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Abstract—Multiple acoustic models are often combined in
statistical parametric speech synthesis. Both linear and non-linear
functions of an observation sequence are used as features to be
modeled. This article shows that this combination of multiple
acoustic models can be expressed as a product of experts (PoE);
the likelihoods from the models are scaled, multiplied together
and then normalized. Normally these models are individually
trained and only combined at the synthesis stage. This article
discusses a more consistent PoE framework where the models are
jointly trained. A training algorithm for PoEs based on linear
feature functions and Gaussian experts is derived by generalizing
the training algorithm for trajectory HMMs. However for non-
linear feature functions or non-Gaussian experts this is not
possible, so a scheme based on contrastive divergence learning
is described. Experimental results show that the PoE framework
provides both a mathematically elegant way to train multiple
acoustic models jointly and significant improvements in the
quality of the synthesized speech.

Index Terms—statistical parametric speech synthesis, trajec-
tory HMM, product of experts

I. INTRODUCTION

S
TATISTICAL parametric speech synthesis based on hid-

den Markov models (HMMs) [38] has grown in popularity

in recent years. This approach has various advantages over

the concatenative speech synthesis approach, such as the flex-

ibility to change its voice characteristics. However its major

limitation is the quality of the synthesized speech. Zen et al.

[43] highlighted three major factors that degrade the quality of

the synthesized speech; vocoding, accuracy of acoustic models

(AMs), and over-smoothing.1 This article addresses the latter

two factors, the accuracy of AMs and over-smoothing.

One way to improve the accuracy of the AMs is to use

more sophisticated statistical models than HMMs to represent

the speech parameter trajectories. There have been various

attempts to use other AMs, such as trended HMMs [4],

polynomial segment models [27], and autoregressive HMMs

[24]. Although these alternative models have been successful
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1Over-smoothing appears when there is insufficient flexibility in the model
to capture the precise structure of the data. The most significant impact of the
over-smoothing is buzzy and muffled synthesized speech.

to some extent, the dominant AMs in statistical parametric

synthesis are still HMMs. Improvements from these alternative

models are negligible and require additional model parameters.

Furthermore, various essential algorithms such as decision

tree-based context clustering [19] or speaker adaptation need

to be re-derived for these models.

Zen et al. [45] showed that an HMM whose state-output

vector included both static and dynamic features could be

reformulated as a trajectory model by imposing explicit rela-

tionships between the static and dynamic features. This model,

called a trajectory HMM, overcomes the conditional indepen-

dence assumption of state-output probabilities and constant

statistics within an HMM state, without the need for additional

model parameters. The use of trajectory HMMs has been

found to improve the quality of the synthesized speech over

HMMs. One of its advantages over other models is that huge

amounts of software resources or algorithms developed for

HMMs can easily be reused [40], [41] as the parameterization

of trajectory HMMs is equivalent to that of HMMs.

To achieve high quality synthesis, speech parameter trajec-

tories generated from AMs should satisfy many constraints at

different levels. For example, static/dynamic features and their

distributions, which have been used in HMM-based statistical

parametric speech synthesis [30], [38], can be viewed as

frame-level “soft” constraints. However, they are local and

not sufficient to fully describe the characteristics of speech.

Other constraints at different levels should be added to achieve

better synthesis. Based on this idea, combinations of multiple

AMs have been investigated [14], [15], [21], [29], [32]. Here

acoustic features of the training data at various levels (e.g.,

phone, syllable, word, phrase, and utterance) are extracted

and modelled individually. At the synthesis stage, speech

parameters that jointly maximize the output probabilities from

these multiple AMs are generated. Additionally, the output

probabilities from the AMs are weighted to control the con-

tribution of each AM. The weights are tuned manually or

optimized using held-out data. The combination of multiple

AMs provides extra flexibility to speech synthesis and can

reduce the over-smoothing effect [21], [29], [32].

This article proposes a technique to jointly estimate these

multiple AMs within the product of experts (PoE) framework

[9]. The output probabilities from the individual models (ex-

perts) are multiplied together and then normalized, effectively

forming an intersection of the distributions. This is an efficient

way to model high-dimensional data which simultaneously

satisfies many different low-dimensional constraints; each ex-
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pert can focus on satisfying just one of these low-dimensional

constraints. The use of the PoE framework allows general

multiple AMs to be trained cooperatively, removing the need

to tune weights.
The remainder of the article is organized as follows. Sec-

tion II reviews statistical parametric speech synthesis. Sec-

tion III shows the general PoE framework. Section IV de-

scribes the use of the PoE framework for statistical parametric

speech synthesis. Experimental results are given in Section V.

Concluding remarks are presented in the final section.

II. STATISTICAL PARAMETRIC SPEECH SYNTHESIS

A. HMM-based statistical parametric speech synthesis

A typical HMM-based statistical parametric speech synthe-

sis system [38] consists of training and synthesis components.

