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Product Integration-Collocation Methods
for Noncompact Integral Operator Equations*

By G. A. Chandler and I. G. Graham

Abstract. We discuss the numerical solution of a class of second-kind integral equations in
which the integral operator is not compact. Such equations arise, for example, when boundary
integral methods are applied to potential problems in a two-dimensional domain with corners
in the boundary. We are able to prove the optimal orders of convergence for the usual
collocation and product integration methods on graded meshes, provided some simple
modifications are made to the underlying basis functions. These are sufficient to ensure
stability, but do not damage the rate of convergence. Numerical experiments show that such
modifications are necessary in certain circumstances.

1. Introduction. This paper considers the numerical solution of the second-kind
integral equation

(1.1) u(s)-(Xu)(s)=f(s),       se [0,1],

where u is the unknown solution, / is given and Jf is the integral operator

(1.2) (Xu)(s) = ^K^)u(a)^-,       s 6(0,1]

for some given kernel function K. Such equations arise in a variety of contexts, most
commonly when boundary integral methods are used on domains with corners. The
difficulty is that Jf is not compact, and the standard stability proofs for numerical
methods ([1]) do not apply.

We consider the practically important case in which the approximate solution is a
piecewise polynomial, un. If un is calculated by a Galerkin method, fairly complete
stability results are known ([8], [9], [11], [12], [19]). However, Galerkin methods are
expensive to implement and collocation methods are used more often in practice, for
instance in the boundary element method of the engineering literature (see [5]). The
numerical analysis of these methods is incomplete. The difficulty is to prove the
stability result that the system of linear equations defining un is nonsingular.
Previous work has established stability in special cases ([2], [20], [24], [30]), and
numerical experiments have suggested that collocation methods converge at the rates
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126 G. A. CHANDLER AND I. G. GRAHAM

which could be proved if Jf happened to be compact ([2], [20]). We show here that
this is not always true, and Section 4 contains an example in which collocation
diverges.

However, we can prove a general stability result if the collocation method is
slightly modified. High-order piecewise polynomial approximations are replaced by
piecewise constants on a number of the intervals closest to 5 = 0 (the point at which
X is badly behaved). While ensuring the stability of the method, the rate of
convergence is not damaged.

2. Preliminary Analysis. To describe some analytic results for (1.1), we introduce
<€, the Banach space of uniformly continuous functions on [0,1], equipped with the
uniform norm || • ||. If if is a bounded linear operator on cê, ||JSf|| will denote the
norm of ¿z°.

For a > 0 and integer k > 0 define &£ to be the subspace of ^ consisting of
functions for which the seminorm

/   sup    \ak-"Dkv(a)\,    k > a,
\v\k.a'-=   I  0<os:l

\\\Dkv\\. k^a,

is finite. Then ^k is a Banach space under the norm

||i>lk.<*:= max{|i>|/,Q: 0 < / < k}.
Our assumptions on K are
Al: for all integers k > 0

Bk:=   C ok\DkK(a)\— < oo,
J0 a

A2:

B0=r\K(o)\^<\,
Jo a

A3: there exists a* > 0 such that for all integers k > 0, u e <g£,.
Under A2, Jf is a contraction on # ([2]), and by the Banach lemma, (1.1) has a
unique solution u e <€. The more stringent assumption Al is needed to prove that
the numerical methods of Section 3 converge at high rates. In practice this is not an
extra restriction, for if K is a rational function, B0 < oo implies Bk < oo for all
k > 0.

With the change of variables s = e~\ a = e~r, (1.1) becomes the Wiener-Hopf
equation

(2.1) u(e')- r K(e'<l-T))u(e-T)dT=f(e-'),        t > 0.

Known results about (2.1) can then be easily transformed back to results about (1.1).
Recall that the Mellin transform is defined by

v(w)= H aiav(o) —
J0 a

(equivalently, v is the Fourier transform of / •-> v(e')). It follows from Krein [18,
Theorem I] that the spectrum of Jf contains the nondiscrete set {K(w): u> g R}.
Hence X cannot be compact.
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NONCOMPACT INTEGRAL OPERATOR EQUATIONS 127

A3 is more difficult to verify. However, using Mellin transform techniques it can
be shown (see [11], [12], [20] for instance) that A3 is true for all smooth right-hand
sides provided:

for   some   e > 0,   1/(1 - K(u))   is   analytic  in   the   strip
(2.2) {w G C: 0 < Im(w) < a* + e} except for simple poles in the

set {ïVt: k g N}.
(See [8] for a simpler approach not using Mellin transforms.) Numerically, the
important point is that even if / is smooth, singularities appear in the solution at
s = 0. If (2.2) is satisfied for a* g (0, ß) and 1/(1 - K(u)) has a single pole at
to = iß (ß G N), then

u(s) = asß + v(s),

where a is an unknown constant and o is a smoother function than s& (more
precisely, u g <gjf. for some ß' > ß). Numerical techniques must be modified to
cope with this behavior.

