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PRODUCT INTEGRATION FOR VOLTERRA INTEGRAL

EQUATIONS OF THE SECOND KIND

WITH WEAKLY SINGULAR KERNELS

ANNAMARIA PALAMARA ORSI

Abstract. We introduce a new numerical approach for solving Volterra inte-
gral equations of the second kind when the kernel contains a mild singularity.
We give a convergence result. We also present numerical examples which show
the performance and efficiency of our method.

1. Introduction

We consider Volterra integral equations of the second kind,

y(x) = g(x) +

∫ x

a

p(x, s)K(x, s, y(s)) ds, a ≤ x <∞,(1)

where the kernel p is weakly singular and the given functions g and K are assumed
to be sufficiently smooth in order to guarantee the existence and uniqueness of a
solution y ∈ C[a, b] (see, for instance, [3], [4, (§6.9)], [10, (Thm. 1.3.2)], [11]).

Typical forms of p(x, s) are

p(x, s) = |x− s|−α, 0 < α < 1,(i)

p(x, s) = log |x− s|.(ii)

For Volterra equations with bounded kernels, the smoothness of the kernel and
of the forcing function g(x) determines the smoothness of the solution on the closed
interval [a,X ], with X > a. If we allow weakly singular kernels, then the resulting
solutions are typically nonsmooth at the initial point of the interval of integration,
where their derivatives become unbounded. Some results concerning the behavior
of the exact solutions of equations of type (1) are given in [10, (1.3.5)], [22, 23].

Numerical methods for solving Abel equations of the second kind, i.e., of type
(1) with kernel (i), have been considered by several authors (see [10, Ch. 6]). Such
methods are of two kinds:

1. discretization methods derived under the assumption that the solution y is
smooth on the closed interval [a,X ] (see for instance [12, 31]);

2. methods for equations (1) with nonsmooth solutions, taking into account their
singular behavior in the neighborhood of the point s = a (see for instance
[1, 6, 9, 14, 24]).
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1202 ANNAMARIA PALAMARA ORSI

In the numerical examples presented in these papers the case of practical impor-
tance, α = 1/2, is usually considered. A survey of the literature on Abel-type
integral equations may be found in [16].

In this paper we introduce a new method for solving equation (1). This method
allows us to overcome the difficulty caused by the poor behavior of the solution
y(s) at the initial point s = a.

Given a relatively short interval [a, b], we first solve the problem

y(x) = g(x) +

∫ x

a

p(x, s)K(x, s, y(s)) ds, a ≤ x ≤ b,(2)

by a Nyström-type method based upon a whole-interval product integration rule of
interpolatory type, which integrates exactly the kernel p.

After the initial interval, the bad behavior of the derivative of y is of less signif-
icance. We then solve the problem

y(x) = g1(x) +

∫ x

b

p(x, s)K(x, s, y(s)) ds, b ≤ x <∞,(3)

with

g1(x) = g(x) +

∫ b

a

p(x, s)K(x, s, y(s)) ds,(4)

by a standard step-by-step method for regular solutions. Since the computation of
g1(x) depends on the starting approximation of y(x), x ∈ [a, b], the two methods
have to be regarded as paired.

The ideas underlying the starting procedure for the numerical solution of problem
(2) are well known and have already been applied to weakly singular Fredholm
integral equations of the second kind, although they have not been used in this
context before. In §2 we describe our starting method, and in §3 give uniform
convergence results in the linear case. In §4 we apply our starting method, together
with a classical scheme for the numerical solution of (3), to some test equations
and compare our numerical results with the ones available in the literature and
obtained by alternative methods.