The training component is similar to that used for speech

recognition. First a parametric representation of speech, in-

cluding spectral parameters (e.g., mel-cepstral coefficients [5]

and their dynamic features [6]) and excitation parameters (e.g.,

logF0 values, band aperiodicities [42], and their dynamic

features), is extracted from the speech database. Second a

speech parameter vector sequence o =
[

o⊤
1 , . . . ,o

⊤
T

]⊤
is

formed from the extracted parameters, where ot denotes a

speech parameter vector at frame t and T is the total number

of frames in the training data. This speech parameter vector

typically consists of static, first- and second-order dynamic

features2 as

ot =
[

∆(0)ct,∆
(1)ct,∆

(2)ct

]⊤

, (1)

where ∆(d)ct denotes the d-th order dynamic feature at frame

t. They are typically calculated as

∆(0)ct = ct, (2)

∆(1)ct = (ct+1 − ct−1) /2, (3)

∆(2)ct = ct−1 − 2ct + ct+1. (4)

Then speech parameter trajectories are modeled by a set of

context-dependent sub-word (e.g., phone) HMMs λ with sin-

gle Gaussian state-output probability density functions (PDFs).

The likelihood of λ given o and associated label sequence

l = {l1, . . . , lL} is given by

p(o | l,λ) =
∑

∀q

p(o | q,λ)P (q | l,λ), (5)

p(o | q,λ) =
T
∏

t=1

p(ot | qt,λ), (6)

p(ot | qt,λ) = N (ot ; µqt ,Σqt) , (7)

where L is the total number of labels in l, q = {q1, . . . , qT }
is a state sequence (latent variable), µi and Σi correspond to

the mean parameter vector and covariance matrix associated

with state i defined as

µi =
[

µc(i,0), µc(i,1), µc(i,2)

]⊤
, (8)

Σi = diag
[

σ2
c(i,0), σ

2
c(i,1), σ

2
c(i,2)

]

. (9)

2For notational simplicity, static features are assumed to be scalar values.
Extensions for vectors and higher-order dynamic features are straightforward.

{

µj , σ
2
j

}N

j=1
is the set of unique mean and variance parameters

in the model set. c(i, d) ∈ {1, . . . , N} gives the index of the

mean and variance parameter for the d-th dynamic feature at

state i.3 N is the total number of unique mean and variance

parameters in the model set. The HMM parameters can be

iteratively reestimated based on the maximum likelihood (ML)

criterion

λ̂ = argmax
λ

p(o | l,λ), (10)

using the Baum-Welch (EM) algorithm.

The synthesis component can be viewed as performing the

inverse of speech recognition. First, the given text to be syn-

thesized is converted to a context-dependent label sequence.

A sentence HMM is then constructed by concatenating the

context-dependent sub-word HMMs according to the label

sequence. Second, the state durations of the sentence HMM

are determined based on the state-duration PDFs. Third, the

sequences of spectral and excitation parameters that maximize

their output probabilities under the constraints between static

and dynamic features [30] are generated as

ĉ = argmax
c

p(o | q̂, λ̂)
∣

∣

∣

o=Wc
(11)

= argmax
c

N (o ; µq̂,Σq̂)|o=Wc
(12)

= argmax
c

N (Wc ; µq̂,Σq̂) , (13)

where q̂ is the state sequence determined by the state-duration

PDFs,4 and µq̂ and Σq̂ correspond to a 3T×1 mean parameter

vector and a 3T × 3T covariance parameter matrix defined as

µq =
[

µ⊤
q1
, . . . ,µ⊤

qT

]⊤
, (14)

Σq = diag [Σq1 , . . . ,ΣqT ] . (15)

W is a 3T × T window matrix which gives the relationship

between the speech parameter vector sequence o and the static

feature vector sequence c = [c1, . . . , cT ]
⊤

as

o W c
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(16)

Note that empty elements of W in Eq. (16) are all 0. Setting

the partial derivative of logN (Wc ; µq̂,Σq̂) with respect to

c to 0 yields a set of linear equations to determine ĉ as

Rq̂ĉ = rq̂, (17)

3Usually they are defined by the results from the decision tree-based context
clustering [19].

4If a left-to-right, no skip, structure is used as the HMM topology,
determining the state durations is equivalent to determining the state sequence.
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where Rq̂ and rq̂ correspond to the T × T matrix and the

T × 1 vector given by

Rq̂ = W⊤
Σ

−1
q̂

W , (18)

rq̂ = W⊤
Σ

−1
q̂

µq̂. (19)

Equation (17) can be solved efficiently by the Cholesky

decomposition as Rq̂ becomes a positive definite symmetric

band matrix [30]. Trajectories for both the spectral and ex-

citation parameters are generated in this fashion. The speech

waveform is synthesized directly from the generated spectral

and excitation parameters using a speech synthesis filter.

B. Trajectory HMM

The previous section described how HMMs can be trained

and the generated speech parameter trajectory can be used

for synthesis. However, there exists an inconsistency; the

relationships between the static and dynamic features are

ignored in the HMM training but utilized in speech parameter

generation. This inconsistency degrades the accuracy of the

models and the quality of the synthesized speech.

