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PRODUCT INTEGRALS FOR AN ORDINARY
DIFFERENTIAL EQUATION IN A BANACH SPACE

DAviD LoweLL LOVELADY

Let Y be a Banach space with norm | |, and let R+ be
the interval [0, ). Let A be a function on R+ having the
properties that if { is in R+ then A({) is a function from Y
to Y and that the function from R* X Y to Y described by
(t, ) > At)[x] is continuous. Suppose there is a continuous
real-valued function « on R+ such that if ¢ is in R* then
A(t) — a(®)I is dissipative. Now it is known that if z is in
Y, the differential equation u/(t) = A(®)[u(t)]; () =2 has
exactly one solution on R*. It is shown in this paper that if
tisin R* then u(t) = oIT¢ exp[(ds)A(s)][z] = oIT:[I— (ds)A(s)][z],
where the exponentials are defined by the solutions of the
associated family of autonomous equations.

The dissipitavity condition on A is simply that if (f,z,y) is in
Rt x Y x Y and ¢ is a positive number then
(1) (I = cA®][x] — [ — cA®]ly]| = [1 — ca®)] |z — y] -

The author and R. H. Martin, Jr. [5] have shown that if (1) holds,
and z is in Y, then there is exactly one continuously differentiable

function # from R* to Y such that

(2) w(0) =z
and
(3) () = A@D)[u(®)]

whenever ¢ is in (0, ). In the present article we shall show that
4 can be expressed as a product integral in each of two forms:

(4) u(t) = 1 exp [(d5) A
and
(5) ) = I 1 - @)A1 -

Our work is related to results of J. V. Herod [2, §6] and G. F.
Webb [7],[8]. Herod showed that representation (5) is valid if the
mapping (¢, x) — A(t)[x] is bounded on bounded subsets of R* x Y.
Webb obtained in [7] a representation similar to (4) under a set of
hypotheses different from, and independent of, those used here. In
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[8], Webb showed that (5) is valid if A is independent of ¢. (Actually
Webb in [8] restricted his attention to the case @ = 0, but his proofs
adapt easily to the general time-independent case.)

II. Product integrals. We shall assume throughout that A and
o are as in our introduction, and that (1) is true whenever (¢, z,y)
isin R* x Y x Y and ¢ is a positive number. Now it follows from
either of [5] and [6] that if (¢, ) is in R* X Y then there is exactly
one solution » of the problem

(6) v'(s) = A@[v©E)]; v(0) =« .

Furthermore, this problem generates an operator semigroup, which
we shall denote {exp[sA(f)]:s is in R*}, i.e., if s is in R* then
exp[sA(t)] is a function from Y to Y such that if # is in Y then
exp [sA(t)][#] = v(s), where v solves (6).

It is clear from (1) that there is no loss in assuming « to be
R+-valued, and we shall. It follows from [6] that if (c,?) is in
R* x R* and ca(t) < 1 then I — cA(¢) is a bijection on Y, and

I = cA@®][e] — [I — cAD][y]] = [1 — ca(®)]™ ¢ — y]

whenever (z,y) is in Y x Y. If {B,---, B,} is a set of functions
from Y to Y, and « is in Y, then [}, B;[#] = « and JI%, Bj[z] =
B,[T1%i Bi[x]] whenever k is an integer in [1,#n]. If (¢, 2,%) is in
R* x Y X Y then the statement

y= I~ [@ds)AE)] 0]
means that if ¢ is a positive number then there is a chain {r;}7, from 0
to t such that if {s;};_, is a refinement of {r;}™, and {§,};., is a

[0, t]-valued sequence such that if %k is an integer in [1, #] then §,
is in [s4_i, 8;], then

y— T = (s — ) AGI[o] < e -
The statement
y = T] exp [(@9) A@)][¢]
is defined analogously.

THEOREM. Let z be in Y, and let w solve (2) and (8). Then
each of (4) and (5) is true whenever t is in R*.
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Let m_ be that function from Y x Y to the real numbers given
by

m_[z, y] = }i{}} 1/0)(x + oy| — |x]) .

Now (1) is equivalent to requiring that
m_[z — y, A@)[z] — AD)[y]] = a®) |z — y]

whenever (¢, x,y) is in R* X Y X Y (compare [1, p. 3]). Also, if f
is a function from a subset of R* to Y, if ¢ is in the domain of f,
if f7(c) (the left derivative of f at c) exists, and if P is given on
the domain of f by P(f) = |f(t)|, then Pl(c) exists and P.(c) =
m_[f(c), f_(c)] (compare [1, p. 3]). If (x,y,2) isin Y X Y x Y then
m_[x,y + 2] < m_[x, y] + |2]| (see [4, Lemma 6]). We are now pre-
pared to prove our theorem.

