attainment of product quality targets, and providing

feedback to process engineering on the effects of the development process.

All three working areas need to be addressed

It was shown that these three working areas for product focused SPI appear to be a logical

combination and all three should be addressed in industrial improvement programmes.

There is a close relationship and interaction between these three areas, making product

focused SPI feasible under the condition that these three working areas are an integral part

of a software process improvement approach. If one of these three working areas is not

CONCLUSIONS AND RECOMMENDATIONS 161

addressed during product focused SPI in practice, the work is likely to fail. Without

requirements engineering there will be no product targets and in that way the product

focus will be lacking. Without process engineering there will be no tuning of the

development process towards the product quality targets and without measurement

programme engineering there will be no validation whether process changes were actual

improvements, nor is there an evaluation of the attainment of the product quality targets.

Specification of product quality is required

During the case-studies carried out for this research it became clear that to develop a

quality product, it is necessary to specify the product quality needs. The importance of

product quality specification is often underestimated, both in the literature and in practice.

More attention is needed to the specification of product quality and the to impact of this

specification on the development process. It is recommended that methods to improve

software processes integrate this specification of product quality to make process

improvement much more product driven. The approach presented in this thesis is a first

step in this direction.

Make process product relationships explicit

A prerequisite for product focused SPI with the RPM model, is that the individual impacts

of process actions on product quality are known. Tuning the development process to the

product quality targets assumes that individual impacts and their interdependencies are

known. This is not always the case. The results of literature research showed that process

product relationships are rarely addressed in publications, and these expected relationships

are almost never validated. Most people in software development projects have implicit

models of these impacts of process actions on product quality. To carry out product

focused SPI successfully, this implicit knowledge on impacts of process actions on product

quality should be made explicit. Whenever these impacts are known, hypothetical or

validated, tuning of the development process becomes possible. During the case-studies it

was shown that making these process product relationships explicit and using them to tune

development processes was indeed possible.

‘Conformance to requirements’ versus ‘fitness for use’

The approach towards product quality presented in this thesis is based on specification of

product quality, ‘zero defects/conformance to requirements’ [Crosby 1979]. Specifying

product quality is by no means a guarantee that the final product will be perceived by users

as a quality product. It is likely that some requirements will not be explicitly stated by the

users, and therefore not be addressed. Furthermore it is sometimes impossible to find users

to elicitate requirements from, or if the users are found they do not know in advance how

they will use the product. Especially in situations were innovative products are built with

which no user has any experience, stating product quality requirements is difficult. This

162 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

indicates that it is likely that there will be a gap between ‘what is needed’ and ‘what is

specified’ in the product quality specification. Bridging this gap should be done by other

means than applying the RPM conceptual model. For example by including a closed-loop

principle by which experiences of users from application or service experiences are fed

back to the designers of a product [Genuchten 1991] [Brombacher et al. 1996], and the

product is evolved and improved in a step by step manner.

Improved communication of product quality issues

During the case-studies it became clear that a benefit of the approach was improved

communication of improvement areas, and a better follow-up on these issues. The

approach makes product quality explicit and addresses the multiple viewpoints of all the

different stakeholders. In this way, the approach as such is also an approach that promotes

communication of quality needs. An important aspect found during the case-studies was

that many problems or needs for product improvement that were stated by stakeholders,

had already been stated by them before. Due to unknown reasons these issues were rarely

addressed; however, due to the structure used by the RPM approach, these issues were

now raised in a way that was perceived to be more objective, and they were indeed

tackled. Remarkably some of them were the same issues that were stated before. The only

difference in the way of communicating was in the structure of the approach, not in the

message.

Result driven attitude of development team members

Using RPM in the case-studies showed an increase in goal-oriented behaviour of

development project people: they regularly asked themselves: If I change this in the

process, how will it impact the product? They were making their hypothetical process

product relationship models explicit, and were evaluating and measuring them critically.

Furthermore, the project people were supported in making the goals explicit and the

attainment of these goals was actually measured. This goal-orientation was perceived as a

positive point of the approach, since the improvement efforts were only spent on the

product quality aspects of direct interest.

Integration of SPI into development work

An important aspect for establishing product focused SPI in practice is the integration of

the improvement work with the software development work. During the case-studies it

became clear that the RPM conceptual model follows a similar order to development

projects. As such this integration could be established. Requirements engineering was

carried out during the software requirements phase of the development project. Process

engineering was carried out during project planning and project re-planning. Measurement

programme engineering was carried out during the software design, implementation and

testing work. Feedback on the measurements was given, during the course of the project,

CONCLUSIONS AND RECOMMENDATIONS 163

based on which conclusions were drawn and actions were taken. During the case-studies it

was shown that the RPM conceptual model was successfully integrated into software

development projects.

9.3 Conclusions regarding the RPM guidelines

The product focused SPI approach presented in this thesis is facilitated by guidelines for

requirements engineering, process engineering and measurement programme engineering.

These guidelines are presented in chapter 7, and were used in the case-studies presented in

chapter 8.

The guidelines mainly address ‘what’ needs to be done in the three working areas, and

attempt not to prescribe ‘how’ this should be done. This focus was selected deliberately to

leave sufficient space and flexibility to customise the approach to the specific

organisations and projects. The guidelines address each working area separately. The

guidelines are based on several sources: SPI literature, software engineering literature,

learning theory, and practical experiences in industrial improvement programmes. This

total mixture creates a set of guidelines that is both theoretically sound and practically

feasible.

The guidelines were used in the industrial case-studies of this research. The guidelines

support in making the RPM conceptual model more operational, and support in the

identification of what needs to be done. Discussing the experiences with each guideline

individually is not done in this thesis. The main reason for this is that the guidelines were

not tested separately but used together; therefore it is difficult to identify the individual

impact of each guideline. The experiences in the case-studies did, however, not result in a

change of the guidelines: it appeared that the guidelines fulfil their purpose.

9.4 Final conclusions

In this research an attempt was made to let product quality be the direct result of

embedded software process improvement programmes. The theoretical findings, ideas and

practical experiences are summarised in three final conclusions.

Creating product quality is a negotiation process

In this research it was shown that making a quality product means: involving stakeholders

and letting these stakeholders express their product quality wishes. Based on these explicit

demands for product quality, a negotiation process is started during which decisions are

taken on product quality. A trade-off on quality, cost, risk and duration among all product

stakeholders is made during this negotiation process. Furthermore, the feasibility of the

164 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

process to create that product quality is addressed. A development process is designed that

is expected to create the specified level of quality.

This conclusion might sound a bit trivial, at first sight; however, this research has shown

that such a negotiation process is complex and difficult when carried out in practice. Some

solutions to support this negotiation process have been proposed and validated during the

case-studies. Based on these findings it can be expressed that the problems with poor

quality of embedded products are probably mainly caused by an inadequate negotiation

process on product quality. Companies that develop embedded products and give priority

to quality should support this by installing an explicit product quality negotiation process

between the product stakeholders.

Working on product quality requires support from (simple) instruments

Product quality is largely influenced by the negotiation process among stakeholders, who

are normally not experts in developing embedded products. As a consequence, instruments

are required to support these stakeholders in expressing and discussing product quality

issues. These instruments do not have to be complex. Simple instruments that every

stakeholder understands and can apply are sufficient. This research has presented such a

set of (simple) instruments.

Through usage of the approach and its instruments, as presented in this thesis, it becomes

possible to address the difficult topic of embedded product quality in a practical way.

Stakeholders are supported in making their wishes explicit, and these wishes are translated

to a product quality specification that is useful for the product developers. These

developers are furthermore supported in designing a development process that fits to the

product quality specification, and they are provided with feedback on product quality early

in the development process.

Product quality is created in projects within a context

The case-studies of this research underline that product quality is created in projects.

Enabling organisations to make quality products should therefore be an activity that

focuses on the single projects that create the product. Existing SPI approaches mainly

focus on organisational processes, which cause the ‘improvements’ to be general and not

project specific. This in itself is not wrong, but it is simply not enough. A focus on

organisational process improvement is an important precondition for product quality

improvement, but a focus to the projects should be established as well. The focus of

existing SPI approaches is mainly to organisations as a whole and therefore not optimal for

product quality; it is recommended that SPI programmes also include much more project

specific tasks.

CONCLUSIONS AND RECOMMENDATIONS 165

Development projects should be supported in the right way to make product quality.