To address this problem, Zen et al. [45] incorporated rela-

tionships between the static and dynamic features explicitly

into training. Equations (6) and (7) can be rewritten as

p(o | q,λ) = N (o ; µq,Σq). (20)

If a distribution over the static feature vectors is considered,

Eq. (20) is not a valid (properly normalized) PDF;

p̃(Wc | q,λ) = N (Wc ; µq,Σq), (21)
∫

RT

N (Wc ; µq,Σq)dc ̸= 1, (22)

where p̃(·) denotes an unnormalized PDF. It should be nor-

malized to yield a valid (properly normalized) PDF. The

normalization constant Z
(trj)
q can be computed in a closed

form as

Z(trj)
q =

∫

RT

N (Wc ; µq,Σq) dc (23)

=

√

(2π)T |Pq|
√

(2π)3T |Σq|

exp

{

−
1

2

(

µ⊤
q Σ

−1
q µq − r⊤q R

−1
q rq

)

}

. (24)

Thus the output probability of c rather than o given q and λ

can be defined as

p(c | q,λ) =
1

Z
(trj)
q

N (Wc ; µq,Σq) (25)

= N (c ; c̄q,Pq), (26)

where c̄q and Pq correspond to the T × 1 mean vector and

the T × T covariance matrix for q given as

Rq c̄q = rq, (27)

Pq = R−1
q . (28)

It can be seen from Eqs. (17) and (27) that c̄q is exactly

the same as the speech parameter trajectory generated by the

(a) HMM

q
1
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q
2

o2

q
3

o3

q
4

o4

q
1

c1

q
2

c2

q
3

c3

q
4

c4

(b) trajectory HMM

Fig. 1. Graphical model representation of (a) HMM and (b) trajectory HMM
with window matrix given by Eqs. (2)–(4).

speech parameter generation algorithm. By replacing Eq. (6)

by Eq. (25), a trajectory HMM is defined as

p (c | l,λ) =
∑

∀q

p (c | q,λ)P (q | l,λ) , (29)

p (c | q,λ) = N (c ; c̄q,Pq) . (30)

It should be noted that the mean vector c̄q yields a smooth

trajectory and the inter-frame covariance matrix Pq is gen-

erally full. Therefore, the trajectory HMM overcomes two

fundamental limitations of HMMs; constant statistics within

an HMM state; and the conditional independence assumptions

of state-output probabilities.

It is interesting to note that the trajectory HMM is related

to a Markov random field (MRF) [13], whose cliques are

defined by W and clique potential functions are given by

Gaussian distributions. As a latent variable (state sequence)

exists and potential functions are Gaussian distributions, a

trajectory HMM is actually a hidden Gaussian Markov random

field (HGMRF) [22] over time. It is known that MRFs can be

represented as undirected graphical models [2]. The graphical

model representations of an HMM and trajectory HMM whose

window matrix is specified by Eqs. (2)–(4) are shown in

Fig. 1. Note that edges in Fig. 1(b) depends on cliques that

are specified by the window coefficients. Therefore, if different

windows are used to compute dynamic features, the graphical

model structure of the trajectory HMM will change.

ML estimation of trajectory HMMs can be carried out using

the EM algorithm.5 Here, the auxiliary function is defined as

Q (λ;λ′) =
∑

∀q

γq log p(c, q | l,λ), (31)

where λ′ and λ are the current and new sets of model

parameters, respectively. γq is the posterior probability of q

given c, l, and λ′. The reestimation formula of all mean

parameters is derived [45] as

µ̂ = G−1k, (32)

where µ = [µ1, . . . , µN ]
⊤

is a vector consisting of all unique

mean parameters in the model set. G and k are accumulated

statistics computed as

G =
∑

∀q

γqS
⊤
q Σ

−1
q WPqW

⊤
Σ

−1
q Sq, (33)

k =
∑

∀q

γqS
⊤
q Σ

−1
q Wc, (34)

5The single path (Viterbi) [45] or Monte Carlo [44] approximation is often
employed, as it is intractable to marginalize over all possible state sequences.
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where Sq is a matrix representing the parameter sharing struc-

ture and the index function c(i, j). The relationship between

µq of Eq. (14) and µ can be written using Sq as

µq = Sqµ. (35)

For example, if c(q1, 0) = c(q2, 0) = 1, c(q1, 1) = c(q2, 1) =
2, c(q1, 2) = c(q2, 2) = 3, c(q3, 0) = 4, c(q3, 1) = 5,

c(q3, 2) = 6, T = 3, and N = 6 then Eq. (35) is illustrated as

µq Sq µ
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. (36)

Note that the empty elements of Sq in Eq. (36) are all

0. There is no closed form solution to reestimate variance

parameters. Therefore, a gradient method is employed. The

partial derivative of Eq. (31) with respect to all variance

parameters in the model set can be expressed as

∂Q (λ;λ′)

∂φ
=

∑

∀q

γq
2

S⊤
q diag−1

[

WPqW
⊤

−Wcc⊤W⊤ +Wc̄qc̄
⊤
q W

⊤

+W (c− c̄q)µ
⊤
q + µq (c− c̄q)

⊤
W⊤

]

, (37)

where φ =
[

1/σ2
1 , . . . , 1/σ

2
N

]

is a vector consisting of all

unique precision (inverse variance) parameters in the model

set. Note that relationship between Σq of Eq. (15) and φ can

also be written using Sq as

Σ
−1
q = diag [Sqφ] . (38)

The ML estimation of the trajectory HMM can improve the

quality of the synthesized speech [45].

