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Abstract—In this paper, we show the structural characteristics that a particular class of Generalized Stochastic Petri Nets must exhibit

in order for their stationary probabilities to have a product-form. Sufficient conditions for identifying such a class are derived and proven

with the development of a series of transformations that can also be used to construct, for any GSPN of the class, an equivalent SPN.

These resulting SPNs represent the structures that can be analyzed with standard methods for Product-Form SPNs to establish

whether the original GSPNs have Product-Form solutions and to compute their performance indices with effective approaches based

on computationally efficient algorithms that avoid the generation of their underlying state spaces.

Index Terms—Generalized stochastic Petri nets, product form solution.
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1 INTRODUCTION

STOCHASTIC Petri Nets (SPNs) are a powerful tool for
modeling and evaluating the performance of systems

involving concurrency, nondeterminism, and synchroniza-
tion. They are equivalent to continuous-time Markov chains
and their steady-state analysis can thus be expressed as the
solution of a linear system of equilibrium equations, one for
each possible marking in the corresponding state space. The
major problem in the computation of performance mea-
sures for SPNs is that the size of their reachability set
increases exponentially both with the number of tokens in
the initial marking and with the number of places in the net.
As a consequence, except for special classes of nets, the size
of the reachability set and the time complexity of the
solution procedure preclude the exact numerical evaluation
of many interesting models.

In order to overcome this problem, a class of SPNs has
been discovered [9], [10] that is characterized by the fact that
the stationary probability distribution of any net in this class
can be factored into a product of terms, one term per place
in the net. Nets possessing this property are called Product-

Form Stochastic Petri Nets (PF-SPNs) and are easily identified
by the structural criteria proposed by Coleman et al. [6], [9],
[10]. Moreover, the product-form solution for this class of
nets closely resembles that of a class of Queueing Networks
(QN) [3], [7], [11] for which efficient computational
algorithms have been derived. This similarity has led to
the development of analogous algorithms for this class of
SPNs as well [6], [13], [14].

In this paper, we show that a class of Generalized
Stochastic Petri Nets (GSPNs) also possess a product-form

solution. We start with a GSPN model that obeys the same

structural criteria used to identify PF-SPNs. By introducing

some additional restrictions and by employing a series of

transformation steps, that convert the original GSPN into an

equivalent GSPN and then to an equivalent PF-SPN, we

establish our desired objective.
The main point of the transformation is the derivation of

the so-called routing process for the PF-GSPNs. Similar to

what has been done in [9], [10], the routing process can be

considered the starting point for the produc-form analysis

since it is from the routing process that we can derive the

traffic equations of the GSPN.
The transformation steps used to prove our result for

GSPN models are synthesized into an algorithm that

constructs the routing matrix for the traffic equations and

the incidence matrix of the equivalent SPN model that

satisfies the standard criteria for PF-SPNs.
The balance of this paper is outlined as follows: Section 2

briefly reviews pertinent notation and definitions used in

describing GSPNs. Section 3 reviews the structural condi-

tions that are required for an SPN to have a product-form

solution. We show in Section 4 that, in the case of GSPNs,

additional constraints are needed for the produc-form

analysis. In Section 5, we present the transformation steps

that convert the original GSPN into an equivalent SPN that

has a PFS. In this section, we first investigate the case of

PF-GSPNs with only free-choice conflicts among immediate

transitions and then we present the analysis for the case

when immediate transitions can be in nonfree choice

conflicts. Finally, Section 7 provides some concluding

remarks.

2 DEFINITIONS AND NOTATIONS

In this section, we review the basic concepts and notation

that we use throughout this paper. More comprehensive

presentations of Petri net concepts can be found, for

instance, in [12], [15]. A presentation of concepts related

to Generalized Stochastic Petri Nets can be found in [1], [2].
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A Generalized Stochastic Petri Net can be defined as an
8-tuple

GSPN ¼ P; T ; Ið�; �Þ; Oð�; �Þ; Hð�; �Þ;�ð�Þ; wð�Þ;mm0ð Þ;

where P is the set of places and T is the set of transitions
(timed and immediate). The function Iðtj; piÞ : T � P ! IN
is the input function, Oðtj; piÞ : T � P ! IN is the output
function, and Hðtj; piÞ : T � P ! IN is the inhibition func-
tion. A net is said to be ordinary if Iðtj; piÞ : T � P ! f0; 1g,
Oðtj; piÞ : T � P ! f0; 1g, andHðtj; piÞ : T � P ! f0; 1g, i.e.,
all the arcs have weight equal to 1. The function �ð�Þ : T !
IN specifies the priority levels associated with the transi-
tions of the net. For transitions with priority zero, delays are
exponentially distributed random variables; such transi-
tions are consequently referred to as timed. For transitions
with priority n � 1, delays are deterministically zero; such
transitions are referred to as n-immediate. In this paper, we
only consider two priority levels; hence, transitions are
simply referred to as timed and immediate. The function
wð�Þ : T ! IR specifies the stochastic component of a GSPN
model. In particular, it maps transitions into real positive
numbers. The quantity wðtjÞ is called the “rate” of transition
tj if tj is timed, and the “weight” of transition tj if tj is
immediate. The initial marking of a GSPN is denoted by m0.

In the graphical representation of GSPNs, transitions are
drawn as bars or white boxes depending on whether they
are immediate or timed. When describing the behavior of a
GSPN, we often use small ts to refer to immediate
transitions and capital T s for timed ones. Finally, a marked
place is a place that contains (at least) one token drawn as a
black dot. A distribution of tokens over the places of the net
identifies one possible marking.

For a given transition tj 2 T , its preset, post-set, and
inhibition set are given by �tj ¼ fpi j Iðtj; piÞ > 0g, t�j ¼
fpi j Oðtj; piÞ > 0g, and �tj ¼ fpi j Hðtj; piÞ > 0g, respec-
tively. In a similar manner, we can define the preset and
postset of a given place.

For any transition tj, using the weighted flow relation,
we can define the input vector iiðtjÞ ¼ ½Iðtj; p1Þ; Iðtj; p2Þ; . . . ;
Iðtj; pjPjÞ�, the output vector ooðtjÞ ¼ ½Oðtj; p1Þ; Oðtj; p2Þ; . . . ;
Oðtj; pjPjÞ�, and the inhibition vector hhðtjÞ ¼ ½Hðtj; p1Þ;
Hðtj; p2Þ; . . . ; Hðtj; pjPjÞ�. From the weighted flow relation,
we can also define the incidence matrix CC with entries
CC½i; j� ¼ Oðtj; piÞ ÿ Iðtj; piÞ.

A transition tj is enabled in a marking mm iff mm � iiðtjÞ,
mm < hhðtjÞ and if no other transition th with priority higher
than that of tj exists such that mm � iiðthÞ and mm < hhðthÞ.1

Being enabled, tj may occur (or fire) yielding a new
marking mm0 ¼ mmþ CC½P; j�, and this is denoted by mmÿ!

tj
mm0.

The set of all the markings reachable from mm0 is called the
reachability set, and is denoted by RSðmm0Þ.

Markings that only enable timed transitions are said to
be tangible, whereas markings that enable at least one
immediate transition are said to be vanishing. When a
vanishing marking is entered, the weights of the enabled
immediate transitions are used to probabilistically select the

(immediate) transition to fire. The time spent in any
vanishing marking is deterministically equal to zero. When
a tangible marking is entered, the rates of the transitions are
used to probabilistically select one timed transition to fire.
From the values of the transition rates (weights), it is
possible to compute the probability that a given enabled
timed (immediate) transition, say tj, fires in a tangible
(vanishing) marking mm:

pf tj j mm g ¼
wðtjÞX

tl enabled in mm

wðtlÞ
: ð1Þ

When all the transitions are timed, the class of models is
simply called Stochastic Petri Nets (SPNs). In this case, the
function �ð�Þ disappears from the definition and an SPN
can be defined as a 7-tuple, i.e.,

SPN ¼ P; T ; Ið�; �Þ; Oð�; �Þ; Hð�; �Þ; wð�Þ;mm0ð Þ:

Structural properties of Petri nets can be derived from the
information provided by the incidence matrix. A
T -semiflow xx is a vector of nonnegative integers such that
CC � xx ¼ 0. A P -semiflow ss is a vector of nonnegative
integers such that ss � CC ¼ 0.

The set jjxxjj ¼ t 2 T jxt > 0f g (respectively, jjssjj ¼
p 2 Pjsp > 0
� 	

) is called the support of xx (respectively, the
support of ss). A semiflow yy (T - or P -semiflow) is called
minimal if no semiflow yy0 exists whose support is a proper
subset of the support of yy. T -semiflows are related with
liveness properties, in particular a necessary, but not
sufficient, condition for liveness is that all the transitions
are covered by T -semiflows, i.e., belong to at least one
T -semiflow. P -semiflows are related with boundedness
properties, in particular, when all the places are covered
by P -semiflows the net is said to be bounded, i.e., for any
initial marking mm0 the reachability set is finite. In this case,
for any place pi 2 P, it is possible to derive a bound for the
number of tokens that can be contained in pi (see [2] for
details). In this paper, we consider only nets that are
covered by T and P -semiflows.

Conflict relations in GSPN. In the analysis that we
propose in this paper, we will use concepts related with
conflicts among immediate transitions. A more comprehen-
sive presentation and discussion of these definitions can be
found in [1]. Here, we only introduce the concepts that are
necessary to understand the rest of the paper.

A transition ti is in structural conflict relation with
transition tj (denoted ti SC tj) iff �ti \ �tj 6¼ ; or t�i \ �tj
6¼ ;. A transition ti is in free-choice structural conflict relation
with transition tj iff iiðtiÞ ¼ iiðtjÞ and hhðtiÞ ¼ hhðtjÞ.

Another notion that we use is that of extended conflict set
of a given transition tj (denoted ECSðtjÞ). The ECS of tj
includes all the transitions that are in structural conflict
with tj as well as those whose firing may disable tj (indirect
conflict).

For the sake of simplicity and without loss of generality,
all our discussion will be restricted to conflict sets
composed of transitions with the same priority levels. In
fact, low priority transitions included in free-choice conflict
sets together with higher priority transitions are dead (they
are never allowed to fire). This same observation can be
used to show that the transformation algorithms developed
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1. In Petri nets with priorities, the concept of concession has been
introduced (e.g., see [1]) to capture the fact that tokens in the input and
inhibitor sets of a transition satisfy the usual firing conditions, while a
transition is enabled only if it has concession and no other transitions of
higher priorities have concession in the same marking.



in this paper can be easily generalized to account for more
complex situations deriving from the presence of transitions
of different priority levels in nonfree choice conflict sets,
since our way of dealing with these situations (as we shall
see later in the paper) is that of decomposing these conflicts
into a series of free-choice-like conflict sets.

3 PRODUCT-FORM RESULTS FOR SPNS

In this section, we review the basic concepts of the class of
Stochastic Petri Nets that have a Product-Form Solution
(PFS). The PFS for SPN criterion considered here is that
proposed by Henderson et al.; more comprehensive
presentations of the results related to this topic can be
found in the references [4], [6], [9], [10].