Supporting such projects by specifying product quality and designing a product specific

process are sound solutions to overcome some of the basic problems in creating product

quality; however, one of the major contributions to the creation of product quality is to

establish project specific feedback. Through the collection of project specific

measurements, it is possible to provide feedback to the project team on product quality

and process performance. This information can be used during the project to take

corrective action and to learn the effects of the work. In the case-studies, in which the

RPM approach was used in relatively small projects, it was identified that these project

specific measurements contributed largely to the success of RPM application in practice.

9.5 Recommendations for further research

Although, the approach presented in this thesis fulfils the requirements for product focused

SPI as set in chapter 4, it is still possible to identify issues on which some further research

is required.

Firstly, the RPM conceptual model is based on the assumption that external influences

exist on software processes from aspects such as politics, people factors, historical norms,

cultural differences, etc. do not interfere with the approach. Such external influences are

present in practice and their effects may not be underestimated. Further research is

required on the impacts of these external influences.

Secondly, in this thesis it was stated that double loop learning processes are required

within industrial development projects; however, during the case-studies it appeared to be

difficult to install such double loop learning. This could have been foreseen, because

learning theory already indicates the low number of companies that succeed in double loop

learning. It is recommended to investigate the ways in which double loop learning can be

successfully implemented in the embedded product industry, and to investigate how to

establish an ‘embedded product development learning organisation’.

Thirdly, the presented model might require in some cases substantial effort as an initial

investment. In the case-studies it was shown that applying the approach in development

projects does not cost much effort; however, preparing the organisation to apply such an

approach also requires some effort. How much this will cost has not been investigated in

this research, but it may be substantial as it might involve changing the culture of an

organisation. Further research is necessary to learn the effort required to install the RPM

approach into an organisation, and to identify the critical success factors for undergoing

this change.

Fourthly, the application of the RPM model was limited to the embedded product domain;

however, other domains of software development also have clear product objectives.

166 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Application of the RPM conceptual model and its guidelines in such other domains should

also be investigated, and research is required to identify the ‘fitness for use’ of this

approach in other domains.

Fifthly, it has been stated that there is a clear relationship between a good architecture and

quality. How to address this relationship is, however, not very clear. Further research is

necessary on the direct consequences of certain architectural decisions on product quality.

Furthermore, research is required to support the design of an architecture; on the

decomposition of software into components, subsystems, modules, etc. How to make such

a decomposition, which factors in this decomposition process impact quality, how to use

product quality requirements in the architectural design, are relevant research questions

that deserve to be answered.

Finally, in this research it was identified that the number of process product relationships

that are present for embedded product development, are rarely investigated or validated.

The lack of valid models of relationships between process actions and product quality

make it difficult for the embedded product industry to estimate the level of quality that

they are creating with their processes. It is recommended to continue the search for such

valid relationships. Furthermore, it is recommended to researchers that publish new

methods, techniques and tools for embedded product quality, to first measure the impact of

their new approach on product quality. Papers on new approaches should be reviewed

critically, and when no measurements have been taken on effectiveness and efficiency, the

papers should be rejected. Without establishing such norms for sound scientific results in

the software engineering community, it is likely to remain a discipline that is highly ‘hype-

driven’ and that lacks knowledge on the impacts of its own approaches.

9.6 Epilogue

The objective of this research was to develop a conceptual model for product focused

process improvement and a set of accompanying guidelines for practice. Hopefully, the

results presented will help and provide new insights for everyone working on, product

focused, SPI. The approach presented in this thesis is not a fully ready ‘cookbook’ as yet.

It does not prescribe all the ingredients, steps to take, or of timing issues involved for

performing product focused SPI. A direction is, however, pointed out, practical guidelines

are provided together with examples from successful cases in industry. Hopefully, these

concepts and guidelines will be used in practice and enhanced over time, when working on

product focused SPI.

Appendix A: RPM Tool Design
The RPM experience base prototype tool is presented in this appendix. This tool was

developed within this research and was used during the case-studies for the selection of

process improvements and for making the estimation of product quality when using a

certain process model. The tool was developed in MS-Access 7.0 (for Windows 95),

which is a relational database management system.

System Overview

Context Diagram

The context diagram represents the interface of the system to the 'outside world'. It shows

the main process, the external processes and the system stores. The main process is to

store the knowledge of the effect of the process actions on the quality attributes and the

selection of specific process actions for specific projects according to the project quality

profile of the project.

RPM
experience

base

database
definitions

selected
project

process actions

report
material
definitions

experienced
knowledge

quality profile
knowledge

info on
process actions

Figure 1: Experience base context diagram

Entity Relationship Diagram

This section presents the highest level entity-relationship diagram of the data processed in

the system. The entity-relationship diagram consists of different parts: a generic and a

project specific part.

168 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

process action

project
process action

project

product

process
action/char
effectivity

level

process action
effectivity
sources

process action/metric
effectivity

level

Quality attribute Quality metric metric value range

project quality
specification

quality metric
target value

generic part

project specific part

Figure 2: RPM experience base entity-relationship diagram

The generic part supports the storage and updating of information which can be used and

re-used for specific projects. The generic part is about the process actions that can be

taken for the projects and the knowledge about the effectivity of these process actions.

The project specific part maintains information about projects and the selected process

actions for these projects. This part also contains the selected quality for the projects.

The entity-relationship diagram of Figure 2 contains several entities:

• Product: the embedded product that is being developed

• Project: the set of resources, objectives and time that intend to develop a product

• Project quality specification: the quality specification for the product of a specific

project

• Quality metric target value: the goal for a metric to be realised in the project

APPENDIX A 169

• Quality metric: the data collection procedure for a certain measurement of a certain

aspect of a product quality attribute

• Quality attribute: A sub-division of product quality, e.g. Functionality or Usability

• Metric value range: the range along which a metric can have its values

• Project process action: used to establish an n:m relation between a project and a

process action

• Process action: the action taken in the development process to achieve an explicit

effect on product quality

• Process action characteristic effectivity level: the relationship between a process

action and its impact on a product quality attribute

• Process action effectivity metric level: used to establish an n:m relation between

Quality metric and Process action characteristic effectivity level

• Process action effectivity sources: the literature or practical source on which the

relationship between process action and product quality attribute is based

Functional Specification

The process actions and quality attributes system consists of separate system functions

• storage of project information

• storage of quality attributes and metrics

• storage of process action information

• storage of the effectivity of process actions on quality attributes

• analysis of the resource data

• preparation of report materials

In the following sections the purpose of each system function, as well as its input, output

and behaviour will be presented.

Storage of project information

The purpose of the system function ‘storage of project information’ is to store and

maintain data about development projects. The reason for maintaining this information is

enabling the assignment of process actions to a specific project. The input of this function

are the characteristics of certain projects. The function has no output. The function will

enter the characteristics of the projects in the database.

Storage of quality attributes and metrics

The purpose of the system function ‘storage of quality attributes and quality metrics’ is to

store and maintain data about the quality attributes and quality metrics which are used and

re-used for the requirements of a project. The inputs of this function are the quality

attributes and metrics. The function has no output. The function will enter the quality

attributes and metrics in the database.

170 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Storage of process action information

The purpose of the system function ‘storage of process action information’ is to store and

maintain data about the process actions that can or have to be taken to improve the quality

attributes of a certain product within a certain project. The inputs of this function are the

details of process actions. The function has no output. The function will enter the details of

a process action in the database.

Storage of the effectivity of process actions on quality attributes

The purpose of the system function ‘storage of the effectivity of process actions on quality

attributes’ is to store the estimate effectivity of a certain process action on a certain quality

attribute. This data will later be used to select process actions for certain projects. As input

this function has the knowledge gained about the process actions. The function will store

this data in the database. This data is maintained and updated if necessary

Select project process actions

The purpose of the system function ‘select project process actions’ is to give the user a

possibility to select certain process actions for certain projects. The objective is to give the

user an interactive way to select the project process actions. In a way the user has to play

with the process actions and see their results on the selected quality profile with the quality

attributes to select them.

The function must work in such a way that the selection of process actions is easy and

based on the results of the process action known in the database.

Preparation of report materials

The purpose of the system function ‘preparation of report materials’ is to provide the

possibility to output the information that is stored in the database in reports enabling users

to understand the data.

References

Agarwal, R., Krudys, G., Tanniru, M., ‘Infusing learning into the information systems organisation’, European

Journal of Information Systems, No. 6, pp. 25-40, 1997.

Aken, J.E. van, ‘Management science as design science: the regulative and the reflective cycle’ (In Dutch),

Bedrijfskunde, 66 (1), pp 16-26, 1994.

Albrecht, A.J., Gaffney, J.E., ‘Software function, source lines of code, and development effort prediction: A

software science validation’, IEEE Transactions on software engineering, Vol. 9, No. 6, pp. 639-648, November

1983.