We give two examples of these problems arising in applications.
Example 1 (Potential Theory). Let ß c R2 be a simply connected domain with

boundary I\ Suppose U: S2 -» R is the solution to the interior Dirichlet problem

(At/)(x) = 0,       U\r-g,
where g: T -> R is given and A = V • V is the Laplacian. Define

G'(x,0 = TTTviln—L-,        x G R2, i G r,
oV(£) 2w      \x - ¿|

the derivative of the fundamental solution with respect to the outward normal at £.
Then it is known [16] that

U(x) = (rDu)(x):=  f G'(x,-)u,•T

where the double layer source u is the solution of the boundary integral equation
(2.3) u(x)-2(rDu)(x) = -2g(x),        xgT.

If T is smooth, the integral operator in (2.3) is compact and the standard
numerical analysis applies. But suppose T has corners. That is, T may be divided
into smooth segments TV...,TM with r/_1 and r; joining at a corner x, with an
exterior angle x,it, 0 < X/ < 2. Then for all x e r;_, with x closer to the x, than

2(rDu)(x) = f jeJiiziEíi)^iM+(árlil)(x),
'r,      \ \è-x,\ j |i-x,|

where ^ is a compact operator and
= sin^_ ^^

w      1 + a2 - 2acosx^

Hence (2.3) may be rewritten as a system involving equations of the form

(2.4) u(s) - jf1 *x(i)u(0)^ =/(,),       x e {X/,2 - x,}

(see [2], [8], [20]). The treatment of the system is standard, once (2.4) is understood.
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128 G. A. CHANDLER AND I. G. GRAHAM

In (2.4), Kx(u) = sinh((l - x)^w)/sinh('n-co), and A3 holds for a* < ß, with
/}:= min{(2 — x) \ X_1} (by (2.2)). A more detailed analysis ([12]) shows the
solution (2.4) contains a singularity of the form s&. This corresponds to results in
[17] about the singularities found in U.

A potentially useful technique is to reformulate (2.4) as an equation with the
smoother unknown v(s) = (u(s) - u(0))/sß ([13]). However, the resulting integral
equation (of the form (1.1)) will not have a unique solution (as 1 belongs to the
spectrum of the integral operator).

Example 2 (Plane Strain Elasticity). A second class of examples occurs when
transform techniques [26] are applied to crack problems in elasticity. For example,
[25] and [28] consider the case of an elastic material in the half plane {(x,, x2):
xx > 0} with a crack ((x,0): 0 < x < 1} being opened by an internal pressure
distribution. This is reduced to an equation of the form (1.1) with kernel function

*(a) = 4^^i4±ilna-l).

Al and A2 may be verified and as K(o¡) = ío2/sinh2(wío/2), A3 is satisfied for
a* < 2.739_This reformulation is useful as the stress intensity factor and crack
energy are simply found from u ([15], [25], [28]). A similar equation arises in [27].

We conclude this section by stating a technical result which follows from Al. It
introduces the useful notation

Ks(o):= k[^)\,        a g (0,1].

The proof follows by calculating derivatives explicitly (see [10]).

Lemma 1. (a) For all k > 0, there is a constant Ck independent of s and a such that

\ak + lDkKs(a)\^Ck,        a G (0,1].

(b) For all v G <€, Jfv has derivatives of all orders on (0,1] and, for all k > 0,

\sk(DkJfv)(s)\^Bk\\v\\,        s G (0,1].

