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Abstract.

We have implemented in Matlab a Gauss-like cubature formula over convex, non-
convex or even multiply connected polygons. The formula is exact for polynomials of
degree at most 2n − 1 using N ∼ mn

2 nodes, m being the number of sides that are
not orthogonal to a given line, and not lying on it. It does not need any preprocess-
ing like triangulation of the domain, but relies directly on univariate Gauss-Legendre
quadrature via Green’s integral formula. Several numerical tests are presented.

AMS subject classification (2000): 65F20.

Key words: Gauss-like cubature, polygons, Green’s formula.

1 Introduction.

We consider the problem of constructing a cubature formula

(1.1)
∑

(ξ,η)∈Ξ2n−1

wξ,η f(ξ, η) ≈

∫∫

Ω

f(x, y) dxdy , Ω ⊂ R
2

polygon ,

which is exact for all bivariate polynomials of degree at most 2n− 1, stable (i.e.
such that

∑

(ξ,η)∈Ξ2n−1
|wξ,η | is bounded), and simple to implement by one of

the most popular computing tools, Matlab (cf. [17]).
The literature on cubature over polygons is not very wide, despite the fact that

polygons (and polyhedra) are at the core of computational geometry. The main
topics have been the construction of cubature formulas over regular polygons (cf.
e.g. [12, 19]), of exact formulas for moments and polynomials (more generally
also over polyhedra, see e.g. [15, 21]), and of special methods for particular
densities in statistical applications, like e.g. [4]. A more general approach has
been pursued in [11].

A common feeling in the numerical community is probably that, since reliable
and efficient polygon triangulators are at disposal (cf. [18]) as well as adap-
tive integrators over collection of triangles (cf. [2]), the problem of cubature
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over polygons is virtually solved. But, fast triangulators that manage general
polygons (for example polygons with holes) are typically written in C/C++
(cf. e.g. [13, 18]), and are not presently easy to interface with good integra-
tors over triangles within the Matlab system (at least, by Matlab “standard”
users). On the other hand, a brute-force approach like that usually suggested
by many automatic integrators (like e.g. the Matlab dblquad function, cf. [17])
to manage nonstandard domains, that is integrating the product of the given
integrand by the characteristic function of the domain (for polygons, by the
Matlab inpolygon function) on some enclosing rectangle, can work but is often
unreliable and clearly inefficient since an artificial discontinuity at the boundary
is introduced.

On the other hand, one of the corner-stones of multivariate calculus, Green’s
integral formula [10, 1], is seldom used explicitly in the numerical cubature
context. Such a formula, which in one of its basic formulations can be written
as

(1.2)

∫∫

Ω

f(x, y) dxdy =

∮

∂Ω

F(x, y) dy , F(x, y) =

∫

f(x, y) dx ,

(f being continuous on a domain Ω with piecewise smooth boundary described
counterclockwise), gives in principle an appealing tool for numerical cubature,
since it transforms a 2-dimensional into a 1-dimensional problem. Its practical
use, however, requires the knowledge of a primitive of the integrand, which seems
to restrict the field of application to a subclass of analytically known functions.

In a recent paper [23], we have exploited Green’s formula to construct cubature
formulas from scattered data over general polygons, via interpolation by radial
basis functions (thin-plate splines). There, Green’s formula has been applied
directly to the radial basis functions, as a first step in computing the cubature
weights. In such a way we have been able to extend the cubature formula
originally constructed for squares and rectangles in [22].

In this paper, Green’s formula over polygons is again the key for solving prob-
lem (1.1). A fixed x-primitive F(x, y) in (1.2) is computed by univariate Gauss-
Legendre quadrature, and integrated along the sides still by Gauss-Legendre
quadrature. When the integrand is a bivariate polynomial of degree at most
2n − 1, the first quadrature is exact with n nodes and gives a polynomial of
degree at most 2n, which restricted to a side is a polynomial of degree at most
2n in the side parametrization. This can be integrated exactly by n + 1 Gauss-
Legendre nodes on the side. No triangulation is required, since Green’s formula
needs only the boundary as a counterclockwise sequence of vertices.