Alford, M., Lawson, J., ‘Software Requirements Engineering Methodology’, RADC-TR-79-168, US Air Force

Rome Air Development Center, June 1979.

Amabile, T.M., ‘How to kill creativity’, Harvard Business Review, September/October, pp. 77-87, 1998.

Analoui, F., Training and transfer of learning, Avebury, 1993.

Anderson, J.R., Cognitive psychology and its implications, Freeman and company, 1990.

Argyris, C, Schön, D.A., Organizational learning: a theory of action perspective, Addison-Wesley, 1978.

Argyris, C., Reasoning, Learning and Action, Jossey-Bass Publishers, 1982.

Argyris, C., On Organizational Learning, Blackwell Publishers, 1993.

Ayas, K., Design for learning for innovation, Eburon Publishers, Delft - The Netherlands, 1997.

Bach, J., ‘The immaturity of the CMM’, The American Programmer, September 1994.

Basili, V.R., Weiss, D.M., ‘A methodology for collecting valid software engineering data’, IEEE Transactions

on Software Engineering, SE-10(6):728 - 738, November 1984.

Basili, V.R., Selby, R.W., Huthchens, D.H., ‘Experimentation in Software Engineering’, IEEE Transactions on

Software Engineering, Vol. 12, No. 7, pp. 733-743, July 1986.

Basili, V.R., Rombach, H.D., ‘The TAME project: Towards Improvement Oriented Software Environments’,

IEEE Transactions on Software Engineering, Vol. 14, No. 6, pp. 758-773, June 1988.

Basili, V.R., ‘The experimental paradigm in software engineering’, In: Experimental Software Engineering

Issues, Springer Verlag, LNCS#706, 1993.

Basili, V.R., Caldiera, C., Rombach, H.D., ‘Experience Factory’, Encyclopaedia of Software Engineering

(Marciniak, J.J., editor), Volume 1, John Wiley and Sons, pp. 469 - 476, 1994a.

Basili, V.R., Caldiera, C., Rombach, H.D., ‘Goal/Question/Metric Paradigm’, Encyclopaedia of Software

Engineering (Marciniak, J.J., editor), Volume 1, pp. 528-532, John Wiley and Sons, 1994b.

Bass, L., Kazman, R., ‘Architecture-based development’, SEI Technical Report, CMU/SEI-99-TR-007, 1999.

Bemelmans, T.M.A., Bestuurlijke informatiesystemen en automatisering (In Dutch), Kluwer Bedrijfsinformatie,

1998.

Benyon, D., Skidmore, S., ‘Towards a tool kit for the system analyst’, The computer journal, pp 2-7, 1987.

172 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Bicego, A., Khurana, M., Kuvaja, P., ‘Bootstrap 3.0 - Software Process Assessment Methodology’, Proceedings

of the SQM’98, 1998.

Bicego, A., Derks, P., Kuvaja, P., ‘Product focused process improvement: Experiences of applying the PROFES

improvement methodology at Dräger’, Proceedings of the 1999 EuroMicro Conference, 1999.

Birk, A., Järvinen, J., Solingen, R. van, ‘A validation approach for product-focused process improvement’,

Proceedings of the 1st PROFES conference, Oulu, Finland, June 22-24, VTT Symposium series, 1999.

Boehm, B.W. Software engineering economics, Prentice-Hall International, New Jersey, 1981.

Boehm, B.W., ‘A spiral model of software development and enhancement’, In: Software Engineering Project

Management, editor: R.H.Thayer, pp 128-142, IEEE CS, 1987.

Briand, L.C., Differding, C.M., Rombach, H.D., ‘Practical guidelines for measurement based process

improvement’, ISERN Report 96-05, 1996.

Brinkemper, S., ‘Method engineering: engineering of information systems development methods and tools’,

Information and Software Technology 38, Elsevier, pp. 275-280, 1996.

Brombacher, A.C., Reliability by design, John Wiley and Sons, 1992.

Brombacher, A.C., et al., ‘Systematic failures in safety systems: How to analyse; how to optimise’, Proceedings

of the ISA Chicago conference, October 1996.

Brombacher, A.C., Steinz, H.C., Volman, H.P.J., ‘Safety and reliability assessment of products and

organisations’, ISA Expo98, TECHNOLOGY UPDATE, Volume 2, The International Conference and

Exposition for Advancing Measurement and Control Technologies, Products and Services, Houston, Texas,

October 19 -22, 1998.

Brooks, F.P., The mythical man month: essays on software engineering, Addison-Wesley, 1975.

Bush, M.E., Fenton, N.E., ‘Software Measurement: A conceptual framework’, Journal of Systems and Software,

Vol. 12, pp. 223-231, 1990.

Card, D., Glass, R., Measuring software design quality, Prentice-Hall, 1990.

Cavano, J.P., McCall, J.A., ‘A framework for the measurement of software quality’, Proceedings of the software

quality and assurance workshop, 1978.

Clements, P., Bass, L., Kazman, R., Abowd, G., ‘Predicting software quality by architecture level evaluation’,

Proceedings of the Fifth International Conference on Software Quality, Austin, Texas, October, 1995.

Clements, P.C., Northtrop, L.M., ‘Software Architecture: An executive overview’, SEI Technical Report,

CMU/SEI-96-TR-003, 1996.

Cook, C.R., Roesch, A., ‘Real-time software metrics’, Journal of Systems and Software, Vol. 24, pp. 223-237,

1994.

Cook, T.D., Campbell, D.T., Quasi-experimentation, Rand McNally, Chicago, 1979.

Crosby, B.P., Quality is free, McGrawHill, New York, 1979.

Daskalantonakis, M.K., ‘Achieving higher SEI levels’, IEEE Software, July 1994.

Davis, A.M., Bersoff, E.H., Comer, E.R., ‘A strategy for comparing alternative software development life cycle

models’, IEEE Transactions on Software Engineering, Vol. 14, No. 10, October 1988, pp 1453-1461, IEEE CS,

1988.

REFERENCES 173

Davis, A., Dandashi, F., Reynolds, P., ‘Identifying and Measuring Quality in software requirements

specification’, Proceedings of the first international software metrics symposium, IEEE CS, pp 141-152, 1993.

Davis, G.B., ‘Strategies for information requirements determination’, IBM Systems Journal, Vol. 21, No. 1,

1982.

Davis, G.B., Olson, M.H., Management Information Systems: Conceptual foundations, structure and

development, McGraw-Hill, 1985.

DeMarco, T., Controlling software projects, Yourdon Press, New York, 1982.

Deming, W.E., Out of the crisis, MIT Center for advanced engineering study, 1986.

Dion, R., ‘Process Improvement and the corporate balance sheet’, IEEE Software, July 1993.

Downes, V.A., Goldsack, S.J., Programming embedded systems with ADA, Prentice-Hall International, 1982.

Entwistle, N., Styles of Learning and Teaching, John Wiley & Sons, 1981.

Erens, F.J., The Synthesis of Variety: Developing product families, KPMG, 1996.

Faulk, S.R., ‘Software Requirements: A Tutorial’, Software Engineering Editors: Dorfman and Thayer, IEEE pp

82-103, 1996.

Fenton, N.E., Pfleeger, S.L., Software Metrics: A rigorous and practical approach, Thomson Computer Press,

1996.

Finkelstein, A., Kramer, J., Nuseibeh, B., Goedicke, M., ‘Viewpoints: a framework for integrating multiple

perspectives in system development’, International journal on software engineering and knowledge engineering,

pp. 31-58, February 1992.

Gal, R., Genuchten, M., ‘Release the embedded software: the electronics industry in transition’, International

Journal of Technology Management, Vol. 12, No. 1, 1996.

Galbraith, J., Organization design, Addison-Wesley, Reading (Mass.), 1977.

Garlan, D., Perry, D., Guest editorial opening statement, IEEE Transactions on Software Engineering, April

1995.

Garvin, D.A., ‘What does product quality really mean?’, Sloan Management Review, Vol.26, nr. 1, 1984.

Garvin, D.A., Managing Quality, The Free Press, MacMillan Inc., 1988.

Garvin, D.A., ‘Building a learning organisation’, Harvard Business Review, July-August, pp. 81-91, 1993.

Gentleman, W.M., ‘If software quality is a perception, how do we measure it?’, NRC (nat. research counsel of

Canada) number 40149, pp. 336-345, 1994.

Genuchten, M. van, Towards a software factory, Ph.D. Thesis Eindhoven University of Technology, 1991.