3. Numerical Solutions. We consider the solution of the second-kind equation (1.1)
by methods based on piecewise polynomials. Thus suppose there is a sequence of
meshes {x*¡n); 0 < i < n} with 0 = x^n) < x[n) < ••• < x(nn) = 1. For convenience
write x, for x\n) where possible, and let /, = (xi_1, x¡) and h¡ = x¡ — x,_x. For any
function v. [0,1] -* R, v¡ denotes v 11. Let Sn denote the set of piecewise polynomi-
als of order r (i.e., degree r - 1) on this grid. That is, <¡> g Sn if and only if <£, G Pr
(Pr denotes the polynomials of order r). There are no continuity restrictions imposed
on Sn and the discontinuity ¿>,(x,) # </>,+i(x,) is permitted. To utilize the full
potential of piecewise polynomials, it is necessary to use graded meshes near
singularities ([3], [4], [6], [7], [14], [21], [22]).

Definition. For an integer k > 1 and a g (0, k] the meshes {x\n)} are defined to
be (k, a)-graded if there is a constant y independent of n so that

(3.1) h,<^x\za/k,       1 = 1,2,...,«.
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NONCOMPACT INTEGRAL OPERATOR EQUATIONS 129

(Here we define i - := max{/ - 1,1}.) Condition (3.1) with k = r is exactly the
condition needed on the mesh so that Sn approximates sa to within 0(l/nr) ([4,
Chapter XII]). The simplest example of such a mesh is ([21])

(3.2) "^'(„)''       ,' = 0'1'---'w-

These meshes are (/c,a)-graded if q > k/a. Condition (3.1) applies to more general
meshes that may be generated adaptively by successive local refinement ([7]). If
a > k, (k, a)-graded is defined to mean (k, fc)-graded.

To state the collocation method, introduce the points  {£ :  1 < j < r}  with
0 < £i < ¿2 <  ' ' '  < ir ^ 1» and define the collocation points

xtj = x, + ijh„       1 < ii < n, 1 <y < r.

For any function v, continuous at [x¡¡}, define Qnv g Sn by

(QrP)iixu) = Vi(x,j),       1 <«<n, 1 <j< r.

The collocation solution to the integral equation is the piecewise polynomial u„ G S„
satisfying

(3-3) (I-Qm*)um-QJ.
The product integration solution is defined by

(3-4) (I-jTQ„)u*=f
or equivalently

(3.5) <=/ + jrM„
(see [1], [23]). When a basis is selected for Sn, (3.3) becomes a system of linear
equations of dimension dings',,). As Q„u* = u„, u*(x¡j) = un(x¡J), and once the
collocation equations have been solved, u* is available at the collocation points.
Equation (3.5) can then be used to calculate u* elsewhere if required.

The rate of convergence of u* depends on the careful positioning of the £,. For
any v: [0,1] -» R let Qv denote the polynomial of order r interpolating v at
£[,..., £r. We assume that for some r' > 0, and for all </> g Pr+r.,

(3.6) (l<b=flQ4>-

This is equivalent to requiring for all i// e Pr-

(3.7) (íníí-í,))^)^^,
or alternatively, for all integers v G [0, r'\ and for all <#> g Pr+/_„ and \p G Pp+l

(3.8) /1d»^= (l (Q<t>)t.

Equation (3.7) shows that the maximum value of r' is r, in which case {£,} must be
the r Gauss points on [0,1]. Other choices are also useful; if (£,, £2, £3) = (0, \, 1)
then /-' = 1 and w* is the product integration Simpson's rule approximation.

It is straightforward to use (3.3) and (1.1) to show ([1])

(I-Q>lJf)(ull-u) = -Q'„u
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130 G. A. CHANDLER AND I. G. GRAHAM

(Q'„'.= I - Q„). Hence, if the collocation equations are nonsingular, un is uniquely
defined and

(3-9) \\un- u\\^\(I - QnXyl\\\\Qnu\\.
Further, (3.4) and (3.5) give

„;-„--(/ + x(i - QnxylQn){XQ'nu),

and therefore, as ||ß„|| is bounded,

(3.10) \\u* - u\\ < C\\(I - QnXyl\ \\XQ'nu\\.
(Here and elsewhere C is used to denote a generic constant independent of n and
the solution u.) Once we have proved the stability result

(3.11) \{i-Qnxyl\^c,
the rate of convergence of un and u* is governed by the discretization errors \\Q'„u\\
and ||XQ'„u\\, respectively. But the discretization errors are relatively easy to bound.
As « g <g¿. it follows from [21] that

¡fi;«||-0(1/«')
provided the mesh is (r, a*)-graded. From [20], for example, we also have

||jre>||-o(i/n'+'/)
for meshes (3.2) which are (r + r', a)-graded for a < a*. These are the same optimal
rates of convergence observed when collocation is applied to an equation with a
smooth kernel and solution.