The whole construction and the corresponding stability and error estimates
are given in section 2. In section 3, we show the behavior of the cubature formula
by integrating some test functions over polygons with different geometries.

2 Gauss-like cubature by Green’s formula.

We begin by stating the main result of the paper (construction of Gauss-like
cubature formulas over polygons) as a theorem.
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Theorem 2.1. Let Ω ⊂ R
2

be the closure of a bounded and simply connected
polygon with boundary described counterclockwise by the sequence of vertices

Vi = (αi, βi) , i = 1, . . . , L , L ≥ 3 ,

(2.1) ∂Ω = [V1, V2] ∪ [V2, V3] ∪ · · · ∪ [VL, VL+1] , VL+1 = V1 .

Let f ∈ C(R) and let α be fixed, where

(2.2) Ω ⊆ R = [a, b] × [c, d] , α ∈ [a, b] .

Let {τs
j } and {λs

j}, 1 ≤ j ≤ s, be the nodes and weights of the Gauss-Legendre
quadrature formula of degree of exactness 2s − 1 on [−1, 1], cf. [7].

Then, the following cubature formula is exact over Ω for all bivariate polyno-
mials of degree at most 2n − 1

(2.3) I2n−1(f) =
∑

i∈IΩ,α

ni
∑

j=1

n
∑

k=1

wijk f(ξijk , ηij) ,

(2.4) IΩ,α = {i : ∆βi 6= 0} ∩ {i : αi 6= α or αi+1 6= α} ⊆ {1, . . . , L} ,

(2.5) ni =

{

n , ∆αi = 0
n + 1 , ∆αi 6= 0

(i.e. IΩ,α consists of the indexes of the sides which are not orthogonal to the
line x = α and not lying on it), and the nodes and weights are given by

(2.6) ξijk =
xi(τ

ni

j ) − α

2
τn
k +

xi(τ
ni

j ) + α

2
, xi(t) =

∆αi

2
t +

αi + αi+1

2
,

(2.7) ηij = yi(τ
ni

j ) , yi(t) =
∆βi

2
t +

βi + βi+1

2
,

(2.8) wijk =
1

4
∆βi

(

xi(τ
ni

j ) − α
)

λni

j λn
k ,

∆ denoting the usual forward difference operator. Setting m = card(IΩ,α), the
overall number of cubature nodes is

(2.9) V = Vn,Ω,α = n
∑

i∈IΩ,α

ni ,

with

(2.10)
L

2
n2 ≤ mn2 ≤ V ≤ mn(n + 1) ≤ Ln(n + 1) .
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Moreover, we have the stability estimate

(2.11)
∑

i∈IΩ,α

ni
∑

j=1

n
∑

k=1

|wijk | ≤ CΩ,α = max
i∈IΩ,α

|α − αi|





∑

i∈IΩ,α

|∆βi|



 ,

and the error estimate
∣

∣

∣

∣

∫∫

Ω

f(x, y) dxdy − I2n−1(f)

∣

∣

∣

∣

≤ (meas(Ω) + CΩ,α) E2n−1(f ;R) ,

(2.12) E2n−1(f ;R) = min
p∈P

2

2n−1

‖f − p‖∞,R .

Proof. By Green’s formula (1.2) and (2.1) we can write
(2.13)

∫∫

Ω

f(x, y) dxdy =

L
∑

i=1

∫

[Vi,Vi+1]

F(x, y) dy =
∑

i: ∆βi 6=0

∫

[Vi,Vi+1]

F(x, y) dy ,

where F(x, y) is any fixed x-primitive of f(x, y) and the sum can be clearly
restricted to the sides that are not parallel to the x-axis. Parametrizing each
“active” side as

(2.14) Pi(t) = (xi(t), yi(t)) =
∆Vi

2
t +

Vi + Vi+1

2
, t ∈ [−1, 1] ,

we can approximate the integral of f(x, y) on that side by Gauss-Legendre
quadrature of degree of exactness 2ni − 1 (cf. (2.5))

(2.15)

∫

[Vi,Vi+1]

F(x, y) dy ≈
∆βi

2

ni
∑

j=1

λni

j F(xi(τ
ni

j ), yi(τ
ni

j )) .