2. The product integration rule

In this section we describe the Nyström-type method used to solve equation
(2) numerically. For convenience, we assume [a, b] = [−1, 1], without any loss of
generality:

y(x) = g(x) +

∫ x

−1

p(x, s)K(x, s, y(s)) ds, −1 ≤ x ≤ 1.(5)

Having chosen N + 1 distinct points {xn}Nn=0 in the interval [−1, 1], we collocate
the equation (5) at the nodes {xn}Nn=0:

y(xn) = g(xn) +

∫ xn

−1

p(xn, s)K(xn, s, y(s)) ds, n = 0, 1, . . . , N.(6)

Then we use the Lagrange interpolation polynomial

LN (K; s) =
N∑
j=0

lN,j(s)K(xn, xj , y(xj))(7)
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to approximate K(xn, s, y(s)) and obtain the following method:

yN,n = g(xn) +
N∑
j=0

wn,jK(xn, xj , yN,j), n = 0, 1, . . . , N,(8)

with wn,j =
∫ xn
−1 p(xn, s)lN,j(s) ds.

To construct the coefficients wn,j , we use an algorithm introduced in [26]. This
algorithm requires existence and knowledge of the modified moments

µk(xn) =

∫ xn

−1

p(xn, s)Pk(s) ds, k = 0, 1, . . . ,(9)

corresponding to the weakly singular kernel p(x, s), where {Pk} is a system of
polynomials satisfying a three-term recurrence relation. Recurrence formulas for
the modified moments can be found in [28] and [4] for various kernels. In [28]
the polynomials {Pk} used are the Chebyshev polynomials of the first kind, in [4,
pp. 560–561], for kernels of type (i) and (ii), the Legendre polynomials.

Once the weights {wn,j} have been obtained, we compute the approximate so-
lution values yN,n, n = 0, 1, . . . , N , as solution of the system (8). In the linear case
the system (8) is solved by Gaussian elimination; in the nonlinear case we compute
{yN,n}Nn=0 from (8) by using the nonlinear systems solver CO5NBF of the NAG
library.

3. Starting method: convergence

Throughout this section, the symbol C stands for a positive constant taking on
different values on different occurrences.

In our convergence analysis we examine the linear test equation

y(x) = g(x) +

∫ x

−1

p(x, s)y(s) ds, −1 ≤ x ≤ 1,(10)

and assume that the forcing function g ∈ C[−1, 1], and that the kernel p is weakly
singular of the form (i) or (ii). Then the equation (10) has a unique solution
y ∈ C[−1, 1] that may be expected to have unbounded derivatives at the endpoint
x = −1.

If, for a given mesh {xj}Nj=0, we apply the method (8) to the test equation (10),
we obtain as approximate solution yN (x) the following Nyström interpolant:

yN (x) = g(x) +
N∑
j=0

wj(p;x)yN (xj), where wj(p;x) =

∫ x

−1

p(x, s)lN,j(s) ds.

The method is said to be convergent of order r in [−1, 1] if and only if for N
sufficiently large there exists a constant C > 0 independent of N such that

‖y(x)− yN (x)‖∞ ≤ CN−r.

In order to examine the uniform convergence of the approximate solution yN(x)
to the exact solution y(x) of (10), notice that

y(x) − yN(x) =
N∑
j=0

wj(p;x){y(xj)− yN(xj)}+ tN (p, y;x),
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where tN (p, y;x) is the local truncation error defined by

tN (p, y;x) =

∫ x

−1

p(x, s)y(s) ds−
N∑
j=0

wj(p;x)y(xj).

Hence, we obtain

‖y − yN‖∞ ≤ ‖(I −AN )−1‖∞‖tN‖∞,(11)

where AN is the linear operator defined by
AN : C[−1, 1]→ C[−1, 1],

ANf(x) =
N∑
j=0

wj(p;x)f(xj), f ∈ C[−1, 1], x ∈ [−1, 1].
(12)

First we investigate the convergence properties of the underlying product quad-
rature rule.