C. Model combinations for speech synthesis

A major limitation of statistical parametric speech synthesis

is the quality of the synthesized speech. This often sounds

buzzy and muffled [43]. There exist three major factors that

degrade the quality of the synthesized speech; vocoding, accu-

racy of the AMs, and over-smoothing. To provide additional

flexibility to model constraints at various levels, so that the

over-smoothing effect is reduced, the combining of multiple

AMs has recently been proposed. These techniques extract

acoustic features of the training data at various levels (e.g.,

phone, syllable, word, phrase, and utterance). Both linear

(e.g., summation [15], [21], average [32], and DCT [14],

[21]) and non-linear (e.g., quadratic [29]) functions of the

observation sequence are used. Then the extracted features

at each level are modeled by an AM consisting of a set of

context-dependent Gaussian (e.g., [14], [15], [21], [29], [32])

and/or non-Gaussian (e.g. gamma [17], [21] and log Gaussian

[35]) distributions. Typically the AM at each level is trained

individually based on the ML criterion as

λ̂j = argmax
λj

p(fj(c) | λj), j = 1, . . . ,M (39)

where M is the number of AMs and λj and fj(c) correspond

to the set of parameters and an arbitrary function to extract

features from observation c for the j-th AM. At the synthesis

stage, speech parameters that jointly maximize the output

probabilities from these multiple AMs are generated as

ĉ = argmax
c

M
∏

j=1

{

p(fj(c) | λ̂j)
}αj

(40)

= argmax
c

M
∑

j=1

αj log p(fj(c) | λ̂j), (41)

where αj is the weight for the j-th AM. Thus the output prob-

abilities from the AMs are weighted to control the contribution

of each AM. These weights are tuned manually or optimized

using held-out data. A closed-form solution of Eq. (40) can

be found if all AMs are Gaussian and all feature functions

are linear [14], [15], [21], [32]. Otherwise, a gradient method

is often used [29]. This technique can generate the speech

parameter trajectory that jointly satisfies constraints in multiple

feature spaces and gives better synthesized speech.

Although this framework allows multiple AMs to be used

for synthesis, there exists an inconsistency again; the AMs

are trained individually but combined at the synthesis stage.

The next section will propose a technique to jointly estimate

multiple AMs within the product of experts (PoE) framework

[9]. The use of the PoE framework allows general multiple

AMs to be trained cooperatively, removing the need to tune

weights.

III. PRODUCT OF EXPERTS

This section reviews the general framework of product of

experts (PoE) and its training algorithms. Its application to

statistical parametric speech synthesis will be described in the

next section.

A. PoE framework

A product of experts (PoE) [9], [33] combines multiple

models (experts) by taking their product and normalizing the

result. Each expert can be an unnormalized model6 p̃(x | λj)
over the input space. A PoE is expressed as

p(x | {λj}
M
j=1) =

1

Z

M
∏

j=1

p̃(x | λj), (42)

where x is a K-dimensional input vector.7 Z is a normaliza-

tion constant computed as

Z =

∫

RK

M
∏

j=1

p̃(x | λj)dx. (43)

6In unnormalized models,
∫

RK
p̃(x | λi)dx ̸= 1.

7In this section feature functions, {fj(·)}, are omitted for notational
simplicity.
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The PoE can be contrasted with a mixture of experts (MoE)

[12], which combines expert models additively,

p(x | {λj}
M
j=1) =

M
∑

j=1

wjp(x | λj), (44)

where each model p(x | λj) is normalized over x as
∫

RK

p(x | λj)dx = 1, j = 1, . . . ,M (45)

and the weights must satisfy

M
∑

j=1

wj = 1. (46)

The MoE can have a high probability for the input where

one or more models assign high probability, and thus the

MoE tends to be broader than the individual models alone.

It can be thought as a union of all models. On the other

hand, the PoE can have a high probability for the input only

where all the models assign high probability. Thus, the PoE

tends to be sharper than its individual models. It can be

thought of as an intersection of all models. The PoE is an

efficient way to represent high-dimensional data which simul-

taneously satisfies many different low-dimensional constraints;

each model can focus on satisfying just one of these low-

dimensional constraints. As AMs for speech synthesis requires

many constraints at different levels, the PoE is more suitable

than the MoE.

B. Training PoE

1) Gaussian case: Training MoEs by the EM algorithm

is usually straight-forward. However, training PoEs is signif-

icantly more complicated, due to the normalization constant.

This issue has motivated various approximate training schemes

for PoEs. One way to address this problem is to use tractable

distributions for experts. If the individual experts are Gaussian

or Gaussian mixtures, the resultant PoEs are also Gaussian or

Gaussian mixtures. Its normalization constant can be found in

a closed form [7] thus the training is dramatically simplified

compared to the general PoEs.