The key for identifying these SPNs (PF-SPNs) is to
consider the input and output vectors of the transitions to
be states of a Markov Chain. This Markov Chain has been
called the routing process [9]. We now review the basic
definitions underlying the PF-SPN criterion.

Let xx1; xx2; . . . ; xxh denote the minimal T -semiflows found
from the incidence matrix. The following definitions and
assumptions are essential to the analysis that will be briefly
presented in this section.

Definition 1 (Closed set of transitions [4]). For T 0 � T , let
KðT 0Þ be the set of input and output vectors for transitions in
T 0; formally, KðT 0Þ is represented by the following expression:

KðT 0Þ ¼
[
t 2 T 0

iiðtÞ [ ooðtÞf g:

The subset of transitions T 0 is said to be closed if, for any
ll 2 KðT 0Þ, there exist ti; tj 2 T 0 such that ll ¼ iiðtiÞ and
ll ¼ ooðtjÞ; i.e., each output vector is also an input vector for
some transition in T 0, and vice versa each input vector is also
an output vector.

When Definition 1 applies to the support of a T -semiflow
(jjxxjj), we can state that such a T -semiflow xx is a closed
support T -semiflow. Definition 1 represents a criterion for
identifying the closed support T -semiflows of an SPN. From
the definition of closure, we can observe that if an initial
marking is given for the system in which one of the
transitions covered by a closed support T -semiflow may fire,
then all the transitions covered by the same T -semiflow may
fire infinitely often.

The following definition is the key to identifying (at the
structural level) PF-SPNs.

Definition 2 (Structural Constraints [4]). An SPN
ðP; T ; Ið:; :Þ; Oð:; :Þ; wð:Þ;mm0Þ is said to be closed iff 8 t 2 T
there exists a minimal T -semiflow xx such that t 2 jjxxjj, and
jjxxjj is a closed set of transitions.

It has been proven (see [4]) that the closure property
ensures that the SPN is structurally live. That is, if the initial
marking of the closed SPN is such that at least one
transition in each closed support T -semiflow is enabled,
then the SPN is live. When an SPN satisfies the previous
definition, the closed T -semiflows have a “special” structure:

Lemma 1 ([4]). If xx is a closed support T -semiflow, then
xi 2 f0; 1g, i.e., the ith component of xx can only be either 0 or 1.

Routing Process and Closed T -semiflows. Definition 2

says that an SPN is closed if all its transitions are covered by

closed support minimal T -semiflows. Among the minimal

closed support T -semiflows we can identify a relation that

can be used to derive the PFS. In the following, we denote by

X cd the set of closed support minimal T -semiflows of a net.

Definition 3 [Freely related T -semiflows]. Let N ¼
ðP; T ; Ið:; :Þ; Oð:; :Þ; wð:Þ;mm0Þ be a closed SPN and xx0, xx00 be

two different minimal closed support T -semiflows of N . xx0

and xx00 are said to be freely related, denoted as ðxx0; xx00Þ 2 FR,

if there exist t0 2 jjxx0jj and t00 2 jjxx00jj such that iiðt0Þ ¼ iiðt00Þ.
The relation FR� is the transitive closure of FR.

It is easy to see that the relation FR� yields a partitioning
of the set of minimal closed support T -semiflows of N into
equivalence classes that we denote by ½xx�.2 Since (by
definition) any transition tj cannot be part of the supports
of closed T -semiflows that belong to different members of
the partition FR�, then the relation FR� induces a partition
among the transitions of the SPN. We denote by ½tj� the
corresponding equivalence classes, i.e.,

½tj� ¼[
xh2½x�

jjxxhhjj : tj 2 jjxxjj and xx is a min: closed T -semiflow

8<:
9=;:

Using Definition 3, we can denote the routing process yy ¼
ðyyðzÞ; z � 0Þ as a Markov chain whose state space S ¼
iiðtjÞ; tj 2 T
� 	

and whose transition rates are qðiiðtjÞ; iiðtmÞÞ
¼ �ðiiðtjÞÞP ðiiðtjÞ; iiðtmÞÞ, with

�ðiiðtjÞÞ ¼
X

n:iiðtnÞ ¼ iiðtjÞ
�n:

The term P ðiiðtjÞ; iiðtmÞÞ is an element of a decomposable

transition probability matrix that represents the probability

that, if transition tj fires in a given marking mm, the next

marking is mm0 ¼ mmÿ iiðtjÞ þ ooðtjÞ ¼ mmÿ iiðtjÞ þ iiðtmÞ, where

transition tm becomes enabled and that is defined in the

following manner

P ðiiðtjÞ; iiðtmÞÞ ¼
�jX

n:iiðtnÞ¼iiðtjÞ
�n

if ½tj� ¼ ½tm� and ooðtjÞ ¼ iiðtmÞ

0 otherwise:

8><>: ð2Þ

The global balance equations for the routing process yy are:

vðiiðtjÞÞ ¼
X
tm 2 T

vðiiðtmÞÞP ðiiðtmÞ; iiðtjÞÞ; 8 tj 2 T ; ð3Þ

that can be interpreted as the traffic equations for the SPN
and which can be observed to be partitioned into separate
systems of linear equations, one for each FR� class. The
solution of the traffic equations is the vector of visit-ratios.3
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2. ½xx�¼fxxhh : xxhh is a minimal closed T -semiflow and ðxx; xxhhÞ 2 FR�g.
3. The term vðiiðtjÞÞ is called a visit ratio since it can be interpreted as the

mean number of times the Markov chain enters state iiðtjÞ between two
subsequent arrivals into an arbitrary selected reference state (of the same
chain).



Boucherie and Sereno proved that a necessary and
sufficient condition for an SPN to have a solution for the
traffic equations is that Definition 2 holds [4]. This is the
first step in showing that such closed SPNs possess a
product-form solution. In the analysis of PF-SPNs, the
routing process plays a crucial role. The result proven in [4]
establishes a relation between the routing process and the
structure of the T -semiflows of the SPN. In this manner, the
existence of a solution for the traffic equations of an SPN
can be checked by using structural information, i.e., the
T -semiflows.

4 FROM SPNS TO GSPNS

In this section, we show that the “structural” criterion that
derives from Definition 2 cannot be directly applied for the
analysis of PF-GSPNs. The nets depicted in Fig. 1 outline
one of the problems that may arise in GSPNs.

The SPN of Fig. 1a satisfies Definition 1 and, hence, we
can state that there exists a solution for its traffic equations.
One could expect that, by changing timed transitions T1, T2,
and T3 into immediate transitions (Fig. 1b), the structural
criterion for the existence of a solution for the traffic
equations can still be applied. Unfortunately, this is not true
because immediate transitions in GSPNs are not just “timed
transitions with null firing time,” but transitions that have
priority over the timed one. Because of this priority
structure, the GSPN of Fig. 1b is not live. In fact, the initial
marking of this net cannot be reproduced (is not a home
state) and, as soon as p1 (p3) becomes empty because of two
firings of transition t1 (t3), the token in p2 becomes trapped
and transitions t2, T5, and T8 will not have more chances of
firing, thus becoming not-live. Hence, the traffic equations
for nets of this type cannot be derived through a simple
extension of the invariant analysis developed for SPNs.

The structural component of a GSPN is represented by
the untimed Petri net that captures its qualitative behavior
disregarding time considerations. The Petri net that under-
lies a GSPN model is a Petri net with priorities and inhibitor
arcs. Both these extensions have the effect of restricting the
qualitative behavior of the model by making unfeasible
certain evolutions of the net and, thus, preventing the net
from reaching certain states. These constraints are not
reflected at the level of the incidence-matrix, so that

invariant properties that are derived from the analysis of
such a matrix neglect some of the important features of
these models. Focusing our attention on T -semiflows, we
may recall that the results obtained from the analysis of the
incidence matrix identify sequences of transitions that may
bring the net back to its initial state, if firable. For basic Petri
nets, the “firability” of a T -semiflow depends on the initial
marking that is chosen for the net; in the case of the
structural components of GSPN models, certain T -semiflows
may become unfirable also because of the existence of
priorities and inhibitor arcs. Disregarding these considera-
tions, we may also identify closed support T -semiflows in the
case of GSPNs by testing if Definition 1 applies to the sets of
(timed and immediate) transitions that represent their
supports. We can thus rephrase Definition 2 introduced
for characterizing at the structural level closed SPNs, by
saying that a closed GSPN is defined in the following way:

Definition 4 (Structural Constraints). A GSPN ðP; T ; Ið:; :Þ;
Oð:; :Þ; Hð:; :Þ;�ð:Þ; wð:Þ;mm0Þ is said to be closed iff 8 t 2 T
there exists a minimal T -semiflow xx such that t 2 jjxxjj, and
jjxxjj is a closed set.

As we observed during the discussion of example of
Fig. 1b, the closure property of a GSPN is not sufficient to
ensure its liveness. The GSPN of Fig. 1b satisfies
Definition 4. All the transitions of this GSPN are covered
by closed support minimal T -semiflows; nevertheless, this
GSPN has a transient behavior that it is mainly due to the
priority structure. This observation is sufficient to conclude
that the closure property cannot be used as the starting
point for proving the existence of a produc-form solution. It
follows that we need to introduce some additional con-
straints that avoid the cases similar to those found for the
GSPN of Fig. 1b.

To this aim we introduce the following definition that
captures the above characteristics.4

Definition 5. A GSPN ðP; T ; Ið:; :Þ; Oð:; :Þ; Hð:; :Þ;�ð:Þ; wð:Þ;
mm0Þ is said to be a free-killing-conflict if any extended
conflict set ECSðtiÞ, that involves immediate transitions
having the same priority level has the following property:

8tia ; tib 2 ECSðtiÞ �tia\�tib 6¼ ; or t�ia \
�tib 6¼ ;

or �tia \ t�ib 6¼ ;:
ð4Þ

The meaning of this definition is that when an immediate
transition ti fires, its effect is that of disabling all the other
(enabled) immediate transitions of its same ECSðtiÞ.

In Section A of the appendix, we prove that a GSPN
satisfying Definitions 4 and 5 is structurally live. The proof
of this result is similar to that of PFS-SPNs (see [4], [8]).

5 PRODUCT-FORM SOLUTION FOR GSPNS

To show that, for GSPNs satisfying the constraints
summarized in the following, it is possible to derive the
routing process and to find a solution for the traffic
equations that are the basis for the derivation of a
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Fig. 1. (a) A closed live SPN and (b) a closed GSPN with transient

behavior.

4. As we mentioned in the previous part of the paper, for the sake of
simplicity, we only consider ordinary Petri nets. A more complex definition
can be provided for nonordinary nets.



product-form expression for the stationary probability
distribution, we consider GSPNs that have the following
properties:

1. they are ordinary nets,
2. all the immediate transitions have the same priority,
3. they satisfy Definition 4, and
4. they satisfy Definition 5.

The first two restrictions are introduced for the sake of
simplifying the derivation of the results presented in this
paper. The third restriction derives from the PF-SPN
analysis and it is one of the crucial points of our
investigations. The fourth restriction is a sufficient condi-
tion to ensure the structural liveness (and, thus, the steady-
state behavior) of the studied model.