However, the accompanying stability result (3.11) has only been proved in special
cases. When r = 0 then \\Qn\\ = 1, and stability follows from ||ß„Jf|| < ||ß„|| ||Jf||
= \\X\\ < 1 and the Banach lemma. Similarly, if r = 1 and the product trapazoidal
rule is used (i.e., £0 = 0, £x = 1), then ||g„|| = 1 (see [2]). But no results are known
for methods which give rates of convergence higher than 2. (The stability of the
product 2-point Gauss rule is proved only for a uniform mesh in [2], and this gives
only 0(l/nß) convergence if u contains the typical singularity sß. See [20].)
Moreover, the counterexample of Section 4 shows that stability does not hold in
general unless some (as yet unknown) conditions are placed on K and {£,,..., £r}.

The source of the difficulty is that the kernel of X, K(s/a)\/a becomes
unbounded as s and a approach 0. Thus, if oS is one of the basis functions of Sn with
support in one of the subintervals closest to 0, the coefficient (JT</>)(jc,7) in the
collocation equations is relatively large if x¡¡ is also close to 0. These large entries
cause "spurious" eigenvalues in the approximate operator QnX, that is, eigenvalues
which are outside the spectrum of the true operator X. As n increases, these
eigenvalues converge to a limit point which is still outside the spectrum of X. (An
observation first made in [20]; see also [10].) If this limit happens to be 1, then
I — QnX becomes increasingly singular as n -* oo and the collocation solution
diverges. This can be corrected by modifying the intervals closest to 0 to remove the
large coefficients in the collocation equations. If this is done for only a small
proportion of the subintervals of the mesh, the rate of convergence of the discretiza-
tion error is undamaged.
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Definition. Consider the piecewise polynomials Sn on the meshes {x,-n)}. A
modification is determined by a sequence i(n), with 0 < i(n) < n. The modification
is (k, a)-acceptable if there is a constant y independent of n such that

(3.12) (x$))'/k<y/*-

The modified basis functions are defined by

Sn:= {* e S„: /</(«)=»</»,.e P,}.
The modified basis functions are those functions in Sn which are piecewise constants
on [0, jc}/"\]. If the mesh is (A:, a)-graded, the modification is (k, a)-acceptable if the
coarser mesh {xjn): / = 0, i > /'(«)} is still (/c, a)-graded. For the meshes (3.2) the
modification is (k, a)-acceptable provided
(3.13) i(n) < y'nl-k/ai

for some constant y'. The following technical lemma is needed in the proof of
Theorem 4.

Lemma 2. Suppose the mesh {x\n)} is (k,a)-graded. Then for all e > 0 and n
sufficiently large there exists i(e, n) < n such that

o."» (4->.,r <(i+i)i.
(3.15) i >i(e,«)=*Äi/x/_<e.

Proof. Define
/(e,w) = min(¿ > 0: i > t =* h¡/x¡_^ e}.

(As /z„ < 0(\/n), the set is nonempty for n sufficiently large.) Clearly (3.15) is
satisfied, and (3.14) is satisfied if i(e,n) < 1. When i(e, n) > 1, the definition of
i(e, n) gives h¡(cn)/x,^n)_> e and hence

*«..■■) = xH',r»-+ h^-n) < ^(«..»i1 + 1A)-
Combined with the mesh grading, this gives

*K..») < l^Zi'M + 1A) « lx),-%k(\ + l/e) < (l + 7) J
(as a < â:).    D

A modified collocation projection Q„ onto 5„ is defined by

(ö«"),. i>i(n),

(where x,_1/2:=  K*/-i + *,•))• The approximation properties of Qn are described
in Lemma 3. The proof can be obtained by imitating [21] for instance. See also [10].

Lemma 3. Let Sn be a modification of Sn.
(a) If v has r continuous derivatives on (x¡_l, x¡) for i > i(n), then

\\{Qnv-v)i\\<Ch'~l\\(Drv)l\\.

(b) Ifv G «^ for some a < 1, then for all i < i(n)

\\{Qnv-v)i\\^Chr\\v\\l,a.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



132 G. A. CHANDLER AND I. G. GRAHAM

(c) // the mesh underlying Sn is (r,a)-graded and Sn is an (r,a)-acceptable
modification for a < 1, then for all v g #ar, ||ßni; - v\\ < C\\v\\r Jnr.