Now, observe that if f(x, y) is a polynomial of degree at most 2n − 1, then
F(x, y) is a polynomial of degree at most 2n, where the degree increase pertains
only the x variable. This entails that F(xi(t), yi(t)) is a polynomial of degree
at most 2n in t, unless the side is parallel to the y-axis (i.e. ∆αi = 0) in which
case it is still of degree at most 2n− 1, and thus formula (2.15) is exact for such
polynomials.

An x-primitive of f(x, y) is given by

(2.16) F(x, y) =

∫ x

α

f(u, y) du ,

which in turn can be approximated by Gauss-Legendre quadrature of degree of
exactness 2n − 1 on the interval (α, x) (irrespectively to its actual orientation)

(2.17) F(x, y) ≈
x − α

2

n
∑

k=1

λn
k f

(

x − α

2
τn
k +

x + α

2
, y

)

.
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By combining (2.17) and (2.15) we obtain the cubature formula (2.3) over the
polygon Ω which is exact for all bivariate polynomials of degree at most 2n − 1
(notice that F(x, y) in (2.16) vanishes on the sides that possibly lie on the line
x = α).

Formula (2.10) is a direct consequence of the definition of ni in (2.5), the lower
bound being attained when all sides are parallel to the co-ordinate axes, and the
upper when no side is parallel to the x-axis.

Estimate (2.11) can be immediately obtained observing that
∑s

j=1 λs
j = 2 for

the Gauss-Legendre quadrature weights, and that |x − α| ≤ max |α − αi| for
every point (x, y) ∈ ∂Ω, Ω being a polygon. Finally, (2.12) is the extension to
the cubature framework of the well-known error estimate for Polya-Steklov-like
quadrature formulas (cf. e.g. [14, 25]). In fact, denoting by p∗

2n−1 the best
uniform polynomial approximation to f on Ω with degree 2n− 1, by polynomial
exactness we have

∣

∣

∣

∣

∫∫

Ω

f(x, y) dxdy − I2n−1(f)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫∫

Ω

f(x, y) dxdy −

∫∫

Ω

p∗2n−1(x, y) dxdy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

Ω

p∗2n−1(x, y) dxdy − I2n−1(p
∗
2n−1)

∣

∣

∣

∣

+
∣

∣I2n−1(p
∗
2n−1) − I2n−1(f)

∣

∣

≤



meas(Ω) +
∑

i∈IΩ,α

ni
∑

j=1

n
∑

k=1

|wijk |



 E2n−1(f ;R) . q.e.d.

In order to deepen some geometric, analytic, and computational features of the
cubature formula, we make below some remarks.

Remark 2.1. (multiply connected polygons)
The cubature formula (2.3) can be easily extended to multiply connected poly-

gons, via the corresponding extension of Green’s formula. Indeed, assume that
the boundary of Ω be the union of an external boundary Γext with a finite
number of internal boundaries Γint

k , k = 1, . . . , s (describing holes). Then we
have

(2.18)

∫∫

Ω

f(x, y) dxdy =

∮

Γext
F(x, y) dy −

s
∑

k=1

∮

Γint
k

F(x, y) dy ,

where all line integrals are taken counterclockwise and can be computed by
(2.3). We stress that in these cases the integrand f has to be continuous and
computable (at least) in the convex hull, i.e. also in the hole.

It is worth noticing that the polygon Ω can be multiply connected, but must
be “simple” in a slightly generalized sense, i.e. self-intersections are allowed only
at some vertices, that become the only multiple points of the boundary path.

Remark 2.2. (convergence rate)
Concerning the convergence rate of (2.3) as n → ∞, by the multivariate ex-

tension of Jackson theorem (cf. e.g. [20]) and (2.12), we get immediately

(2.19)

∫∫

Ω

f(x, y) dxdy = I2n−1(f) + O
(

(2n − 1)−(p+θ)
)

, f ∈ Cp+θ(R) ,
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for every function f with Hölder continuous p-th partial derivatives, i.e. p ≥ 0
and θ ∈ (0, 1].