Theorem 1. Let {xj}Nj=0 be the zeros of the (N + 1)st-degree member of a set of
polynomials that are orthogonal on [−1, 1] with respect to the weight function

ω(s) = u(s)(1− s)ᾱ(1 + s)β̄ , −1 < ᾱ ≤ 3

2
, β̄ ≥ −1

2
.(13)

Here, u(x) is positive and continuous in [−1, 1] and the modulus of continuity ϕ

of u satisfies
∫ 1

0
ϕ(u, δ)dδδ < ∞. Let LN(f ; s) denote the interpolating polynomial

of degree ≤ N that coincides with the function f at the nodes {xj}Nj=0. Moreover,
suppose p(x, s) is a kernel of type (i) or (ii). Then, for every function f containing
only endpoint singularity of the type (1 + s)σ, σ > −1 (not an integer), and in
particular for every function f ∈ C[−1, 1], there holds

lim
N→∞

∥∥∥∥∫ x

−1

p(x, s)f(s) ds−
∫ x

−1

p(x, s)LN (f ; s) ds

∥∥∥∥
∞

= 0.(14)

In particular, we have the bounds

‖tN (|x− s|−α, f ;x)‖∞ = O{(N + 1)−2−2σ+2α log(N + 1)}, 0 < α < 1,(15)

‖tN(log |x− s|, f ;x)‖∞ = O{(N + 1)−2−2σ log2(N + 1)}.(16)

Proof. Since

|tN (p(x, s), f ;x)| ≤
∫ x

−1

|p(x, s)| |f(s)− LN(f ; s)| ds

≤
∫ 1

−1

|p(x, s)| |f(s)− LN(f ; s)| ds,
(17)

the bounds (15) and (16) are an immediate consequence of Theorems 5 and 7 in
[13].

Now we investigate the behavior of the first term ‖(I − AN )−1‖∞ in the right-
hand side of (11). To this end, some preliminary lemmas are needed.

Lemma 1. For a given set of nodes {xj}Nj=0 defined as in Theorem 1 with the

restriction − 1
2 < ᾱ, β̄ < 3

2 , let lN,j(s) denote the corresponding jth fundamental
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Lagrange polynomial. Fix a subinterval [c, d] ⊆ [−1, 1]. Then there exists a positive
number C and a q > 1 such that

sup
N

N∑
j=0

∣∣∣∣∣
∫ d

c

p(d, s)lN,j(s) ds

∣∣∣∣∣ ≤ C
[∫ d

c

|p(d, s)|q ds
]1/q

(18)

for all p ∈ Lq with ‖p‖q = [
∫ 1

−1
|p(d, s)|q ds]1/q.

Proof. First of all, notice that

N∑
j=0

∣∣∣∣∣
∫ d

c

p(d, s)lN,j(s) ds

∣∣∣∣∣ = sup
f∈B

∣∣∣∣∣∣
N∑
j=0

∫ d

c

p(d, s)lN,j(s) dsf(xj)

∣∣∣∣∣∣ ,
where B = {f : f ∈ C[−1, 1], ‖f‖∞ = 1}. Then we have

N∑
j=0

∣∣∣∣∣
∫ d

c

p(d, s)lN,j(s) ds

∣∣∣∣∣ = sup
f∈B

∣∣∣∣∣∣
∫ d

c

N∑
j=0

lN,j(s)f(xj)p(d, s) ds

∣∣∣∣∣∣
≤ sup
f∈B

∫ d

c

∣∣∣∣∣∣


N∑
j=0

lN,j(s)f(xj)

 p(d, s)

∣∣∣∣∣∣ ds
≤ sup
f∈B

∫ d

c

∣∣∣∣∣∣
N∑
j=0

lN,j(s)f(xj)

∣∣∣∣∣∣
q′

ds


1/q′ [∫ d

c

|p(d, s)|q ds
]1/q

≤ sup
f∈B

∫ 1

−1

∣∣∣∣∣∣
N∑
j=0

lN,j(s)f(xj)

∣∣∣∣∣∣
q′

ds


1/q′ [∫ d

c

|p(d, s)|q ds
]1/q

for all p ∈ Lq with q, q′ > 1 such that

1

q
+

1

q′
= 1.