Gibbs, W.W., ‘Software’s Chronic Crisis’, Scientific American, pp. 86-95, September 1994.

Gilb, T., Principles of software engineering management, Addison-Wesley, 1994.

Gillies, A.C., Software quality: Theory and management, Chapman & Hall, 1992.

Glass, R.L., Software Creativity, Prentic Hall, 1995.

Goguen, J.A., Linde, C., ‘Techniques for Requirements Elicitation’, Proceedings of the International

Symposium on Requirements Engineering, pp. 152-164, IEEE, 1993.

174 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Goldenson, D.R., Herbsleb, J.D., ‘After the appraisal: A systematic survey of process improvement, its benefits

and factors that influence success’, SEI-95-TR-009, Software Engineering Institute, 1995.

Gomaa, H., ‘The impact of prototyping on software system engineering’, In: System and Software Requirements

Engineering, Dofrman and Thayer (eds.), IEEE, pp 543-552, 1990.

Goodman, P., Practical implementation of software metrics, McGraw-Hill Publishers, London, 1993.

Grady, R.B., Caswell, D.L., Software Metrics: Establishing a company-wide program, Prentice-Hall, 1987.

Grady, R.B., Practical software metrics for project management and process improvement, Prentice-Hall, 1992.

Grady, R.B., ‘Successfully applying software metrics’, IEEE Computer, pp 18-25, September 1994.

Hall, T., Fenton, N., ‘Implementing software metrics - the critical success factors’, Software Quality Journal,

No. 3, pp. 195-208, 1994.

Halstead, M., Elements of Software Science, Elsevier, 1977.

Hamann, D., Järvinen, J., Birk, A., Pfahl, D., ‘A product process dependency definition method’, Proceedings of

the Euromicro 98 workshop on software process and product improvement, Västerås, Sweden, August 1998a.

Hamann, D., Järvinen, J., Oivo, M., Pfahl, D., ‘Experience with explicit modelling of relationships between

process and product quality’, Proceedings of the 4th European Software Process Improvement Conference,

Monte Carlo, December 1998b.

Hanani, M.Z., Shoval, P., ‘A combined methodology for information systems analysis and design based on

ISAC and NIAM’, Information Systems 11, pp 245-253, 1986.

Hatley, D., Pirbhai, I., Strategies for real-time specification, Dorset House, New York, 1987.

Hatton, L., ‘Automated incremental improvement of software product quality: a case history’, In: Software

Quality: Assurance and Measurement A Worldwide perspective, editors: Fenton, N., Whitty, R., Iizuka, Y.,

Thomson Computer Press, 1995.

Hayes, W., Zubrow, D., ‘Moving on up: Data and experience doing CMM-based process improvement’,

CMU/SEI-95-TR-008, 1995.

Heemstra, F.J., How expensive is software (In Dutch), Kluwer, 1989.

Heemstra, F.J., Kusters, R.J., Trienekens, J.J.M., ‘From quality requirement factor to quality factor: an end-user

based method’, Proceedings of the 6th ESCOM conference, pp. 18.1-18-19, May 1995.

Hetzel, B., ‘The sorry state of software practice measurement and evaluation’, In: Software Quality: Assurance

and Measurement A Worldwide perspective, editors: Fenton, N., Whitty, R., Iizuka, Y., Thomson Computer

Press, 1995.

Huber, G.P., ‘Organisational learning: the contributing processes and the literatures’, Organization Science, Vol.

2, No. 1, pp. 88-115, February 1991.

Humphrey, W. S., Managing the software process, SEI series in software engineering, Addison-Wesley, 1989.

Humphrey, W.S., Snyder, T.R., Willis, R.R., ‘Software process improvement at Hughes aircraft’, IEEE

Software, 8(4), pp. 11-23, July 1991.

Hutjes, J.M., Buuren, J.A. van, The case-study: Strategies for qualitative research (In Dutch), Boom, 1992.

IEEE Standards Collection, Standard for requirements specification, 1994.

REFERENCES 175

ISO 9000-3, Quality Management and Quality Assurance Standards - Part 3: Guidelines for the application of

ISO 9001 to develop, supply install and maintain software, 1997.

ISO 9001, Quality Systems - Model for Quality Assurance in design, development, production, installation and

servicing, International Standards Organisation, 1994.

ISO 9126, Information Technology, Software product evaluation: Quality characteristics and guidelines for their

use, International Organisation for Standardisation, 1991.

ISO 9126, Information Technology, Software product Quality - Part I: Quality model, International Organisation

for Standardisation, FCD 1998.

ISO 14598, Software Product Evaluation, International Organisation for Standardisation, 1996.

ISO 15504, Information Technology - Software Process Assessment - Part 2: A Reference Model for Process

and Product Capability, Technical Report Type 2, International Organisation for Standardisation, 1998.

ITIL, CCTA, Information Technology Infrastructure Library, HMSO Publishing Centre, London, 1987.

Jelinek, M., Institutionalizing Innovation, Praeger, 1979.

Juran, J.M., Gryna, F.M., Juran’s quality control handbook, McGraw-Hill, 1988.

Kan, S.H., Basili, V.R., Shapiro, L.N., ‘Software Quality: An overview from the perspective of total quality

management’, IBM Systems Journal, Vol. 33, No. 1, pp. 4-19, 1994.

Karjalainen, J., Makarainen, M., Komi-Sirvio, S., Seppanen, V., ‘Practical Process Improvement for Embedded

Real-Time Software’, Quality Engineering, vol. 8, no. 4, pp. 565-573, 1996.

Kidder, L., Judd, C.M., Research methods in social relations, Holt, Rinehart & Winston, 1986.

Kolb, D.A., Experiential Learning, Prentice Hall, 1984.

Kotonya, G., Somerville, I., ‘Requirements engineering with viewpoints’, Software Engineering Journal, pp 5-

18, January 1996.

Kündig, A.T., ‘A note on the meaning of embedded systems’, In: Embedded Systems: New approaches to their

forma description and design, Lecture notes in computer science #284, Springer-Verlag, 1986.

Kusters, R.J., Solingen, R. van, Trienekens, J.J.M., ‘User-perceptions of embedded software quality’,

Proceedings of the Eighth international workshop on software technology and engineering practice (STEP’97),

pp. 184-197, London, July 14-18, 1997.

Kusters, Solingen, Trienekens, ‘Identifying embedded software quality: two approaches’, Quality and Reliability

Engineering International, Wiley, Nov/Dec 1999.

Kuvaja, P., Bicego, A., ‘BOOTSTRAP: a European assessment methodology’, Software Quality Journal, 3(3),

pp. 117-128, 1994.

Lammers, C.J., et al., Comparing Organisations (In Dutch), Het Spectrum, 1997.

Latum, F. van, Oivo, M., Hoisl, B., Ruhe, G., ‘No improvement without feedback: experiences from goal

oriented measurement at Schlumberger’, Proceedings of the 5th European Workshop on Software Process

Technology (EWSPT96), Nancy, France, Lecture Notes in Computer Science #1149, Springer Verlag, pp. 167-

182, October 1996.

Latum, Solingen, Oivo, Rombach, Hoisl and Ruhe, ‘Adopting GQM-based measurement in an industrial

environment’, IEEE Software, Jan/Feb 1998.

176 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Leeuw, A.C.J. de, Organisations, management, analysis, design and change: a systems perspective (in Dutch),

van Gorcum, 1986.

Leite, J.C.S.P., ‘A survey on requirements analysis’, Department of information and computer science,

University of California, 1987.

Malouin, J.L., Landry, M., ‘The mirage of universal methods in systems design’, Journal of applied system

analysis, pp 47-62, 1983.

March, J.G., ‘Exploration and exploitation in organizational learning’, Organization Science, Vol. 2, No. 1, pp.

71-87, February 1991.

McGarry, F., Pajerski, R., Page, G., Waligora, S., Basili, V., Zelkowitz, M., ‘Software Process Improvement in

the NASA Software Engineering Laboratory’, Technical Report, CMU/SEI-94-TR-22, Software Engineering

Institute, 1994.

Mintzberg, H., ‘Structure in fives: designing effective organizations’, Prentice-Hall International Editions,

Englewood Cliffs, New Jersey, ISBN 0-13-854191-4, 1983.

Möller, K.H., Paulisch, D.J., Software Metrics: A practitioner’s guide to improved product development,

Prentice-Hall, 1993.

Nevis, E., DiBella, A., Gould, J., ‘Understanding organisations as learning systems’, Sloan Management

Review, Winter 1995.

Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G., Huber, H., ‘Technology to Manage Multiple Requirements

Perspectives’, IEEE Software, March 1996.