The product of Gaussian distributions (PoG) can be written

as

p(x | {λj}
M
j=1) =

1

Z

M
∏

j=1

N (x ; µj ,Σj) (47)

= N (x ; µ∗,Σ∗) , (48)

where µ∗ and Σ∗ correspond to the mean vector and the

covariance matrix of the resulting distribution given by

µ∗ = Σ∗





M
∑

j=1

Σ
−1
j µj



 , (49)

Σ∗ =





M
∑

j=1

Σ
−1
j





−1

. (50)

Unlike many other PoEs, there exists a closed form expression

for Z as

Z =

√

(2π)K |Σ∗|
∏M

j=1

√

(2π)K |Σj |

exp







−
1

2





M
∑

j=1

µ⊤
j Σ

−1
j µj − µ⊤

∗ Σ
−1
∗ µ∗











. (51)

Parameter reestimation formulae of PoGs [1] and extension to

mixture of Gaussians have been derived [7].

2) General case: Training general PoEs is complicated

because of the normalization constant Z. However, there exists

a simple and effective technique to approximate ML estimation

of general PoEs [9]. By taking the partial derivative of the log

likelihood with respect to λk, the parameter update based on

the ML criterion by the steepest ascent method is written as8

λ′
k = λk + η∇λk, k = 1, . . . ,M (52)

∇λk =
1

D

D
∑

i=1

∂

∂λk

L(xi ; {λj}
M
j=1), (53)

where η is a user-defined learning rate, xi is the i-th training

sample, and D is the total number of training samples.

L(x ; {λj}
M
j=1) denotes the log likelihood of the PoE as

L(x ; {λj}
M
j=1) = log p(x | {λj}

M
j=1) (54)

=
M
∑

j=1

log p̃(x | λj)− logZ (55)

= L̃(x ; {λj}
M
j=1)− logZ, (56)

where L̃(x ; {λj}
M
j=1) denotes the unnormalized log likeli-

hood of the PoE. Equation (56) reproduces

1

D

D
∑

i=1

∂

∂λk

L(xi ; {λj}
M
j=1)

=
1

D

D
∑

i=1

∂

∂λk

L̃(xi ; {λj}
M
j=1)−

∂

∂λk

logZ. (57)

The first term of Eq. (57) can be expressed as

1

D

D
∑

i=1

∂

∂λk

L̃(xi ; {λj}
M
j=1)

=

⟨

∂

∂λk

L̃(x ; {λj}
M
j=1)

⟩

p0(x)

, (58)

where p0(x) denotes the empirical (data) distribution,
1
D

∑D

i=1 δ(x− xi), and ⟨·⟩p0(x) denotes the expectation over

the empirical distribution. The second term of Eq. (57) results

8Here contrastive divergence learning is derived as an approximation
to the derivative of the log likelihood with respect to model parameters.
Alternatively, it is possible to formulate it as a minimization of the Kullback-
Leibler (KL) divergence between empirical (data) and model distribution [10].
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in

∂

∂λk

logZ =
1

Z

∂

∂λk

Z (59)

=
1

Z

∂

∂λk

∫

exp
{

L̃(x ; {λj}
M
j=1)

}

dx (60)

=

∫

1

Z

∂

∂λk

exp
{

L̃(x ; {λj}
M
j=1)

}

dx (61)

=

∫

1

Z
exp

{

L̃(x ; {λj}
M
j=1)

}

∂

∂λk

L̃(x ; {λj}
M
j=1)dx (62)

=

⟨

∂L̃(x ; {λj}
M
j=1)

∂λk

⟩

p∞(x)

, (63)

where p∞(x) denotes the model distribution and ⟨·⟩p∞(x)

denotes the expectation over the model distribution. Thus

Eq. (53) can be rewritten as

∇λk =

⟨

∂

∂λk

L̃(x ; {λj}
M
j=1)

⟩

p0(x)

−

⟨

∂

∂λk

L̃(x ; {λj}
M
j=1)

⟩

p∞(x)

. (64)

It can be seen from the above equation that the normalization

constant Z is not required. While the expectation over the

training data is easy to compute, the expectation over the

model distribution is computationally expensive. The expec-

tation over the model distribution is typically computed by

running MCMC sampling [2] but it may take a very long time

until the Markov chain converges. Alternatively, contrastive

divergence learning [9] approximates the expectation over the

model distribution as

∇λk ≈

⟨

∂

∂λk

L̃(x ; {λj}
M
j=1)

⟩

p0(x)

−

⟨

∂

∂λk

L̃(x ; {λj}
M
j=1)

⟩

pV (x)

(65)

=
1

D

D
∑

i=1

∂

∂λk

L̃(xi ; {λj}
M
j=1)

−
1

V

V
∑

v=1

∂

∂λk

L̃(x̃v ; {λj}
M
j=1) (66)

where ⟨·⟩pV (x) denotes the expectation over the model dis-

tribution after V MCMC sampling iterations and x̃v is the

sample drawn from the model distribution at the v-th MCMC

sampling iteration.