The modified projection Qn may be used to define the modified collocation
solution h„ G S„ by

(3.16) «„ - QnXUn = QJ
and the modified product integration solution w* by

U*n - XQnU*n = f
or

(3.17) U*n=f + Xû„.
Again, (3.16) is a system of linear equations which is closely related to the

unmodified collocation equations. Suppose the basis for the unmodified Sn includes
the characteristic functions for each interval. Then the matrix for (3.16) is obtained
by eliminating i(n)(r - 1) rows and columns from the unmodified matrix. Thus the
modified method is as easy to implement as the original collocation method.

Our stability and consistency results are given in Theorems 4 and 5.

Theorem 4. Suppose the mesh underlying Sn is (k,a)-graded and that 8 satisfies
||X|| < 8 < 1. Then there exists a (k, a)-acceptable modification is(n) such that

(3.18) Iß^N«
for all n sufficiently large. Moreover, (3.18) is satisfied for any other modification i(n)
for which i(n) ^ i$(n) for all n.

Proof. To prove (3.18) it must be shown that is(n) can be selected so that for all
V G  V

(3-19) |(ô„^),hôHI
for all i. For any /' < /«(«), (3.19) is true, as A2 shows for s g Ir

\(q„xv)(s)\ = \Xo(x¡_1/2)\^\\x\\M-
Suppose i > is(n). Then the triangle inequality, Lemma 3(a) and Lemma 1(b) give

|(öB^)l.|hii(^)i||+ll((/-ßn)^()|
(3.20) aWXWWvW+Ch'MD'Xv)^

^\\X\\\\v\\+Cl(h,/x1_)r\\v\\,

where the constant C, is independent of n, i and v. But now choose is(n) =
max{l, /(e,«)}, where i(e,n) is the integer given by Lemma 2 when e =
((8 - \\X\\)/Cx)x/r. By (3.14) this is (Â:, a)-acceptable and by (3.15)

(3.21) (hl/x,_)r^(8-\\X\\)/Cv
(3.21) and (3.20) give (3.19) as required. Clearly this proof holds if i(n) > is(n).   D

Theorem 5. Suppose v g c€raVr' for a < 1 and the mesh underlying S„ is
(r + r', ß)-graded for ß < a. Then for any (r + r',a)-acceptable modification,

(3.22) \XQ'A<—.h\\r+'>.a.II        *n    || n,+ r,
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Proof. It is convenient to write p = r + r' and ¿1 = max(l, ;'(«)}, where ;'(«) is
the modification used in defining ß„. Let (-,-), be defined by

(vltv2)t- f v,v2.JI,

Then

(3.23) {XQ'nv)(s)=X{Q'nv),1(s)+ E {Ks,Q'nv)r
i>il

where (Q'„v)a = Q'„v \ [0x ¡. We need to estimate the two terms of (3.23).
For / > il let ¿>„, e = r, r + 1,..., p, denote the Taylor polynomial of order v for

v about x¡. Then

(3.24) {Ks,Q'„v)i={Ks,Q'„(ü-4>p)).+    £   [Ks,Q'M, - *-i)),.
i> = r+l

But it follows from the properties of the Taylor polynomial that

(3-25) ll^-^J^c/.flKz)^),!!
and

(3-26) ||U-^-i),||<CAr1||(/)'-,«),|.
We can also approximate Ks by a polynomial \p„ of order p + 1 - v so that

(3.27)        \(Ks-^v)^Ch^-'\D^~'Ks\^C(ht/x,_y+X'Vx-x.
(using Lemma 1(a)). Hence, using (3.8) on /,, and (3.25)-(3.27),

\{K„Q'M. - *.-x))\-\{K. - *„Q'Â+, - fc-i)),|
■ ^J(^-<Ullll(<rV-<rV-,),ll

<c{hrx/xr+2)\\{Dv-lv),\\

^c{hrxxf_-"-')\\v\\a,ß.
Further from (3.25) and Lemma 1(a),

(3.29) \{Ks,Q'n(v - 4>p)),\< Chr'xf.-o-'WvLß.
Therefore, combining (3.28) and (3.29) gives bounds for each term on the right of
(3.24). Summing over i > il and using the mesh grading gives

£ (Kx,Q'„v), <c(E hrlxf_-"-l)\\v\\P.ß
Oil v/>/l '

(3.30) < cl E  (hixfs^l)(hfxf-'>))\\vl.ß

where the last inequality follows because the last sum is a Riemann sum for the
finite integral

/' of—'do.
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134 G. A. CHANDLER AND I. G. GRAHAM

To bound the first term of (3.23), use Lemma 3(b) to give

I*®'*)n h M l(Ô»,ih C*all "Up.-
Hence the acceptability of the modification shows

(3.31) l*{Q'J>)nl<%;M>...
Finally, as \\v\\pß < \\v\\pa, (3.30) and (3.31) give the required bounds for the
right-hand side of (3.23).   D

Our stability and consistency results are then combined to give convergence.

