
Product Lines of Theorems

Don Batory and Ben Delaware

work with William Cook

Department of Computer Science

University of Texas at Austin

Austin, Texas 78712 ITP-1

Introduction

• My background is in database management, not theorem proving

• My interests have always been in software design

• early work on DBMS implementations

• transitioned in early 1990s to Software Engineering

• databases fundamentally shaped my view of software design

• My work focused on software product lines (SPLs)

• set of related programs that are differentiated by “features”

• feature is an “increment in program functionality”

• different compositions of features yield different programs
ITP-2

My Contribution

• Understand and explain feature-based software design by simple

mathematics

• Easiest way for me to express, conceive, and explain my ideas

• provided me with a different view of software design

whose underpinnings are in categories

• clear and precise notion of “composition” (function composition)

• My inspiration for automated program generation…

ITP-3

• Declarative query is mapped to an relational algebra expression

• Each expression is a program

• Expression is optimized using algebraic identities

• Efficient program generated from expression

Relational Query Optimization (RQO)

SQL

select

statement

parser

inefficient

relational

algebra

expression

efficient

relational

algebra

expression
optimizer

declarative

domain-specific

language

automatic

programming

code

generator

efficient

program generative

programming

ITP-4

• Automated development of query evaluation programs

• hard-to-write, hard-to-optimize, hard-to-maintain

• revolutionize and simplify database usage

• Represented program designs as expressions

• Use algebraic identities to optimize expressions – can optimize
program designs

• Compositional: hallmark of great engineering

• Paradigm to replicate in other domains

Keys to Success of RQO

ITP-5

Purpose of This Talk

• Explain how RQO paradigm generalizes to SPLs

• Also show how proofs scale from a single program to families of

programs – big win

• Within an algebraic framework of automated program generation and

SPLs – general approach

ITP-6

SOFTWARE PRODUCT LINES
(SPLs)

quick tutorial on

ITP-7

• Set of structures (programs) from which we want to decompose into

more fundamental structures and their compositions

• Standard engineering activity called Domain Analysis

• Resulting set of atoms is not necessarily unique

Domain Analysis

domain

“atoms”

ITP-8

In Software

• Features are semantic increments in program functionality

• View features as transformations (arrows)

• Programs are defined by a composition of transformations (arrows)

• SPL is a tree whose nodes are programs and arrows are features

 P0
f

P1
h

P2
k

P6

P2 P4

P5 P7

P8

PA

P9

g i

h

i

j

m

n

m

actually categories,

but this is not

relevant to this talk

P2 = khf

P6

P2 P4

P5 P7

P8

PA

P9

P0 P1 P2

ITP-9

Example: a 4-Program SPL

• Elementary product line of Java calculators

 P0
base

P1
sub

P2
format

P3

format

ITP-10

class calculator {

 float result;

 void clear() { result=0; }

 void add(float x) { result=+x; }

}

class gui {

 JButton add = new JButton(“+”);

 void initGui() {

 ContentPane.add(add);

 }

 void initListeners() {

 add.addActionListener(...);

 }

}

 void sub(float x) { result=-x; }

 JButton sub = new JButton(“-”);

 ContentPane.add(sub);

 sub.addActionListener(...);

 JButton format = new JButton(“format”);

 ContentPane.add(format);

 void formatResultString() {...}

base = sub format

new methods

new fields

extend existing methods

new methods

new fields

extend existing methods

P0 P1 P2 P3

 P0
base

P1
sub

P2
format

P3

format

ITP-11

• 1986 database systems 80K LOC

• 1989 network protocols

• 1993 data structures

• 1994 avionics

• 1997 extensible Java preprocessors 40K LOC

• 1998 radio ergonomics

• 2000 program verification tools

• 2002 fire support simulators

• 2003 AHEAD tool suite 250K LOC

• 2004 robotics controllers

• 2006 web portlets

• Others have picked up on these ideas…

Ideas Scale...

