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Using directed search to model the product market and the labor market,
I show that large plants can pay higher wages to homogeneous workers and earn
higher expected pro®t per worker than small plants, although plants are
identical except size. A large plant charges a higher price for its product and
compensates buyers with a higher service probability. To capture this size-
related bene®t, large plants try to become larger by recruiting at high wages.
This size±wage differential survives labor market competition because a high
wage is harder to get than a low wage. Moreover, the size±wage differential
increases with the product demand when demand is initially low and falls when
demand is already high.

1. INTRODUCTIONINTRODUCTION

The size±wage differential refers to the fact that employers with more workers pay

higher wages than smaller employers do to workers with the same observable skills

(see Brown and Medoff, 1989). It is an important component of overall wage in-

equality. Changes in the size±wage differential alone account for 40 percent of the

increase in the ninetieth-tenth percentile wage differential from 1963 to 1986 among

U.S. manufacturing workers (see Davis and Haltiwanger, 1991). In contrast, changes

in workers' observable characteristics like age, experience, and educational attain-

ment account for 30 percent of this increase (see Juhn et al., 1993). Thus, it is

important to explain why the size±wage differential exists and how it responds to

market conditions.

What makes the size±wage differential dif®cult to explain is that large employers

also earn higher pro®t per worker (Katz and Summers, 1989). Two explanations
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are popular in the literature.2 One is the sorting story, which argues that

unobservable skills are complementary with capital and so large plants with high

capital intensities sort out workers with high unobservable skills (Hamermesh,

1980). The second is the ef®ciency wage story (Stigler, 1962; Shapiro and Stiglitz,

1984). That is, it is more dif®cult for a large plant than for a small plant to monitor

workers' effort and so a large plant must pay a higher wage to prevent shirking

(see Katz and Summers, 1989). Both explanations are plausible, but they rely on

unexplained additional differences between plants and leave most of the size±wage

differential unaccounted for. In particular, Troske (1999) shows that the capital±

labor ratio accounts for little of the establishment-size wage premium among

manufacturing workers.3

In this article I abstract from all such differences among plants and focus on the

product market as a source of the size±wage differential. The story is simple. Sellers

(employers) post prices (wages) and agents cannot coordinate their decisions. With

the coordination failure, buyers face the risk of being left out, and so they trade off

price with the service probability. By providing a higher service probability, a larger

seller can post a higher price and obtain a higher expected revenue per good (or per

worker). With a realistic assumption that plants grow only gradually, this positive

size±revenue differential makes a large employer more eager to ®ll the vacancy by

posting a higher wage than a small employer. Labor market competition does not

eliminate this size±wage differential because job applicants are indifferent between

a high wage that is hard to get and a low wage that is easy to get. Thus, in equi-

librium a larger plant can be more pro®table and pay a higher wage than a smaller

plant.

The size±revenue differential is necessary but not suf®cient for a positive size±

wage differential. There are two forces that reduce the size±wage differential.

One is the difference between large and small employers' outside options. A

larger employer has a higher outside option than a smaller employer because it

can resort to its higher current employment when it fails to recruit additional

workers. As a result, a larger employer gets a larger fraction of the match

surplus than a smaller employer. The second force is the size distribution of

plants. When the product demand is very low, there is very little entry by plants

and so the size distribution is very thin on small plants. But there is a relatively

large ¯ow from large to small plants due to job separation. To keep their mass

small in the steady-state distribution, small plants must recruit more quickly by

posting a higher wage than large plants, yielding a negative size±wage differ-

ential.

2 For these explanations and others, see Brown and Medoff (1989), Katz and Summers (1989), and
Davis and Haltiwanger (1991). Note that explanations such as unionization cannot explain
simultaneously a size±wage differential and a size-pro®t differential.

3 Brown and Medoff (1989) have found that more than a half of the size±wage differential remains
after taking into account the ®xed effect of unobservable skills. Also, the size±wage differential is
signi®cant among piece-rate workers whose employers do not seem to face different monitoring costs
depending on size. The size±wage premium is even larger for piece-rate workers than for standard-
rate workers.
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The size±wage differential is positive when the size±revenue differential dom-

inates these negative forces. This happens when the goods demand is moderate. In

contrast, when the goods market demand is suf®ciently high, an additional capa-

city does not give a seller much advantage in attracting buyers and so the size±

revenue differential is too small to dominate the difference in plants' outside

options. When the goods market demand is suf®ciently low, there are very few

small plants and so the size distribution of plants requires a negative size±wage

differential.

The size±wage differential depends on the goods demand in a hump-shaped

pattern, although the size±revenue differential always falls when the goods de-

mand increases. Starting from a very low goods demand, an increase in demand

increases plants' entry suf®ciently and increases the fraction of small plants in

the plant distribution. This eases the negative pressure on the size±wage dif-

ferential exerted by the size distribution of plants and increases the size±wage

differential. When the goods demand is high, a further increase in demand re-

duces the size±revenue differential suf®ciently to compress the size±wage dif-

ferential.

A critical assumption is that plants grow gradually by recruiting one worker at a

time. This assumption is valid when the costs of recruiting several workers at once,

including the borrowing cost, are higher than those of recruiting the workers se-

quentially (see Section 6 for more discussions). With this assumption, the size±

revenue differential enables a large plant to capture a larger increase in the expected

revenue by hiring an additional worker than a small plant.

The main contribution of this article is to show how sellers' capacity differences

affect the size±wage differential. Although others have proposed the product market

power as an explanation for the size±wage differential (e.g., Weiss, 1966), they have

not formally shown how plants that differ only in size can differ signi®cantly in the

revenue per worker when there are many plants in the industry. Nor have they

shown how the size±wage differential can survive the competition among workers

and plants. I provide answers to these questions and suggest new measures for plants'

market power (see Section 7). To focus on the capacity difference, I will abstract

from any other difference between plants such as product quality, capital intensity,

and workers' skills.

It is useful to contrast the article with Montgomery (1991). Using a wage-posting

model, Montgomery shows that identical workers obtain different wages if workers'

value of marginal product differs exogenously across employers. For the issue of the

size±wage differential, Montgomery's model has three major shortcomings. First, the

wage differential therein is not the size±wage differential documented in the em-

pirical literature, because all ®rms hire one worker each in Montgomery's model.

Second, Montgomery does not derive ®rms' revenue difference from their size dif-

ference. Instead, he justi®es the exogenous revenue difference by ®rms' different

capital±labor ratios, which empirically account for little of the size±wage differential

at the establishment level (see Troske, 1999). Third, since the distribution of ®rms is

exogenous in Montgomery's model, it is not clear whether the wage differential

therein is consistent with ®rms' entry. I overcome these shortcomings by modeling
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plant size explicitly, deriving the size±revenue differential endogenously, and al-

lowing for entry.4

Another contribution of this article is to use directed search to model both the

goods market and the labor market. In contrast, previous price/wage-posting models

have focused on only one of these markets. For example, Peters (1991) and Burdett

et al. (1997) have focused on a general market, while Montgomery (1991), Moen

(1997), and Cao and Shi (2000) have focused on the labor market. It is necessary to

integrate the two markets to address the main issue in this article, namely the

coexistence of a size±pro®t differential and a size±wage differential. The two markets

also interact to generate the novel result that the size±wage differential depends on

the goods market demand in a hump-shaped pattern.

More generally, my model is related to the search models of unemployment (e.g.,

Pissarides, 1990). Another related literature is the traditional search literature sur-

veyed by McMillan and Rothschild (1994), where buyers only know the distribution

of prices before search and learn about a particular seller's price after they visit the

seller. Neither model generates a positive capacity±price relation that is central to

my analysis.5

2. A ONE-PERIOD ECONOMYA ONE-PERIOD ECONOMY

I ®rst analyze an economy with one period, leaving the economy with an in®nite

horizon to Section 4. I also leave the discussions on various modeling assumptions to

Section 6.

2.1. Agents, Markets, and Actions. The economy begins with large numbers of

buyers, workers, and plants, all being risk neutral. There are B number of identical

buyers, each wanting to consume one unit of goods, which yields utility 1. There are I

number of workers (whose identities may overlap with the buyers). A fraction u of

them are unemployed and the rest are employed at the beginning of the period.

Except the employment status, all workers are identical and each worker produces

one unit of output when employed. An unemployed worker obtains zero utility from

leisure.

The total number of potential plants at the beginning of the period is (1ÿ u)I=a,

where a 2 (0, 1). A fraction a of them are low-capacity plants, each having one

worker already and wanting to hire a second worker. Others are entrants, with a

4 Burdett et al. (1997) have also analyzed how capacity differences affect prices in a one-period
model but obtained only numerical results. For this environment I obtain analytical results (see
Sections 2 and 3). Also, I analyze the two markets jointly and extend the analysis to an in®nite
horizon.

5 Adapting a traditional search model to allow for on-the-job search, Burdett and Mortensen
(1998) obtain a size±wage differential but their model implies a lower pro®t per worker for large
®rms than for small ®rms. For the trade-off between price and service probability, Carlton (1978)
seems to be the ®rst one to analyze its importance. In contrast to price-posting models, he
exogenously assumes that each buyer has a smooth preference ordering over the pair of price and
service probability.
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number N � (1ÿ u)I(1ÿ a)=a, each wanting to hire a ®rst worker. As a capacity

constraint, each plant can have at most two workers in total and can recruit one

worker in the period. Except employment, all plants are the same, using the same

technology that produces one unit of output per worker. Other than wages, the cost

of production is normalized to zero.

The economy proceeds as in Figure 1. First, the labor market opens, with

(1ÿ u)I=a recruiting plants and uI job seekers (employed workers do not search).

Plants post wages simultaneously to attract applicants and, after observing these

wages, unemployed workers apply. Each plant awards the job randomly to those who

applied. After successfully hiring a new worker, a low-capacity plant becomes a high-

capacity plant and an entrant becomes a low-capacity plant. Then plants produce and

pay the posted wages. Plants have access to a competitive insurance market that

enables them to pay wages even when the goods are not sold. Second, the goods

market opens. Sellers post prices for their goods simultaneously and, after observing

all prices, each buyer chooses a seller to buy from. A seller awards the goods ran-

domly to those who visit it. Then buyers consume and the economy ends.