Theorem 6. Suppose the mesh underlying Sn is (r + r',a)-graded for a satisfying
a < 1 and a < a*. Then there exists a modification such that for all n sufficiently
large, Un and w* are uniquely defined and

Q
(3.32) W*  - U    < -:||w||r+r',a*.

nr+r

Proof. As the mesh is (r + r', a)-graded, it is (r + r', <x*)-graded for
ä* := min{a*, 1}. Theorem 4 shows that there is an (r + /■',a*)-accep table modifi-
cation so that (3.18) holds for some 8 g (\\K\\, 1). But then the Banach lemma shows

(3.33) \{I-Qnxyl\< 1/(1-0).

As (3.10) holds for the modified collocation solution, (3.32) follows from Theorem
5.    D

In the case a* > 1 (Example 2), Theorem 6 requires that the mesh be overgraded,
so the modification will not damage the rate of convergence. The next result gives
more concrete information when the meshes (3.2) are used.

Corollary 7. Suppose the mesh (3.2) is used with q > (r + r')/a* and q > r + r'.
(a) There is an integer constant i* > 0 such that the modification i(n) = i* will do

in Theorem 6.
(b) Suppose constants a > 0 and ß G (0,1 - (r + r')/qa*) are chosen and i(n) is

the nearest integer to anß. Then Un and U* are uniquely defined for all n sufficiently
large and (3.32) holds.

Proof. As the mesh is (r + r',(r + r')/q)-gr&ded, Theorem 4 and (3.13) show
there is a constant /'* such that the modification /'(«) = i* satisfies (3.18). By (3.13),
this modification is (r + /■', a*)-acceptable, which proves (a). The modification in
(b) is (r + r',a*)-acceptable by (3.13) and satisfies i(n) > i* for n sufficiently
large. Hence (b) follows from (a).   D

Corollary 7(a) shows that the modification typically involves only a small propor-
tion of the intervals. In practice, however, modification is usually not required, so we
would not advocate the use of the modification in 7(b). More pragmatically,
instability will be revealed by poor conditioning of the collocation equations, and
this will often be revealed by the algorithm used for their solution. In this case
modification can be tried until stability is restored. Theorem 6 shows that this will be
successful and will not damage the asymptotic rate of convergence.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONCOMPACT INTEGRAL OPERATOR EQUATIONS 135

4. Numerical Results. The method described here is a modification of the colloca-
tion or product integration methods described in [1] or [23]. Nevertheless, it may be
helpful to give a concise algorithmic description. Recall we are solving the integral
equation (1.1) with the operators given by (1.2). We will use the meshes (3.2) with
the constant modification (described in Corollary 7(a)).

(0) Select integers r > 1 and /* > 0, and numbers 0 < £, < £2 < • • • < £r < 1,
and q > 1.

(1) Choose n > /'*.
(2) Define the points

x(«)= (i/n)q,       / = 0,1.n,
4n) = *i-i + M*/n)-*,-i)>        i<i*,

x\f = xjl\ + íp{x\n) - xj"_\),       i*<i<n,l<p<r,
and the index set

Q= {(/,1):1 < i< i*} u{(i, p):i* <i<n,l</j< r).
(3) Let U = (Uip:(i, p) g ß) g Rm, m = (n - i*)r + i*, be the solution of the

m X m system of equations: for all (/, p) g ß

£     u„(xt;> - xft)'-1
(p:(i,p)eQ)

- z "*/;!>(?)(»-'»)" V -A-c).*/-i        \ /
(4) Then

ida=:(»):-/w + E  »*/£*(;)(-^"v

(4.1)        u(s)-—^- 2V  ;-=/(j),       0<s<l,
w      ^n    i    + n    — 7f(imi¡viT

is the modified product integration solution.
The theory of the previous section shows u*, the modified product integration

solution, converges to the true solution u as n -> oo provided i* is sufficiently laige.
The rate of convergence is determined from the choice of r and the £p (see (3.6)) and
q (see Theorem 6).