ITP-12

Quick Summary on SPLs

• Using features has right look and feel

• standard idea in software product lines

• features as transformations is key to a modern approach

• feature composition is function composition

• a generalization of RQO – program designs are expressions

• design optimization is expression optimization

• program generation is expression evaluation

• First connection (that I know of) to theorem proving…

 ITP-13

JBOOK
Egon Börger’s 2001

ITP-14

Structure of JBook

• At this point, various correctness issues are considered

• ex: equivalence of interpreter execution of program and
the JVM execution of compiled program

• JBook not written with product lines in mind

• definition, correctness of single interpreter, compiler of Java1.0
• But the tools (parser, interpreter,…) were developed by features…

Java

Program

Java

AST
parser byte

code
compiler

InterpRun

interpreter

JVMRun

JVM

interpreter

proof

ITP-15

Overview of JBook

• JBook presents structured way to incrementally develop a Java 1.0 grammar,

and ASM definitions of an interpreter, compiler, and bytecode (JVM) interpreter

• Start with the sublanguage of imperative expressions and incrementally extend it

grammar interpreter compiler
JVM

interpreter
ExpI

grammar interpreter compiler
JVM

interpreter
StmI

grammar interpreter compiler
JVM

interpreter
ExpC

grammar interpreter compiler
JVM

interpreter
StmC

grammar interpreter compiler
JVM

interpreter
ExpO

grammar interpreter compiler
JVM

interpreter
ExpE

grammar interpreter compiler
JVM

interpreter
StmE

ITP-16

Overview of JBook

• JBook presents structured way to incrementally develop a Java 1.0 grammar,

and ASM definitions of an interpreter, compiler, and bytecode (JVM) interpreter

• Start with the sublanguage of imperative expressions and incrementally extend it

• Only when the Java 1.0 definitions were complete were the proofs constructed

java1.0

grammar

java1.0

interpreter

java1.0

compiler
JVM

Java1.0

ITP-17

Features Update All Representations
of a Program Lock-Step

• Can develop theorems and proofs incrementally from features as well,

lock-step like all other representations – structurally treat them no differently

grammar interpreter compiler
JVM

interpreter
ExpI proofs

grammar interpreter compiler
JVM

interpreter
StmI

proofs

grammar interpreter compiler

JVM

interpreter
ExpC

StmC

proofs

grammar interpreter compiler
JVM

interpreter
proofs

ExpO

grammar interpreter compiler
JVM

interpreter
proofs

ExpE

grammar interpreter compiler
JVM

interpreter
proofs

StmE

grammar interpreter compiler
JVM

interpreter
proofs

ITP-18

Found What We Expected…

• Theorems and proofs could be developed incrementally from features as well,

lock-step like other representations – structurally treat them no differently

java1.0

grammar

java1.0

interpreter

java1.0

compiler
JVM

Java1.0

Proofs

ITP-19

modularize theorems and proofs

along feature boundaries like

all other representations

Correctness of Compiler
• Statement of theorem is a list

of invariants

• 14 invariants in all

• Don’t need to know the

specifics of the invariants to

understand the

effects of features

ITP-20

Statement of Correctness
Theorem 14.1.1 (Correctness of the Compiler). There exists
a monotonic mapping from the run of the ASM for a Java

program into the run of the ASM for the compiled JVM program

such that the following invariants are satisfied:

(reg)

(begE)

(bool1)

(bool2)

(exc)

(exp)

(new)

(exc-clinit)

(fin)

ExpI

(begS)

(stm)

(abr)

StmI ·

(stack)

(clinit)

ExpC · StmC · ExpO · ExpE · Java1.0 = StmE ·

ITP-21

Proof of Correctness

• Proof is a case analysis using structural induction to show

correctness of compiling each kind of expression

• Proof is a list of 83 cases that show invariants holds

ITP-22

Adding Cases

• Same pattern repeats

• Invariant refinement: original proof cases remains unchanged

ITP-23

Each program in the JBook product line had a

 Proof of Correctness.