5.1 Free-Choice Closed GSPNs

In this section, we investigate GSPNs satisfying Definition 4
where the conflicts among immediate transitions are only of
the free-choice type.5 This is the simplest case of GSPNs
with PFS, but it allows us to illustrate, in a simple manner,
several concepts that we will generalize in the case of
GSPNs with nonfree-choice conflicts among immediate
transitions. It is easy to see that, when all the conflicts
among immediate transitions are free-choice, the GSPN
satisfies Definition 4. Let FCðTjÞ denote the set of
immediate transitions that are in free-choice conflict as the
result of the firing of timed transition Tj. This set can be
defined as follows:

FCðTjÞ ¼ ti j ooðTjÞ ¼ iiðtiÞ
� 	

:

The closure property ensures that at least one of the
immediate transitions enabled upon firing of timed transi-
tion Tj has an input vector that matches the output vector of
Tj; on the other hand, the free-choice property of the conflict
ensures that all the immediate transitions enabled upon
firing of timed transition Tj have the same input vector. In
this case, the GSPN can be easily transformed into an
equivalent model where the conflict among immediate
transitions is removed. We perform this transformation by
using the concept of fusing timed and immediate transitions
originally introduced in [5]. In order to transform the
original GSPN model into one that is equivalent, we
identify all the timed transitions that enable immediate
transitions in free-choice conflict and, then, for any timed
transition Tj of this type, we “fuse” Tj with each immediate
free-choice transition in FCðTjÞ. More precisely, for each
transition ti 2 FCðTjÞ, we construct a new transition with
the name of transitions Tj and ti appended to form “Tjti.”
The input and output vectors of Tjti are inherited from the
corresponding vectors of Tj and ti, i.e.,

iiðTjtiÞ ¼ iiðTjÞ and ooðTjtiÞ ¼ ooðtiÞ: ð5Þ

The firing rate of this newly formed transition is obtained
from the product of the firing rate of the original timed

transition Tj, wðTjÞ, and of the probability, pðtiÞ, that
transition ti fires when it is enabled in the free-choice
conflict set FCðT Þ, i.e.,

pðtiÞ ¼
wðtiÞX

tl 2 FCðTjÞ
wðtlÞ

: ð6Þ

Once we have completed the fusion of Tj with all the
immediate transitions of FCðTjÞ, we can delete from the net
both Tj and all the transitions of FCðTjÞ together with all
their input places.

Repeating this process for all possible free-choice conflict
sets, we produce an SPN. In Section C of the appendix, we
prove that, if we apply the fusion steps described by (5) and
(6) to a closed GSPN with free-choice conflicts among
immediate transitions, we obtain a (G)SPN having the same
tangible state space and, thus, the same CTMC as the
original net. Figs. 2 and 3 show the two possible cases that
the fusion process has to manage. Fig. 2a depicts the case
where there exists only one timed transition Tj such that
Fci ¼ FCðTjÞ, while Fig. 3a illustrates the case where
there are several timed transitions, Tj; . . . ; Tl, such that
FCðTjÞ ¼ FCðTlÞ ¼ � � � ¼ Fci.

Whenever the fusion process involves a pair of (timed
and immediate) transitions covered by the same closed
T -semiflow in the original GSPN N , then the fused
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5. In the remainder of the paper, we will often focus our discussion on
the impact that free-choice and nonfree-choice conflicts among immediate
transitions have on the analysis of GSPNs. As we already pointed out when
we introduced the concept of conflict in GSPNs, to keep the presentation
simpler, unless explicitly needed, we will always refer to these conflicts
without mentioning that they involve immediate transitions only.

Fig. 2. Effect of the fusion on a “Case a” free choice conflict: (a) GSPN
before the fusion, (b) GSPN after the fusion, and (c) closed T -semiflows
before and after the fusion.

Fig. 3. Effect of the fusion on a “Case b” free choice conflict: (a) GSPN

before the fusion, (b) GSPN after the fusion, and (c) closed T -semiflows

before and after the fusion.



transition of the new GSPN N 0 is covered by a T -semiflow
that easily derives from the original one. Formally, we can
say that

jjxx0jj ¼ jjxxjj [ fTjtihg ÿ fTj; tihg;

where xx is the closed T -semiflow that in the original GSPN
N covers Tj and tih and xx0 is the corresponding closed
T -semiflow that in the new GSPN N 0 covers the fused
transition Tjtih .

If instead the transitions involved in the fusion process
are covered by different closed T -semiflows, as it happens in
the case of the conflict of Fig. 3a, then a new minimal closed
T -semiflow is generated that does not correspond to a
specific T -semiflow of the original net and that is expressed
formally in the following way:

jjxx0jj ¼ jjxxajj [ jjxxbjj [ fTjtihg ÿ fTj; tihg;

where xxa and xxb are two minimal closed support
T -semiflows of the original GSPN N such that xxa 6¼ xxb, Tj 2
jjxxajj; tih 2 jjxxbjj; xx0 is the minimal closed support T -semiflow
of the new GSPN N 0 that covers the fused transition Tjtih .

The proof of these results can be obtained by considering
the transformation of the incidence matrices of the original
and of the transformed GSPNs. Section B of the appendix
contains such a proof together with some additional
lemmas.

Figs. 2b and 3b present the SPNs resulting from the
transformation of the GSPNs of Figs. 2a and 3a. In
particular, Fig. 3b points out that when we fuse transitions
covered by different minimal closed support T -semiflows,
we “generate” a new minimal closed support T -semiflow
that is not simply a transformation of a minimal closed
support T -semiflow of the original GSPN. A T -semiflow
corresponding to this new minimal closed support
T -semiflow also exists in the original GSPN, but it is
nonminimal. In fact, in the GSPN of Fig. 3a, there is the
closed (nonminimal) T -semiflow with support set
fT1; t4; T6; T2; t3; T5g that in the transformed net becomes
fT1t4; T6; T2t3; T5g which is both closed and minimal.

Routing in PFS GSPNs with free-choice conflicts. In
Section 3, we pointed out the role played by the minimal
closed T -semiflows in the produc-form analysis and, in
particular, the relationship between the number of FR�

classes and the number of independent submatrices
contained in the routing probability matrix. Given that the
fusion process applied to the immediate transitions of free-
choice conflicts may increase the number of minimal closed
T -semiflows that can be found in the transformed SPN (with
respect to that of the original GSPN), such a feature is worth
investigation. Due to Definition 3, we can observe that, in
the case of free-choice conflicts, the increasing of the
number of minimal closed T -semiflows does not change
the number of FR� classes. This means that the routing
probability matrix contains the same number of submatrices
as the one that can be derived from the original GSPN, i.e.,
the transformation does not add new routing submatrices.
As we will observe in the next section, this will not be the
case for GSPNs with nonfree choice conflicts among
immediate transitions.

Remark. We can observe that the fusion of timed and
immediate transitions in case of free-choice conflicts is a
transformation that preserves the closure property. That
is, if we start from a closed GSPN with immediate
transitions in free-choice conflict among them, by
applying the fusion of timed and immediate transitions,
as explained in the previous section, we obtain a (G)SPN
that satisfies the closure property.

Another observation that comes from the fusion of
free-choice conflicts concerns the minimal T -semiflows.
As it has been shown in this section there are cases where
the fusion increases the number of minimal closed
T -semiflows. This is an important aspect that we also
find in the treatment of nonfree choice conflicts.
However, in case of free-choice conflicts, the fusion does
not increase the number of FR�-classes.

5.2 Closed GSPN with Nonfree Choice Conflicts

We now turn our attention to GSPNs satisfying Definitions 4
and 5 and with nonfree choice conflicts among immediate
transitions.

The basic idea is still to show that the original GSPN can
be transformed into a PF-SPN of the type discussed in [4],
[6], [9], [10] and, thus, that a product-form solution for this
type of model exists too. With respect to the free-choice case
discussed before, the transformation is more complex, but
many similarities exist between the two methods.

As a first step, we introduce a transformation called
stratification of a transition Tj with respect to a subset of
places P0 � P. The idea behind this transformation is that of
constructing the power set }0 of P0 and of substituting Tj
with a series of transitions Tj1 , Tj2 , . . . , one for each member
of }0. Before discussing this transformation and its use, it is
useful to see an example.

Example 1 [Stratification of a transition]. Fig. 4a presents a
portion of a GSPN and the effect of the stratification of
transition T1 with respect to place p4. In this case, P0 ¼
fp4g and }0 ¼ ;; fp4gf g. In the transformed net (Fig. 4b),
instead of T1, there are two transitions, T1a and T1b, that
account for all the possible markings of place p4:
transition T1a represents the enabling of T1 when place
p4 is empty (;), while transition T1b accounts for the
enabling of T1 when place p4 is marked (fp4g). The firing
of T1a is conditioned on the marking of p4 by means of an
inhibitor arc, while that of T1b depends on the state of p4

by means of a test-arc (a pair of input/output arcs).
Transitions T1a or T1b are mutually exclusive (in fact, HME,
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Fig. 4. Example of stratification: (a) original and (b) transformed.



according to the definitions in [1]). Given any marking of
p1, p2, and p4 that enables T1 in the original GSPN and
either T1a or T1b in the stratified one, it is easy to see that
the firing of T1 and of either T1a or T1b yield the same
(new) marking. Obviously, the stratification can be
performed with respect to a larger subset of places. For
instance, if we stratify one transition with respect to two
places, the transformed net will exhibit four transitions
that account for all the possible markings of these places.

Given that the GSPNs under investigation are covered by
P -semiflows and, hence, have finite state spaces, the
stratification can always be performed without the use of
inhibitor arcs, as they can be removed with the introduction
of complementary places and multiple arcs (see [15] for
details).

Definition 6. Given a GSPN N , a transition Tj, and a subset of
places P0, such that P0 \ �Tj ¼ ;;P0 \ T �j ¼ ;, and
P0 \ �Tj ¼ ;. Let us denote by si (with i ¼ 1; 2; . . . ; 2jP

0j)
the ith subset of the power set of P0. The stratification of Tj is a
transformation that removes this transition from the GSPN
and substitutes it with 2jP

0j new transitions. The labels of these
transitions are Tjsi (with i ¼ 1; 2; . . . ; 2jP

0j)}, while the input,
output, and inhibitor sets are:

�Tjsi ¼ �Tj [ sif g; Tjs�i ¼ T �j [ sif g;
�Tjsi ¼ �Tj [ P0 ÿ sif gð Þ:

Since the GSPNs we consider are ordinary, the input
vector iiðTjsiÞ is a vector having jPj elements, one for each
place of the net. The lth component of iiðTjsiÞ is 1 if pl 2 �Tjsi
and 0 otherwise. In the same manner, we can obtain the
output, and the inhibitor vectors, ooðTjsiÞ, and hhðTjsiÞ.

The stratification can be applied to timed and to
immediate transitions; it has a simple impact on the
properties of the GSPN since it does not change its
reachability set (a formal proof can be found in Section C
of the appendix), but it introduces new minimal T -semiflows
that can be easily derived from those of the original net.