The two markets are clearly interdependent. Because the labor market opens be-

fore the goods market, plants' labor market decisions depend on the expected payoff

in the goods market. Of course, the equilibrium in the goods market also depends on

the size distribution of plants generated by the recruiting game in the labor market.

There is no Walrasian auctioneer in the markets. Instead, agents actively organize

their transactions without coordination. There is also a search cost, implicit in the

assumption that a buyer in the goods market (or an unemployed worker in the labor

market) can contact only one agent on the other side of the market in each period.

The search cost and the absence of coordination generate match failures and per-

sistent unemployment. The coordination failure in the large markets also makes it

appealing to focus on a symmetric equilibrium with mixed strategies. That is, buyers

randomize over sellers in the goods market, job applicants randomize over jobs in

the labor market, and identical agents use identical strategies.

2.2. The Goods Market. I will analyze the equilibrium in the economy recur-

sively, ®rst the goods market and then the labor market. In the goods market, there

are S number of sellers, a fraction H 2 (0, 1) of which are high-capacity sellers (each

having two units of goods) and the rest are low-capacity sellers (each having one unit

of goods). Both S and H are outcomes of the labor market equilibrium but are given

for the goods market. I assume HS and (1ÿH)S to be integers. The number of

buyers is B. Both B and S are large numbers with a ®nite and positive ratio b � B=S.

FIGUREIGURE 1

THETHE SEQUENCESEQUENCE OF ACTIVITIESOF ACTIVITIES
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The game in the goods market starts with sellers posting prices and then, after

observing all posted prices, each buyer chooses a seller to buy from. A high-capacity

seller posts a price pH and a low-capacity seller posts a price pL. If a low-capacity

seller gets k buyers, it chooses one randomly with probability 1=k to trade with. Let

aH be the probability that a buyer visits a particular high-capacity seller and aL be

the corresponding probability of visiting a particular low-capacity seller. These

probabilities must add up to one:

HSaH � (1ÿH)SaL � 1(2:1)

To characterize an equilibrium, let me start with a supposed equilibrium price vector

P � (pH , . . . , pH ; pL, . . . , pL) and examine a seller's possible deviation.

Consider ®rst a deviation by an arbitrary high-capacity seller to a price pd
H . For

convenience, let the deviator be the ®rst high-capacity seller and name it seller D.

The deviation changes the price vector to Pd � (pd
H , pH , . . . , pH ; pL, . . . , pL). Since

buyers move after observing sellers' decisions, the deviation induces buyers to

modify their strategies. Each buyer revises the probability to ad
H(Pd) with which he

visits seller D. Let qd
H be the service probability that he gets a good upon visiting

seller D. Then his expected utility is (1ÿ pd
H)qd

H . For a mixed strategy to be the best

response, the buyer must be indifferent between seller D and other sellers. That is,

(1ÿ pd
H)qd

H � V(2:2)

where V is the expected utility a buyer gets in the market. In a large goods market,

each seller has only a negligible in¯uence on V so I treat V as exogenous for each

seller.6 Also, V � 1, since the best outcome a buyer can achieve is to obtain a good

with probability one.

Equation (2.2) states that buyers' strategies, implicit in qd
H , depend on seller D's

price. To compute qd
H , note that if a buyer visits seller D, he gets a good for sure if

the seller has no other buyer or has exactly one other buyer, which occurs with the

following probability:

(1ÿ ad
H)Bÿ1 � (Bÿ 1)ad

H(1ÿ ad
H)Bÿ2

When the seller has k � 2 other buyers, the speci®c buyer gets a good with prob-

ability 2=(k� 1). With the notation Ck
B � B!=[k!(Bÿ k)!], the service probability

provided by seller D is7

6 See Burdett et al. (1997) for a proof of the convergence of the equilibrium in a ®nite economy to
the limit equilibrium. Cao and Shi (2000) also examined a ®nite market. Peters (1984) provided a
more general proof of the continuity of sellers' payoff function in prices.

7 The summation in the expression of qd
H is equal to g(1), where

g(y) �
XBÿ1

k�2

2

k� 1
Ck

Bÿ1(yad
H)k(1ÿ ad

H)Bÿ1ÿk

To calculate g(1), integrate g(y) with respect to y, sum over k, differentiate with respect to y, and set
y � 1.
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qd
H � (1ÿ ad

H)Bÿ1 � (Bÿ 1)ad
H(1ÿ ad

H)Bÿ2 �
XBÿ1

k�2

2

k� 1
Ck

Bÿ1(a
d
H)k(1ÿ ad

H)Bÿ1ÿk

� 2

Bad
H

1ÿ (1ÿ ad
H)B

� �ÿ (1ÿ ad
H)Bÿ1

It is useful to express the service probability as a function of the expected number,

i.e., the queue length, of buyers who visit the seller. Denoted xd
H , the queue length for

seller D is

xd
H �

XB

k�1

kCk
B(a

d
H)k(1ÿ ad

H)Bÿk � Bad
H

Noting limB!1 (1ÿ x=B)B � eÿx, the service probability is

qd
H !

2

xd
H
(1ÿ eÿxd

H)ÿ eÿxd
H � qH(xd

H) as B!1(2:3)

Seller D sets a price to maximize its expected revenue per worker, anticipating the

above in¯uence of its price on buyers' strategies but taking other sellers' prices as

given. Note that the wage cost does not appear in the seller's pricing problem be-

cause it is sunk at the time when sellers post prices. Denoted Rd
H , seller D's expected

revenue per worker is

Rd
H �

1

2
pd

H Bad
H(1ÿ ad

H)
Bÿ1 � 2

XB

k�2

Ck
B(a

d
H)k(1ÿ ad

H)
Bÿk

" #
The ®rst term in the brackets is the probability that seller D receives exactly one

buyer and the summation is the probability that seller D receives two or more

buyers. Simplifying, I have Rd
H � pd

Hqd
Hxd

H=2. Therefore, seller D's best deviation

solves the following problem:

(PH) max
pd

H

Rd
H �

1

2
pd

H � qd
H � xH(qd

H) subject to (2:2)(2:4)

where xH(�) is the inverse function of qH(x) in (2.3) such that xH(qd
H) � xd

H .

This problem has a unique solution, depicted by point H in Figure 2, where the

curve pd
H � IND(qd

H , V) is the buyer's indifference relation (2.2) and the curve

pd
H � ISRH(qd

H , R) is seller D's iso-revenue curve (depicting combinations of pd
H and

qd
H that generate the same expected revenue R). The buyer's indifference curve is

upward-sloping because a higher service probability must accompany a higher price

in order to generate the same expected utility V for a buyer. The iso-revenue curve is

upward-sloping because, to provide a higher service probability for buyers and yet

maintain the same expected revenue, the seller must charge a higher price. Also, one

can verify that the buyer's indifference curve is concave and the seller's iso-revenue

curve is convex, producing a unique tangency at point H.8

8 The solution is interior because IND(0, V) � ÿ1, IND(1, V) � 1ÿ V � 0, ISRH(0, R) � R > 0
and ISRH(1, R) � 1.
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An important property of the seller's problem is that the service probability qH(x)

is a decreasing function of the expected queue length, with qH(0) � 1 and qH(1) � 0.

That is, when the expected number of buyers for a seller increases, each buyer gets

served with a smaller probability. Also, the service probability is a smooth function.

By offering a price slightly lower than everyone else's, seller D cannot expect to

attract signi®cantly more buyers. If buyers chose to visit seller D with probability

one, each would get served with a very low probability and hence the strategy would

not maximize the buyers' expected utility. Instead, each buyer only increases the

visiting probability slightly, which results in a slight increase in the queue length that

just makes buyers indifferent between seller D and other sellers.

Similarly, a single low-capacity seller's decision, depicted by point L in Figure 2,

solves:

(PL) max
pd

L

Rd
L � pd

L � xL(q
d
L) � qd

L subject to pd
L � IND(qd

L, V)(2:5)

where

xd
L � Bad

L(2:6)

qd
L � qL(x

d
L) �

1ÿ eÿxd
L

xd
L

(2:7)

FIGUREIGURE 2

THE GOODS MARKETTHE GOODS MARKET
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A (mixed-strategy) equilibrium in the goods market is a quintuple

(pH , pL; qH , qL; V), with qH , qL 2 (0, 1), such that (i) given V, (pH , qH) solve (PH)

and (pL, qL) solve (PL); (ii) (2.1) is satis®ed. The equilibrium queue lengths are

xH � BaH and xL � BaL, where aH and aL are probabilities for a buyer to visit each

high-capacity seller and each low-capacity seller.

To characterize the equilibrium, note that (qH , qL) obey (2.3) and (2.7) with

(xH , xL) replacing (xd
H , xd

L). The solutions to (PH) and (PL) obey:

xL(qL) � xH(qH)ÿ ln(1� xH) � ÿ ln V(2:8)

pL � 1ÿ V

qL
, pH � 1ÿ V

qH
(2:9)

Together with (2.3) and (2.7), these conditions determine (pH , pL ; xH , xL) as

decreasing functions of V and (qH , qL) as increasing functions of V. That is, to

achieve a higher expected utility for buyers, prices should be lower, the queue

lengths should be shorter, and the service probabilities should be higher.9 Finally, to

determine V, rewrite (2.1) as

HxH(qH)� (1ÿH)xL(qL) � b(2:10)

Since xL(�) and xH(�) are decreasing functions and since the solutions for (qL, qH) are

increasing functions of V, the left-hand side of (2.10) is a decreasing function of V

and so the equation uniquely determines the equilibrium value of V. A formal

statement is as follows:

PROPOSITIONROPOSITION 1. For any b 2 (0,1) and H 2 (0, 1) there is a unique equilibrium

in the goods market that satis®es xH 2 (b, b=H).