Remark 2.3. (polynomial exactness)
The cubature formula (2.3) has been constructed just in order to be exact on

all bivariate polynomials of degree at most 2n − 1. Thus, when it is applied
to a polynomial of degree d, it is sufficient to choose n ≥ (d + 1)/2 to get the
integral up to machine precision. If the matter is integrating a polynomial over
a polygon, one could object that there exist other more direct approaches, for
example using available analytic formulas for moments (cf. e.g. [15]). However,
such formulas can typically manage only polynomials written in the classical
monomial basis.

On the contrary, (2.3) is exact up to degree 2n−1 irrespectively of the specific
polynomial basis. This flexibility could be very useful in applications where
integrals of arbitrary polynomials have to be computed with very high accuracy.
For example, using a suitably scaled and shifted Legendre basis {Pp1

(c1x +
c2)Pp2

(c3y + c4)} instead of the monomial basis {xp1yp2}, 0 ≤ p1 +p2 ≤ d, could
be important for stability reasons in various computations involving moments
of a polygon, like generating a bivariate orthogonal basis w.r.t. the Lebesgue
measure by an orthogonalization process (cf., e.g., [5]), or computing the Gram
matrix of the basis and then the continuous Least Squares approximation of a
given function. See e.g. [7] for the role of “modified” moments in connection
with univariate orthogonal polynomials, and [6] for the theory of multivariate
orthogonal polynomials.

It is worth noticing that in the case of modified moments with respect to any
bivariate polynomial basis like
(2.20)

φ = {φp(x, y)} , p = (p1, p2) , φp(x, y) = Πp1
(x)Πp2

(y) , 0 ≤ p1 + p2 ≤ d ,

where Πk(·) is any univariate polynomial basis, the modified moments can be
computed by the following specialized version of the cubature formula
(2.21)
∫∫

Ω

φp(x, y) dxdy =
∑

i∈IΩ,α

∆βi

4

µ
∑

j=1

(

xi(τ
µ
j ) − α

)

λµ
j Πp2

(ηij)
ν

∑

k=1

λν
k Πp1

(ξijk) ,

where

(2.22) ν =

⌈

p1 + 1

2

⌉

, µ =







⌈

p1+p2+1
2

⌉

, ∆αi = 0

⌈

p1+p2+2
2

⌉

, ∆αi 6= 0

d·e denoting the smallest not lower integer. Notice that, since we deal with a
polynomial, we can take for example α = 0 in (2.21) without problems. In the
case of the classical monomial basis, {xp1yp2}, (2.21)-(2.22) provides an appar-
ently new and curious formula for computing standard moments of a polygon.

Remark 2.4. (the nodes location)
A possible drawback of the cubature formula (2.3) with respect to other tech-

niques, like e.g. polygon triangulation followed by cubature over triangles, is
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that the cubature nodes fall in general not only inside but also outside the poly-
gon (in the enclosing rectangle R ⊇ Ω). This is the reason why f is assumed to
be continuous and computable also in R, and the error estimate (2.12) involves
the best uniform polynomial approximation on R.

However, this situation can be avoided by a simple change of variables, with-
out partitioning the polygon into subpolygons, within a large class of polygons.
This class is given by those for which there exists a “base-line” (say `), whose
intersection with the polygon is connected, and such that in addition each line
orthogonal to it (say q) has a connected intersection (if any) with the polygon,
containing the point ` ∩ q. Clearly such class contains all convex polygons, for
example by taking the line connecting a pair of vertices with maximal distance
(we omit the easy proof for brevity); see Figure 1-right. But it contains also
nonconvex polygons, see Figure 2-right.

The change of variables in the integration consists simply in a rotation of the
co-ordinate system such that the base-line becomes parallel to the (new) y-axis,
and one chooses as α the abscissa of its intersection with the (new) x-axis. Our
implementation of Gauss-like cubature over polygons accepts a pair of points,
say A = (xA, yA) and B = (xB , yB), which define the base-line if the user can
provide them, otherwise takes by default a pair of maximal distance vertices
(which work well e.g. in the convex case). In practice, this entails only that in
(2.6)-(2.8) αi and βi must be substituted by

(2.23) α̂i = αi cosφ + βi sin φ , β̂i = −αi sin φ + βi cosφ ,

(2.24) α = xA cosφ + yA sin φ ,

where φ = arccos (|yB − yA|/‖B − A‖2), 0 ≤ φ ≤ π/2, is the rotation angle.
Clearly, if all the cubature nodes fall inside the polygon, e.g. after the change of
variables above when possible, in estimate (2.12) E2n−1(f ;R) can be replaced
by E2n−1(f ; Ω).