Nonaka, I., Takeuchi, H., The knowledge-Creating Company, Oxford University Press, New York, 1995.

Oivo, M., Quantitative management of software production using object-oriented models, VTT Publications,

1994.

Oivo, M., Bicego, A., Kuvaja, P., Pfahl, D., Solingen, R. van, The PROFES methodology book and User

Manual, Http://www.ele.vtt.fi/profes/, 1999.

Paulisch, D.J., Carleton, A.D., ‘Case Studies of software process improvement measurement’, IEEE Computer,

pp. 50-57, September 1994.

Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., Capability Maturity Model for Software, Version 1.1. SEI-

CMU-93-TR-24, Software Engineering Institute, 1993.

Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., Key practices of the Capability Maturity Model, Version

1.1. SEI-CMU-93-TR-25, Software Engineering Institute, 1993.

Pfleeger, S.F., Software Engineering: the production of quality software, McMillan Publishing, New York,

1991.

Pfleeger, S.L., Rombach, H.D., ‘Measurement based process improvement’, IEEE Software, pp. 9-11, July

1994.

Popper, K.R., The logic of scientific discovery, Hutchinson, London, 1968.

Punter, T., Lemmen, K., ‘The MEMA model: towards a new approach for method engineering’, Journal of

Information and Software Technology 38, pp 295-305, 1996.

Putnam, L.H., Myers, W., Measures for Excellence: Reliable software on time, within budget, Yourdon press -

Prentice Hall, New Jersey, 1992.

REFERENCES 177

Quint, Specifying Software Quality (In Dutch), Kluwer Bedrijfswetenschappen, 1991.

Rae, H., Hausen, Robert, Ph., Software Product Evaluation, McGraw-Hill, 1995.

Rees, J.R. van, ‘The method does not work’ (In Dutch), Informatie 24 pp 81-93, 1982.

Renkema, T.J.W., Investing in the information infrastructure: guidelines for decision making in organisations

(In Dutch), Ph.D. thesis Einhoven University of Technology, The Netherlands, 1996.

Robert, Ph. SCOPE: Final report, Scope Consortium, 1994.

Rooijmans, J., Aerts, H., Genuchten, M. van, ‘Software Quality in Consumer Electronic Products’, IEEE

Software, pp. 55-64, January 1996.

Royce, W.W., ‘Managing the development of large software systems: concepts and techniques’, Proceedings of

the WESCON, August 1970.

Rumbaugh, J., ‘Getting started: using use cases to capture requirements’, Journal of object oriented

programming, pp 8-12, September 1994.

Sassenburg,H., Matser, G., Kazil, P., ‘Software Process Improvement: Why and when?’ (In Dutch), Informatie,

38, July/August, 1996.

Senge, P.M., The fifth discipline: The art and practice of the learning organisation, New York, Doubleday,

1990.

Senge, P.M., ‘The leader’s new work: Building learning organisations’, Sloan Management Review, pp. 7-23,

Fall 1990.

Senge, P.M., Roberts, C., Ross, R.B., Smith, B.J., Kleiner, A., The fifth discipline fieldbook: Strategies and

tools for building a learning organization, NB-publishing, London, 1994.

Shaw, M., ‘Prospects for an engineering discipline of software’, IEEE Software, November 1990.

Shepperd, M.J., Software Engineering Metrics, Volume 1: Measures and Validations, McGraw-Hill, 1993.

Shepperd, M.J., Ince, D., Derivation and Validation of Software Metrics, Clarendon Press, 1993.

Siddiqi, J., Shekaran, M.C., ‘Requirements engineering: the emerging wisdom’, IEEE Software, March 1996.

Slooten, C. van, Situated methods for systems development, Ph.D. thesis, Technical University Twente, The

Netherlands, 1995.

Soerjoesing, S.P., Product-Process Dependency Modelling: An investigation between software engineering

practices and software product quality, Delft University of Technology and Schlumberger RPS, 1998.

Soerjoesing, S.P., Software Quality Improvement through Product-Process Dependency Modelling: Experiences

with product-process dependency models embedded in the PROFES approach to software process improvement

as applied in Tokheim, Delft University of Technology and Tokheim, 1999.

Sol, E.J., ‘Embedded software: vision, paradigm shifts, figures, and consequences for companies in the

electronic business, Xootic Magazine, Eindhoven University, March 1995.

Solingen, R. van, Rodenbach, E., ‘Embedded software for petrol stations’ (In Dutch), Maandblad Informatie,

pp. 36-43, July/August, 1996.

Solingen, R. van, Uijtregt, S. van, ‘Field-Testing of Embedded Software Products: Handling Paradoxes in

Practice’, Proceedings of the 3rd ENCRESS Conference, Chapman and Hall, ISBN 0412802805, 1997.

178 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

Solingen, R. van , Berghout, E., Kooiman, E., ‘Assessing feedback of measurement data: Relating Schlumberger

RPS practice to learning theory’, Proceedings of the 4th International Software Metrics Symposium (Metrics’97),

Albuquerque, November 5-7, IEEE CS, pp. 152-164, 1997.

Solingen, R. van, Berghout, E.W., Latum, F. van, ‘Interrupts: Just a minute never is’, IEEE Software,

September/October 1998.

Solingen, R. van, Berghout, E.W., ‘The Goal/Question/Metric Method: A practical guide for quality

improvement of software development’, http://www.gqm.nl/, McGraw-Hill Publishers, ISBN 0077095537,

1999.

Solingen, R. van, Derks, P., Hirvensalo, J., ‘Product focused SPI in the embedded systems industry: Experiences

of Dräger, Ericsson and Tokheim’, VTT Symposium Series, Proceedings of the 1st PROFES Conference, Oulu,

Finland, June 22-24, 1999a.

Solingen, R. van, Kusters, R., Trienekens, J., Uijtregt, A. van, ‘Product focused software process improvement

(P-SPI): Concepts and their application’, Quality and Reliability Engineering International, Wiley, Nov/Dec

1999b.

Stark, G., Durst, R.C., Vowell, C.W., ‘Using Metrics in Management Decision Making’, IEEE Computer, pp.

42-48, September 1994.

Stevens, R., Paltu, M., Subject to Requirements, Computing, September 1994.

Strien, P.J. van, Practice as science (In Dutch), van Gorcum, Assen, 1986.

Swieringa, J., Wierdsma, A.F.M., On the way to a learning organisation: on learning and education in

organisations (in Dutch), Wolters Noordhoff Management, 1990.

Taramaa, J., Khurana, M., Koll, R., Kuvaja, P., Lehtonen, J., Oivo, M., Rodenbach, E., Seppänen, V., Solingen,

R. van, ‘Detailed specification of specific embedded systems characteristics’, PROFES public report, 1997.

Thayer, R.H., Dorfman, M., Software Requirements engineering, IEEE Computer Society, 1997.

Thayer, R.H., Thayer, M.C., ‘Software Requirements Engineering Glossary’, In: Software Requirements

engineering, Editors: Dorfman and Thayer, IEEE Computer Society, 1997.

TickIT, Guide to software quality management systems, construction and certification using EN 29001, TickIT

Office, London, 1995.

Trienekens, J.J.M., Time for Quality: Working towards better information systems (in Dutch), Ph.D. Thesis,

Thesis Publishers, Amsterdam, 1994.

Trienekens, J., Veenendaal, E. van, Solingen, R. van, Punter, T., Zwan, M. van der, Software quality from a

business perspective: Directions and advanced approaches, Kluwer Bedrijfsinformatie, 1997.

Uijtregt, A. van, Product focused software process improvement: Integrating SPI and SPQ approaches into a

quality improvement method for RPS, Master Thesis Eindhoven University of Technology, 1998.

Ulrich, D., ‘Intellectual capital = competence x commitment’, Sloan Management Review, pp. 15-26, Winter

1998.

Veld, J. in ‘t, Analysis of organisational problems: An application of thinking in systems and processes (In

Dutch), Stenfert Kroesse, 1975.

Verschuren, P., Doorewaard, H., Designing a research (In Dutch), Lemma, 1995.

Weggeman, M., Knowledge Management (In Dutch), Scriptum Management, 1997.

REFERENCES 179

Weinberg, G.M., Quality Software Management: Vol. 1: Systems Thinking, Dorset House Publishing, New

York, 1992.

Weinberg, G.M., Quality Software Management: Vol. 2: First-Order Measurement, Dorset House Publishing,

New York, 1993.

Wenger, E., Towards a theory of cultural transparency: elements of a social discourse of the visible and the

invisible, Institute for research on learning, Hanover, 1990.