The key idea of contrastive divergence learning is to ini-

tialize the sampler at the data points rather than random

values, and run MCMC iterations for a small, fixed number of

steps (typically V = 1 or V = 10) rather than very long

iterations until the Markov chain converges to equilibrium

(V = ∞). The intuition here is that by sampling for just a

few iterations starting from the data points will draw samples

close to a mode of the model distribution, which should

be sufficient to estimate the parameter updates. Contrastive

divergence learning has been applied for training various

models in machine learning including a restricted Boltzmann

machine (RBM) [10], which is one of the simplest forms of

PoEs, and a deep belief net (DBN) [8], which is a multi-

layered composition of RBMs. Refer to [10] for further details

about contrastive divergence learning.

IV. POES FOR STATISTICAL PARAMETRIC SPEECH

SYNTHESIS

A. Trajectory HMM as PoE

If a feature function to compute d-th order dynamic features

at frame t given c is defined as

f
(d)
t (c) = ∆(d)ct, (67)

Eq. (30) can be reformulated as

p (c | q,λ) =
1

Z
(trj)
q

N (Wc ; µq,Σq) (68)

=
1

Z
(trj)
q

T
∏

t=1

2
∏

d=0

N
(

f
(d)
t (c) ; µc(qt,d), σ

2
c(qt,d)

)

.

(69)

As discussed in [34], [45], Eq. (69) can be viewed as a PoG;

local constraints (static and dynamic characteristics of speech

parameter trajectory) are modeled by unnormalized Gaussian

experts. They are multiplied over time and then normalized to

yield a valid PDF. Here, the number of experts is three times

larger than the input dimension. This type of PoE is called an

over-complete PoE [28].

B. Combining multiple AMs as PoE

Considering each AM as an “expert”, the combination of

multiple AMs described in Section II-C can be reformulated

as a PoE

p(c | {λj}
M
j=1) =

1

Z

M
∏

j=1

{p(fj(c) | λj)}
αj . (70)

It allows us to estimate all AMs jointly based on the ML

criterion

{λ̂j}
M
j=1 = arg max

{λj}M
j=1

1

Z

M
∏

j=1

{p(fj(c) | λj)}
αj . (71)

This training framework is consistent with the synthesis frame-

work of Eq. (40); the combined AMs are considered both at

the training and synthesis stages.

This section shows how to estimate multiple AMs simulta-

neously based on the PoE framework. This removes the need

to tune weights as the variances of the individual expert will

subsume their role.

1) Linear and Gaussian case: Here the linear and Gaussian

case is discussed with multiple-level duration models [15] as

an example. In a typical HMM-based statistical parametric

speech synthesis system, the state durations are modeled

explicitly by context-dependent single Gaussian distributions

clustered by decision trees [38]. At the synthesis stage, these

state-duration models are used to determine the most probable

state sequence. Durations can be predicted more accurately
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if the information of states and higher-level speech units are

incorporated [15], [21]. In this work the state and phone

durations are modeled by Gaussians, thus

p(dij | li,λst) = N
(

dij ; νq(i,j), ξq(i,j)
)

, (72)

p(hi | li,λphn) = N
(

hi ; νr(i), ξr(i)
)

, (73)

where dij denotes the state duration of state j of phone i, hi

is the phone duration of phone i, which can be computed from

the state durations by

hi =
S
∑

j=1

dij , (74)

and S is the number of states in a sub-word HMM. νi
and ξi correspond to the i-th mean and variance parameters.

q(i, j) ∈ {1, . . . , Nst} gives the index of the mean and

variance parameter for the duration of j-th state of i-th
phone. r(i) ∈ {1, . . . , Nph} gives the index of the mean and

variance parameter for the duration of i-th phone. Nst and Nph

correspond to the numbers of unique Gaussian distributions in

the state and phone duration model sets. The combination of

state and phone duration models can be reformulated as a PoE

by

p(d | l,λst,λphn) =
1

Z

L
∏

i=1

{

p(hi | li,λphn)

S
∏

j=1

p(dij | li,λst)

}

(75)

=
1

Z
N (Wd ; µl,Σl), (76)

where d = [d11, . . . , d1S , . . . , dL1, . . . , dLS ]
⊤

is the sequence

of the state durations and L is the number of phones in the

sentence HMM. For example, if S = 3, L = 2, N = 5,

q(1, 1) = q(2, 1) = 1, q(1, 2) = q(2, 2) = 2, q(1, 3) =
q(2, 3) = 3, r(1) = 4, and r(2) = 5, then W and Sl can

be illustrated as

o W d
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. (78)

Again, the empty elements of W and Sl in Eqs. (77) and

(78) are all 0. It can be seen from Eqs. (16), (36), (68)–

(69), and (75)–(78) that this PoE has exactly the same form

as the trajectory HMM; only the structures of W and Sq

are different. Most techniques for combining multiple AMs

adopt linear functions of the observation sequence, such as

summation [15], [21], average [32], DCT [14], [21], and use

Gaussian distributions to model the extracted features. Any

combinations of linear feature functions and Gaussian experts,

can be reformulated as a trajectory HMM. Thus the parameter

update formulae derived for trajectory HMMs can directly be

applied to jointly estimate the multiple AMs.

It is known that PoEs with linear feature functions and

Gaussian experts can be viewed as a basis superposition

precision matrix model [26]; its precision matrix, Rq , is

formed by superimposing multiple basis matrices, each of

which is defined by an expert.