Lemma 2. LetN be a GSPN, Tj one of its transitions, andN 0 the
GSPN obtained by applying the stratification to transition Tj
with respect to the subset of places P0 such that P0 \ �Tj ¼ ;,
P0 \ T �j ¼ ;, and P0 \ �Tj ¼ ;. If we denote by X ¼
xx1; xx2; . . . ;f g the minimal T -semiflows of N , we can derive

the set of minimal T -semiflows of N 0, X0, as follows:

. X0  ;,

. 8 xx 2 X :

- if Tj 62 jjxxjj, then X0  X0 [ xx,
- if Tj 2 jjxxjj, then for any new transition Tjsi, we

generate a new minimal T -semiflow xxsi with the
following support set

jjxxsi jj ¼ jjxxjj ÿ fTjg [ fTjsig:

- X0  X0 [ xxsi .

All the details of this proof can be found in Section B of the
appendix.

The stratification of a nonfree choice conflict of immediate
transitions is the stratification of all these conflicting
transitions. If we denote by Ic ¼ fta; tb; . . .g this set, any
transition tl 2 Ic is stratified with respect to the set of places
P½l� defined as follows:

P½l� ¼ fpi 2 P : 9tm 2 Ic; such that tm 6¼ tl and

pi 2 �tm and pi 62 �tlg:

Before proceeding with the formal definition of this
transformation, let us discuss an illustrative example.

Example 2 [Stratification of a subset of nonfree choice
conflicting transitions]. Fig. 5a depicts a GSPN with a
nonfree choice conflict of the type we are considering.
Let us first identify the set of conflicting transitions
Ic ¼ ft3; t4g. The first step of the stratification consists of
the construction, for any transition belonging to Ic, of
the set of places with respect to which we perform the
stratification. For our example, we have that P½3� ¼ p4f g
and P½4� ¼ p3f g. In the transformed net (Fig. 5b), instead
of transition t3 there is the set of transitions ft3f;g; t3fp4gg,
that account for all the possible markings of place p4, i.e.,
t3f;g represents the enabling of t3 when place p4 is empty,
while transition t3fp4g accounts for the enabling of t3
when p4 is marked. In the same manner, the set
ft4f;g; t4fp3gg accounts for all the possible markings of
place p3.

We can observe that, in the transformed GSPN,
transition t3f;g (respectively, t4f;g) accounts for the
enabling of transition t3 (respectively, t4) when this
transition is enabled alone. On the other hand, transi-
tions t3fp4g and t4fp3g account for the enabling of t3 in
conflict with t4.

This example is sufficient to highlight the main point of
this transformation: the nonfree choice conflict has been
replaced by a series of mutually exclusive equal conflicts.
In particular, immediate transition t3f;g represents the case
when transition t3 is enabled, but t4 is not; on the contrary
t3fp4g, that is in free-choice conflict with t4fp3g, represents the
case when t3 and t4 are both enabled. In a similar manner,
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Fig. 5. Example of a stratification of a nonfree choice conflict among

immediate transitions: (a) original and (b) transformed GSPN.



transition t4f;g accounts for the case when t4 is enabled, but
t3 is not.

Definition 7. Given a GSPN N with all its places covered by
some P -semiflow; let Ic ¼ fta; tb; . . . ; thg be a set of
immediate transitions that form a nonfree choice conflict and
that satisfy the property of (4). For any transition tl 2 Ic, we
denote by P½l� the subset of places defined as:

P½l� ¼ fpi 2 P : 9tm 2 Ic; such that tm 6¼ tl and

pi 2 �tm and pi 62 �tlg:

The stratification of the conflict Ic is a transformation that
substitutes any transition tl belonging to Ic with its
stratification with respect to the subset of places P½l�.

The effects of the stratification on the T -semiflows of the
nets follow by Lemma 2. Table 1 outlines a procedure that
allows us to stratify a nonfree choice conflict among
immediate transitions. We consider now the effect of the
stratification of a nonfree choice conflict.

Example 3 [Stratification of nonfree choice conflicts in a
closed GSPN]. Fig. 5a depicts a GSPN that satisfies
Definitions 4 and 5. In this GSPN, there are two
minimal closed T -semiflows , x1 and x2, whose support
sets are jjxx1jj ¼ fT1; t3; T5; T7g and jjxx2jj ¼ fT2; t4; T6; T8g,
respectively.

The set of the two immediate transitions in nonfree
choice conflict is Ic ¼ ft3; t4g. For transition t3, the
stratification set of places is P½3� ¼ fp4g (see (7), while,
for transition t4, we have that P½4� ¼ fp3g. The net
obtained after the stratification is depicted in Fig. 5b.
Lemma 2 tells us how to derive the minimal
T -semiflows for the GSPN resulting after the stratifica-
tion. From the T -semiflow of the original GSPN
jjxx1jj ¼ fT1; t3; T5; T7g, we get two minimal T -semiflows

jjxx1a jj ¼ fT1; t3f;g; T5; T7g and jjxx1b jj ¼ fT1; t3fp4g; T5; T7g.
In the same manner from the T -semiflow jjxx2jj ¼
fT2; t4; T6; T8g, we get two minimal T -semiflows jjxx2a jj ¼
fT2; t4f;g; T6; T8g and jxx2b jj ¼ fT2; t4fp3g; T6; T8g.

Looking at the net resulting after this transformation,
it is possible to observe that the new GSPN has the same
reachability set as the original one (in fact, this can be
formally proven as it is shown in Section C of the
appendix) and replaces the nonfree choice conflict of the
original net with a set of “independent” (actually HME)
free-choice conflicts. Unfortunately, this transformation
also has the effect of destroying the closure property of
the original net since the new GSPN does not satisfy
Definition 1 any longer.

The first problem comes from the fact that Definition 1
does not account for inhibitor arcs. This issue can be easily
overcome by observing that the GSPNs we are consider-
ing are always covered by P -semiflows and, hence, have
finite state spaces. This means that the stratification can
always be performed without the use of inhibitor arcs, as
they can be removed with the introduction of comple-
mentary places and multiple arcs. On the other hand, this
argument can also be easily accounted for by extending
Definition 1 with the additional condition that all the
transitions belonging to a closed set must have the same
inhibition vector. However, even if Definition 1 is
extended, none of the new T -semiflows of the transformed
GSPN is closed! For instance, if we consider the
T -semiflow xx1b , it is easy to note that �t3fp4g ¼ fp3; p9; p4g,
and iiðt3fp4gÞ ¼ ½0; 0; 1; 1; 0; 0; 0; 0; 1�, but there is no other
transition covered by xx1b with output vector equal to this
input vector. The same consideration can be made for all
the other T -semiflows. In order to recover from this
(undesirable) situation, an additional transformation step
can be performed following the arguments that will be
discussed in the next section.

Remark. Before the presentation of the additional transfor-
mations that will recover the closure property we show
the result that can be obtained by performing the fusion
of timed and immediate transitions (after the stratifica-
tion of the nonfree choice conflict). Fig. 6 shows the SPN
derived from the application of such a fusion to the net of
Fig. 5b. The state space of the obtained SPN is equal to
the tangible state space of the original GSPN and also the
two corresponding CTMCs are identical.

Even if we provide a version of the closure definition
that accounts for inhibitor arcs (in the following this will be
done by means of Definitions 8 and 9), the SPN of Fig. 6
does not satisfy the (new version) of the closure property.
From this, we can conclude that a direct fusion of
immediate and timed transitions, in case of nonfree choice
conflicts does not preserve the closure property (please note
the difference between nonfree choice and free-choice
conflicts). We can conclude that the SPN of Fig. 6 does
not belong to the class of PF-SPNs (as defined by [4], [6], [9],
[8], [10]), although, further transformations on their
structure, will finally yield an SPN that is equivalent (in
terms of state space and CTMC) to that depicted in Fig. 6
and that has a product-form solution.
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TABLE 1
Transform a Non-Free-Choice Conflict

Among Immediate Transitions



5.2.1 Closure

The final observation of the previous section highlights the

fact that a new notion of the closure property that takes into

account inhibitor arcs needs to be introduced. To recover

from this situation, we propose a new transformation.
We start from a closed minimal T -semiflow of the original

GSPN; let xx be such a T -semiflow. If there is an immediate

transition tj 2 jjxxjj that has been stratified with respect to a

set of places P½j�, we can stratify all transitions belonging to

jjxxjj ÿ ftjg with respect to the same set of places P½j� to

obtain a new GSPN in which part of the closure feature has

been reconstructed. When we repeat the procedure for all

the immediate transitions that have been stratified, we

obtain a final GSPN that is closed. Fig. 7 shows the GSPN

resulting from the transformation of the net of Fig. 5b.
Note that, we do not state that all the T -semiflows of the

GSPN of Fig. 7 are closed; we are only saying that all the

transitions of this net are covered by minimal closed

T -semiflows. In particular, the closed minimal support

T -semiflows are:

jjxx1 f;gjj ¼ fT1f;g; t3f;g; T5f;g; T7f;gg;
jjxx1 fp4gjj ¼ fT1fp4g; t3fp4g; T5fp4g; T7fp4gg;
jjxx2 f;gjj ¼ fT2f;g; t4f;g; T6f;g; T8f;gg; and

jjxx2 fp4gjj ¼ fT2fp3g; t4fp3g; T6fp3g; T8fp3gg:

The first step for deriving a formalization of this transforma-

tion is to provide a version of Definition 1 and Definition 2

that accounts for inhibitor arcs.

Definition 8 (Closed set of transitions with inhibitor arcs).

For T 0 � T , let KðT 0Þ be the set of input and output vectors

for all the transitions in T 0; formally, KðT 0Þ is represented by

the following expression:

KðT 0Þ ¼
[
t2T 0

iiðtÞ [ ooðtÞf g:

The subset of transitions T 0 is said to be h-closed if, for any

l 2 KðT 0Þ, there exist ti; tj 2 T 0 such that ll ¼ iiðtiÞ, ll ¼ ooðtjÞ,
and hhðtiÞ ¼ hhðtjÞ; i.e., each output vector is also an input

vector for some transition in T 0 and, vice versa, each input

vector is also an output vector and all the transitions belonging

to T 0 have the same inhibitor vector.

Definition 9 (Structural constraints with inhibitor arcs). A

GSPN ðP; T ; Ið:; :Þ; Oð:; :Þ; Hð:; :Þ;�ð:Þ; wð:Þ;mm0Þ is said to

be h-closed iff 8 t 2 T there exists a minimal T -semiflow xx

such that t 2 jjxxjj, and jjxxjj is an h-closed set.

To show the effects of this transformation and to point

out its consequences, we focus our attention on closed

T -semiflows (of the original GSPN) that cover at most one

immediate transition belonging to a nonfree choice conflict.6

The procedure reported in Table 2 allows us to transform a

GSPN obtained by using the procedure of Table 1 into a

GSPN that satisfies Definition 9.
The application of the procedure of Table 2 to the GSPN

of Fig. 5 yields the GSPN depicted in Fig. 7.