In Figures 1 and 2 we show two examples of polygons, one convex and the
other nonconvex, each with two base-lines, the y-axis (left) or a selected diagonal
(right), and the corresponding cubature nodes for n = 10: there are 660 points
in Fig. 1 left and right, 960 points in Fig. 2-left and 990 points in Fig. 2-right
(since in Fig. 2-left three sides are parallel to the base-line, cf. (2.5) and (2.9)).
For the convex polygon the selected diagonal is the longest one, accordingly to
the observation above. As one expects, in all cases the cubature nodes cluster
at the base-line, at the sides and especially at the vertices.

Remark 2.5. (equivalence with a decomposition into trapezoidal panels)
Using Green’s formula in connection with a “base-line” has a simple geomet-

ric meaning, since it corresponds to decomposing the polygon into trapezoidal
panels. Indeed, given the base-line and two neighbor vertices in the polygon, we
may draw two lines through these two points orthogonal to the base-line. This
creates a trapezoidal panel, with two noteworthy special cases, i.e. rectangular
panels and triangular panels (when the side crosses the base-line we get even
two triangles). Then we may approximate the integral over all such panels by a
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product of Gauss rules, and finally sum up these contributions (taking into ac-
count the correct sign in overlapping cases). A special choice of the base-line (see
the previous remark) can avoid overlapping and guarantee that all the cubature
nodes are inside the domain.

The strength and elegance of Green’s theorem, together with Gaussian dis-
cretization of a suitable primitive, allow to avoid performing explicitly the ge-
ometric decomposition into panels as well as analyzing the correct sign of each
panel contribution, since both become intrinsic in the construction of the cuba-
ture formula.

Remark 2.6. (reducing the number of function evaluations)
In many applications of cubature, for example when function evaluations are

very costly, or when several different functions have to be integrated on the same
domain, it is important to keep as low as possible the number of cubature nodes
and thus of function evaluations at a given degree of exactness 2n − 1.

In the special case of rectangles, choosing as base-line one of the sides, the
Gaussian-like formula (2.3) uses exactly n2 nodes, since the only “active” side is
parallel to the base-line. To this respect, in some sense (2.3) can be viewed also
as an estension of tensor-product formulas to polygons. More generally, when
a polygon has only mutually parallel or orthogonal sides, choosing as base-line
one of the sides the number of nodes is at most (L/2 − 1)n2, since then half of
them are orthogonal to the base-line and one lies on it.

In the general case of sides which are “oblique” with respect to the base-line,
formula (2.3) requires up to Ln(n+1) nodes to obtain degree of exactness 2n−1,
due to the presence of the linear factor x−α in the discretized primitive (2.17).
There is, however, an easy way to reduce the number of nodes still preserving
the degree of exactness, which mimics the approach used for the construction
of the so-called Stroud conical rules for a triangle (cf. [16, 25]). The price to
be paid is an increase of the computational complexity for the construction of
nodes and weights.

Indeed, composing the primitive (2.17) with the parametrization (2.14) of the
i-th side we get a linear factor in t, namely ∆βi(xi(t) − α)/4 = cit + di. When
the integrand f is a polynomial of degree 2n− 1, such a linear factor multiplies
a polynomial of degree 2n − 1 in t. Taking the linear factor as weight function,
we can then compute the nodes and weights of the corresponding n-point Gauss
quadrature on [−1, 1], say {τ̂n

ij} and {λ̂n
ij}, 1 ≤ j ≤ n. This can be done,

side by side, using Gautschi’s OPQ Matlab routine chri1.m for the recurrence
coefficients of the orthogonal polynomials when the measure is modified by a
linear factor, together with the OPQ routine gauss.m which computes nodes
and weights from the recurrence coefficients; cf. [7, 8].