2) Non-linear and non-Gaussian cases: With non-linear

feature functions, or non-Gaussian experts, it is not possible

to use the trajectory HMM’s parameter update formulae. One

example is speech parameter generation including a global

variance (GV) term [29]. The GV is defined as the intra-

utterance variance of a speech parameter trajectory and typi-

cally modeled by a Gaussian distribution. The PoE for speech

parameter generation including the GV term is written as

p(c | q,λ,λgv) =
1

Z
(trj·gv)
q

p̃(c | q,λ)p̃ (fgv (c) | λgv) ,

(79)

p̃(c | q,λ) = {N (c ; c̄q,Pq)}
αgv , (80)

p̃ (fgv (c) | λgv) = N
(

fgv(c) ; µgv, σ
2
gv

)

, (81)

where λgv is the set of parameters for GV, αgv is an utterance-

length adaptive weight (typically αgv = 1/3T ),9 and µgv and

σ2
gv correspond to the mean and variance of the GV Gaussian

distribution. fgv(c) is a function to compute the GV given c,

which is defined as

fgv(c) =
1

T

T
∑

t=1

(ct − c̄)
2
, c̄ =

1

T

T
∑

t=1

ct. (82)

Z
(trj·GV)
q is a normalization constant given as

Z(trj·gv)
q =

∫

RT

p̃(c | q,λ)p̃ (fgv (c) | λgv) dc. (83)

As the feature function fgv(c) is non-linear (quadratic) and

the experts are Gaussian, it is not possible to use the training

algorithm for trajectory HMMs shown in Section II-B and

no closed-form solution exists to calculate Z
(trj·gv)
q . However,

model parameters can be updated iteratively by contrastive

divergence learning. The first partial derivatives of the unnor-

malized log likelihood with respect to the model parameters

9αgv is not required for the PoE framework, but was used for better
initialization at the training stage in the experiment reported in Section V-C.
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are given as

∂L̃(c ; q,λ,λgv)

∂µ
= −αgvS

⊤
q Σ

−1
q W (c− c̄q) , (84)

∂L̃(c ; q,λ,λgv)

∂φ
=

αgv

2
S⊤
q diag−1

[

WPqW
⊤

−Wcc⊤W⊤ +Wc̄qc̄
⊤
q W

⊤

+W (c− c̄q)µ
⊤
q + µq (c− c̄q)

⊤
W⊤

]

, (85)

∂L̃(c ; q,λ,λgv)

∂µgv
= −

fgv(c)− µgv

σ2
gv

, (86)

∂L̃(c ; q,λ,λgv)

∂ 1/σ2
gv

= −
1

2σ2
gv

{

1−
(fgv(c)− µgv)

2

σ2
gv

}

,

(87)

where

L̃(c ; q,λ,λgv) = log {p̃(c | q,λ)p̃ (fgv (c) | λgv)} . (88)

Calculating the contrastive divergence (Eq. (66)) requires

samples from the model distribution. However, sampling c

from p(c | q,λ,λgv) directly is difficult. Alternatively, the

Metropolis-Hastings algorithm with a reasonable proposal

distribution (e.g., Gaussian approximation) or Hamiltonian

Monte Carlo (also known as hybrid Monte Carlo, HMC)

sampling [2], [18] can be used. Multiple AMs with non-

Gaussian distributions [17], [21], [35] can also be estimated

jointly with contrastive divergence learning.

C. Synthesis from PoEs

No modifications are required to generate speech parameters

from estimated PoEs. As maximization is independent of the

normalization constant Z,

ĉ = argmax
c

p(c | {λj}
M
j=1) (89)

= argmax
c

1

Z

M
∏

j=1

{p(fj(c) | λj)}
αj (90)

= argmax
c

M
∏

j=1

{p(fj(c) | λj)}
αj (91)

= argmax
c

M
∑

j=1

αj log p(fj(c) | λj). (92)

It can be seen from Eqs. (40) and (91) that speech parameter

generation from PoEs is identical to generating the speech

parameter trajectory from the multiple AMs.

Training multiple AMs as a PoE has a greater computational

load compared with the conventional independent training of

multiple AMs with optimized weights. However, the compu-

tational cost for synthesis from PoEs is identical to that of

the conventional approach. This property nicely fits the real

scenario of speech synthesis as the training part can use large

computational resources which may be limited at the synthesis

stage.
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Fig. 2. Graphical model representation of (a) baseline, (b) PoE (state*phone),
and (c) PoE (state*phone*syllable) duration models. In this figure, dij , qij , ri,
and sk correspond to the state duration of state i of phone j, state-duration
distribution of state i of phone j, phone-duration distribution of phone j,
and syllable-duration distribution of syllable k. Note that the phones and the
syllable here are assumed to consist of 3 states and 2 phones, respectively.