Remark. It is interesting to point out the effect of these

transformations (stratification of a nonfree choice conflict

and stratification for obtaining the closure) on the closed

T -semiflows: each minimal closed T -semiflow of the

original GSPN has been replaced by a series of minimal

h-closed T -semiflows that account for all the possible

markings of the places involved in the stratification of

the nonfree choice conflict. For instance, if we compare

the GSPNs of Figs. 7 and 5a, the original minimal closed

T -semiflow jjxx1jj ¼ fT1; t3; T5; T7g has been replaced in the

GSPN of Fig. 7 with two minimal h-closed T -semiflows

jjxx1 f;gjj ¼ fT1f;g; t3f;g; T5f;g; T7f;gg and jjxx1 fp4gjj ¼ fT1fp4g;

t3fp4g; T5fp4g; T7fp4gg. The first accounts for the cases

when p4 is not marked, while the second refers to

the cases when p4 is marked. The same situation

happens for the original minimal closed T -semiflow

jjxx2jj ¼ fT2; t4; T6; T9g.
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Fig. 6. Example of a nonclosed SPN obtained by a direct fusion of
immediate and timed transitions.

Fig. 7. Closure of the GSPN of Fig. 5b.

6. In Section 5.2.3, this restriction will be removed and the analysis will
be extended to closed T -semiflows that cover more than a single immediate
transition in nonfree choice conflict.



5.2.2 Fusion of Immediate and Timed Transitions

Once we have obtained an equivalent GSPN that is closed,
we can perform the final transformation step that reduces
the GSPN to a PF-SPN. The fusion of timed and immediate
transitions uses a method similar to that of Section 5.1.
The only difference is the construction of the sets
Fc1;Fc2; . . . ;f g, where we must account for the inhibition

vectors too. In this case, for the immediate transitions of a
given Fci ¼ fti1 ; ti2 ; . . .g, we have that iiðti1Þ ¼ iiðti2Þ ¼ . . .
and hhðti1Þ ¼ hhðti2Þ ¼ . . . . The construction of the new
h-closed minimal T -semiflows is exactly the same as that
presented in Section 5.1. The derivation of the new h-closed
T -semiflows follows the results presented in Section B of the
appendix. The final result is an SPN that is h-closed. In Fig. 8,
we present the SPN transformation of the GSPN presented
in Fig. 5a.

Some interesting considerations can be made on the new
h-closed T -semiflows of the SPN of Fig. 8 by comparing them
with the original closed T -semiflows of the GSPN of Fig. 5a.
Table 3 shows the h-closed T -semiflows of the SPN of Fig. 8
and the T -semiflows of the GSPN of Fig. 5a. In Table 3, we
split the new h-closed minimal T -semiflows into three sets.

The first set contains the h-closed minimal T -semiflows that
represent the behavior of the closed T -semiflow of the GSPN
fT1; t3; T5; T7g conditioned with respect to place p4 (marked
versus nonmarked). The second set contains the h-closed
minimal T -semiflows that represent the behavior of the
closed T -semiflow of the GSPN fT2; t4; T6; T8g, conditioned
with respect to place p3 (marked versus nonmarked). The
last set contains only one h-closed minimal T -semiflow. This
has been originated by the fusion process and represents
the closed (nonminimal) T -semiflow of the GSPN having the
following support set fT1; t4; T6; T8; T2; t3; T5; T7g. This new
h-closed minimal T -semiflow is the important consequence
of the presence of nonfree choice conflicts. When the GSPN
contains such conflicts, the number of T -semiflows that have
to be considered for deriving the routing process (closed or
h-closed T -semiflows) is greater than that derived from the
incidence matrix of the original GSPN. In particular, some
of the minimal new T -semiflows that we must consider are
nonminimal T -semiflows of the original GSPN. Said in a
different way, this means that when a GSPN of this type
contains a nonfree choice conflict among immediate
transitions its structural analysis, to be complete, needs to
take into consideration certain types of nonminimal
T -semiflows that we now know how to characterize on the
basis of the discussion performed in this paper.

5.2.3 Closed GSPNs with Nonfree Choice Conflicts in

Cascade

Let N be a closed GSPN satisfying Definition 5, with Ic ¼
fti1 ; . . . ; tihg and Ic0 ¼ ftj1 ; . . . ; tjkg being two sets of nonfree
choice conflicting immediate transitions such that
Ic \ Ic0 ¼ ;. If there exists a closed T -semiflow xx that covers
a transition tia 2 Ic and a transition tjb 2 Ic0, i.e., tia 2 jjxxjj
and tjb 2 jjxxjj, with tia 2 Ic and tjb 2 Ic0, we need to
consider all the possible interleavings of the stratification
processes.

For any transition tj 2 T (timed or immediate) we define
the set of places P½j�. For all the immediate transitions tl,
involved in a nonfree choice conflict, we update P½l�
according to (7) (set of control places). We then extend the
definition of this set of places at the level of the minimal
closed T -semiflows. In particular, for any minimal closed
T -semiflow xx, we define the set of places

P½xx� ¼
[

tl2jjxxjj
P½l�: ð8Þ
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TABLE 2
Procedure that Yields an h-Closed GSPN

Fig. 8. The h-closed SPN transformation of the GSPN depicted in Fig. 5a.

TABLE 3
Minimal Closed T -semiflows of the GSPN of Fig. 5a
(First Column), and Minimal h-Closed T -Semiflows

of the Transformed SPN (Second Column)



As the next step, we introduce a relation on the set of
minimal closed T -semiflows. We define that two minimal
closed T -semiflows xx0 and xx00 are adjacent (denoted xx0Axx00) in
the following manner

xx0A xx00 iff 9 ta 2 jjxx0jj ^ 9 tb 2 jjxx00jj ^
ta and tb imm: trans: in nonfree choice conflict ^

P½xx0 � \ �tb 6¼ ;
� �

^ P½xx00 � \ �ta ¼ ;
� �

:

ð9Þ

Then, assume that the adjacent relation is transitive, i.e.,

there can be three minimal closed T -semiflows xx0; xx00; and xx000

such that xx0 A xx00 and xx00 A xx000. In this case, we derive that

xx0 A xx000. We denote the transitive closure of the adjacent

relation by means of A� By using the relation A�, we define

the final set of control places for any minimal closed

T -semiflow xx (denoted as P½xx�
A

) as:

P½xx�
A

¼ P½xx�
[

xx A� xx0

P½xx0 �: ð10Þ

Example 4 [T -semiflows that involve several nonfree choice

conflicts]. Fig. 9 shows a closed GSPN. In this net, there

are three minimal closed T -semiflows, and two disjoint

sets of immediate transitions in nonfree conflict. We can

see that xx2 A xx1 because 9 t7 2 jjxx2jj, t2 2 jjxx1jj, with

P½xx2� \ �t2 ¼ fp2g; and xx1 A xx3 because 9 t4 2 jjxx1jj, t10 2
jjxx3jj with P½xx1� \ �t10 ¼ fp9g. We can derive that xx2 A� xx1

and xx2 A� xx3 and using (10), we can derive the final set of

control places for all the minimal closed T -semiflows. In

particular, we have that P½xx1�A ¼ fp9g, P½x2�A ¼ fp2; p9g,
and P½x3�A ¼ f;g.
To derive the h-closed GSPN in this case we need to set

P½l�  P½xx�
A

, where xx is the minimal closed T -semiflow that
covers transition tl.

7 The h-closed GSPN is obtained by
applying the Procedure_Stratify (tl, P½l�), defined in Table 1,

to all transitions tl 2 T . A procedure that yields an h-closed

GSPN based on the previous considerations is presented in
Table 4.

Before illustrating the structure of the new h-closed

T -semiflows generated from the GSPN of Fig. 9, we have to
point out that we can avoid all the steps resulting from (8),
(9), and (10). We can stratify all the transitions of the GSPN
with respect to the union of all control places. The result in
this case is still an h-closed GSPN, the only difference is that
with a simplified stratification procedure it could be
possible to generate redundant h-closed T -semiflows.

From the GSPN of Fig. 9, after the stratification step, we
obtain an h-closed GSPN having the following h-closed

minimal T -semiflows (we label the new h-closed minimal
T -semiflows by using the same idea of the labeling of the
transitions):

jjxx1;f;gjj ¼ fT1f;g; t2f;g; T3f;g; t4f;g; T5f;gg
jjxx1;fp9gjj ¼ fT1fp9g; t2fp9g; T3fp9g; t4fp9g; T5fp9gg
jjxx2;f;gjj ¼ fT6f;g; t7f;g; T8f;gg
jjxx2;fp2gjj ¼ fT6fp2g; t7fp2g; T8fp2gg
jjxx2;fp9gjj ¼ fT6fp9g; t7fp9g; T8fp9gg
jjxx2;fp2;p9gjj ¼ fT6fp2;p9g; t7fp2;p9g; T8fp2;p9gg
jjxx3jj ¼ fT9; t10; T11g:

It is interesting to point out the meaning of the new h-closed

T -semiflows. For instance the T -semiflow xx2;f;g accounts for
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Fig. 9. A closed GSPN with T -semiflows that involve two nonfree choice

conflicts.

TABLE 4
Procedure that Yields an h-Closed GSPN

This is a general version that allows us to Manage T -semiflows with more
than a single immediate transition in nonfree choice conflict.

7. If there is more that one minimal closed T -semiflow that covers tl, we
choose the one with the largest set of places P½xx�

A

.



the behavior of the original T -semiflow xx2 when places p2

and p9 are non marked, the T -semiflow xx2;fp2g accounts for
the behavior of xx2 when p2 is marked but p9 is not marked,
in the same manner xx2;fp9g accounts for the behavior of xx2

when p9 is marked but p2 is not marked, and xx2;fp2;p9g
accounts for the behavior of xx2 when both p2 and p9 are
marked. In the same manner the other new h-closed
T -semiflows account for the possible marking situations of
the sets of places derived by using (8), (9), and (10).

The final step, that is the fusion of timed and immediate
transitions, does not require different treatment with
respect to the procedure presented in Section 5.2.2.

5.2.4 Routing in PFS GSPNs with

Nonfree-Choice Conflicts

The construction of the routing matrix for GSPNs with
nonfree choice conflicts is based on the minimal h-closed
T -semiflows that have been computed by using all the steps
presented in the previous sections. When all the minimal
h-closed T -semiflows are obtained, by using Definition 3, we
can derive the FR� classes and from them the routing
matrix. It is interesting to compare the structure of the
routing matrix of a PF-GSPN with nonfree choice conflicts
with that of a similar SPN obtained by replacing the
immediate with timed transitions. Fig. 10a shows the
routing matrix of the SPN obtained by replacing, in the
GSPN of Fig. 7a, transitions t3 and t4 with two timed
transitions. The FR� classes of this SPN can be obtained by
the closed T -semiflows of the original GSPN (first column of
Table 3) by relabeling transition t3 and t4.