The resulting cubature formula is exactly like (2.3), where for indexes i cor-
responding to “oblique” sides (neither parallel nor orthogonal to the base-line)
the nodes and weights are simply replaced by

(2.25) ξ̂ijk =
xi(τ̂

n
ij) − α

2
τn
k +

xi(τ̂
n
ij) + α

2
, η̂ij = yi(τ̂

n
ij) , ŵijk = λ̂n

ij λn
k ,

1 ≤ j ≤ n, 1 ≤ k ≤ n. The overall numer of nodes is then not bigger than Ln2,
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instead of L(n2 + n), for a polygon with L sides.
This option has been incorporated in the numerical code, see [24]. Several

numerical tests have shown that the modified cubature formula (2.25) has a
comparable accuracy with respect to the basic formula (2.3), whereas the cost
for the computation of nodes and weights increases roughly proportionally to
the number of sides of the polygon (indeed, the cost of gauss.m dominates over
that of chri1.m). Its use is recommended mainly when a very large number of
costly function evaluations is expected.

3 Numerical results.

In this section we present several numerical tests of cubature by formula (2.3)
over the two polygons in Figures 1 and 2, with points distributions generated
at different degrees by the selected base-lines (see Remark 4). The cubature
formula has been implemented by a Matlab code (cf. [24]), which needs in input
only the sequence of polygon vertices (counterclockwise), the integrand function,
and the parameter n (theoretical exactness at degree 2n − 1). In particular,
Gauss-Legendre nodes and weights are computed by Gautschi’s Matlab routines
for orthogonal polynomials, see [8]. All the tests have been done by an Intel-
Centrino Duo processor with 1 Gb RAM.

We have considered the following six bivariate test functions

f1(x, y) =
3

4
e−

1
4
((9x−2)2+(9y−2)2) +

3

4
e−

1
49

(9x+1)2− 1
10

(9y+1)

+
1

2
e−

1
4
((9x−7)2+(9y−3)2) −

1

5
e−((9y−4)2+(9y−7)2) ,

f2(x, y) =
√

(x − 0.5)2 + (y − 0.5)2 , f3(x, y) = (x + y)19 ,

f4(x, y) = e−((x−0.5)2+(y−0.5)2) , f5(x, y) = e−100((x−0.5)2+(y−0.5)2) ,

(3.1) f6(x, y) = cos (30(x + y)) ,

which are in order the well-known Franke test function, the distance function
from (0.5, 0.5), a polynomial of degree 19, two Gaussians centered at (0.5, 0.5)
with different variance parameters, and a (moderately) oscillating function.

In Tables 1-4 we have displayed the relative cubature errors of the six test
functions above, for a sequence of polynomial degrees with step 5 , n = 5, . . . , 30
(the corresponding number of cubature nodes appears in the second row). The
reference integrals have been computed by the Matlab dblquad function (adap-
tive cubature routine) for the integrand multiplied by the characteristic function
of the domain (which can be implemented via the Matlab inpolygon function,
cf. [17]). This works, however, only by a suitable splitting of the enclosing square
into subsquares. In fact, the procedure applied directly to the whole enclosing
square gives unreliable results: for example, even integrating the constant 1 on
the domain of Fig. 2 with a tolerance of 1E-10 by dblquad (release 1.13), we
get an error of about 1E-03 (with a CPU time of more than 2 minutes!)
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The behavior of our Gauss-like cubature formula is quite satisfactory: for all
the regular integrands, f1, f3, f4, f5 and f6, the error at n = 30 is extremely
small, and at least 4 correct figures are obtained even for f2, which has a sin-
gularity of the gradient at a point “in the middle” of the integration domains
(where the nodes cluster slowly).

As expected, for the polynomial f3 and the oscillating function f6 the error
jumps down abruptly and then stabilizes as soon as the degree exceeds a thresh-
old. Observe also that, again not surprisingly, with the nodes distribution on
the right of Figures 1-2 where the nodes are all inside the domain, the cubature
formula is more accurate.