PROOFROOF. Substitute xL from (2.10) into (2.8):

ln(1� xH) � xH ÿ b

1ÿH
(2:11)

It is easy to show that there is a unique positive solution for xH to this equation and

the solution satis®es xH 2 (b, b=H). Substituting this solution into (2.3) and (2.7)±

(2.9), one determines (qH , qL; xH , xL; pH , pL) and V in equilibrium. j

The property xH > b means that a high-capacity seller gets an above-average

number of buyers and hence gets more buyers than a low-capacity seller does.

Equivalently, a buyer visits each high-capacity seller with a higher probability than

visiting each low-capacity seller. The property xH < b=H means that high-capacity

sellers do not get all the buyers; buyers also go to low-capacity sellers with a positive

probability.

9 To show these properties with Figure 2, note that an increase in V shifts down the indifference
curve IND(q, V) southeast but does not affect the iso-revenue curve. Thus, the tangency points L and
H move southeast.
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2.3. Properties of the Goods Market Equilibrium. First, I want to show that a

high-capacity seller charges a higher price and obtains a higher revenue per worker

than a low-capacity seller. To begin, substituting (qL, qH) from (2.3) and (2.7),

(xL, V) from (2.8), and ( pL, pH) from (2.9), all as functions of xH , I have

RH

RL
� F2(xH) � ex ÿ 1ÿ xÿ x2=2

ex ÿ (1� x)�1� xÿ ln(1� x)�
����
x�xH

(2:12)

Similarly, substituting (qL, qH) and (xL, V) into (2.9), I have

pH

pL
� /(xH) � (ex ÿ 1ÿ x)�ex ÿ 1ÿ xÿ x2=2�

(ex ÿ 1ÿ x=2)fex ÿ (1� x)�1� xÿ ln(1� x)�g
����
x�xH

(2:13)

Appendix A.1 establishes the following lemma.

LEMMAEMMA 1. F2(x) and /(x) are decreasing functions of x.

Now, since F2(1) � /(1) � 1, Lemma 1 immediately implies a positive price

differential and a positive revenue differential between high-capacity and low-

capacity sellers for all xH <1. Equation (2.9) then implies a positive differential in

the service probability.

PROPOSITIONROPOSITION 2. In the goods market equilibrium, RH > RL, pH > pL, qH > qL.

Moreover, RH=RL > pH=pL.

A simple explanation for this result is that buyers get served with a higher

probability by a high-capacity seller than by a low-capacity seller. To offer the same

expected utility to buyers, a low-capacity seller must cut its price below a high-

capacity seller's and hence must obtain a lower expected revenue per worker. With

the capacity advantage, a large seller not only maintains a higher price but also

attracts more buyers per good than a low-capacity seller; i.e., xH=2 > xL. Thus, the

relative revenue per worker exceeds the relative price.

How can a high-capacity seller serve buyers with a higher probability than a

low-capacity seller? It is because the buyer has a chance of getting either of a

high-capacity seller's two goods. To see this, consider the alternative setting

where a high-capacity seller sells the two goods separately. That is, such a seller

marks the two goods differently and each buyer must specify exactly which good

to buy before visiting the seller. Since a buyer cannot choose between the two

goods after visiting a high-capacity seller, a high-capacity seller is equivalent to

two low-capacity sellers and hence gets exactly twice as many buyers as a low-

capacity seller. In this case there is no price differential or revenue differential

per worker.

Now I analyze how the size±revenue differential responds to the goods market

conditions.
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PROPOSITIONROPOSITION 3. The relative price, pH=pL, and the size±revenue differential,

ln(RH=RL), are decreasing functions of the buyer±seller ratio, b, and increasing

functions of the fraction of high-capacity sellers in the market, H.

PROOFROOF. Under Lemma 1, the proposition is valid if the solution for xH increases

in b and decreases in H. One can directly verify these properties through (2.11). j

To illustrate these effects of b and H in Figure 2, note that b and H affect

Figure 2 exclusively through the expected utility index V and that their effects are

opposite. An increase in b increases the number of buyers per seller, reduces

buyers' expected utility, and shifts the indifference curve IND(q, V) up northwest.

This increases prices and reduces service probabilities provided by both types of

sellers. On the opposite, an increase in H increases the total goods supply, in-

creases buyers' expected utility, and hence shifts the indifference curve down

southeast. This reduces prices and increases service probabilities provided by both

types of sellers.

Focus on the effect of b. Since an increase in b reduces buyers' expected utility V,

it shifts the buyers' indifference curve up northwest, but the shift is not uniform for

all levels of q. Since @p=@Vj j � 1=q along the indifference curve, the indifference

curve shifts up by more for low levels of q than for high levels of q. Thus the tangency

point L moves up by more than the tangency point H in Figure 2, resulting in a

proportionally larger increase in pL than in pH . This reduces the relative price and

the relative revenue.

Intuitively, an increase in the buyer±seller ratio reduces the relative price and the

relative revenue because it reduces the seller's bene®t of an additional capacity. The

additional capacity of a high-capacity seller is highly effective in attracting buyers

only when there are few buyers per seller. When there are many buyers per seller, a

seller ®nds it easy to sell the goods. By adding an additional capacity, a seller does

not provide a much better service probability to buyers (each of them still ®nds it

hard to get served) and so a high-capacity seller cannot charge a much higher price

than a low-capacity seller. In the extreme case b!1, the relative price and the

relative revenue approach 1.

In Proposition 3 I have treated b and H as parameters. The labor market equi-

librium described below determines (b, H).

2.4. The Labor Market. In the labor market, plants take the expected revenues

(RL, RH) as given. The reason is that these revenues depend on the labor market

entirely through the summary statistics (b, H); when the labor market is large, a

single plant's recruiting decision has no in¯uence on these statistics.10 Thus, (RL, RH)

are exogenous in this section.

10 That is, given a plant's employment after recruiting, the plant cannot change the maximum

expected revenue that it expects from the goods market equilibrium. This is quite different from
saying that a plant in the labor market cannot use its recruiting strategy to alter its feasibility set in
the goods market. I do not assume the latter.
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In the labor market, there are uI number of unemployed workers and (1ÿ u)I=a

number of recruiting plants. A number (1ÿ u)I of the recruiters are low capacity,

each having one worker already, and N of them are entrants, where

N � (1ÿ u)I(1ÿ a)=a. To recruit, each entrant posts a wage wL and each low-

capacity plant posts a wage wH . If a low-capacity plant successfully recruits the

second worker, it pays the wage wH to both the new worker and the existing one; if it

fails to recruit the second worker, it pays the wage wL to the existing worker.11 Thus,

all plants that produce with one worker pay a wage wL, regardless of their past

histories of employment. All plants that produce with two workers pay a wage wH .

The aim of the analysis is to ®nd the conditions for wH > wL. Anticipating this,

I call a low-capacity plant a high-wage recruiting plant and an entrant a low-wage

recruiting plant. As in a standard search model, an employed worker must quit ®rst

before applying for another job. Since an employed worker obtains a higher utility

than an unemployed worker, no worker quits and hence only unemployed workers

apply for jobs.

The recruiting game is similar to the pricing game in the goods market. A

recruiting plant posts a wage, taking other plants' wages as given. Observing the

posted wages, unemployed workers decide which job to apply for. If there are at least

two workers applying for the same job, one is chosen by the plant with equal

probability. Let cH be the probability with which an unemployed worker applies for

each high-wage job opening and cL be the probability with which he applies for each

low-wage job opening. Denote zH as the expected number of applicants, i.e., the

queue length, for each high-wage job and zL as the queue length for each low-wage

job. Then zH � uIcH and zL � uIcL. When I !1, these probabilities are ®nite and

positive. In this limit, an unemployed worker gets a job with probability

(1ÿ eÿzH )=zH when applying for a high-wage job and gets a job with probability

(1ÿ eÿzL )=zL when applying for a low-wage job. With probability 1ÿ eÿzL each

entrant hires a worker and becomes a low-capacity plant; with probability 1ÿ eÿzH

each low-capacity plant hires a second worker and becomes a high-capacity plant.

Moreover, since NcL �Na=(1ÿ a)cH � 1, I have

zL � a

1ÿ a
zH � uI

N (�
au

(1ÿ a)(1ÿ u))(2:14)

Each job applicant maximizes the expected wage and, in equilibrium, obtains the

same expected wage Vu from all job openings. Each recruiting ®rm maximizes the

expected pro®t, anticipating the in¯uence of its wage decisions on the applicants'

choices. For an entrant, the recruiting problem is

(PN) max
wL

(1ÿ eÿzL )(RL ÿ wL)

s.t.
1ÿ eÿzL

zL
wL � Vu

11 If the existing worker's wage were not updated, there would be a negative experience wage
premium in the ®rm. It is possible to rule out this unrealistic result by eliminating the assumption that
employed workers do not search (see Section 6).
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where the plant takes (Vu, RL) as given. Similarly, a low-capacity plant's recruiting

problem is

(P1) max
wH

1ÿ eÿzH� �2(RH ÿ wH)� eÿzH (RL ÿ wL)

s.t.
1ÿ eÿzH

zH
wH � Vu

Again, the ®rm takes (Vu, RH) as given. The second term in the objective function is

a low-capacity plant's outside option when it fails to recruit the second worker.

Solving the above maximization problems, I obtain the following equations:

Vu � RLeÿzL(2:15)

wL � 2VuezH ÿ 2RH � RL(2:16)

1ÿ eÿzL

zL
wL � 1ÿ eÿzH

zH
wH � Vu(2:17)

A labor market equilibrium is a collection (Vu, zL, zH , wL, wH) such that the

following conditions hold: (i) given (Vu, RL, RH) and given that other recruiting

plants post wL (if they are entrants) or wH (if they are low-capacity plants), wL solves

an entrant's recruiting problem (PN) and wH solves a low-capacity ®rm's recruiting

problem (P1); (ii) the expected lengths of applicants, (zL, zH), satisfy the adding-up

constraint (2.14) and make each applicant indifferent between a job opening with wL

and a job opening with wH ; and (iii) an unemployed worker's expected utility, Vu,

obeys (2.17).