As features are composed, the theorem is elaborated with

new invariants, the proof

is extended with new cases and

elaborations of existing cases.

Reaction…

• JBook proofs were manually created

• Need to be mechanically verified

• Our conjecture was that theorems + proofs could be generated just

like other representations of programs in an SPL

• Show how our conjecture held with modern tools and approaches

• Starting point for this work
ITP-25

PRODUCT LINE OF THEOREMS
our current work:

ITP-26

ITP-27

A Step Forward

• Showed how to build syntax &

semantic definitions of a SPL of

languages, proofs in features and

their compositions are independently

certified by Coq proof assistant

• Next slides I’ll review algebraic

structure that features impose on

software development

• Ben will present details on how he

accomplished this in Coq

• Future work…

OOPSLA 2011

Welcome to the Land of Features!

#1: Features and Domains

• Given a domain D of programs to generate, identify the core features that underlie

the domain via domain analysis. Domain D has the set of features:

• Program in this domain is a composition of features:

D =

B1 // base program 1

B2 // base program 2

F1 // optional feature 1

F2 // optional feature 2

…

Fn // optional feature n

1 n 3 1 1

2 4 1 2

P F F F B

P F F B

=
=

ITP-29

instead of
starting from

Our Example

• Small product line of 4 features:

• Different compositions yields different languages:

base

ITP-30

#2: FEATURE MODELS

ITP-31

Feature Models

• Not all combinations of features are meaningful

• Some features require/preclude other features

• Feature model defines the legal combinations

• Is a context sensitive grammar

• context free grammar whose language include all legal combinations

• constraints that eliminate nonsensical sentences

• Assuming no feature interactions, sentence of a feature model (‘kjb’) is

mapped to an expression by a dot-product of its terms

k j b

D : [k] [i] [j] b ; // context free grammar

 k j i; // additional constraints
 k j;

ITP-32

Our Example

• Is just a context free grammar

• Its language (sentences):

L : [Generic] [Interface] [Cast] cFJ;

ITP-33

#3: LOCK-STEP UPDATE OF
REPRESENTATIONS

ITP-34

Feature Modules

• Every program has multiple consistent representations

• ex: a parser P has: grammar, source code, manual

• Base program is a tuple:

• Optional feature (F) modifies any or all representations

P P P
P [gram ,src , man]=

F F F
F [gram , src , man]= ∆ ∆ ∆

ITP-35

Feature Composition

• Is tuple composition – tuples are composed element-wise

• Extended parser (FP):

=

= ∆ ∆ ∆

= ∆ ∆ ∆

F F F P P P

F P F P F P

FP F P

[gram , src , man] [gram , src , man]

[gram gram , src src , man man]

grammar of FP source of FP manual of FP

ITP-36

Our Example

• Base language (cFJ) has multiple representations

• Base language is a 4-tuple:

base representation specification

syntax scFJ

operational semantics ocFJ

type system tcFJ

meta-theory proofs pcFJ

cFJ cFJ cFJ cFJ
cFJ [s ,o ,t ,p]=

preservation

and progress

proofs

ITP-37

Our Example

• An optional feature j extends each representation:

• Feature j is a 4-tuple of changes (functions) that update each

representation

representation change specification

syntax sj
operational semantics oj

type system tj
meta-theory proofs pj

ITP-38

= ∆ ∆ ∆ ∆
j j j j

j [s, o , t , p]

Our Example

• Tuple for Featherweight Java FJ is:

FJ

Cast cFJ=

cast cast cast cast cFJ cFJ cFJ cFJ
[s , o , t , p] [s ,o ,t ,p]= ∆ ∆ ∆ ∆

cast cFJ cast cFJ cast cFJ cast cFJ
[s s , o o , t t , p p]= ∆ ∆ ∆ ∆

syntax of FJ type system of FJ theorems and proofs FJ semantics of FJ

ITP-39

#4: FEATURE INTERACTIONS
one more piece…

ITP-40

Feature Interactions

• Feature interaction (FI) occurs when two features behave
incorrectly together

• Resolution of a feature interaction is an additional
module/transformation that “patches” features so that they correctly

work together

• Illustrate with a classical example

ITP-41

• Flood control – Fire control problem (Kang 2003)