Fig. 10b shows the routing matrix of the GSPN obtained
through the transformation presented in the previous
sections (we can derive the FR� classes by the list of the
minimal h-closed T -semiflows listed in Table 3). The FR�

classes to build this routing matrix are obtained by the

h-closed minimal T -semiflows of the transformed SPN
(second column of Table 3). The third FR� class is derived
by applying Definition 3 and comprises the following
h-closed minimal T -semiflows: T1fp4gt3fp4g; T5fp4g; T7fp4g

� 	
,

T2fp3gt4fp3g; T6fp3g; T8fp3g
� 	

, and

fT1fp4gt4fp3g; T6fp3g; T8fp3g; T2fp3gt3fp4g; T5fp4g; T7fp4gg:

Note that, since iiðT1fp4gt3fp4gÞ¼ iiðT1fp4gt4fp3gÞ and iiðT2fp3g
t4fp3gÞ ¼ iiðT2fp3gt3fp4gÞ in the routing matrix of Fig. 10b
there are only iiðT1fp4gt3fp4gÞ and iiðT2fp3gt4fp3gÞ. In this
matrix, the values of �, �, , and � are computed by
using (2). It is interesting to point out that, although we
can compute the routing matrix of a PF-GSPN on the
transformed SPN by computing all the minimal
T -semiflows and by selecting those that satisfy the
h-closure property, we can avoid the recomputation of all
minimal T -semiflows because all the h-closed minimal
T -semiflows that are needed for the computation of the
routing matrix can be obtained by applying the transfor-
mation rules presented in the previous sections.

6 PRODUCT-FORM RESULTS FOR GSPNS

The SPNs resulting from the different transformation steps
introduced in the previous sections are characterized by
what we called the h-closedness property. The name of this
property points out the fact that it is a generalization of the
closedness property introduced for PFS SPNs (see [4]). We
can conclude that the transformations proposed in this
paper allow the identification of the routing process
embedded in the GSPNs satisfying Definitions 4 and 5
and, thus, of finding the solution for the traffic equations.
We can also observe that all the derivations performed in
the previous sections can be interpreted as the steps of a
lengthy proof of the following:
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Fig. 10. (a) Routing matrix of an SPN obtained from the GSPN of Fig. 7a by simply replacing transitions t3 and t4 with two timed transitions.
(b) Routing matrix underlying the GSPN of Fig. 7a and constructed on the basis of the list of minimal h-closed T -semiflows of Table 3.



Theorem 1. Every GSPN that satisfies Definitions 4 and 5
admits a solution for its traffic equations.

The existence of a solution for the traffic equations is not
a sufficient condition to assert a PFS for the GSPN, but the
meaning of this theorem is that the GSPNs that satisfy the
criteria expressed by Definitions 4 and 5 are structurally
suitable for a product-form solution. To determine whether
these GSPNs admit PFS, we need to apply the results
derived in [6] and [8] to the equivalent SPNs constructed
using the procedure described in this paper. When this is
the case, it is possible to obtain performance measures by
using the computational algorithms for PF-SPNs proposed
in [13], [14].

7 CONCLUSION AND FURTHER DEVELOPMENTS

In this paper, we have shown that closed GSPNs admit a
Product-Form solution as long as they satisfy some
additional constraints. The proof of this claim has been
carried out by showing that, given a GSPN of this type, an
equivalent PF-SPN can be constructed using a sequence of
transformation steps driven by the structural analysis of the
GSPN performed disregarding time considerations.

The identification of the routing process embedded in
PF-GSPNs has been inspired by the similar analysis
conducted for PF-SPNs, but allows us to point out some
important differences among the properties of these two
classes of stochastic Petri nets:

. The structural constraints proposed for the PF-SPNs
are not enough to ensure that the GSPNs that satisfy
them have product-form solutions too. Indeed, in
some cases, they do not even ensure the liveness of
the net under investigation (in the case of SPNs, these
constraints ensure the structural liveness [4], [8]).

. The analysis cannot be based on minimal T -semiflows
only, but additional nonminimal (in the original
GSPN) T -semiflows that cover the immediate transi-
tions of nonfree choice conflicts of the GSPN have to
be considered.

These new T -semiflows could be computed from the
standard structural analysis of the equivalent SPN that is
constructed by the algorithm that implements the transfor-
mation steps discussed in the paper. In this paper, we have
shown, however, that a direct method exists that builds on
the results of the analysis of the structural component of the
GSPN model avoiding the complexity of the equivalent
SPN. At the present stage of our research, the incidence
matrix of the equivalent SPN model that is much larger than
that of the original GSPN is only used to test the validity of
the Rank theorem [6] that is needed to prove that SPN
models whose traffic equations admit a solution are also
Product-Form. This way of deriving important invariant
properties of GSPNs from the analysis of their structural
components augmented with considerations on the priority
of immediate transitions shows a direction of research that
can be pursued in order to obtain a structural analysis of
Petri nets with priorities whose qualitative behaviors are
similar to those of GSPNs.

Finally, we may observe that, in the process of con-
structing a PF-SPN from a closed GSPN, there exist certain
SPNs that have a product-form solution even if they do not
satisfy the produc-form constraints defined in [4], [6], [9].
This can be seen by considering the SPN depicted in Fig. 6.
This SPN does not satisfy the produc-form constraints but,
as we showed in the paper, by defining some transforma-
tions on the net it is possible to obtain an equivalent model
that satisfies the PF-SPN constraints. One of the ongoing
research efforts on this topic is the derivation of other
transformation rules that allow us to recognize produc-
form models that “apparently” do not satisfy the classical
constraints defined for PF-SPNs.

APPENDIX 1

FUNCTIONAL PROPERTIES OF CLOSED GSPNS

A GSPN net N is live when every transition can ultimately
fire from every reachable marking and it is structurally live
when there exists an initial marking mm0 such that ðN ;mm0Þ is
live. A marking mm is an home state iff it is reachable from
every reachable marking, and ðN ;mm0Þ is reversible iff mm0 is a
home state.

We assume that the initial marking mm0 is a tangible
marking. If this is not the case (i.e., if mm0 is a vanishing
marking) we can repeat the analysis for all the tangible
markings that can be reached starting from mm0.

Lemma 3. Given a GSPN system (N ;mm0Þ that satisfies
Definition 4, if t 2 T is enabled in mm 2 RðN ;mm0Þ, then for
any t0 belonging to the same closed support T -semiflow of t,
there exists a finite firing sequence � such that mmÿ!� mm0 and t0

is enabled in mm0.

Proof. Let mm be a marking that enables transition t. From
Definition 4, it follows that there exists a transition t0

such that ooðtÞ ¼ iiðt0Þ; hence, the firing of t yields a
marking mm0 that enables t0. The firing of t0 enables t00 and
so on. tu

Lemma 4. Given a GSPN system ðN ;mm0Þ that satisfies
Definition 4 and 5.

1. If t 2 T can be fired in mm0, then ðN ;mm0Þ is reversible.
2. The net N is structurally live.

Proof.

1. For any mm 2 RðN ;mm0Þ there is a finite firing

sequence � ¼ t�1
; t�2

; . . . ; t�l such that mm0ÿ!
t�1
mm1

. . .mmlÿ1ÿ!
t�l
mm. Now, we have to prove that there

is a finite firing sequence � such that mmÿ!� mm0. We
prove this result by induction on the length of the
finite firing sequence �. The basic step of the
induction is a finite firing sequence � ¼ t�1

(i.e.,
the firing sequence contains only one transition).
Since we have assumed that mm0 is a tangible
marking, it follows from Lemma 3 that there is a
finite firing sequence � ¼ jjxxjj ÿ ft�1

g, where jjxxjj
is the support set of the closed T -semiflow to
which t�1

belongs. From this, we have that

mm0ÿ!
t�1
mm1ÿ!

�
mm0.

Now, we assume that the lemma holds for all
finite firing sequences �0 ¼ t�1

; t�2
; . . . ; t�i (i.e.,

finite firing sequences containing i transitions).
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Let � ¼ t�1
; t�2

; . . . ; t�i ; t�iþ1
be a finite firing se-

quence such that

mm0ÿ!
t�1
mm1ÿ!

t�2
mm2 � � � ÿ!

t�i
mmiÿ!

t�iþ1
mmiþ1:

If the marking mmi is a tangible marking, then we
can apply the basic inductive step. We have that

mmiÿ!
t�iþ1

mmiþ1ÿ!
�0

mmi;

with �0 ¼ jjxx0jj ÿ ft�iþ1
g, where jjxx0jj is the support

set of the closed T -semiflow to which t�iþ1
belongs.

From the inductive hypothesis, we know that the
lemma holds for all finite firing sequences
containing i transitions. This implies that there
exists a finite firing sequence �00 such that

mmiÿ!
�00

mm0. From this, it follows that

mm0ÿ!
�0
mmiþ1ÿ!

�0

mmiÿ!
�00

mm0:

We now address the case when mmi is a
vanishing marking. Let T ck ¼ fti1 ; ti2 ; . . . ; tikg be
the subset of conflicting immediate transitions
that are enabled in marking mmi (t�iþ1

2 T ck). Since
the GSPN satisfies Definition 5, the firing of t�iþ1

disables all the other transitions belonging to T ck.
From Lemma 3, if follows that all the transitions
of the closed T -semiflow at which t�iþ1

belongs can
fire and, hence,

mmiÿ!
t�iþ1

mmiþ1ÿ!
�0

mmi;

with � ¼ jjxx0jj ÿ ft�iþ1
g, where jjxx0jj is the support

set of the closed T -semiflow to which t�iþ1
belongs.

From the induction hypothesis, we know that
there exists a finite firing sequence �00 such that

mmiÿ!
�00

mm0. From this it follows that

mm0ÿ!
�
mmiþ1ÿ!

�0

mmiÿ!
�00

mm0:

Note that, if the GSPN does not satisfy
Definition 5 after the firing of t�iþ1

2 T ck, there
can be another transition t0 2 T ck that remains
enabled in marking mmiþ1. Since t0 is an immediate
transition, it must fire before any other timed
transition. In this manner, we can have situations
similar to the GSPN of Fig. 1b, that is, the marking
mmi cannot be reproduced.

2. To prove that N is structurally live, we have to
prove that there exists an initial marking mm0 such
that ðN ;mm0Þ is live. Let mm0 be a marking that
enables at least one transition in each closed
T -semiflow. In this case, from Lemma 3, it follows
that 8 t 2 T there exists a finite firing sequence �
such that mm0ÿ!

�
mm and mm enables t. We have that

8 t 2 T and mm 2 RðN ;mm0Þ from Statement 1 of
this lemma. It follows that there is a finite firing
sequence � such that mmÿ!� mm0. Since we know that
mm0 enables at least a transition in each closed
T -semiflow, using Lemma 3, we prove the
structural liveness of N . tu

APPENDIX 2

EFFECTS OF THE FUSION AND OF THE

STRATIFICATION ON THE CLOSED T -Semiflows

Lemma 5. We have that:

1. If xx is a closed minimal support T -semiflow, then for

any t 2 jjxxjj, there exist a unique t0 2 jjxxjj with

ooðt0Þ ¼ iiðtÞ and a unique t00 2 jjxxjj with iiðt00Þ ¼ ooðtÞ.
2. If T 0 � T and for all t 2 T 0 there exist a unique t0 2
T 0 with ooðt0Þ ¼ iiðtÞ and a unique t00 2 T 0 with iiðt00Þ ¼
ooðtÞ then T 0 is the support set of a closed minimal

T -semiflow.