The solutions to (2.14)±(2.17) characterize a labor market equilibrium. From

(2.17), it is apparent that a low-capacity ®rm posts a higher wage than an entrant if

and only if it has a longer queue of applicants:

REMARKEMARK 1. wH > wL if and only if zH > zL.

3. ECONOMY-WIDE EQUILIBRIUMECONOMY-WIDE EQUILIBRIUM

3.1. Characterization. An economy-wide equilibrium is a goods market equi-

librium and a labor market equilibrium with the following additional restrictions:

(i) the expected revenues (RL, RH) taken as given in the labor market equilibrium

are equal to those generated by the goods market equilibrium; and (ii) the statistics

(H, b) taken as given in the goods market equilibrium are equal to those generated

by the recruiting activities in the labor market.

An economy-wide equilibrium determines the variables (RH , RL, pH , pL, xH , xL),

(wH , wL, zH , zL, Vu), and (H, b). The parameters are (a, u, N, I, B), with N �
(1ÿ u) I(1ÿ a)=a. Since N, I, and B all approach in®nity, only their relative values

are ®nite. Choose the total number of workers I as the denominator and denote

h � B=I as the buyer±worker ratio. Then

N

I
� 1ÿ a

a
(1ÿ u), zH � u

1ÿ u
ÿ 1ÿ a

a
zL
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The relation between zH and zL comes from (2.14). In the rest of this article,

I shorten the notation xH to x and zL to z.

The restrictions on (H, b) imposed by the recruiting additivities are

SH � a

1ÿ a
N(1ÿ eÿzH ), S � a

1ÿ a
N � (1ÿ eÿz)N

The ®rst equation states that high-capacity sellers in the goods market are those

plants that have low capacity at the beginning of the period but have recruited

successfully for the second worker. The second equation states that the total number

of sellers in the goods market is the sum of low-capacity plants at the beginning of

the period and those entrants that have recruited successfully. Substituting N=I, zH ,

and S(� B=b), I have

H �
a 1ÿ eÿ(

u
1ÿuÿ1ÿa

a z)
h i
1ÿ (1ÿ a)eÿz

(3:1)

b � B

S
� ah=(1ÿ u)

1ÿ (1ÿ a)eÿz
(3:2)

To determine the economy-wide equilibrium, I determine z by deriving two

relationships between the relative revenue RH=RL and z from the two markets. For

the labor market, substituting zH and eliminating (Vu, wL, wH) from (2.15)±(2.17)

I have

RH

RL
� F1(z) � 1

2
1� eÿz 2e(

u
1ÿuÿ1ÿa

a z) ÿ z

1ÿ eÿz

h in o
(3:3)

For the goods market, substituting (3.1) and (3.2) into (2.11) I have

ln(1� x) � �1ÿ (1ÿ a)eÿz�xÿ ah
1ÿu

(1ÿ a)(1ÿ eÿz)� aeÿ( u
1ÿuÿ1ÿa

a z)
(3:4)

Proposition 1 shows that there is a unique solution for x to this equation. Denote this

solution as x(z). Then (2.12) implies

RH

RL
� F2(x(z)�(3:5)

Equations (3.3) and (3.5) determine (RH=RL, z) jointly. Then I can recover other

variables.

The following lemma documents the features of F1(z) and the proposition shows

that the economy-wide equilibrium exists. The proofs appear in Appendix A.2.

LEMMAEMMA 2. De®ne z1 as the positive solution to the following equation:

2e
u

1ÿuÿ1ÿa
a z� � ÿ z

1ÿ eÿz
� ez(3:6)

Then, (i) z1 is well de®ned and z1 2 (0, au=[(1ÿ a)(1ÿ u)]); (ii) F10(z) < 0 for z � z1;

and (iii) F1(z) < 1 iff z > z1.
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PROPOSITIONROPOSITION 4. There exists h0 > 0 such that an economy-wide equilibrium

exists if h > h0. The solution for z in the equilibrium lies in (0, z1).

Figure 3 depicts the functions F1(z) and F2(x(z)). Although F2(x(z)) need not be a

decreasing function of z, it is drawn so in the ®gure. The condition h > h0 is necessary

and suf®cient for the curve F1(z) to be above the curve F2(x(z)) when z � 0. When

h > h0, there is at least one solution for z and the solution lies in (0; z1). Since

F2(x(z)) may be an increasing or a decreasing function of z, the solution may not be

unique but is assumed so in the analysis below.12

For the economy-wide equilibrium to exist, the number of buyers per worker

cannot be too small. If there are only a small number of buyers per worker, then

there are only a small number of buyers per seller, since the relative number of

plants to workers is ®nite. In this case a large capacity gives the seller an important

advantage in attracting buyers (see Section 2.3). Small sellers must drastically cut

prices in order to attract buyers and so the size±revenue differential is very large.

Anticipating this large revenue differential, high-wage recruiting plants will post a

FIGUREIGURE 3

THE ECONOMY-WIDE EQUILIBRIUMTHE ECONOMY-WIDE EQUILIBRIUM

12 The number of solutions is odd. If there is more than one solution, the smallest and largest
solutions for z both have the analytical properties analyzed here.
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very high wage in order to hire a second worker, attracting all applicants. The

restriction h > h0 ensures that large and small plants coexist in equilibrium.

3.2. Properties. The most important property of the economy-wide equilibrium

is a positive size±wage differential, documented in the following proposition and

proven in Appendix A.3.

PROPOSITIONROPOSITION 5. There exists h1 > 0 such that wH > wL if and only if h < h1.

Moreover, h1 > h0 if a is either close to 1 or close to 0.

For the size±wage differential to be positive, the number of buyers per worker

cannot be too large. To explain, note that a low-capacity plant has a higher outside

option than an entrant: When no applicant shows up, a low-capacity plant gets some

rent from the existing worker but an entrant gets nothing. This higher ``outside

option'' enables a low-capacity plant to extract a larger fraction of the match surplus

from a worker than an entrant does, hence tending to produce a negative size±wage

differential. For the differential to be positive, a low-capacity plant must have a

signi®cantly larger match surplus (``pie'') to be shared with a new recruit than an

entrant does. This requires the buyer±worker ratio to be not too large. If, instead,

there are many buyers per worker, then there are many buyers per seller in the goods

market. Since every seller can sell the goods easily, a larger capacity does not

increase a seller's expected revenue per worker much and so the pie (per worker) is

almost the same for large and small sellers (see Proposition 3).

For a positive size±wage differential to be consistent with equilibrium, h1 must be

greater than h0. Proposition 5 shows h1 > h0 when the fraction of low-capacity (high-

wage recruiting) plants in the labor market is either large or small. I believe that

h1 > h0 holds for all a 2 (0, 1), although I have not been able to prove this general

result analytically.13

The size±wage differential responds to changes in parameters (h, u, a). The effects

of h are as follows (the proof is straightforward and omitted):

COROLLARYOROLLARY 1. In the economy-wide equilibrium, z increases in h and zH

decreases in h. Thus, RH=RL and wH=wL are both lower when h is larger.

The explanation for this result is the same as the above one for why a size±wage

differential is positive only when h < h1. That is, by reducing the advantage of a large

capacity, an increase in the number of buyers reduces the size±revenue differential

and hence reduces the size±wage differential. One can trace the effects of h through

Figure 3. Since x(z) is an increasing function of h for given z (see (3.4)) and F2(x) is a

decreasing function of x, an increase in h shifts down the curve F2(x(z)). The curve

13 Numerical exercises support this general result. It is dif®cult to prove the result analytically
because h0 and h1 are both de®ned implicitly through F2(x(z)) � F1(z) by setting z to some special
values; the dependence of F2(x(z)) on h is complicated.
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F1(z) remains intact. Thus, the solution for z increases, zH falls, and the relative

revenue RH=RL falls. By (2.17), the size±wage differential falls.

The effects of a and u are more complicated, since they affect the equilibrium

value of z ambiguously and also change the size±wage differential directly. In an

in®nite-horizon economy, a and u are endogenous. I turn to this in®nite-horizon

economy in the following section.

4. AN INFINITE HORIZONAN INFINITE HORIZON

In an in®nite-horizon economy, the number of entrants must be consistent with

free entry rather than being exogenous as in the one-period economy. Also, the

distribution of plants/workers must be consistent with a stationary equilibrium. By

focusing on a stationary equilibrium, I underscore the fact that a positive size±wage

differential can persist and survive plants' entry. I also obtain new features of the

size±wage differential through the size distribution of plants.

4.1. Flows of Plants and Workers. The economy lasts forever, with discrete

time. In each period, actions follow the sequence in Figure 1, with an additional

phaseÐjob separationÐthat takes place at the end of the period after the goods

market closes. Goods are perishable across periods. The goods market functions as

before and so all the results in Sections 2.2 and 2.3 hold for given (H, b). The

recruiting game in the labor market is also similar to the one before. Only entrants

and low-capacity plants recruit, each recruiting one worker at a time.

Anyone can pay a recruiting cost c > 0 per period and enter the labor market as an

entrant at the beginning of a period. Some matches separate after the goods market

closes. Each plant receives a shock to the match-speci®c productivity that causes only

one worker to separate. The shock occurs to a high-capacity plant with probability

2r > 0 and to a low-capacity plant with probability r. For a high-capacity plant that

experiences the shock, either worker is chosen randomly with probability 1=2 to be

the one who separates. Thus, ex ante, each worker faces the same separation

probability r in both large and small plants. Job separation turns a high-capacity

plant into a low-capacity plant and a low-capacity plant into a potential entrant.14

When a high-capacity plant experiences job separation, it cuts the remaining

worker's wage to wL next period unless it successfully recruits the second worker in

the next period. Also, as before, if a low-capacity plant succeeds in recruiting the

second worker, it pays both the new worker and the existing worker the high wage

wH . These assumptions ensure that all low-capacity plants pay the same wage wL and

so simplify the analysis.