• isomorphic to feature interaction problems in telephony

Feature Interactions

Fire

Flood

Flood

Fire

fire detected @ i

sprinklers on @ i+1

standing water @ i+2

water turned off @ i+3

building burns down

ITP-42

ITP-43

• Flood control – Fire control problem (Kang 2003)

• isomorphic to feature interaction problems in telephony

Feature Interactions

Fire

Flood

Flood

Fire

Fire#Flood

New Operations on Features

• Cross-product () says we want the integration of two features so that they work

together correctly

• # distributes over dot and # takes precedence over dot:

 interaction of a feature with a dot-product = the dot-product of their interactions

⋅ = ⋅f #(g h) (f # g) (f # h)

× = ⋅ ⋅f g (f # g) f g

ITP-44

Connection to Prior Discussions

• To account for feature interactions, a sentence of a feature model ‘kjb’ is

mapped to a expression by a cross-product (not by a dot-product) of its terms

• So not only do we compose features (k, j, b),

we also consider all possible 2-way and 3-way (in general n-way) interactions

of these features

= × ×
= × ×
= ×
=

p k j b // def of p

k (j# b j b) // def of

k #(j# b j b) k (j# b j b) // def of

k # j# b k # j k # b k j# b j b // # dist over

ITP-45

In Our Case Study

ITP-46

Generic Interface cFJ

Generic # Interface

Generic Interface cFJ

Generic # Interface

Generic # Interface # cFJ

Gen

Generic Interface cFJ

Generic # Interface Generic Interface c

eric # cFJ Interface # cFJ

1 1 1

FJ

× ×

=

=

=

#5: IMPLEMENTING MODULES
given this super-structure, here’s the next key step

ITP-47

How We Implement Modules

• Design features to be monotonic: what was true before a feature is

added is true afterwards – although scope of validity may be qualified

• standard design technique

• Features are allowed to make 2 kinds of changes

• add new definitions

• modify existing definitions

• Single syntactic approach for all representations

ITP-48

SYNTAX RULES
how we define and modify

ITP-49

Adding Syntax

• Syntax for expressions in cFJ

• Syntax for expressions in Cast

• Composition CastcFJ is the union of rules

• Easy – only one exception to be considered shortly

 =

ITP-50

ITP-51

Modifying Syntax

• Requires foresight to know how productions may be changed by other features

• engineering result from domain analysis

• no different than OO refactorings that prepare source code for extensions

• visitor, framework, strategy patterns

cFJ expression syntax

Cast syntax

generalize

generalize

variation points (VPs)

VP definitions

Composition

• Syntax for original FJ = CastcFJ
• Syntax for Generics

• Syntax for GenericsFJ
• Exception (mentioned earlier) – replace default VP definition

 =

ITP-52
FJ

Generics

GenericsFJ

Inlining

• At the end of a composition process, VP definitions can be inlined to

simplify result

• Typically, inlining yields what you would have written by hand

• This is one way how we check if feature compositions are “correct”

inline

ITP-53

REDUCTION
 AND TYPING RULES

other representations are handled no differently – such as:

ITP-54

Adding Rules

• Typing rules for cFJ expressions

• Typing rule added by Cast

• Composition CastcFJ is the union of these rules

 =

ITP-55

cFJ

Cast

CastcFJ

Modifying Rules

• Requires VPs to be defined

• Typing rules for cFJ expressions

• Generalize by adding VPs

• VPs have more sophisticated meaning

generalize

ITP-56

Semantics of VPs

• Three kinds of VPs:

– predicates that extend the

premise of a rule
 (true by default)

– relational holes which

extend a judgment's

signature (empty by default)

– functions that transform

existing premises and

conclusions
(identity function by default)

ITP-57

Composition (as Before)

• Typing rules for cFJ

• Typing rules for Generics (replaces default declarations for WFC and D)

• Typing rules for GenericscFJ

 =

ITP-58

THEOREMS AND PROOFS
finally!