Wohlwend, H., Rosenbaum, S., ‘Schlumberger’s software improvement program’, IEEE Transactions on

software engineering, 20(11), pp. 833-839, 1994.

Wrycza, S., ‘The ISAC driven transition between requirements analysis and ER conceptual modelling’,

Information Systems 15, pp 603-614, 1990.

Yeh, H., Software Process Quality, McGraw-Hill, 1993.

Yeh, R.T., Ng, P.A., ‘Software Requirements - A Management Perspective’, In: Systems and Software

Requirements Engineering, Editors: Dorfman and Thayer, IEEE, 1990.

Yin, R.K., Case Study Research: Design and methods, Sage, 1994.

Zuse, H., Software Complexity: Measures and methods, De Gruyter, Berlin, 1991.

Zwaan, A.H. van der, ‘From case to case: discovery or validation? On the incomplete utilisation of case-studies’

(In Dutch), Nobo, 1998.

Samenvatting (Summary in Dutch)

Het belang van software in de hedendaagse maatschappij neemt nog immer toe. Alom

bekende software toepassingen zijn tekstverwerkers, internet browsers, e-mail,

boekhoudkundige pakketten, ERP toepassingen enz. Voor deze voorbeelden is het

duidelijk dat men met software werkt. Er is echter een veel groter toepassingsgebied van

software, waarbij software is ‘ingepakt’ in een (elektronisch) product. Deze zogenaamde

‘embedded producten’ met daarin ‘embedded software’ worden steeds meer toegepast en

komt men op steeds meer plaatsen tegen in de maatschappij. Voorbeelden van embedded

producten zijn: autoradio’s, televisies, (mobiele) telefoons, wasmachines,

kopieerapparaten, benzinepompen, horloges, en dergelijke. Embedded producten zijn er in

alle soorten en maten, worden door zeer veel verschillende gebruikers gebruikt, en

variëren sterk in prijs en in toepassing.

De kwaliteit van dergelijke producten en dus ook van de daarin verwerkte embedded

software is een relevant onderwerp van onderzoek. De maatschappij is inmiddels

behoorlijk afhankelijk van embedded producten. Welzijn, geluk, de financiële situatie en

soms zelfs het leven van mensen worden beïnvloed door de kwaliteit van deze embedded

software. Echter kwaliteit is zeer divers interpreteerbaar en veel moeilijker te meten dan

andere belangrijke aspecten van producten zoals de prijs en de levertijd van het product.

Daarnaast is kwaliteit altijd een afweging tegen diverse aspecten: een betere kwaliteit kost

meer en het duurt langer voordat een goed kwalitatief product is uitontwikkeld.

Het onderzoek dat besproken wordt in dit proefschrift poogt een oplossing te geven voor

de moeilijkheid om producten van goede kwaliteit te ontwikkelen. Daartoe wordt een

conceptueel model ontwikkeld waarmee organisaties hun embedded software

ontwikkelproces zodanig in kunnen richten dat dit proces zo goed mogelijk bijdraagt aan

de gewenste productkwaliteit. Deze aanpak is voornamelijk gebaseerd op de aanname dat

productkwaliteit bepaald wordt door de volgorde en mate waarin ontwikkelactiviteiten en

maatregelen worden uitgevoerd, kortom de kwaliteit van het product is afhankelijk van de

kwaliteit van het proces. Daartoe dient voor ieder product een specifiek proces ontworpen

of samengesteld te worden dat op de meest effectieve én efficiënte wijze bijdraagt aan de

kwaliteit van het product.

Op basis van beschikbare literatuur en industriële ervaringen op het gebied van software

product- en proceskwaliteit en methoden voor SPI (Software Process Improvement), is in

dit boek een analyse gemaakt van de sterke en zwakke punten van bestaande SPI

methoden voor toepassing binnen het embedded product domein. Een methode voor

182 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

productgerichte procesverbetering dient deze sterke punten te behouden en een groot deel

van de zwakke punten (indien mogelijk) op te lossen. De belangrijkste tekortkomingen van

bestaande SPI-methoden welke in dit onderzoek zijn aangepakt zijn: het onvoldoende

expliciet maken van productkwaliteitsbehoeften van gebruikers, het onvoldoende meten

aan zowel het product als aan het proces, het onvoldoende meten van opbrengsten en

kosten van procesverbetering, het onvoldoende flexibele en het abstracte niveau waarop

procesverbetering wordt beschreven en het onvoldoende specifiek ondersteunen van

individuele projecten.

Op basis van deze tekortkomingen is in dit onderzoek een conceptueel model ontwikkeld

voor productgerichte procesverbetering. Dit model onderscheidt drie belangrijke gebieden

waarop werk verricht dient te worden:

• Requirements engineering (RE), waarin kwaliteitseisen van directe en indirecte

gebruikers worden verzameld en ‘vertaald’ worden middels een generieke

ontwerptaal naar een (meetbare) kwaliteitsspecificatie van het product;

• Proces engineering (PE), waarin procesmaatregelen worden geselecteerd en een

ontwikkelproces wordt samengesteld dat er specifiek op gericht is om zo optimaal

mogelijk de gewenste productkwaliteit te realiseren;

• Measurement programme engineering (ME), waarin een aantal proces- en

productmetrieken wordt verzameld en geanalyseerd met het doel te evalueren of de

uitgevoerde procesmaatregelen de verwachte effecten opleveren en of de

uiteindelijke productkwaliteit overeenkomt met de kwaliteitsspecificatie.

Dit conceptuele model is afgebeeld in Figuur 1.

RE
Kwaliteits-

specificatie van
het product

PE
Model van het

gewenste
ontwikkelproces

ME
Product- en proces

metingen

Figuur 1: Conceptueel model voor productgerichte procesverbetering (RPM)

SAMENVATTING 183

Het conceptuele model geeft de drie werkgebieden weer en hun onderlinge relaties. Met

name het onderhandelingsspel tussen requirements engineering en proces engineering is

hierin duidelijk weergegeven. Het is namelijk zelden het geval dat een

kwaliteitsspecificatie van een product in één stap kan worden opgesteld. Er vindt altijd een

onderhandelingsronde plaats waarin kwaliteitseisen ten opzichte van elkaar worden

afgewogen (geprioritiseerd) en waarin wordt nagegaan in welke mate het ontwikkelproces

in staat is aan deze eisen te voldoen, tegen welke kosten en doorlooptijden. Deze

onderhandeling leidt tot een specificatie van gewenste productkwaliteit en een model van

het gewenste ontwikkelproces dat geacht wordt deze kwaliteit te kunnen realiseren.

Daarnaast wordt een meetprogramma opgestart dat middels proces- en productmetingen

terugkoppeling verzorgt aan requirements engineering over de mate waarin het product

voldoet aan de eisen, en aan proces engineering over de mate waarin genomen

maatregelen ook de gewenste effecten hebben.

Het model is gebaseerd op een belangrijke voorwaarde: namelijk dat de bijdragen van

individuele procesmaatregelen aan productkwaliteit bekend zijn. Helaas is dat vaak niet

het geval. Hiervoor zijn een aantal oorzaken. Ten eerste zijn de effecten van

procesmaatregelen niet constant en verschillen per situatie. Een maatregel zoals

bijvoorbeeld gestructureerd testen kan in het ene project een grote invloed op

productbetrouwbaarheid hebben, maar in een ander project kan deze bijdrage minimaal

zijn. Ten tweede wordt er in de praktijk onvoldoende aan specifieke maatregelen gemeten

om te kijken wat hun effecten zijn. En ten derde is software ontwikkeling een nog zeer

jonge discipline waarin men blijkbaar nog niet toe is aan het meten van de effecten van

procesmaatregelen. Onderzoek richt zich met name op het bedenken van nieuwe

maatregelen zonder goed te kijken naar hun effecten of naar de effecten van reeds

bestaande maatregelen.