14 Although it is more reasonable to assume that the job separation rate is lower in larger plants,
the assumption of equal separation rates here strengthens the results. Also, note that the speci®c way
of modeling separation is different from the standard one (e.g., Pissarides, 1990), which assumes each
worker to experience the shock independently with probability r. With this standard modeling
approach, a high-capacity plant can lose both workers with probability r2. In contrast, the approach
here ensures that a high-capacity plant never loses two workers in one period. This makes the ¯ows
of plants more manageable.
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With the same notation (z, zH , a, N, S, H, B, I) as before, the job market activ-

ities generate a size distribution of plants summarized in Table 1. The following

restrictions are necessary and suf®cient for the size distribution to be stationary:

2rSH � a

1ÿ a
N(1ÿ eÿzH )(4:1)

rS(1ÿH) � N(1ÿ eÿz)(4:2)

a

1ÿ a
N � 2rSH � (1ÿ r)S(1ÿH)(4:3)

Equation (4.1) requires that the number of high-capacity plants that switch into low-

capacity plants through separation be equal to the number of low-capacity plants

that successfully recruit the second worker. Equation (4.2) requires that the number

of low-capacity plants that experience job separation be equal to the number of

entrants that successfully recruit a worker. Equation (4.3) requires that the number

of low-capacity plants at the beginning of each period be equal to the number of

those low-capacity plants that survived job separation in the last period,

(1ÿ r)S(1ÿH), plus the ¯ow of high-capacity plants that experienced job separation

last period, 2rSH. The distribution of workers is also stationary under (4.1)±(4.3).

The number of workers (I) and the number of buyers (B) are exogenous but other

distribution variables (N, S, H, a, u, b) are all endogenous. I take the limit I !1,

®x h � B=I at an exogenous (®nite) level, and determine (H, a, u, b, N=I, S=I). It is

convenient to write (zH , z) and (N, S, u, b) as functions of (H, a), leaving (H, a)

to be determined later. With (4.1)±(4.3), (2.14), and the de®nitions of (u; b),

I can solve

zH � ln 1� 2rH

(1ÿr)(1ÿH)

� �
z � ÿ ln 1ÿ a

1ÿa � r(1ÿH)
(1ÿr)(1ÿH)� 2rH

� �
8>>><>>>:(4:4)

N
I � z� a

1ÿa zH � 1ÿr(1ÿH)
2rH� (1ÿr)(1ÿH)

� �� �ÿ1

S
I � a

1ÿa � N=I

2rH� (1ÿr)(1ÿH)

u � z� a
1ÿa zH

ÿ �
N
I

b � h(1ÿa)
a � 2rH� (1ÿr)(1ÿH)

N=I

8>>>>>>>><>>>>>>>>:
(4:5)

TABLEABLE 1

DISTRIBUTIONDISTRIBUTION OFOF PLANTSPLANTS

Plants

Time High-Capacity Plants Low-Capacity Plants Entrants

Before recruiting (1ÿ 2r)SH a
1ÿa N N

After recruiting SH S(1ÿ H ) Neÿz
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4.2. Wages and Value Functions. The wage-posting game determines the wages,

queue lengths, and value functions. The value functions are as follows:

VH (JH ): the present value of a worker (owner) in a high-capacity plant after

production;

VL (JL): the present value of a worker (owner) in a low-capacity plant after

production;

VR (JR): the present value of a worker (owner) in a low-capacity plant before

recruiting;

Vu: the present value of unemployment before recruiting;

JN : the present value of an entrant before recruiting.

Let b 2 (0, 1) be the common discount factor of workers and plants. Workers' value

functions obey the following Bellman equations:

Vu � 1ÿeÿzH

zH
(VH ÿ bVu)� bVu

� 1ÿeÿz

z (VL ÿ bVu)� bVu

8<:(4:6)

VH � wH � (1ÿ 2r)bVH � rb(Vu � VR)(4:7)

VL � wL � (1ÿ r)bVR � rbVu(4:8)

VR � (1ÿ eÿzH )VH � eÿzH VL(4:9)

The explanations from (4.6)±(4.8) are similar. Consider (4.7) for example. It states

that the present value of a worker in a high-capacity plant equals the sum of the

current wage and the expected future value. The expected future value consists of

two terms. With probability (1ÿ 2r) the plant does not experience job separation, in

which case the future value for the worker is bVH . With probability 2r the plant

experiences job separation and with probability 1=2 the speci®c worker is the one

who separates. The corresponding future value for the worker is b(Vu � VR)=2.

The Bellman equation (4.6) has two lines, the ®rst line calculating the expected

value to an unemployed worker when he applies to a high-wage job opening and the

second line calculating the expected value when he applies to a low-wage job

opening. The expected gains to an unemployed worker from applying to the two

types of jobs must be the same and so

1ÿ eÿzH

zH
(VH ÿ bVu) � 1ÿ eÿz

z
(VL ÿ bVu)(4:10)

When an applicant gains more from a high-wage job than from a low-wage job, he

also faces a longer queue when applying for a high-wage job.

Similarly, the Bellman equations for plants' value functions are as follows:

JN � (1ÿ eÿz)JL � eÿzbJN ÿ c(4:11)

JH � 2(RH ÿ wH)� (1ÿ 2r)bJH � 2rbJR(4:12)
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JL � (RL ÿ wL)� (1ÿ r)bJR � rbJN(4:13)

JR � (1ÿ eÿzH )JH � eÿzH JL ÿ c(4:14)

A recruiting plant posts the wage to maximize the expected value at the time of

recruiting. Consider ®rst a one-period deviation by a single low-capacity plant to a

wage wd
H . Observing this deviation, each job applicant revises his application

probability that results in a new queue length for the deviator, zd
H . The deviator's

value function is

Jd
R � (1ÿ eÿzd

H )Jd
H(wd

H)� eÿzd
H JL ÿ c(4:15)

where Jd
H(wd

H) obeys (4.12) with Jd
H replacing JH and wd

H replacing wH .15 Taking

(JR, JL, Vu, VR) as given, the deviator maximizes Jd
R subject to applicants' indiffer-

ence condition:

1ÿ eÿzd
H

zd
H

Vd
H(wd

H)ÿ bVu

� � � (1ÿ b)Vu(4:16)

Equation (4.16) comes from (4.6) and incorporates the recruiter's deviation. The

value function Vd
H(wd

H) is the present value of a worker working for the wage wd
H ,

which obeys (4.7) with Vd
H replacing VH and wd

H replacing wH .

The ®rst-order condition of the deviator's problem is

Jd
H(wd

H)ÿ JL

2
� (1ÿ b)Vu ezd

H ÿ zd
H

1ÿ eÿzd
H

� �
(4:17)

Since the right-hand side is an increasing function of zd
H , this condition states intu-

itively that the fraction of the match surplus a low-capacity plant gets from hiring the

second worker increases with the queue length. Similarly, by analyzing an entrant's

deviation I obtain16

Jd
L(w

d
L)ÿ bJN � (1ÿ b)Vu ezd ÿ zd

1ÿ eÿzd

� �
(4:18)

For the wage distribution (wH,wL) and queue lengths (zH , z) to be in equilibrium,

these deviations cannot be pro®table and so the above conditions must be satis®ed

by (wd
H , zd

H) � (wH , zH) and (wd
L, zd) � (wL, z). Retrieving (JH , JL) from (4.14) and

(4.11) and substituting into the above equations, I have

JR ÿ JL � c � 2(1ÿ b)Vu(e
zH ÿ 1ÿ zH)(4:19)

(1ÿ b)JN � c � (1ÿ b)Vu(e
z ÿ 1ÿ z)(4:20)

15 To compute Jd
H I treat the term JR in (4.12) as being unaffected by the deviation. This is because

the deviation is a one-period deviation, which does not affect the plant's future recruiting behavior
after job separation.

16 A one-period deviation by an entrant does not change the entrant's future value if he fails to
recruit in the current period. Thus, the deviator's present value is Jd

N � [1ÿ eÿzd

]
Jd

L(w
d
L)ÿ c� (eÿzd

)bJN , where Jd
L(w

d
L) is calculated by replacing wL by wd

L and JR by Jd
R in (4.13).

In turn, Jd
R is calculated through (4.14) by replacing JL with Jd

L.

40 SHI



4.3. Steady-State Equilibrium. A steady-state equilibrium in the labor market

consists of value functions (Vu, VH , VL, VR) given by (4.6)±(4.9), (JN , JH , JL, JR)

given by (4.11)±(4.14), queue lengths zH , z 2 (0,1), and distribution variables

(H, a, u, b, N=I, S=I) such that the following conditions hold:

(i) Each applicant is indifferent between the two wages; i.e., (4.10) and (2.14)

hold.

(ii) A recruiting plant has no incentive to deviate from the wages; i.e., (4.19)

and (4.20) hold.

(iii) There is a stationary distribution of plants; i.e., (4.4) and (4.5) hold.

(iv) Free entry: the net pro®t of an entrant is zero; i.e., JN � 0.

(v) A low-capacity plant is willing to recruit a second worker; i.e., JR � JL.

(vi) Employed workers do not have the incentive to quit; i.e., VH � Vu and

VL � Vu.

Condition (vi) is always satis®ed in a mixed equilibrium and (v) is satis®ed as long

as a higher wage attracts more applicants than a lower wage does (see Appendix A.4

for a proof).

LEMMAEMMA 3. VH , VL � Vu whenever zH , z 2 (0, 1). Also, JR � JL if zH � z.

An economy-wide equilibrium is a joint equilibrium in the goods market and the

labor market. I determine this equilibrium following the steps below. First, set

JN � 0 in (4.20) and (4.11) to obtain (Vu, JL) as functions of z:

Vu � c=(1ÿ b)
ez ÿ 1ÿ z

, JL � c

1ÿ eÿz
(4:21)

Since (z, zH) are functions of (H, a) by (4.4), Vu and JL are functions of (H, a).

Second, substitute Vu into (4.10), (4.6), and (4.9) to obtain (VH , VL, VR) as functions

of (H, a); substitute JL into (4.19) and (4.14) to obtain (JR, JH) as functions of (H, a).