From Theorem 1 in [27], under the assumptions of this lemma, we have

sup
N

∥∥∥∥∥∥
N∑
j=0

lN,j(s)f(xj)

∥∥∥∥∥∥
q′

≤ C‖f‖∞

for every bounded function f , and 0 < q′ < ∞. Therefore, the bound (18) fol-
lows.

Lemma 2. Let the same notations and the same set of nodes be assumed as in
Lemma 1. Moreover, let the kernel p satisfy{

p ∈ Lq, q > 1,

lim
x′→x
‖p(x′, s)− p(x, s)‖q = 0

(19)

for all x ∈ [−1, 1]. Then

lim
x′→x

sup
N

N∑
j=0

|wj(p′;x′)− wj(p;x)| = 0(20)

for all x ∈ [−1, 1], where p′ = p(x′, s).
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Proof. In order to prove (20), notice that, for all p, p′ ∈ Lq,

sup
N

N∑
j=0

|wj(p′;x′)− wj(p;x)|

= sup
N

N∑
j=0

∣∣∣∣∣
∫ x

−1

lN,j(s){p(x′, s)− p(x, s)} ds+

∫ x′

x

p(x′, s)lN,j(s) ds

∣∣∣∣∣
≤ sup

N


N∑
j=0

∣∣∣∣∫ x

−1

lN,j(s){p(x′, s)− p(x, s)} ds
∣∣∣∣+

N∑
j=0

∣∣∣∣∣
∫ x′

x

p(x′, s)lN,j(s) ds

∣∣∣∣∣


≤ C


[∫ x

−1

|p(x′, s)− p(x, s)|q ds
]1/q

+

[∫ x′

x

|p(x′, s)|q ds
]1/q


≤ C

‖p(x′, s)− p(x, s)‖q +

[∫ x′

x

|p(x′, s)|q ds
]1/q

 ,

where in the penultimate step we have used Lemma 1. The assertion (20) now
follows from (19).

Now we can obtain the following result.

Theorem 2. Let the operator AN be defined as in (12) and the nodes {xj}Nj=0

chosen as in Lemma 1. If (14), (18) and (20) hold, then for all N sufficiently large
there exists a constant C > 0 independent of N such that

‖(I −AN )−1‖∞ ≤ C.(21)

Proof. If (14), (18), and (20) hold, by the arguments used in the proof of Lemma
1 in [30] on a collectively compact set of operators, we can deduce that the set
S = {ANf : f ∈ C[−1, 1], ‖f‖∞ = 1, N ≥ 0} is a bounded, equicontinuous subset
of C[−1, 1]; then the sequence of bounded operators {AN} is collectively compact.

Moreover, we can show that the operator A defined byA : C[−1, 1]→ C[−1, 1],

Af(x) =

∫ x

−1

p(x, s)f(s) ds

is compact. In fact, Kress in [20] proved that the operator A∗ defined by
A∗ : C[−1, 1]→ C[−1, 1],

A∗f(x) =

∫ 1

−1

p(x, s)f(s) ds

is a compact operator on C[−1, 1], if the kernel p is defined and continuous for all
x, s ∈ [−1, 1], x 6= s, and |p(x, s)| ≤ C|x− s|−α, 0 ≤ α < 1, for all x, s ∈ [−1, 1], x 6=
s. In the case p(x, s) = |x − s|−α, 0 < α < 1, it follows that our operator A is
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compact, since we can always write

Af(x) =

∫ x

−1

p(x, s)f(s) ds =

∫ 1

−1

p∗(x, s)f(s) ds

with the new kernel p∗(x, s) =

{
p(x, s), s < x,

0, s ≥ x,

which satisfies the conditions above.
Furthermore, in the case p(x, s) = log |x− s|, we can write

log |x− s| = log |x− s| |x− s|α
|x− s|α = h(x, s)|x− s|−α, 0 < α < 1,(22)

where h(x, s) ∈ C[−1, 1] for all x ∈ [−1, 1].
Thus, we conclude that the operator A with kernel (i) or (ii) is compact.
Hence, by Theorem 1.6 in [2] the statement of Theorem 2 follows.