Dit tekort aan generieke kennis over effecten van procesmaatregelen op productkwaliteit

wordt in dit onderzoek aangepakt door aan te nemen dat dergelijke kennis vooral

situationeel is en dat daarom de situationele effecten geleerd dienen te worden. Leren kan

op verschillende manieren geschieden, echter is het vergelijken van ‘verwachte effecten’

met ‘gemeten effecten’ al een eerste leercurve die expliciet in het conceptuele model van

Figuur 1 zit verwerkt. Daarnaast is tijdens dit onderzoek een uitgebreide analyse van

leertheorie uitgevoerd om te kijken in hoeverre dergelijke theorie handvatten aan kan

bieden om de leereffecten van procesverbetering te kunnen verhogen. De belangrijkste

uitkomsten van dit onderzoek zijn een aantal ‘learning enablers’: criteria die aangeven hoe

het leren in organisaties bevorderd kan worden. Daarnaast is een uitbreiding van het

conceptuele model voorgesteld waarin naast ‘single-loop leren’ ook ‘double-loop leren’

wordt onderscheiden. Single-loop leren richt zich voornamelijk op het leren binnen een

huidige situatie, wat al in het model van Figuur 1 zit geïntegreerd. Daarnaast moet ook

184 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

‘double-loop’ geleerd worden, wat betekent dat gekeken wordt of de huidige werkwijze

nog wel ideaal is en of er geen rigoureuze wijzigingen nodig zijn. Daartoe wordt een apart

leerproces onderscheiden dat zowel op basis van interne als externe informatie bepaalt of

de huidige set van procesmaatregelen nog afdoende is, of dat er moet worden geïnvesteerd

in nieuwe maatregelen. Een voorbeeld van double-loop leren is bijvoorbeeld de ervaring

van een ontwikkelgroep die er achter komt dat in een (nieuwe) situatie het uiteindelijke

systeemgebruik volstrekt onbekend is en dat daarom het normaal gebruikte

‘watervalmodel’ vervangen dient te worden door een meer ‘iteratief’ ontwikkelproces.

Dit conceptuele model voor productgerichte procesverbetering is echter van een hoog

abstractieniveau en toepassing in praktijksituaties wordt nog onvoldoende operationeel

gemaakt binnen het model. Daartoe is een set van praktijkrichtlijnen opgesteld op basis

van literatuur en praktijkervaringen. Deze richtlijnen geven aan ‘wat’ er gedaan dient te

worden binnen de drie werkgebieden van het conceptuele model. Deze richtlijnen geven

niet aan ‘hoe’ dat dient te gebeuren omdat ervaring heeft geleerd dat dit grotendeels

afhankelijk is van de specifieke situatie (organisatie of project) waarin het RPM model

wordt gebruikt.

Het conceptuele model en de daarbij behorende praktijkrichtlijnen zijn binnen dit

onderzoek gebruikt in twee bedrijven: Schlumberger RPS/Tokheim en Dräger Medical

Technology. Schlumberger RPS/Tokheim ontwikkelt embedded producten voor

benzinepompstations zoals betaalterminals, kassasystemen en benzinepompen. Dräger

Medical Technology ontwikkelt medische apparatuur zoals beademingsapparatuur,

anesthesie-apparatuur en patiënt-monitorsystemen. Binnen Schlumberger RPS/Tokheim is

een longitudinale casestudie uitgevoerd waarin drie geneste cases waren opgenomen. Voor

ieder van de drie belangrijkste embedded producten van dit bedrijf is een productgericht

procesverbeterprogramma opgezet en uitgevoerd. Daarnaast is binnen Dräger Medical

Technology een casestudie uitgevoerd om te kijken in hoeverre de ontwikkelde methode

generiek toepasbaar en succesvol is.

De ervaringen in deze casestudies leiden tot de conclusie dat het RPM model en de daarbij

behorende richtlijnen een goede aanpak beschrijven voor productgerichte

procesverbetering voor embedded software ontwikkeling. De aanpak bleek voldoende

flexibel om in alle vier de toepassingen een zodanig verbeterprogramma op te zetten dat

dit aansloot bij de productkwaliteitsdoelen van de desbetreffende ontwikkelprojecten. In

alle vier de gevallen heeft dit geleid tot aanzienlijke verbeteringen van de productkwaliteit.

In geen van de vier casestudies is het verbeterprogramma mislukt, wat duidt op een

generieke toepasbaarheid van de beschreven aanpak. De ontwikkelaars en managers van

de ondersteunde ontwikkelprojecten waren enthousiast over de aanpak en waardeerden

met name het doelgerichte en het project specifieke karakter van de aanpak.

SAMENVATTING 185

Analyse van de kosten en opbrengsten van het toepassen van het conceptuele model en de

richtlijnen in de casestudies toont aan dat de kosten relatief laag zijn en de opbrengsten

noemenswaardig. De metingen toonden aan dat de ontwikkelprojecten minder dan 1% van

hun tijd in het verbeterprogramma hoeven te investeren en dat de totale inspanning voor

een verbeterprogramma beperkt blijft tot twee maanden (340 uur). De directe voordelen

die konden worden gemeten, waren reeds ruim voldoende om de kosten te dekken.

Daarnaast waren met name de projectmanagers erg enthousiast over de vele indirecte

voordelen, zoals meer expliciete aandacht voor kwaliteit, een betere samenwerking met de

kwaliteitsafdeling en een groter kwaliteitsbewustzijn bij de ontwikkelaars.

De hoofdconclusie waarmee het boek afsluit is drieledig.

• Ten eerste wordt geconcludeerd dat het creëren van productkwaliteit geen

technisch of algoritmisch proces is, maar vooral een onderhandelingsproces.

Onderhandelingen tussen (indirecte en directe) gebruikers en de afweging van de

kwaliteitseisen tegen kosten, doorlooptijden, risico’s en haalbaarheid zijn essentieel

voor het verkrijgen van een kwalitatief goed product. Een dergelijk

onderhandelingsproces blijkt erg complex en moeizaam in elkaar te zitten, wat

waarschijnlijk ook een reden is dat de meeste projecten dit onvoldoende uitvoeren.

De consequenties daarvan voor productkwaliteit moge duidelijk zijn.

• Ten tweede is gebleken dat het verbeteren van productkwaliteit hulpmiddelen

behoeft. Deze hulpmiddelen hoeven echter helemaal niet complex te zijn.

Eenvoudige hulpmiddelen zoals beschreven in dit boek kunnen goed helpen bij het

expliciet maken van kwaliteitsbehoeften, het afwegen van dergelijke behoeften en

het inzichtelijk maken van kwaliteit zowel van het product als van het proces. Een

aantal voorbeelden van dergelijke hulpmiddelen worden in dit boek besproken en

zijn met succes toegepast in vier industriële procesverbeterprogramma’s.

• Ten derde heeft dit onderzoek aangetoond dat productkwaliteit tot stand komt in

projecten. Daarom horen methoden voor procesverbetering vooral aandacht te

besteden aan het projectniveau. Vele bestaande methoden voor procesverbetering

richten zich echter met name op de ‘organisatie’ als geheel en missen daarmee de

concrete verbeteringen die op het gebied van productkwaliteit te behalen zijn.

About the author

Rini van Solingen was born on September 2, 1971 in Middelburg, the Netherlands. He

graduated from high school at the Oranje Nassau College in Zoetermeer in 1989. He

received a Master of Science degree in Technical Informatics (Computer Science) from

Delft University of Technology in July 1995. His graduation assignment was carried out at

Schlumberger Retail Petroleum Systems in Bladel, under the supervision of Dr. Egon

Berghout, Prof. Bas Brussaard and drs. Frank van Latum. During his student years he also

worked as a software engineer and courseware designer in several projects at RPA, a

software development and training institute in The Hague.

In September 1995, Rini returned to work for Schlumberger RPS and Tokheim as a senior

software quality engineer leaving in September 1999. During this period he worked as a

process and product quality improvement consultant in development projects, and as

project member in several national and international co-operation projects. In one of these

projects: the Esprit project 23239: PROFES, he worked as work-package manager under

project manager Prof. Markku Oivo. In this role Rini was responsible for the co-ordination

of the methodology application experiments in the industrial companies: Dräger Medical

Technology, Ericsson LMF, and Tokheim.

In parallel with his industrial work Rini started his Ph.D. research at the faculty

Technology Management at Eindhoven University of Technology in September 1995,

under the supervision of Prof. Theo Bemelmans, Prof. Aarnout Brombacher, Prof. Rob

Kusters and Dr. Ir. Jos Trienekens. In addition to the Ph.D. thesis, Rini’s research has led

to over 40 publications in international journals and conference proceedings. Furthermore,

his industrial and university achievements led to the publication of the McGraw-Hill book:

‘The Goal/Question/Metric Method: A practical guide for quality improvement of

software development’ (http://www.gqm.nl), which he co-authored with Egon Berghout.

On January 3, 2000, Rini started his new assignment as head of the ‘Quality and Process

Engineering’ department at the Fraunhofer Institute for Experimental Software

Engineering in Kaiserslautern, Germany, under the leadership of Prof. Dieter Rombach.

Rini lives in Kaiserslautern, together with his wife Patricia.