Finally it is worth reporting the CPU times, which are very low. In all the
examples above, they range from 0.02 up to 0.04 seconds. Moreover, we stress
that our Gauss-like cubature formula over polygons works without problems
even for degrees in the hundreds. For example, the less regular test function f2

can be integrated on the domain of Fig. 2 at n = 500, that is with more than 2
million nodes giving 8 correct figures, in less than 2 seconds.
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Figure 3.1: Two examples of distribution of cubature points (n = 10) for a convex
domain.

Table 3.1: Relative cubature errors for the six test functions, with cubature points
distributed as in Fig. 1-left.

function n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
180 pts 660 pts 1440 pts 2520 pts 3900 pts 5580 pts

f1 3.2E-03 1.4E-05 1.7E-08 4.9E-12 4.1E-15 5.1E-15
f2 6.7E-03 7.2E-04 3.0E-04 9.9E-05 6.9E-05 3.0E-05
f3 2.5E-04 2.8E-15 1.7E-15 8.4E-16 1.8E-15 5.2E-15
f4 4.3E-09 1.7E-15 1.1E-16 8.0E-16 1.6E-15 2.2E-15
f5 4.2E-01 1.2E-02 8.6E-05 1.9E-07 1.7E-10 5.0E-14
f6 1.2E-01 2.0E-01 1.4E-05 2.5E-11 1.3E-14 1.2E-15
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Figure 3.2: Two examples of distribution of cubature points (n = 10) for a nonconvex
domain.

Table 3.2: Relative cubature errors for the six test functions, with cubature points
distributed as in Fig. 1-right.

function n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
180 pts 660 pts 1440 pts 2520 pts 3900 pts 5580 pts

f1 5.7E-04 3.9E-06 3.9E-09 4.0E-13 3.8E-15 4.9E-15
f2 1.0E-03 7.8E-05 3.3E-06 1.2E-06 1.5E-05 2.1E-06
f3 2.1E-05 6.7E-16 3.3E-16 1.0E-15 8.4E-16 3.3E-15
f4 2.3E-11 1.7E-15 8.0E-16 9.2E-16 1.5E-15 2.5E-15
f5 4.6E-02 2.2E-05 6.7E-09 4.8E-12 1.5E-14 8.6E-15
f6 2.9E+00 2.9E-01 2.7E-05 5.3E-11 1.9E-15 4.9E-15

Table 3.3: Relative cubature errors for the six test functions, with cubature points
distributed as in Fig. 2-left.

function n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
255 pts 960 pts 2115 pts 3720 pts 5775 pts 8280 pts

f1 2.2E-04 6.8E-06 2.0E-09 5.3E-13 2.1E-15 3.3E-15
f2 8.8E-03 7.3E-04 4.0E-04 1.0E-04 9.0E-05 3.2E-05
f3 2.7E-04 8.5E-15 8.3E-15 6.3E-15 8.5E-15 1.7E-15
f4 5.5E-09 2.2E-15 1.1E-15 8.9E-16 1.8E-15 2.4E-15
f5 5.2E-01 1.4E-02 1.1E-04 2.5E-07 2.1E-10 6.9E-14
f6 4.0E+00 1.1E-02 3.6E-08 8.5E-14 7.4E-14 7.7E-14



12 A. SOMMARIVA AND M. VIANELLO

Table 3.4: Relative cubature errors for the six test functions, with cubature points
distributed as in Fig. 2-right.

function n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
270 pts 990 pts 2160 pts 3780 pts 5850 pts 8370 pts

f1 4.3E-05 9.3E-10 5.0E-14 1.9E-15 3.0E-15 3.6E-15
f2 2.8E-04 5.4E-05 1.5E-05 5.2E-06 3.9E-07 1.6E-06
f3 8.5E-07 6.7E-15 7.6E-15 6.3E-15 6.5E-15 3.3E-15
f4 9.4E-12 2.2E-15 1.4E-16 1.4E-15 2.2E-15 2.4E-15
f5 6.9E-03 7.2E-06 1.1E-09 6.4E-14 7.9E-15 7.8E-15
f6 1.3E+00 6.6E-04 3.6E-09 7.8E-14 7.5E-14 7.8E-14
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