Lemma 3. The kernels p of the form (i) or (ii) fulfill the conditions (19).

Proof. Given p(x, s) = 1
(x−s)α , 0 ≤ α < 1, take q > 1 such that qα < 1. Then

|p(x′, s)− p(x, s)|q =

∣∣∣∣ |x− s|α − |x′ − s|α|x′ − s|α|x− s|α

∣∣∣∣q ≤ C|x− x′|αq
|x′ − s|αq|x− s|αq

and (see [25, p. 211])

∫ 1

−1

ds

|x′ − s|αq|x− s|αq ≤


C if 2αq < 1,

C log |x− x′| if 2αq = 1,
1

|x′ − x|2αq−1
if 2αq > 1.

Hence, [19] follows.

From (22) we immediately deduce that also p(x, s) = log |x− s| fulfills (19).
Finally, we can state the following result.

Theorem 3. Let y be the exact solution of the equation (10). Let yN be the ap-
proximate solution obtained by discretizing the integral term of (10) by a product
quadrature rule of interpolatory type constructed on a set of distinct nodes {xj}Nj=0.

If the nodes {xj}Nj=0 are the zeros of the (N + 1)st-degree member of a set of poly-
nomials that are orthogonal on [−1, 1] with respect to the weight function (13) with
− 1

2 < ᾱ, β̄ < 3
2 , and if p is of the form (i) or (ii), then yN converges uniformly to

y. Moreover, the rate of convergence of yN to y coincides with the one of the basic
quadrature rule we choose to approximate the integral term of (10).

The proof follows immediately from the estimate (11) together with Theorems 1
and 2. The bounds (15) and (16) supply an estimate of the rate of convergence.

Remark. Theorem 3 can be easily extended to the case of quadrature rules which
include among their nodes the endpoints ±1. In particular, we have the same

result if the nodes {xj}N−1
j=0 are the zeros of the Jacobi polynomial P

(ᾱ,β̄)
N (x), with

− 1
2 < ᾱ, β̄ < 7/2, and xN = 1 (see [13, 27]).
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4. Numerical examples and discussion

The method (8) based on Radau nodes (i.e., on the nodes coinciding with the

zeros of the Jacobi polynomial P
(1,0)
N (x) in addition to the endpoint x = 1) together

with a product Simpson’s method on uniform meshes [12] has been implemented to
solve the following equations, taken from collections of problems proposed in [10]
and [29]:

y(x) = 1− e−x − 1√
π

∫ x

0

(x− s)− 1
2 y(s) ds,(23)

y(x) =
1

2

{
ex erfc(

√
x)− e−x + 2

√
πF (
√
x)
}
,

F (t) = e−t
2

∫ t

0

eu
2

du;

y(x) =
1√

1 + x
+
π

8
− 1

4
sin−1 1− x

1 + x
− 1

4

∫ x

0

(x− s)− 1
2 y(s) ds,(24)

y(x) =
1√

1 + x
;

y(x) = − 1√
π

∫ x

0

(x− s)− 1
2 {y(s)− sin s}3 ds,(25)

y(x) = O(x3
√
x) as x→ 0.

Given an initial steplength h, we fix the point b in the open interval (a,X), with
X > a. Then we first solve the problem (2) by the method (8) based on N + 1
Radau nodes on the interval [a, b]. If the kernel p is of type (i) and the solution y(s)
contains only an endpoint singularity of the form (s − a)σ, σ > −1, the order of
convergence of this method is (N+1)−2−2σ+2α log(N+1) (see §3). With b fixed, on
the interval [b,X ] we define the grid x0 ≡ b, xn = x0+nh, n = 1, 2, . . . ,M , xM ≡ X ,
and apply the product Simpson’s method [12]. We obtain the approximate values
yn, n = 2, . . . ,M , of{

y(xn) = g1(xn) +
∫ xn
x0

(xn − s)−αK(xn, s, y(s)) ds,

g1(xn) = g(xn) +
∫ x0

a (xn − s)−αK(xn, s, y(s)) ds, α ≤ s ≤ x0.
(26)

Since the solution y(x) is smooth in the closed interval [b,X ] (see [23]), this
method converges like h4−α (see [12]).