Third, substitute the functions (VH , VL, VR, Vu) into (4.7) and (4.8) to express

(wH , wL) as functions of (H, a). Substituting these functions and (JH , JL, JR) into

(4.12) and (4.13), I obtain two equations that involve (H, a; RH , RL). Since �RH , RL)

are functions of (H, b) as calculated in the goods market equilibrium, and b is a

function of (H, a), these two equations solve (H, a).

PROPOSITIONROPOSITION 6. In the equilibrium, wH > wL only if RH > RL. The following

four statements are equivalent: zH > z, VH > VL, wH > wL, JH > 3JL.

The proof of this proposition appears in Appendix A.4. The proposition extends

two features of the one-period economy into an in®nite-horizon economy. First, as in

Remark 1, a size±wage differential is consistent with the equilibrium if and only if a

low-capacity plant attracts more applicants than an entrant. An applicant gets the

same expected present value from applying for the two jobs. Second, a positive size±

revenue differential between plants is necessary but may not be suf®cient for a

positive size±wage differential.

Suppose that the queue is longer for a low-capacity plant than for an entrant. Then

Proposition 6 states that a large plant and its workers both get higher values than a
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small plant and its worker. When zH > z, a high-capacity plant's present value per

worker, JH=2, is more than 50 percent higher than a low-capacity plant's present

value per worker, JL. This positive correlation between the size±wage and size±pro®t

differentials is consistent with the empirical observation by Katz and Summers (1989).17

For all these desirable features to arise from the model, I need to ®nd the

parameter region in which zH > z. Doing so analytically is dif®cult so I turn to

numerical exercises.

5. NUMERICAL EXERCISESNUMERICAL EXERCISES

There are four parameters in the model: the job separation rate (r), the recruiting

cost (c), the discount factor (b), and the buyer±worker ratio (h). I allow h to vary in

[0.2, 5.2] and interpret an increase in h as an increase in the product demand.18 I set

the discount factor at b � 0:99 to give a quarterly real interest rate 0:01, the job

separation rate at r � 0:06 to match the quarterly transition rate from employment

to unemployment (Blanchard and Diamond, 1989), and the recruiting cost at

c � 0:02 (see Hamermesh, 1993).

Figure 4(a) depicts the price differential and size±revenue differential as functions

of the buyer±worker ratio h, where RP � ln(pH=pL) and RR � ln(RH=RL). Both

differentials are positive. As shown in Proposition 2, the size±revenue differential is

larger than the price differential, indicating that competition through the service

probability is an important source of the revenue differential. The two differentials

fall when the buyer±worker ratio increases, as shown in Proposition 3. As the buyer±

worker ratio becomes suf®ciently large, the price differential and the revenue dif-

ferential between large and small plants approach zero.

Since the expected revenue per worker increases in both low-capacity and high-

capacity plants when the product demand increases, all plants are able to offer higher

wages when h is higher. Figure 4(b) depicts the size±wage differential, de®ned as

RW � ln(wH=wL), and the variance of logarithmic wages, VLW.19 The two measures

RW and VLW have qualitatively the same dependence on the demand for the

industry's goods, except when RW < 0 (since VLW is always nonnegative by de®-

nition). The size±wage differential is positive (i.e., RW > 0) only when the product

demand is moderate. When the product demand is suf®ciently low (h < 0:4) or

suf®ciently high (h > 5), the size±wage differential is negative.

Moreover, the size±wage differential depends on h in a hump-shaped pattern. An

increase in the product demand increases the size±wage differential when the de-

mand is initially low and reduces the size±wage differential when the demand is high.

As the product demand becomes suf®ciently high, the size±wage differential

17 To explain why zH > z implies JH > 3JL, note that (JL ÿ bJN ) is an entrant's gain from
recruiting the ®rst worker and (JH ÿ JL)=2 is a low-capacity plant's gain per worker from recruiting
the second worker. When zH > z, a low-capacity plant must obtain a larger gain per worker from
recruiting than an entrant; i.e., (JH ÿ JL)=2 > JL ÿ bJN . Since JN � 0 in equilibrium, this implies
JH > 3JL. To support this argument, compare (4.17) and (4.18).

18 A fall in the number of workers has the same effects.
19 With RW as the de®nition of the size±wage differential, changes in wages that have the same

proportion across plants do not affect the wage differential.
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approaches zero. The size±wage differential peaks at h� � 1:1. I explain the segments

h > h� and h < h� of Figure 4(b) separately below.

When h > h�, the intuition for Proposition 5 explains the behavior of the size±

wage differential. That is, when the number of buyers per seller increases, every

seller ®nds it easier than before to sell the goods successfully and so the additional

revenue per worker generated by a larger capacity falls. A diminishing size±revenue

differential compresses the size±wage differential. When the product demand is

suf®ciently high (h > 5), a large seller and a small seller obtain almost the same

expected revenue per worker, in which case the higher outside option of a low-

capacity plant enables it to post a lower wage than an entrant (see the discussion on

Proposition 5).

When h < h�, the size±wage differential rises with the product demand, in contrast

to the falling size±revenue differential. This is a unique feature of the in®nite-horizon

economy. Notice that, for small h, the log difference between the queues to the two

job openings, denoted RZ(h) � ln(zH=z), increases with h (Figure 4(c)). So does the

present value differential between hiring and not hiring the second worker for a low-

capacity plant, denoted RJ(h) � ln(JR=JL).

What is the unique feature of the in®nite-horizon economy that makes the size±

wage differential rise with the product demand when h < h�? It is the size distri-

bution of plants. To see this, it is necessary to explain ®rst why the size±wage

differential is negative when h is very low (e.g., h < 0:4). When h is suf®ciently small,

the number of buyers per seller is small and so sellers' expected revenues are low.

The incentive to enter the industry is low and so, as depicted in Figure 4(d), entrants

are a negligible fraction of the recruiters (i.e., a � 1). There are many more low-

capacity plants than entrants, although both are small fractions of the total number

of plants. This implies that, for every entrant, there is a large ¯ow from low-capacity

plants to entrants generated by job separation. To balance this ¯ow, entrants must

recruit very quickly and the only way to do so is to post a high wage (see (4.2)). This

is why the size±wage differential is negative and why there are more applicants for

each entrant than for each low-capacity plant when h is suf®ciently small.20

Now I can explain why the size±wage differential rises with h when h < h�. An

increase in h, by increasing the product demand, increases the expected revenue for

all plants and stimulates entry. The relative number of entrants to low-capacity

plants increases; i.e., a falls as depicted in Figure 4(d). If the relative wage between

the two plants were unchanged, the ¯ow from entrants to low-capacity plants gen-

erated by recruiting would exceed the reverse ¯ow generated by separation. To

maintain a stationary size distribution, entrants' recruiting rate increases by less than

20 Since low-capacity plants are also a small fraction of the total number of plants (i.e., H � 1 as
depicted in Figure 4(d)), job separation generates a large ¯ow from high-capacity plants to low-
capacity plants and hence the size distribution requires a high recruiting rate for each low-capacity
plant. However, the requirement on entrants' recruiting is stronger. When h � 0:2, for example, the
in¯ow per entrant from low-capacity plants to entrants is rS(1ÿH)=N � 0:952. This is larger than
the in¯ow per low-capacity plant from high-capacity plants to low-capacity plants, which is
2rSH(1ÿ a)=(aN) � 0:926. To maintain a stationary distribution, (4.1) and (4.2) require that entrants
recruit more quickly than low-capacity plants; i.e. z > zH .
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FIGUREIGURE 4a ANDAND 4b (CONTINUEDCONTINUED)
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FIGUREIGURE 4c ANDAND 4d

(a) SIZE±PRICE AND SIZE±REVENUE DIFFERENTIALS, (b) SIZE±WAGE DIFFERENTIAL,(a) SIZE±PRICE AND SIZE±REVENUE DIFFERENTIALS, (b) SIZE±WAGE DIFFERENTIAL,

(c) RELATIVE QUEUE LENGTHS AND PLANTS' VALUES, AND (d) SIZE DISTRIBUTION OF PLANTS(c) RELATIVE QUEUE LENGTHS AND PLANTS' VALUES, AND (d) SIZE DISTRIBUTION OF PLANTS
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low-capacity plants'. Thus, the queue for a high-wage job increases relative to that

for a low-wage job (Figure 4(c)) and so the size±wage differential increases

(Figure 4(b)).21

The increase in the size±wage differential is feasible only when the number of

buyers per worker is small. When the number of buyers continues to increase, the

size±revenue differential falls. After h > h�, this falling size±revenue differential

dominates the effect of the size distribution and reduces the size±wage differential.

6. MODELING ASSUMPTIONS AND ROBUSTNESSMODELING ASSUMPTIONS AND ROBUSTNESS

A coherent theme of my analysis is that agents make a trade-off between prices/

wages and the probability of obtaining them. Holzer et al. (1991) present some

evidence for this trade-off in the labor market. They found that minimum wage jobs

attract more applicants than do jobs paying less than the minimum wage and that

there is positive correlation between industry job application differentials and in-

dustry wage differential.22 For the goods market, Carlton (1988) found that delivery

lags are as important as prices in equating demand and supply and that demand

elasticities with respect to prices and delivery time are both signi®cantly negative.23

The main assumptions for my results are as follows:

(i) Agents cannot coordinate and there is a search cost. The coordination failure

creates the possibility that buyers ( job applicants) may fail to get the good ( job) and

so they can tolerate a high price (a low wage) if it is easy to obtain. The search cost,

implicit in the assumption that a buyer ( job applicant) can visit only one seller

(employer) in a period, prevents agents from making instantaneous arbitrage be-

tween all matches. Both assumptions are standard in the search literature of un-

employment (e.g., Pissarides, 1990) and are realistic for large markets.

More speci®cally, in a large market it might be very costly to communicate be-

tween all participants and between all matches. The coordination failure makes it

reasonable to focus on the completely mixed-strategy equilibrium, as I did, where

agents adopt symmetric strategies and buyers ( job applicants) randomize over the

offers. If agents could perfectly coordinate their decisions, there would be pure-

strategy equilibria in which there is no apparent relationship between capacity and

price.24 Likewise, if buyers could visit all sellers at once, prices would have to be the

same for all sellers.