ITP-59

Theorems

• A “general” theorem in cFJ with VPs and default definitions

• Theorem “adapts” to VP instantiations of Generic

ITP-60

cFJ GenericcFJ

Semantic Composition
 that guarantees the correctness of proofs

• When VPs are used in theorems and proofs, we define properties

that must be satisfied by any VP plug-in

• stated as additional assumptions with default lemma(s)

• Allows a general theorem to be proven, independent of features that

might “plug-in” specific definitions for its VPs

• in effect, the proof assumes a general behavior for all

possible VP instantiations

• Obligation: any feature that “plugs-in” a VP definition must supply a

proof that the properties assumed by the general theorem are

satisfied ITP-61

Semantic Composition
 that guarantees the correctness of proofs

• In effect, the assumptions of a general theorem form an explicit interface

against which a proof is written.

• General theorem does not have to be recertified, reuse as is

• Plug-in theorems do not need to be recertified, reused as is

• Must certify that general assumptions hold for plug-ins

feature X

Lemma

 .
(default)

 .

 A

Theorem

 .

 .

 .

A B

B feature Y

Lemma

 .

 .

 .

 A

 =

Theorem

 .

 .

 .

 A B

B

Lemma

 .

 .

 .

 A

feature YX ITP-62

ENCODING FEATURE
 MODULES IN COQ

VP for Ben

ITP-63

Coq Encodings

• Syntax, operational semantics, and typing rules are written as standard inductive

data types in Coq. Proofs are then written over these encodings

• Encoding of syntax:

mapping

Syntax Notation

Coq Encoding

ITP-64

Semantic (not Syntactic!) Composition

• So far, we defined composition syntactically

• Fine for definitions, but how does this work with proofs?

• Could do syntactic updates on proof terms

• Specifying VPs on large proof trees is difficult

• Have to recheck resulting term for each variant

• Need a more semantic notion of composition!

ITP-65

feature X

Lemma

 .
(default)

 .

 A

Theorem

 .

 .

 .

A B

B feature Y

Lemma

 .

 .

 .

 A

 =

Theorem

 .

 .

 .

 A B

B

Lemma

 .

 .

 .

 A

feature YX

Semantic (not Syntactic) Composition

• Use abstraction mechanisms built into Coq

• Definitions are parameterized on variation points

• Modules provide instantiations

• Composition is simply instantiation

ITP-66

Semantic (not Syntactic) Composition

• Parameterized definitions enable variation points in proofs

• VPs are opaque to Coq

• need to make assumptions about their behavior to complete proofs

• assumptions are the proof variation points

• proof composition is again instantiation

• allows each module to be checked independently

ITP-67

Feature Modules in Coq

• One Coq file per feature, which encapsulates all pieces of that feature

• Each file is independently certified by Coq

• To compose modules, a new file is created

• Definitions and proofs are composed one at a time by instantiating

variation points in definitions from features

• Coq simply checks that each proof’s assumptions are satisfied

• Effectively an interface check

• No need to recheck proof terms from the modules

ITP-68

Feature Module Statistics

• One Coq file per module that encapsulates all representations

ITP-69

Performance

• Once proofs in each feature module have been certified, they do not need to be

rechecked for a target language

• Practical effect: certification time for feature modules is non-trivial

• Certifying all products in our SPL approx. same time as required by cFJ module

ITP-70

FUTURE WORK

ITP-71

Enhanced Support in Coq

• Relying on parameterization for feature composition has clear benefits:

– Everything works “out of the box”: same level of assurance as anything in Coq

– Separate verification of feature modules means we don’t have to recheck

proofs for each product

• But there are drawbacks:

– Composition scripts are tediously built piece-by-piece

– Adding a new feature requires modifying existing features to allow for

extension:

• Recursion needs to be opened and VPs added to inductive data types

• Every proof over an extended type has to be reengineered

ITP-72

Enhanced Support in Coq

• We are looking at extending Coq to better support feature composition

• Ideally, a feature module can be designed without extension in mind

• Subsequent feature modules can extend its definitions with new cases or variations

• Given an extension and an existing proof, a feature module provides the necessary

pieces to build a new proof

• typing rules of CIC indicate where the proof extensions need to occur

• A feature-module-level composition operator builds the complete set of definitions

and proofs from a product specification automatically

ITP-73

Holy Grail

• Safe Composition

• A general structural analysis certifies that all programs of an SPL are type correct

– uses a SAT solver and feature model to examine all legal combinations of

features to verify type safety properties of all programs in an SPL

– much faster than building and verifying each product separately

• Believe a similar analysis can be done to certify correctness of all Coq products in an

SPL

– won’t have to generate and then certify theorems for each product

– know ahead of time that the process is correct

ITP-74

CONCLUSIONS
VP for Don

ITP-75

Conclusions

• Mechanically verifying artifacts using theorem provers is hard work

• Compounded when verifying all members of a product line

• Features are a natural way to decompose a family of programs

• Decomposing proofs along feature boundaries enables a natural reuse of proofs

• same for other representations as well

• Follows a typical way in which language definitions (syntax, semantics, type system, proofs)

evolve over time

• We use simple design and implementation techniques to structure a product line of

theorems and their proofs, requiring:

• engineering features so that they “fit together”

• mathematical foundation of feature structures
ITP-76

Proof of Concept

• Applied ideas to an SPL of Featherweight Java, using standard facilities in Coq to

mechanically check proofs of progress and preservation for composed languages

• A feature-based approach supports a structured evolution of languages

from a simple core to a fully-featured language

• Doing so transforms a mechanized formalization of a language from a rigorous

check of correctness into an important way to reuse definitions and proofs across a

family of related languages

• We conjecture that our success can be replicated in other domains, and herein lies

future work. We welcome your thoughts and suggestions.

ITP-77

	Product Lines of Theorems
	Introduction
	My Contribution
	Relational Query Optimization (RQO)
	Keys to Success of RQO
	Purpose of This Talk
	Software Product Lines �(SPLs)
	Domain Analysis
	In Software
	Example: a 4-Program SPL
	Slide Number 11
	Ideas Scale...
	Quick Summary on SPLs
	Jbook
	Structure of JBook
	Overview of JBook
	Overview of JBook
	Features Update All Representations of a Program Lock-Step
	Found What We Expected…
	Correctness of Compiler
	Statement of Correctness
	Proof of Correctness
	Adding Cases
	Reaction…
	Product Line of Theorems
	A Step Forward
	Welcome to the Land of Features!
	#1: Features and Domains
	Our Example
	#2: Feature Models
	Feature Models
	Our Example
	#3: Lock-Step update 	of representations
	Feature Modules
	Feature Composition
	Our Example
	Our Example
	Our Example
	#4: Feature Interactions
	Feature Interactions
	Feature Interactions
	Feature Interactions
	New Operations on Features
	Connection to Prior Discussions
	In Our Case Study
	#5: implementing modules
	How We Implement Modules
	Syntax rules
	Adding Syntax
	Modifying Syntax
	Composition
	Inlining
	Reduction �	and Typing Rules
	Adding Rules
	Modifying Rules
	Semantics of VPs
	Composition (as Before)
	Theorems and Proofs
	Theorems
	Semantic Composition� that guarantees the correctness of proofs
	Semantic Composition� that guarantees the correctness of proofs
	Encoding Feature�	modules in coq
	Coq Encodings
	Semantic (not Syntactic!) Composition
	Semantic (not Syntactic) Composition
	Semantic (not Syntactic) Composition
	Feature Modules in Coq
	Feature Module Statistics
	Performance
	Future Work
	Enhanced Support in Coq
	Enhanced Support in Coq
	Holy Grail
	Conclusions
	Conclusions
	Proof of Concept