Proof of the theorem. Let b be a positive number, and let 8 be
a positive upper bound for the set {a(?): ¢ is in [0,b]}. Let ¢ be a
positive number, and let 6 be a positive number such that (6/8)(e®* —1) <e.
Now {u(t): ¢ is in [0, b]} is a compact subset of Y, so the function
described by (t, ) — A(t)[«] is uniformly continuous on [0, b] x {u(f): ¢
is in [0, b]}. In particular, there is a positive number 7 such that
if (r, s, t) is in [0, b] X [0, b] X [0, b] and |r — s| < 7 then |A(r)[u(t)] —
A(s)[u(t)]] < 6. Let {t;}z-, be a chain from 0 to b such that ¢, — ¢,_, <7
whenever k is an integer in [1, ], and let {Z,};_, be a [0, b]-valued
sequence such that if % is an integer in [1, ] then %, is in [t,_,, ¢].
Let v be that function from [0, ] to Y having the property that if
k is an integer in [1, %] and ¢ is in [¢._,, t,] then

o(t) = exp[(¢ — t ) AFE ] IT exp [t — ) AE)]la]

Clearly now v is continuous. Also, v is left differentiable on (0, b]:
if k£ is an integer in [1,#] and ¢ is in (¢._,, ¢,] then

v_(t) = AT [v(®)] .

Let P be given on [0, b] by P(t) = |v(t) — u(t)|. Now P(0) = 0. Sup-
pose that ¢ is in (0,b8] and % is an integer in [1,%] and ¢ is in
(th_s, ti]e Now
P (t) = m_[v(t) — u(®), v_(t) — «' ()]
= m_[v(t) — u(t), AF_)[v(®)] — AB®[w@®)]]
= m_[v(t) — u(t), A@)[v(®)] — AT [u(?)]
+ At [u(®)] — AQ[u®)]
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= m_[v() — u(®), AG)E)] — AT [u®)]]
+ [AG) @] — A®[u@)]|
SBRPHt) +0.

Hence [3, Theorem 1.4.1, p. 15],
P < [0 ds = @/8)(e" — 1)
[
whenever ¢ is in [0, b]. In particular,

|u(®) — T exp [t - ) AEI2]
= [u@®) - )|
= P(b)
= GIAEr -1 <e.

Thus we have proved that representation (4) is valid.

Now let b and g be as before. Let ¢ be a positive number such
that ¢8 < 1/2. Now if ¢ is in [0, b] and 7 is in [0, ¢] then

I[I — rA®][2] — [T — rA®] 4]
=[-8z — yl
s+ 2rp) |z — yl
é ezr,a'x —_ ,yl

whenever (z,y) isin Y x Y.

Now let K = {u(t): ¢t is in [0, b]}, and recall that K is compact.
Let ¢ be a positive number. By the aforementioned uniform continuity,
there is a positive number 7, such that if (s, ¢, 2, %) is in [0, b] %
[0,0] x Kx Kand [s—t| <7 and |2 —y| <7, then |A(s)[x] — A@®)[y]| <
(e/b)e. Let 1, be a positive number such that if (s, ¢) is in [0, b] X
[0,b] and |s — t| < 7, then |u(s) — u()| < n. Let ¢ = min {7, 7, c}.
Suppose that 0 < r<s=<=t<b and t — r < 4. Let {£}r-, be a chain
from » to ¢, and let {£,};-, be a [r, t]-valued sequence such that if
k is an integer in [1, n] then &, is in [£,_,, &]. Now

S G — 6 )AGEN] — ¢ — NAGuE®]|
< 3 G — &) AG)IE)] — A(s)[u)]|

= Zn“ (&p — &) (e/b)e ™ = (t — r)(e/b)e2" .
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It is now clear that

| [[a@m@e: - ¢ - naEo]
< (t — ¥)(e/b)e= .

Let {t.}:—, be a chain from 0 to b, and suppose that ¢, — ¢,_, <0
whenever k is an integer in [1,n]. Let {f,}7_, be a [0, b]-valued
sequence such that if k is an integer in [1, n] then 7, is in [t,_,, t.].
Now

17 - & - 6 AGI e — w0

n

I I — (8 — t;_) AN Tuty)]

j=k+1

[T 17— (& — te ) AE) fu(te)]|

=
k

=1

i=k

< 3% e |uty) — (I — (6 — t) AT [ut)]|

k=1

< e 3 [[1 = (6 — ) AE()] — u(tns)|

) é [u(te) — w(teor) — (t — L) AT u(E)]|

n

=W;wj%@&—m—%M@M@]
— kg tk_lgtkA(E)[u(E)]dS — (& — tk_l)A(fk)[u(tk)]!

<R3 (b — to)(Eb)e™ = ¢
k=1
The proof of the theorem is complete.
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