The starting values y0 and y1 are evaluated by using the Nyström interpolant
on the interval [a, x0] and the Simpson’s formula constructed on the three points
x0 − h, x0, x0 + h.

An important problem is the choice of b: the interval [a, b] must be small in
order to reduce the computational cost of the pair of methods; in fact the method
(8) requires the solution of a full (N + 1) × (N + 1) system of equations, whereas
the step-by-step product Simpson’s method solves a lower triangular system. More-
over, the computational cost for the evaluation of the integrals of the form∫ x0

a
(xn − s)−αK(xn, s, y(s)) ds, with x0 ≡ b fixed, increases as h → 0; in fact, we

need to use the product formula described in §2 based on the Radau nodes or the
Gauss-Radau rule, according to whether xn−x0 < k(x0−a) or xn−x0 ≥ k(x0−a)
respectively, where k is a constant which we can find by numerical experiments.
(For example, for various values of α and N = 32 we have found k ' 1/20.) In
practice, wecould choose b depending on h and assume b − a = h/k (with an ap-
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propriate k), taking advantage of the fact that this allows a reduction in the global
cost since, for each h, we can evaluate g(xn), for any n, using a Gaussian rule with
low N . It is this last version that we have implemented.

In order to test the performance of our method, we have compared our numerical
results with the corresponding ones available in the literature.

Special attention is given to the results produced by the computer program given
in [17]; in fact, the fractional linear multistep methods introduced by Lubich [24]
appear to represent the most promising approach for the efficient solution of Abel
equations, as it has been already remarked in [5, p. 496], [7, p. 590].

In the tables below we denote by PS our method, by P the starting method (8),
and by L the method implemented in [17].

In Table 1 we denote by BE results concerning the equation (23) presented in
[8] and obtained by a collocation technique in certain piecewise polynomial spaces
employing uniform meshes. Our method PS has been applied with b = 0.2, h =
0.01.

Table 1. Absolute errors for the approximate solution of the equa-
tion (23) at x = 1 computed by different methods

N PS P BE L
4 8.7D-8 4.3D-5 3.4D-8
5 1.0D-8 1.8D-5 8.4D-4
8 2.1D-9 7.3D-7 4.1D-8

10 8.7D-10 1.2D-7
16 1.0D-10 6.6D-9 2.3D-8
20 3.6D-11 8.6D-10 5.0D-5
32 3.8D-12 1.1D-10 4.7D-9

Concerning the equation (24), Table 2 shows results taken from: [21] (denoted
by LZ and obtained by a product integration method of order p = 3 based on gen-
eralized Simpson’s rule); from [15] (denoted by ET and obtained by a sixth-order
method using spline functions of degree 5, deficiency 4, i.e., in the continuity class
C, on uniform meshes); from [12] (denoted by CK and obtained by an interpola-
tory product integration method of order p = 5, on uniform meshes, which is an
extension of the approach proposed in [19]); from [29] (denoted by R and obtained
by collocation type methods).

Notice that the convergence results obtained by the methods LZ, ET , CK are
only valid if the solution y(x) is sufficiently smooth.

Our method PS has been implemented with b = 0.02, h = 0.002.
The results denoted by PS in Table 3 have been obtained with b = 0.1, h = 0.01.
In the literature we were able to find only numerical examples concerning kernels

of type (i). Table 4 shows results obtained by application of the method P to the
equation

y(x) = 0.1

{
1− e−(x+1

2 ) − 1√
2π

∫ x

−1

log |x− s|y(s) ds

}
,(27)

y(x) = 0.1
{

1− e−(x+1
2 )
}

+O[(x + 1)2 log2(x + 1)] as x→ 1.