Proof. Assume that there are two transitions ta; tb 2 jjxxjj
such that ooðtaÞ ¼ ooðtbÞ. As a consequence of Lemma 1,

there must be two transitions tc; td 2 jjxxjj such that iiðtcÞ ¼
iiðtdÞ ¼ ooðtaÞ ¼ ooðtbÞ. Definition 1 implies that we can

build two cycles fth0
; th1

; . . . ; thlÿ1
g and ftk0

; tk1
; . . . ; tkhÿ1

g
such that:

. thi 2 jjxxjj, and ooðthiÞ ¼ iiðthðiþ1Þ mod l
Þ (for i ¼ 0; . . . ;

lÿ 1);
. tki 2 jjxxjj, and ooðtkjÞ ¼ iiðtkðjþ1Þ mod h

Þ (for j ¼ 0; . . . ;
hÿ 1);

. th0
¼ ta, th1

¼ tc, tk0
¼ tb, and tk1

¼ tc.
Since ta 6¼ tc and tb 6¼ td we have that these cycles are the

support sets of two different closed T -semiflows with

fth0
; th1

; . . . ; thlÿ1
g � jjxxjj, an d ftk0

; tk1
; . . . ; tkhÿ1

g � jjxxjj,
but this is a contradiction of the assumption that xx is a

minimal closed support T -semiflow.

On the other hand, let us assume that T 0 is a set of
transitions such that for any t 2 T 0 there exist a unique

t0 2 T 0 with ooðt0Þ ¼ iiðtÞ and a unique t00 2 T 0 with

iiðt00Þ ¼ ooðtÞ. We can start from transition t (call it th0
);

and, as a consequence of Definition 1, we can order all

the transitions of T 0 in a cycle C ¼ fth0
; th1

; . . . ; thlÿ1
g such

that C ¼ jT 0j (i.e., all the transitions of T 0 are involved in

the cycle) and ooðthiÞ ¼ iiðthðiþ1Þ mod l
Þ for i ¼ 0; . . . ; lÿ 1. By

assumption, we know that T 0 is a closed set. We can also
verify that T 0 is the support of a T -semiflow because

CC½Pth0
� þ . . .þ CC½Pthlÿ1

� ¼ ooðth0
ÞT ÿ iiðth0

ÞT þ ooðth1
ÞTÿ

þ iiðth1
ÞTþ. . .þooðthlÿ1

ÞTÿiiðthlÿ1
ÞT

¼Def:1ÿ iiðth0
ÞT þ ooðthlÿ1

ÞT ¼Def:1
0:

We only have to prove that xx, i.e., the T -semiflow that

has T 0 as support set, is minimal. Assume that it is not a

minimal T -semiflow. In this case, there must be a

T -semiflow ~xxxx such that ~xxxx � xx. This means that there exists

a subset of transitions ftk0
; . . . ; tkhÿ1

g that are a proper
subcycle of C. If C can be decomposed in subcycles, then

there must exist two transitions t0; t00 2 C such that t0 6¼ t00
and iiðt0Þ ¼ iiðt00Þ. In this case, we obtain a contradiction of

the assumption that for all transitions t 2 C there exists a

unique transition ~tt 2 C with ooð~ttÞ ¼ iiðtÞ. tu

Let N ¼ ðP; T ; Ið:; :Þ; Oð:; :Þ; Hð:; :Þ;�ð:Þ; wð:Þ;mm0Þ be a

GSPN satisfying Definition 4, let Fc ¼ ti1 ; ti2 ; . . . ; tihf g be

the set of immediate transitions in free-choice conflict
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involved in the fusion process, and T ðtÞ ¼ Tj1 ; Tj2 ; . . . ; Tjl
� 	

be the set of all the transitions such that FCðTjaÞ ¼ Fc, for

a ¼ 1; . . . ; l (see Fig. 11).
These subsets are defined such that 6 9t0 2 T such that

iiðt0Þ ¼ iiðti1Þ ¼ . . . ¼ iiðtihÞ and t0 62 Fc, and T ðtÞ contains all

the transitions T 0 with ooðT 0Þ ¼ iiðti1Þ ¼ . . . ¼ iiðtihÞ. We

denote by XðcÞ the set of minimal closed support

T -semiflows that cover at least one transition belonging to

Fc or to T ðtÞ, i.e.,

XðcÞ ¼ fxx : xx is a m: c: s: T -semiflow and�
9 Tja 2 T ðtÞ ^ Tja 2 jjxxjj

�_�
9 tic 2 Fc ^ tic 2 jjxxjj

��
:

Let Tja 2 T ðtÞ and define XðcÞðTjaÞ as the subset of XðcÞ with

the following characteristic:

XðcÞðTjaÞ ¼ xx : xx 2 XðcÞ ^ Tja 2 jjxxjj
n o

:

Lemma 6. We have that

1.
[

Tja2 T ðtÞ
XðcÞðTjaÞ ¼ XðcÞ,

2. 8 Tja ; Tjb 2 T ðtÞ,
Tja 6¼ Tjb ) XðcÞðTjaÞ \ XðcÞðTjaÞ ¼ ;.

Proof. For the first statement of the lemma, we have to

prove that there is not a T -semiflow xx such that 9 tic 2 Fc
and tic 2 jjxxjj, but 6 9 Tja 2 T ðtÞ such that Tja 2 jjxxjj. A

similar closed T -semiflow cannot exist, i.e., it would be a

contradiction of Definition 1 (closure).
To prove the second statement, we can prove the

following statements:

. 6 9xx 2 XðcÞ such that 9Tja ; Tjb 2 T ðtÞ with Tja 2 jjxxjj
and Tjb 2 jjxxjj,

. 6 9xx 2 XðcÞ such that 9tic ; tid 2 Fc with tic 2 jjxxjj
and tid 2 jjxxjj.

We can observe that both the previous statements follow

from Lemma 5 (point 2) and, hence, this concludes the

proof of the lemma. tu

Lemma 7. Let N be a closed GSPN and xx1; xx2; . . . ; be its

minimal closed support T-semiflows. Any combination of some

of these invariants is still a (nonminimal) closed support

T-semiflow.

Proof. Let xx ¼ �1 � xx1 þ �2 � xx2 þ . . . (with �i 2 IN) be a
combination of the minimal closed support T-semiflows

xx1; xx2; . . . ; . It is immediate to see that

CC � xx ¼ CC � ð�1 � xx1 þ �2 � xx2 þ . . .Þ
¼ �1CCxx1 þ �2Cxx2 þ . . . ¼ 0;

hence, xx is a nonminimal T-semiflow. The closedness
immediately follows from Definition 1. tu
The following lemma proves that, in case of free-choice

conflict between immediate transitions, all the new fused

transitions are covered by a minimal closed support
T -semiflow. The lemma also gives a constructive manner

for deriving the closed T -semiflows for the new GSPN.
In the following, we denote by C and CC0 the incidence

matrices of the original and of the new GSPN, respectively.

With C½P; ti� (respectively CC0½P; ti�) we denote the column of
C (respectively CC0) corresponding to transition ti.

Lemma 8. Let T ðtÞ ¼ Tj1 ; Tj2 ; . . . ; Tjl
� 	

be a subset of timed

transitions such that

FCðTj1Þ ¼ FCðTj2Þ ¼ . . . ¼ FCðTjlÞ ¼ Fc ¼ ti1 ; ti2 ; . . . ; tihf g;

after the fusion in the transformed GSPN N 0 all the fused

transitions Tj1
ti1 ; Tj1 ti2 ; . . . ; Tj1

tih , Tj2ti1 ; Tj2
ti2 ; . . . ; Tj2 tih ,

. . .Tjl ti1 ; Tjl ti2 ; . . . ; Tjl tih are covered by a minimal closed

support T -semiflow.

Proof. The transformed GSPN N 0, with Tja 2 T ðtÞ and tic 2
Fc (in N ). We distinguish two cases:

1. In the original GSPN N , there is a minimal closed
support T -semiflow xx such that Tja 2 jjxxjj and
tic 2 jjxxjj.

2. In the original GSPN N , there are two minimal
closed support T -semiflows xx0 and xx00 such that
Tja 2 jjxx0jj, and tic 2 jjxx00jj, and xx0 6¼ xx00.

Let xx be the minimal closed support T-semiflow that
covers tic and Tja . The incidence matrix CC0 can be
obtained in the following manner: let CC½P; Tja � and
CC½P; tic � be the columns corresponding to transitions Tja
and tic . We have that

CC½P; Tja � þ CC½P; tib � ¼ ooðTjaÞ
T ÿ iiðTjaÞ

T þ ooðticÞ
T ÿ iiðticÞ

T

¼Def:1
ooðticÞ

T ÿ iiðTjaÞ
T

¼ CC0½P; Tja tic �:

By the definition of T-semiflow, we have that
CC � xx ¼ 0, that can be written as

CC½P; t1� � x1 þ CC½P; t2� � x2 þ � � � þ CC½P; tjT j� � xjT j ¼ 0;

where xi (for i ¼ 1; . . . ; jT j) is the ith component of xx. By

Lemma 1, we can write that

CC½P; t1� � x1 þ � � � þ CC½P; Tja � � 1þ CC½P; tic � � 1þ � � �
þ CC½P; tjT j� � xjT j ¼ 0:

Let us focus our attention on the terms CC½P; Tja � �
1þ CC½P; tic � � 1, we have that

CC½P; Tja � þ CC½P; tic � ¼ CC0½P; Tja tic �:
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From this, it follows CC0 � xx0 ¼ 0 where xx0 is a T -semiflow

with the following support

jjxx0jj ¼ jjxxjj ÿ fTjag ÿ fticg [ fTja ticg: ð11Þ

Since the input and the output vector of Tja tic are equal to

the input vector of Tja and the output vector of tic ,

respectively, it follows that the support set of xx0 is closed.

The “minimality” of xx0 can be proven by observing that

the original closed T -semiflow xx satisfies Lemma 5

(point 1). After the fusion, jjxx0jj satisfies point 2 of

Lemma 5 and, hence, it is a minimal closed support

T -semiflow.
We now address the case when the fused transition

comes from transitions covered by different minimal
closed support T-semiflows. Assume that Tja 2 T ðtÞ and
tic 2 Fc and let xx1; xx2 be the two minimal T-semiflows
that cover such transitions, i.e., Tja 2 jjxx1jj, tic 2 jjxx2jj,
with xx1 6¼ xx2. Moreover, let us also identify another
pair of transitions Tjb and tid with the following
characteristics: Tjb 2 jjxx1jj and tid 2 jjxx2jj. After the
fusion, in the GSPN N 0, we can find transitions Tja tic
and Tjb tid . We have that

CC½P; Tja � þ CC½P; tic � ¼ ooðTjaÞ
T ÿ iiðTjaÞ

Tþ
ooðticÞ

T ÿ iiðticÞ
T

¼Def:1
ooðticÞ

T ÿ iiðTjaÞ
T

¼ CC0½P; Tja tic �;

and similarly

CC½P; Tjb � þ CC½P; tid � ¼ CC0½P; Tjb tid �:

From Lemma 7, it follows that, in N , xx ¼ xx1 þ xx2 is a
nonminimal closed support T-semiflow, i.e., CC � xx ¼ 0.