The purpose of this section is to present some computations illustrating the results
of Section 3. We are solving the equation (see Example 1)

sinx^ f1 su(a) da
^o   s2 + a2 - 2socosx'K

with x = 1 and where / is found analytically so the solution is u(s) = s1/2.
In the first computations the basis functions are piecewise linear on the mesh (3.2)

and the collocation points are specified by taking £, = 0 and £2 = £, where £ is a
parameter that will be varied. As r' = 0, these methods are of no practical value
except when £ = 1. Nevertheless, they converge when the operator is compact [1].
For (4.1) the discretization error is

||jfß>||<0(l/«'/2),        q<4
4.2)

<0(1/«2), q>4,
and we would expect ||u* — u\\ to converge at these rates.
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We have not computed ||w* - u|| but rather

(4.3) |w* - u\= max{|«;(*,.,.) - u(xtj)|},

where {x¡ } are the collocation points. As u*(x¡j) = u^x^) this is relatively cheap.
If u*(x) is needed for x £ {*,7}, the computation will depend on u* at {*,-,}, so
(4.3) is a fair measure of the error.

Table 1 shows that with £ = \ convergence occurs at the rates expected from
(4.2), and indeed the eigenvalues of Q„X are contained in the spectrum of X, i.e.,
[0,1 — x]- However, as £ is moved closer to zero, "spurious" eigenvalues appear. At
about £= .10222_ the principal eigenvalue of Q„X, A(n), converges to 1 as
n -* oo. The unmodified method then diverges, but convergence is restored by the
modification i(n) = 1 (Table 2).

Table 1

Values of \u* - u | for £ = .5.

q=1 9=2 q=4

16
32
64

5.89(-2)
4.24(-2)
3.02(-2)

2.42(-2)
1.23(-2)
.615(-2)

10.6(-3)
3.66(-3)
1.12(-3)
.312(-3)

q = 6
13.6(-3)
4.86(-3)
1.46(-3)
.395(-3)

Table 2
Modified and unmodified solutions when q = 2 and £ = .10222 84654.

16
32
64

48.
100.
206.
391.

1.00240
1.000644
1.000161
1.000043

v,T - u\, X(n)

.1205 .86279 ± .0228i

.0607 .87433

.0304 .88503

We have also been asked by the referee to compare our collocation method with
the Nyström method ([1]) using sine quadrature ([29]). Thus define h = a/n1/2,
where the parameter a is about (2ird/a)i/2, a = {, d = x"" ([29, (4.34)]). Then the
quadrature points are

zk = exp(A:/i)/(l + exp(kh)),        k = 0, ±1,..., ±n,

with weights

wk = he\p(kh)/(l + exp(kh))1.

The Nyström solution to (1.1), u[N), is then defined by

(/-■*>«,"> = /,
with

k = -n        \zklzk
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U

Table 3

- u | for the sinc-Nyström method and various values of a.

a = 1.25 a = 1.5 a = 1.75 a = 2

16
32

.0561

.0346

.0136

.0493

.0176

.00638

.165

.0278

.00347

.613

.0606

.00853

n =
16
32

Table 4

| m * - m | for collocation at the Gauss points.

=1 q=4 q=6 #=8

.0256 .00561

.0182 .00141

.0129        .000351

.00498

.000658

.0000825

.00821

.000831

.0000578

? = 10
.0137
.00145
.0000852

These methods are simpler to implement than collocation, as ( Jf¿>)(j), c> g Sn, need
not be found analytically. (Although in our example this calculation is not difficult.)
Unfortunately, in (4.1) the Nyström method is much less accurate. Table 3 gives the
error

\uiN>-u\ max{|MW(z,)-U(zJ|}.

Table 4 compares this with the collocation method using piecewise linear functions
with collocation at the Gauss points (r = 2, £, = \(l - 1/ \/3 ), £2 = ¿(1 + 1/ y/3 )).
For a given n, the systems of equations to be solved in the two methods are almost
the same size.

We conclude that the sine method is not competitive here. Note that this is the
operator appearing when boundary integral methods are used on domains with
corners (in this case a re-entrant corner with an exterior angle of 18°) which suggests
that sine methods are not the best methods for boundary integral computations. In
contrast, piecewise polynomial collocation has been used extensively in the engineer-
ing literature, which motivates the theory here.
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