The asymptotic behavior of the solution of the equation is deduced from [22,
Corollary 3.2].
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Table 2. Absolute errors for the approximate solution of the equa-
tion (24) at x = 1 computed by different methods

N PS P LZ ET CK R L
4 1.4D-9 2.8D-6 ≤ 7.0D-8 3.0D-7
5 1.9D-10 3.1D-7 5.6D-6 D-8.49
8 9.7D-13 6.3D-10 ≤ 2.0D-9 1.3D-7

10 1.2D-11 8.0D-7 D-8.6
16 1.3D-16 1.4D-8
20 1.0D-7 D-9.33
32 1.9D-9
64 5.6D-10

100 2.8D-14
128 6.7D-11
200 5.6D-16
256 5.7D-12

Table 3. Absolute errors for the approximate solution of the
equation (25) at x = 8. The exact solution at x = 8 is y(8) =
0.3236412904 [24]

N PS P L
4 6.4D-9 3.9D-2 6.7D-2
8 3.0D-3 2.2D-2

16 2.8D-4 2.7D-3
32 5.2D-6 8.6D-6
64 6.9D-9 1.0D-5

128 1.9D-6
256 7.3D-8

Table 4. Absolute errors for the approximate solution of the equa-
tion (27) at x = 1 computed by the method P

N P
4 3.3D-8
8 3.2D-10

16 5.2D-13

An inspection of the above numerical experiments shows that the numerical
results we obtained by our method in the linear cases confirm the theoretical rate
of convergence. Moreover, our method can provide reasonable results for nonlinear
as well as linear problems. In fact, for both kinds of test equations we considered,
the convergence properties of the method PS appear similar or superior to the ones
of the other methods considered.

Concerning the computational efficiency of our method PS, we compare its com-
putational cost with the one of the numerical procedure L presented in [17], which,
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among the methods we have found in the literature, gives the best results, in par-
ticular for the equations with nonsmooth solutions. Whereas our starting method
P requires the solution of the (N + 1)× (N + 1) system (8) in addition to O(N2)
arithmetical operations to compute the quadrature weights, the algorithm proposed
by Lubich requires O(N logN) arithmetical operations to compute the quadrature
weights and O[N(logN)2] arithmetical operations to obtain approximations to the
solution at the grid points by FFT techniques; see [10, (§6.1)], [17, 18]. Nev-
ertheless, in the case of the equation (23) (see Table 1) the methods PS, with
[a, b] = [0., 0.2], h = 0.01, and L involve N = 8 nodes (and a timing of 0.02 sec-
onds) and N = 32 nodes (and a timing of 0.03 seconds), respectively, to compute
the approximate solution at x = 1 with an absolute error of order of magnitude
10−9.∗

The behavior of the errors in Table 2 is due to the fact that the solution of the
equation (24) is smooth in the closed interval of integration. In particular, we can
see that if the equation (24) is solved over the range 0 ≤ x ≤ 0.02 by the starting
method P , the method PS, with h = 0.002, requires N = 8 and a timing of 0.18
seconds to compute the approximate solution at x = 1 with an absolute error of
order of magnitude 10−12. The same accuracy for the approximate solution at
x = 1 is obtained by the method L with N = 256 and a timing of 0.18 seconds.∗

On the other hand, if we apply our starting method P on the whole interval [0., 1.]
the full accuracy at x = 1 requires N = 16 and a timing of 0.01 seconds.

We conclude that our starting method together with an appropriate step-by-
step method for regular solutions appears to be a useful tool for the numerical
computation of the solutions of Volterra integral equations of the second kind with
weakly singular kernels.

The numerical results presented have been obtained on a VAX 9000 computer
working with about 16-digit double-precision arithmetic.
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