Let us focus our attention on the T-semiflow xx. We

have that xx covers the transitions Tja , Tjb , tic , and tid
and no other transitions belonging to T ðtÞ or to Fc
(Lemma 6). In particular, if we denote by xa; xb; xc; xd
the components of xx corresponding to these transitions,

we can write

CCx ¼ . . .þ CC½P; Tja �xa þ CC½P; Tjb �xb þ CC½P; tic �xcþ
C½P; tid �xd þ . . .

¼ . . .þ CC½P; Tja �1þ CC½P; Tjb �1þ CC½P; tic �1þ
þ CC½P; tid �1þ . . .CC0½P; Tja tic �1þ CC0½P; Tjb tid �1þ . . .

¼ CC0xx0;

where xx0 is obtained by removing from the support of xx

the components corresponding to transitions Tja , Tjb , tic ,

and tid , and adding the components corresponding to

fused transitions Tja tic and Tjb tid , i.e.,

jjxx0jj ¼ jjxx1jj [ jjxx2jj ÿ fTja ; Tjb ; tic ; tidg [ fTja tic ; Tjb tidg: ð12Þ

From this it follows that, in the transformed GSPN, xx0

is a T -semiflow. The closure property follows from
Definition 1. Now, we can prove that xx0 is a minimal
T -semiflow by using Lemma 5 (point 2).

It is easy to verify that jjxx0jj satisfies Lemma 5 (point 2)
because in the original (nonminimal) closed T -semiflow xx
there are four transitions that do not satisfy this
assumption: Tja , Tjb , tic , and tid (i.e., Tja and Tjb have
the same output vector, and tic and tid the same input
vector). After the fusion, these transitions are substituted
by the fused transitions Tja tic and Tjb tid . Since
ooðTja ticÞ ¼ ooðticÞ, we have that there is no other transition
with this output vector. The same can be observed for the
other fused transitions. tu

Proof of Lemma 2. The effect of the stratification of a
transition on the incidence matrix is simply that the
column corresponding to the stratified transition is
replaced with a number of columns that is equal to the
number of new transitions generated by the stratifica-
tion. Since the incidence matrix does not account for test
(a pair of input and output arcs from and towards the
same place) and inhibitor arcs, the new columns are
identical to the column of the stratified transition. In this
manner, if Tj is the stratified transition and xx is a
T -semiflow with Tj 2 jjxxjj, for any transition Tjsi gener-
ated by the stratification, we have that

CC � x ¼ . . .þ CC½P; Tj�1þ . . . ¼ 0

¼ . . .þ CC½P; Tjsi�1þ . . . ¼ CC0 � xxsi ¼ 0;

where xxsi is obtained from xx by replacing the component
corresponding to Tj with the component that corre-
sponds the (new) transition Tjsi. In other words, for any
(new) transition Tjsi, xxsi is a copy of the minimal
T -semiflow xx. tu

APPENDIX 3

EFFECTS OF THE FUSION AND OF THE

STRATIFICATION ON THE STATE SPACE

For a given closed GSPN N ¼ ðP; T ; Ið�; �Þ; Oð�; �Þ; Hð�; �Þ;
wð�Þ;mm0Þ, we group all the immediate transitions that are in
free-choice conflict among them. We can denote by F ¼
Fc1;Fc2; . . .ð Þ the set of these groups. Obviously, 6 9 Fca;
Fcb 2 F such that Fca 6¼ Fcb and Fca \ Fcb 6¼ ;. Any Fci ¼
ti1 ; ti2 . . .f g is “maximal” i.e., there is no transition tl 62 Fci

such that tl is in free-choice conflict with a transition
belonging to Fci.

We assume that the initial marking of N is tangible. We
investigate what happens when we “fuse” the immediate
transitions of a maximal free-choice conflict group Fci. We
denote by N 0 ¼ ðP0; T 0; I 0ð�; �Þ; O0ð�; �Þ; Hð�; �Þ; w0ð�Þ;mm0Þ the
GSPN resulting after the application of the transformation.

Lemma 9. Let N be a closed GSPN and Fci ¼ ti1 ; ti2 . . .f g be a
“maximal” subset of immediate transitions in free-choice
conflict. If we denote by N 0 the GSPN resulting after the
application of the fusion process presented in Section 5.1 to
Fci, we can prove that the GSPNs N and N 0 have the same
tangible state space and generate the same CTMC.

Proof. Let Tj 2 T be a timed transition such that
FCðTjÞ ¼ Fci. By definition of the transformation, it is
immediately seen that any marking mm that enables Tj (in
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N ) enables all the transitions Tjti1 ; Tjti2 ; . . . 2 T 0 obtained

by fusing Tj with all the immediate transitions belonging

to FCðTjÞ. Starting from mm, we may observe that, if (in

N ) Tj followed by tih fire, we first obtain a vanishing

marking mm0 and then

mm00ðmmÿ!
Tj
mm0ÿ!

tih
mm00Þ:

In particular, we have that mm00 ¼ mmÿ iiðTjÞ þ ooðTjÞ ÿ
iiðtihÞ þ ooðtihÞ. The closure property ensures that ooðTjÞ ¼
iiðtihÞ and, hence, mm00 ¼ mmÿ iiðTjÞ þ ooðtihÞ. By definition of

“fused” transition, it follows that, in the transformed

GSPN, there exists a transition Tjtih with iiðTjtihÞ ¼ iiðTjÞ
and ooðTjtihÞ ¼ ooðtihÞ. From this, it follows that, in the

transformed GSPN N 0, mmÿ!
Tjtih

mm00. On the other hand, if in

the transformed GSPN N 0, a transition Tjtih fires,

yielding mmÿ!
Tjtih

mm00, in the original GSPN N , there must

be a firing sequence Tj followed by tih such that

mmÿ iiðTjÞ þ ooðTjÞ ÿ iiðtihÞ þ ooðtihÞ ¼ mm00.
The rates from mm to mm00 in N and N 0 are equal by

definition of the fusion process. tu

For a given closed GSPN N ¼ ðP; T ; Ið�; �Þ; Oð�; �Þ; Hð�; �Þ;
wð�Þ;mm0Þ, let Tj 2 T be a transition that we stratify8 with

respect to the subset of places P0. According to Definition 6,

we obtain a new GSPN N 0 ¼ ðP; T 0; I 0ð�; �Þ; O0ð�; �Þ; H 0ð�; �Þ;

w0ð�Þ;mm0Þ, where T 0 ¼ T
[2jPj
i¼1

fTjsig ÿ fTjg. We can prove

that

Lemma 10. Let N be a closed GSPN and Tj a transition that we

stratify with respect to the subset of places P0 (with
�Tj \ P0 ¼ ;, T �j \ P0 ¼ ;, and �Tj \ P0 ¼ ;) yielding a new

GSPN N 0. The GSPNs N and N 0 have the same tangible state

space and generate the same CTMC.

Proof. By definition of stratification of a transition Tj with

respect to the subset of placesP0, all the (newly) generated

transitions transitions Tjsi (with i ¼ 1; . . . ; 2jP
0j) are

mutually exclusive HME. These transitions account for

all the possible marking situations (place marked, place

not marked) of all the places belonging to the subset P0.
Let mmÿ!

Tj
mm0 be a state transition (in N ) due to the

firing of Tj. By definition of stratification, there exists a
unique Tjsa 2 T 0 enabled in mm whose firing yields the
marking mm0, that is, mm � iiðTjsaÞ and mm < hhðTjsaÞ and

mmÿ!
Tjsa

mm0 (in N 0).
On the other hand, if (in N 0) there is a state transition

mmÿ!
Tjsb

mm0, with Tjsb 2 T 0, this means that the marking m

(inN ) enables transition Tj and, since all the places of the

subset P0 are connected with Tjsb by means of test (pair

of input and output arcs) and inhibitor arcs that do not

modify the marking of the places of P0, we have that

mmÿ!
Tj
mm0. tu

ACKNOWLEDGMENTS

This work was partially supported by the Italian Ministry
for University and Scientific and Technological Research
(MURST) in the framework of the PLANET-IP project.

REFERENCES

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G.
Franceschinis, Modelling with Generalized Stochastic Petri Nets. John
Wiley & Sons, 1995.

[2] Performance Models for Discrete Event Systems with Synchronisation:
Formalisms and Analysis Techniques, G. Balbo and M. Silva, eds.,
Book of the MATCH Advanced School, KRONOS, Zaragoza,
Spain, 1998.

[3] F. Baskett, K.M. Chandy, R.R. Muntz, and F. Palacios, “Open,
Closed and Mixed Networks of Queues with Different Classes of
Customers,” J. ACM, vol. 22, no. 2, pp. 248–260, 1975.

[4] R.J. Boucherie and M. Sereno, “On Closed Support t-Invariants and
Traffic Equations,” J. Applied Probability, vol. 35, pp. 473–481, 1998.

[5] G. Chiola, S. Donatelli, and G. Franceschinis, “GSPNs versus SPNs:
What is the Role of Immediate Transitions?” Proc. Fourth Int’l
Workshop Petri Nets and Performance Models, pp. 20–31, Dec. 1991.

[6] J.L. Coleman, W. Henderson, and P.G. Taylor, “Product form
Equilibrium Distributions and an Algorithm for Classes of Batch
Movement Queueing Networks and Stochastic Petri Nets,”
Performance Evaluation, vol. 26, no. 3, pp. 159–180, Sept. 1996.

[7] W.J. Gordon and G.F. Newell, “Closed Queueing Systems with
Exponential Servers,” Operations Research, vol. 15, pp. 254–265, 1967.

[8] S. Haddad, P. Moreaux, M. Sereno, and M. Silva, “Structural
Characterization and Qualitative Properties of Product Form
Stochastic Petri Nets,” Proc. 22nd Int’l Conf., June 2001.

[9] W. Henderson, D. Lucic, and P.G. Taylor, “A Net Level
Performance Analysis of Stochastic Petri Nets,” J. Australian Math.
Soc. Series B., vol. 31, pp. 176–187, 1989.

[10] W. Henderson and P.G. Taylor, “Embedded Processes in
Stochastic Petri Nets,” IEEE Trans. Software Eng., vol. 17, pp. 108–
116, Feb. 1991.

[11] J.R. Jackson, “Jobshop-Like Queueing Systems,” Management
Science, vol. 10, no. 1, pp. 131–142, Oct. 1963.

[12] T. Murata, “Petri Nets: Properties, Analysis, and Applications,”
Proc. IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[13] M. Sereno and G. Balbo, “Computational Algorithms for Product
form Solution Stochastic Petri Nets,” Proc. Fifth Int’l Workshop Petri
Nets and Performance Models, pp. 98–107, Oct. 1993.

[14] M. Sereno and G. Balbo, “Mean Value Analysis of Stochastic Petri
Nets,” Performance Evaluation, vol. 29, no. 1, pp. 35–62, 1997.

[15] M. Silva, Las Redes de Petri en la Automatica y la Informatica. Madrid,
Spain: AC, 1985.

BALBO ET AL.: PRODUCT FORM SOLUTION FOR GENERALIZED STOCHASTIC PETRI NETS 931
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transition. Definition 6 can be applied also to immediate transitions as well.
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