21 Another way to see this is to resort to (4.4), which indicates that the queue length for a low-
wage job, z, is an increasing function of the fraction of high-wage recruiting plants in labor market, a,
while the queue length for a high-wage job zH is independent of a for given H. As a falls with the
product demand, the relative queue length zH=z can increase.

22 Holzer et al. (1991) also found that minimum wage jobs attract more applicants than do jobs
paying more than the minimum wage. This is likely because of the large difference between the
applicants to the two types of jobs.

23 Casual observations suggest that large retailers like Wal-Mart charge lower prices than smaller
retailers. These are exceptions of the model since Wal-Mart also provides less service to customers
and pays lower wages.

24 See Burdett et al. (1997) for a characterization of pure-strategy equilibria in a similar
environment.
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Of course, the extreme version of these assumptions is not necessary for the

results. In particular, I can allow a buyer to visit several sellers at once in a period, as

long as the number of sellers visited by a buyer is a negligible fraction of the total

number of sellers. In this case, a high capacity will still be useful for a seller to attract

buyers and to support a positive size±revenue differential. But the equilibrium will

be more dif®cult to characterize, since there will be price dispersion even among

sellers of the same capacity, as illustrated by Lang (1991).25 Similarly, by assuming

that a job applicant can apply to only one employer in a period, I have simpli®ed the

exercise on the size±wage differential.

(ii) Another critical assumption is that plants grow slowly by recruiting one worker

at a time. Given the size±revenue differential, this assumption ensures that a low-

capacity plant has a higher marginal bene®t from ®lling a vacancy than an entrant. If,

instead, all recruiters can recruit two workers at the same cost, all plants will try to

reach size two in one period (see Deneckere and Peck, 1995), although not all will be

successful. Since an entrant is at least as eager to ®ll the vacancies as a low-capacity

plant, there is no apparent relation between the plant's size and the wage in this case.

The above assumption is realistic. For example, it might be much more costly to

recruit two workers at once than to recruit two workers sequentially. Alternatively,

one may think that each worker uses one unit of capital and plants have to borrow to

®nance the purchase of capital. If the borrowing cost is higher for small plants than

for large plants, then an entrant may ®nd it attractive to start small and build up the

collateral gradually in order to increase capital stocks.

One can even allow some but not all entrants to recruit two workers at a time. For

example, one can model the opportunity to recruit two workers to be a random event

obeying a Poisson process. When the arrival rate of this opportunity is small, a

majority of entrants can recruit only one worker and so they will recruit at a lower

wage than a low-capacity plant (when h is moderate). In this extension, workers in

different high-capacity plants get different wages depending on whether the plants

are low-capacity plants that have succeeded in recruiting a second worker or entrants

that have succeeded in recruiting two workers at one time.

Maintaining the above assumptions (i) and (ii), I now turn to auxiliary assump-

tions. First, I have deliberately abstracted from any other difference between plants

such as product quality, capital intensity, and workers' skills. These differences in-

troduce additional reasons why plants may have different pro®ts and wages. By

abstracting from them I underscore the importance of sellers' capacity differences

for the size±wage differential.26

Second, the labor market opens before the goods market in each period. This

timing sequence is natural since most plants ®rst produce and then sell the product.

25 Lang (1991) focuses on employers' ex post concerns on how to induce applicants to accept the
offer. In particular, he does not model applicants' decisions on which employer to contact but,
instead, assumes that each applicant receives two offers. In contrast, I focus on employers' ex ante
concerns on how to attract workers to apply to the job in the ®rst place, where workers' decisions on
which jobs to apply to are essential.

26 See Shi (1997) for an analysis of how skill differences may interact with the within-group wage
differential in a wage-posting environment.
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An alternative sequence is to have the goods market open ®rst, where buyers and

potential sellers trade forward contracts on goods. A low-capacity seller can contract

two units and an entrant can contract one, both having a probability of default. Other

than making the analysis complicated, this alternative sequence does not seem to

overturn the analytical result. In particular, since a low-capacity seller can guarantee

at least one good, its overall default probability is smaller than an entrant's. In this

case, a low-capacity seller will charge a higher price on the forward contracts than an

entrant and, to ful®ll the contracts, it will post a higher wage to recruit than an entrant.

Third, the capacity constraint is two. For any arbitrary upper bound, the intuition

for the size±revenue differential and the size±wage differential is valid, but analytical

results like those in Sections 2 and 3 are possible only for an upper bound of two.

Furthermore, one may want to endogenize the upper bound by assuming, for

example, that the marginal cost of capital increases suf®ciently or the marginal

productivity of labor diminishes suf®ciently when a plant increases its employment.

In this extension, the size±revenue differential may fall below zero for a suf®ciently

high level of production and so plants will never want to extend employment beyond

this level. Fixing h at a moderate value, the size±wage differential ®rst increases and

then decreases with the size, as in the model here.

Fourth, a plant automatically increases the existing worker's wage to match the new

recruit's wage. I used this assumption to prevent a negative experience premium.

Although one could eliminate the assumption and examine how a negative experience

premium interacts with the size±wage differential, such an exercise rewards little. The

reason is that the model also assumed unrealistically that employed workers do not

search. If employed workers can search as well, as in Burdett and Mortensen (1998),

an employed worker will get a wage that is at least as high as the new recruit's. It is

interesting but dif®cult to analyze on-the-job search in the current model.

Finally, there is no long-term relationship between agents. The model's predictions

would be robust to long-term relationships if a signi®cant fraction of these relation-

ships are destroyed each period and replaced by new ones. For example, the large job

separation in the U.S. labor market destroys the relationships between employers and

employees. With large separation, a signi®cant fraction of plants do not have any

contractual relations with buyers or workers and so behave in the way modeled here.

7. CONCLUSIONCONCLUSION

I have integrated the product market and the labor market into a directed search

framework and shown that although plants are identical except size, larger plants can

pay higher wages to homogeneous workers and earn higher expected pro®t per

worker. A large plant charges a higher price and uses the larger capacity to com-

pensate buyers with a higher service probability. This strategy yields a higher

expected revenue per worker for a seller and, to capture this size-related bene®t,

large plants try to become larger by posting higher wages to recruit than small plants.

Labor market competition does not eliminate this size±wage differential because job

applicants are indifferent between a high wage that is hard to get and a low wage that

is easy to get. The coexistence of the size±revenue differential and the size±wage

differential is consistent with the empirical ®nding in Katz and Summers (1989).
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My analysis indicates that two seller-speci®c variables are important for

explaining the size±wage differentialÐthe plant's delivery time in the product

market and the queue for the plant's job openings. The size±wage differential de-

pends negatively on the delivery time and positively on the queue length of job

applicants. For the size±wage differential, these variables are more relevant mea-

sures of the seller's market power than traditional ones like a high concentration

ratio and a small price elasticity. By traditional measures, the concentration ratio is

zero in my model and each seller has zero market power, since there are in®nitely

many sellers. But this does not imply that sellers cannot adjust prices to affect their

sales, since there are also in®nitely many buyers. For price elasticity, both large and

small sellers face elastic demand. There is not much difference between these sel-

lers' price elasticities, since the price differential between large and small sellers is

relatively ¯at in response to an increase in the product demand (Figure 4(a)). In

contrast, the difference in the queue lengths (or the delivery lags) between large and

small sellers responds to the product demand in a large magnitude, generating a

large response in the size±revenue differential. Not surprisingly, Brown and Medoff

(1989) found that traditional measures of the product market power explain little of

the size±wage differential.

An important conclusion of my analysis is that the size distribution of plants in the

industry interacts with the size±revenue differential to determine the size±wage

differential. An increase in the product demand increases the size±wage differential

only when it increases the fraction of small plants suf®ciently, which occurs when the

product demand is initially low. When the product demand is already high, the size±

revenue differential falls suf®ciently in response to the higher demand and domi-

nates the effect of the size distribution of plants. This result sheds new light on how

trade liberalization affects wage inequality, since the size±wage differential is a

signi®cant component of overall wage inequality. For example, when trade agree-

ments give a country the access to a foreign product market, wage inequality in-

creases only when there is a large shift of employment to small plants. If one ®xes the

employment distribution across plants of different sizes (e.g., Davis and Haltiwanger,

1991), one may be omitting an important effect of trade liberalization on wage

inequality.

APPENDIXAPPENDIX

A.1. Proof of Lemma 1. Differentiating F2(x) in (2.12), I can show that F20 < 0

if and only if

ln(1� x)ÿ x(ex ÿ 1)

2(ex ÿ 1)ÿ x
< 0

Temporarily denote the left-hand side of the above inequality as f (x). Applying

L'Hôpital's rule, I can show f (0) � 0. If f 0(x) < 0 for all x > 0, then indeed f (x) <

f (0) � 0 for all x > 0. Computing f 0 and noting ex ÿ 1ÿ xÿ x2=2 > 0, I ®nd f 0 < 0 if

and only if 1ÿ xÿ eÿx < 0. Since the function (1ÿ xÿ eÿx) has a value 0 when x � 0

and a negative derivative for all x > 0, it is indeed negative for all x > 0. Thus, f 0 < 0

for all x > 0, as desired.
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To show /0(x) < 0, verify that /0 < 0 iff A1(x)�A2(x) ln(1� x) < 0, where

A1(x) � �(xÿ 1)ex ÿ 1��ex ÿ (1� x)2��ex ÿ 1ÿ xÿ x2=2�
ÿ x2(ex ÿ 1)(ex ÿ 1ÿ x)(ex ÿ 1ÿ x=2)

A2(x) � (1� x)(ex ÿ 1ÿ x)�(x2 ÿ xÿ 1)ex � 1� 2x� x2=2�
� 2x(ex ÿ 1ÿ x=2)(ex ÿ 1ÿ xÿ x2=2)

First, I show A2(x) > 0 for all x > 0, which amounts to [(x2 ÿ xÿ 1)ex � 1� 2x�
x2=2] > 0 for all x > 0. The latter expression is zero when x � 0. Its derivative has the

same sign as that of [xÿ 2� x2 � (2� x)eÿx], which is positive since eÿx > 1ÿ x.