Index

A

absolute scale, 31

acknowledgements, vii

Agarwal, 83, 85, 94

Aken, 9

Alford, 57

Amabile, 94, 98

Anderson, 79

architecture, 27, 166

Argyris, 82

assessments, 29, 96

assumptions, 17

Ayas, 80

B

Bach, 44, 48

Basili, 20, 30, 45, 62, 67, 77, 109, 112, 146, 160

Bass, 27

Bemelmans, vii, 21, 56, 77

benefits of RPM, 147

Benyon, 62

Berghout, vii, 35, 67, 71, 97, 116, 137, 146, 152

Bicego, vii, 40, 43, 123

Birk, vii, 113

Bladel, 128, 134

Boehm, 23, 55, 61

BOOTSTRAP, 40

Briand, 67, 71

Brinkemper, 61

Brombacher, vii, 63, 93, 162

Brooks, 77

BSW project, 145

Buuren, 10

C

Campbell, 12

Carleton, 65, 71

case-studies, 10, 123

case-study procedure, 123

Cavano, 23

characteristics of embedded products, 2

characteristics of software, 20

characteristics of software engineering, 20

Clements, 27, 65, 74

climate of openness, 94

CMM, 16, 37

communication, 107

conceptual model, 51

conclusions, 157

control loops, 74

conversation, 83

Cook, 12, 33

cost of RPM application, 151

cost/benefit analysis, 147

creative tension, 84

criteria for case-studies, 13

criteria for product focused SPI, 48

Crosby, 19, 22, 161

D

Daskalantonakis, 43

Davis, 57, 59, 60, 62, 65, 105

definition of measurement progr. engineering, 70

definition of process engineering, 64

definition of quality, 21

definition of requirements engineering, 59

Deming, 19, 28, 45, 85

development process model, 112

Dion, 43, 48

Doorewaard, 9

Dorfman, 56, 57

double loop learning, 82, 86, 89, 114

Downes, 2

Dräger, 13, 144

E

effects of process actions, 120

efficiency, 25

embedded product, 1

embedded product quality, 4

embedded software, 3

embedded software quality, 19

190 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

engineering disciplines, 30

Erens, 105

estimated product quality, 113

examples of embedded products, v, 1

examples of software applications, 1

expanded conceptual model, 88

expansions of current SPI, 51

experience base, 111, 121

Experiential Learning, 81

experiments, 11

explicit goal definition, 98

external validity, 11

F

Faulk, 56

feedback sessions, 118

Fenton, 15, 20, 30, 67, 71, 116

final conclusions, 163

Finkelstein, 60

functionality, 24

G

Gal, 4, 19

Galbraith, 17

Garlan, 27

Garvin, 22, 79, 82, 91, 94, 98, 109, 116, 156

Gentleman, 33

Genuchten, vii, 4, 19, 112, 162

Gibbs, 30, 65

Gilb, 5, 33, 60, 109

Gillies, 20, 23, 109

Glass, 21

Goal/Question/Metric, 34, 117

goal-oriented, 117

Goguen, 60

Goldenson, 29, 43, 47

Goldsack, 2

Gomaa, 61

Goodman, 93, 116, 119

Grady, 67, 71, 93

group learning, 81

guidelines, 101

guidelines for measurement progr. engin., 116

guidelines for process engineering, 110

guidelines for requirements engineering, 102

H

Hall, 67, 71, 173

Halstead, 33

Hamann, vii, 65, 112

Hanani, 61

hardware, 3

Hatton, 34

Hayes, 43, 48

Heemstra, 20, 56

Herbsleb, 29, 43, 47

Hetzel, 15, 43, 46

history of software engineering, 19

how to read this book, 8

Humphrey, 5, 15, 21, 29, 32, 38, 43, 65, 94, 119

Hutjes, 10

hypothesis, 120

I

Ince, 33

incorporation of learning concepts, 84

indirect benefits, 150

individual learning, 80

industrial application, 123

internal validity, 11

interval scale, 31

involved leadership, 98

ISO 9000, 39

ISO 9000-3, 39

ISO 9001, 128

ISO 9126, 24, 107

ISO 14598, 25

ISO 15504, 29, 42

ITIL, 104

J

Jelinek, 82

Judd, 11

Juran, 19, 22

K

Karjalainen, 3, 15

Kazman, 27

Kidder, 11

Kolb, 80, 81, 83, 84

Kotonya, 60

INDEX 191

Kusters, vii, 57, 58, 104

Kuvaja, vii, 40, 43, 45

L

Lammers, 10

Landry, 62

Latum, vii, 70, 118, 137, 149

Lawson, 57

learning, 76, 79

learning concepts, 79

learning disablers, 93

learning enablers, 90

learning objectives, 83, 114

learning theory, 79

Leeuw, 91, 93

Leite, 56, 60

Lemmen, 61, 65

Linde, 60

literal replication, 12

literature on measurement progr. engineering, 70

literature on process engineering, 65

literature on requirements engineering, 60

longitudinal case-studies, 12

M

maintainability, 25

Malouin, 62

manufacturing based view, 22

March, 82

McCall, 23

McGarry, 30

measurement, 30

measurement programme engineering, 67

measurement progr. engineering procedure, 127

methodological overview, 9

Mintzberg, 23, 101

modelling of the system, 97

Möller, 31, 71

monitoring performance gap, 99

multiple case-studies, 12

N

NASA-SEL, 30

negotiation, 106

nested case-studies, 12

Nevis, 92

Ng, 56

Nissen, 60

nominal scale, 31

Nonaka, 80

Northtrop, 27, 74

O

Oivo, vii, 21, 123

Olsen, 60

OMEGA project, 139

OPT project, 134

ordinal scale, 31

organisational learning, 82

P

Paltu, 57

Paulisch, 31, 65, 71

Paulk, 16, 29, 38, 45, 57

people measurement, 71, 93, 119

Perry, 27

Pfleeger, 15, 20, 29, 30, 67, 71, 116

Plan/Do/Check/Act, 28

Popper, 11

portability, 25

possibilities for control, 98

problem definition, 6

process actions, 111

Process Engineering, 61

Process engineering procedure, 125

process orientation, 28

product based view, 22

product orientation, 23

product quality evaluation, 25

Product Quality Profile, 108

Punter, viii, 61, 65

Q

quality culture, 16

quasi-experimental, 12

Quint, 23

R

Rae, 26

ratio scale, 31

recommendations, 165

192 PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT

references, 171

reflective cycle, 9

reliability, 24

Renkema, 9

Requirements Engineering, 55

Requirements engineering procedure, 124

research approach, 14

Roesch, 33

Rombach, vii, 20, 32, 35, 62, 71, 109, 112, 116

Rooijmans, 3, 15, 43

Rosenbaum, 43

Royce, 61

RPM conceptual model, 73

Rumbaugh, 60

S

Sassenburg, 42

scanning for knowledge, 95

Schlumberger, 128

Schön, 82, 83, 84

scope, 15

SCOPE, 25, 33

SEI, 43

Senge, 83, 91, 98, 116, 156

Shaw, 21, 30, 45

Shekaran, 60

Shepperd, 33

Shoval, 61

Siddiqi, 60

silver bullet, 17

single loop learning, 82

Skidmore, 62

Slooten, 61

Soerjoesing, viii, 65, 141

software metrics, 33

Software Process Improvement, 37

Sol, 4

Solingen, 35, 62, 70, 93, 116, 123, 137, 146

Sommerville, 60

Space-Ufo, 33

SPICE, 42

stakeholders, 105, 111

Stevens, 57

strengths and weaknesses of SPI, 44

Strien, 10

Swieringa, 80

T

Takeuchi, 80

Taramaa, 2, 15

targets, 117

team learning, 96

terminology clarification, 103

Thayer, 56, 57

theoretical replication, 12

thesis outline, 6

TickIT, 3, 42, 128

Tokheim, 13, 128

transcendent based view, 22

Trienekens, vii, 15, 22, 45

U

Uijtregt, viii, 62, 63, 109, 129

usability, 24

user based view, 22

V

validity, 11, 153

value based view, 22

Veld, 91

Verschuren, 9

W

Weggeman, 79, 80, 82, 84

Weiss, 34, 117, 146, 160

Wenger, 79

Wierdsma, 80

Wohlwend, 43

Wrycza, 61

WWC-project, 128

Y

Yeh, 28, 56

Yin, 10, 11, 12

Z

Zubrow, 43, 48

Zuse, 33

Zwaan, 10, 11, 12

	Preface
	Acknowledgements
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Appendix A
	References
	Samenvatting
	About the author
	Index