Thus, the expression is positive for all x > 0, implying A2(x) > 0.

With A2(x) > 0 and ln(1� x) > 0, /0 < 0 if and only if ln(1� x)�A1(x)=

A2(x) < 0. Notice that A1( j)(0) � A2( j)(0) � 0 for j � 0, 1, . . . , 4, where ( j) stands for

the order of derivatives. Also, A1(5)(0) � 0 but A2(5)(0) > 0. Applying L'Hôpital's

rule ®ve times, I can show A1(x)=A2(x)! 0 when x! 0. Since ln(1� x)! 0 as well

when x! 0, the function ln(1� x)�A1(x)=A2(x) has a value 0 when x! 0. Then,

/0 < 0 if this function has a negative derivative for all x > 0; i.e., if

(1� x)[A10(x)A2(x)ÿA20(x)A1(x)]�A22(x) < 0

Temporarily denote the left-hand side of the above inequality as f0(x). Through the

following steps, I can establish f0(x) < 0 for all x > 0:

(i) Start with i � 0.

(ii) Verify fi(0) � 0.

(iii) Arrange fi(x) by separating terms that are multiplied by ex (or power

terms of ex) and terms that are not multiplied by ex. The terms that are

not multiplied by ex form a polynomial of x. Let the highest order of x in

this polynomial be Ii.

(iv) Verify f ( j)
i (0) � 0 for all j � 0, 1, 2, . . . , (Ii � 1), where ( j) is the order of

derivatives.

(v) De®ne f(i�1)(x) � eÿxf (Ii�1)
i (x).

(vi) Replace i by i� 1, repeat steps (i)±(v) to obtain f5(x).
(vii) f5(x) � f5m(x)ÿ f5n(x)ex, where f5m(x) and f5n(x) are polynomials of x. Also

f5n(x) > 0 for all x > 0. Substituting ex > 1� x� x2=2, I can then show

f5(x) < 0 and so f (I4�1)
4 (x) < 0 by step (v). Since f (I4)

4 (0) � 0 by step (iv),

then f (I4)
4 (x) < f (I4)

4 (0) � 0. Recursively, I can show f4(x) < 0. Repeating

this process, I can show f0(x) < 0 for all x > 0. j

A.2. Proofs of Lemma 2 and Proposition 4. To prove Lemma 2, note that the

left-hand side of (3.6) is a decreasing function of z and the right-hand side is an

increasing function. When z! 0, the left-hand side is greater than 1 and the right-

hand side is 1; when z! au=[(1ÿ a)(1ÿ u)], the left-hand side is less than 1 and the

right-hand side is greater than 1. Thus, there is a unique positive solution, z1, to (3.6)

and z1 lies in (0, au=(1ÿ a)(1ÿ u)). The properties (i)±(iii) in the lemma are evident.

To prove Proposition 4, it suf®ces to show that there is a solution for z to the

equation F1(z) � F2(x(z)) and that the solution lies in (0, z1). Since F1(z1) � 1 and
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F2(x(z1)) > F2(1) � 1 (F20(x) < 0 by Lemma 1), in turn it suf®ces to show that

F2(x(0)) < F1(0), where x(0) is de®ned by (3.4) with z � 0. Lemma A.1 below shows

that x(0) is an increasing function of h, with x(0) � 0 when h � 0 and x(0) � 1 when

h � 1. Since F2(x) is a decreasing function of x (Lemma 1), F2(x(0)) is a decreasing

function of h. Moreover,

F2(x(0))jh�0 � F2(0) � 1 > F1(0)

F2(x(0))jh�1 � F2(1) � 1 < F1(0)

Thus, there exists h0 > 0 such that F2(x(0)) < F1(0) if and only if h > h0. That is, if

h > h0, there exists at least one solution for z to F2(x(z)) � F1(z). j

LEMMAEMMA A.1. The function x(z), de®ned by (3.4), has the following features:

(i) For any given z 2 (0, au=[(1ÿ a)(1ÿ u)]), x(z) is an increasing function of h;

(ii) x(z) � 0 when h � 0 and x(z) � 1 when h � 1.

PROOFROOF. By Proposition 1, the solution to (3.4), x(z), exists and is unique,

provided H 2 (0, 1). The requirement H 2 (0, 1) is equivalent to z, zH > 0 and hence

to z 2 0, au=[(1ÿ a)(1ÿ u)]
ÿ �

. Note that the right-hand side of (3.4) crosses the left-

hand side from below when x increases from below x(z) to above x(z). Since, for

given x, the right-hand side of (3.4) is a decreasing function of h, x(z) is an increasing

function of h. With (3.4), it is also easy to verify that x(z) � 0 when h � 0 and

x(z) � 1 when h � 1. This completes the proof of Lemma A.1. j

A.3. Proof of Proposition 5. From Proposition 1, wH > wL if and only if

zH > z; i.e., if and only if z < n � au=(1ÿ u). In light of Figure 3, this is equivalent to

F2(x(n)) > F1(n), where x(n) is de®ned by setting z � n in (3.4):

ln(1� x) � en ÿ 1� a
ÿ �

xÿ ah
1ÿu en

(1ÿ a)en � 2aÿ 1
(A:1)

Lemma A.1 above shows that x(n) is an increasing function of h, with x(n) � 0 when

h � 0 and x(n) � 1 when h � 1. Then, F2(x(n)) is a decreasing function of h, with

the following features:

F2(x(n))jh�0 � F2(0) � 1 > F1(n)

F2(x(n))jh�1 � F2(1) � 1 < F1(n)

Thus, there exists h1 > 0 such that F2(x(n)) > F1(n) (i.e., wH > wL) if and only if

h < h1.

I now show that h1 > h0 when a is either close to 1 or close to 0. When a � 1, (A.1)

becomes identical to (3.4) with z � 0. That is, x(n)ja�1 � x(0). Since F1(n)ja�1 <

F1(0), then

�F2(x(n))ÿ F1(n)�a�1 � F2(x(0))ÿ F1(n)ja�1 > F2(x(0))ÿ F1(0)
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By the de®nitions of h0 and h1, I have

F2(x(n))ÿ F1(n)� �a�1;h�h0
> F2(x(0))ÿ F1(0)� �h�h0

� 0

� F2(x(n))ÿ F1(n)� �a�1;h�h1

Since F2(x(n))ÿ F1(n)� �a�1 is a decreasing function of h, this implies h1 > h0 when

a � 1. By continuity, h1 > h0 when a is close to 1.

When a! 0, n! 0 and so (en ÿ 1)=a! u=(1ÿ u). Equation (A.1) becomes

ln(1� x) � xÿ h and so x(n)ja!0 is a continuous function of h, which has a value 0

when h � 0 and a value 1 when h � 1. Note that F1(n)ja!0 � 1 � F2(1). Since h1

solves F2(x(n)) � F1(n), when a! 0 the value h1 must be such that x(n)ja!0 � 1;

i.e., h1 � 1. In contrast, F1(0) and F2(x(0)) do not depend on a and so h0 <1 when

a! 0. Thus, h1 > h0 when a is close to 0. j

A.4. Proofs of Lemma 3 and Proposition 6. For Lemma 3, use (4.6) to show

that VH > Vu if and only if zH 2 (0, 1). Similarly, VL > Vu if and only if z 2 (0, 1).

Thus, (vi) is always satis®ed in a mixed-strategy equilibrium. To show that JR > JL

whenever zH � z, set JN � 0 in (4.20) and use (4.19) to eliminate c. I get

JR ÿ JL � (1ÿ b)Vu[2(ezH ÿ 1ÿ zH)ÿ (ez ÿ 1ÿ z)]

Since ez ÿ 1ÿ z is an increasing function of z for z > 0, clearly zH � z implies JR > JL.

For Proposition 6, I ®rst show that zH > z, VH > VL. Use (4.6) to write

VH � b� (1ÿ b)zH

1ÿ eÿzH

� �
Vu, VL � b� (1ÿ b)z

1ÿ eÿz

� �
Vu

Since Vu > 0 by (4.21) and since z=(1ÿ eÿz) is an increasing function of z for z > 0,

VH > VL if and only if zH > z. To show VH > VL , wH > wL, retrieve the wage

rates (wH , wL) from the value functions in (4.7) and (4.8) and substitute VR from

(4.9). I have

wH ÿ wL � [1ÿ b(1ÿ 2r)eÿzH ](VH ÿ VL)

Since zH 2 (0,1), b(1ÿ 2r)eÿzH < 1 and hence wH > wL if and only if VH > VL.

To show that zH > z, JH > 3JL, set (wd
H , zd

H) � (wH , zH) in (4.17) and (wd
L, zd) �

(wL, z) in (4.18). Subtracting the two equations and noting JN � 0, I have

JH ÿ JL

2
ÿ JL � (1ÿ b)Vu ezH ÿ zH

1ÿ eÿzH

� �
ÿ ez ÿ z

1ÿ eÿz

� �h i
Since [ez ÿ z=(1ÿ eÿz)] is an increasing function of z, zH > z iff JH > 3JL.

Finally, I show thatwH > wL only if RH > RL; i.e.,wH > wL ) RH > RL. To do so,

retrieve the wage rates (wH , wL) from (4.12) and (4.13) and subtract them to obtain

RH ÿ RL � (wH ÿ wL)� �1ÿ b(1ÿ 2r)� JH

2
� b(1ÿ 2r)JR ÿ JL

� �
Clearly, the desired result follows if

wH > wL ) �1ÿ b(1ÿ 2r)� JH

2
� b(1ÿ 2r)JR > JL
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Recall that wH > wL , zH > z, JH > 3JL. Also, Lemma 3 shows that zH > z)
JR > JL. Thus, wH > wL implies

[1ÿ b(1ÿ 2r)]
JH

2
� b(1ÿ 2r)JR > [1ÿ b(1ÿ 2r)]

3JL

2
� b(1ÿ 2r)JL > JL

This completes the proof of the proposition. j
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