V. EXPERIMENTS

A. Experimental conditions

Speech data from a female and a male professional speak-

ers were used for training two speaker-dependent statistical

parametric speech synthesizers. The training data consisted

of 1 100 US English sentences per each speaker. The speech

analysis conditions and model topologies were similar to those

used for the Nitech-HTS 2005 [42] system. The speech data

was downsampled to 16 kHz sampling then 39-order mel-

cepstral coefficients [5], fundamental frequency (F0) values,

and 23 Bark-scale band aperiodicities [36] were extracted at

every 5 ms. The F0 values of the recordings were automati-

cally extracted using the voting method [37]. Five-state, left-

to-right, no-skip hidden semi-Markov models (HSMMs) [46]

were used.10 After training the baseline systems, PoEs were

estimated using the baseline systems as the initial models.

B. Multiple-level duration models as PoE

The first experiment investigated the effect of joint esti-

mation for multiple-level duration models (state and phone

[15] and state, phone, and syllable [21]). State, phone, and

syllable durations were modeled by 1-dimensional Gaussian

distributions. They were derived from the manually corrected

phone boundaries. These were clustered by decision trees

based on the minimum description length (MDL) criterion

[25] in the same way as the state duration models [38].

Table I shows the numbers of distributions (leaf nodes) for

TABLE I
NUMBERS OF DISTRIBUTIONS IN THE STATE, PHONE, AND SYLLABLE

DURATION MODELS.

Number of distributions
Speaker State Phone Syllable

Female 2 280 602 619
Male 2 075 538 405

the state, phone, and syllable duration models. These duration

10The sub-word unit used here was phone.
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models were then jointly estimated in the PoE framework. The

graphical model representations of the baseline state duration

model and multiple-level duration models are illustrated in

Fig. 2. It can be seen from the figure that the multiple duration

models have a more complex dependency structure than the

baseline system.

TABLE II
ROOT MEAN SQUARE ERRORS (RMSES) OF DURATION PREDICTION BY

BASELINE, CONVENTIONAL UNNORMALIZED POE AND PROPOSED

NORMALIZED POE DURATION MODELS. st*ph AND st*ph*sy CORRESPOND

TO THE PRODUCT OF STATE AND PHONE DURATION MODELS AND THE

PRODUCT OF STATE, PHONE, AND SYLLABLE DURATION MODELS. “UPOE”
DENOTES THE CONVENTIONAL UNNORMALIZED POE DURATION MODEL.

THE SYSTEMS WHICH ACHIEVED STATISTICALLY SIGNIFICANT

IMPROVEMENTS OVER THE BASELINE SYSTEM ARE IN THE BOLD FONT.

Duration RMSE in ms (rel. imp. in %)
Speaker models phone syllable pause

baseline 28.2 48.0 161
uPoE (st*ph) 25.9 (8.16) 45.1 (6.04) 151 (6.21)

Female uPoE (st*ph*sy) 25.7 (8.86) 44.5 (7.29) 151 (6.21)
PoE (st*ph) 25.6 (9.22) 43.8 (8.75) 150 (6.83)
PoE (st*ph*sy) 25.3 (10.3) 43.8 (8.75) 150 (6.83)
baseline 31.2 52.0 156
uPoE (st*ph) 28.6 (8.33) 48.3 (7.12) 153 (1.92)

Male uPoE (st*ph*sy) 28.6 (8.33) 48.1 (7.50) 153 (1.92)
PoE (st*ph) 28.3 (9.29) 47.7 (8.27) 156 (0.0)
PoE (st*ph*sy) 28.1 (9.94) 47.6 (8.46) 156 (0.0)

Table II shows the duration prediction results. The dura-

tion prediction accuracy was evaluated on an evaluation set

(100 sentences) which were not contained in the training

set. Note that uPoE and PoE in the table correspond to the

conventional unnormalized and the proposed normalized PoE

duration models.11 These uPoE systems use the standard inde-

pendent training of the “experts” with the weights optimized to

minimize RMSEs (of phone) over the development set (100

sentences) which were contained in neither the training nor

test sets. The weight of the phone duration models for uPoE

(st*ph) was 1.3 for the female speaker and 1.1 for the male

speaker. The weights of phone and syllable duration models

for uPoE (st*ph*sy) were 1.3 and 0.4 for the female speaker,

respectively, and 1.1 and 0.4 for the male speaker, respectively.

It can be seen from the table that the proposed PoE systems

achieved significant error reductions over the baseline systems

and comparable performance to the conventional uPoE sys-

tems, without requiring the use of the development set for

weight tuning.

A paired-comparison preference listening test was also con-

ducted. This test compared the naturalness of the synthesized

speech generated from the baseline, conventional unnormal-

ized PoE, and proposed normalized PoE duration models for

the 100 evaluation sentences. The uPoE and PoE duration

models were combinations of state, phone, and syllable dura-

tion models. The same model was used for generating spectra,

F0 values, and aperiodicities with these duration models. To

see the effect of changing the speaking rate of the synthesized

speech, normal (the most likely durations predicted by these

state duration models), fast (0.75 × total number of frames in

11The normalized PoEs were estimated so as to maximize the normalized
log likelihood given training data. On the other hand, the unnormalized PoEs
were trained so as to maximize the unnormalized log likelihood given data.

TABLE III
PREFERENCE SCORES (%) AMONG SPEECH SAMPLES SYNTHESIZED FROM

THE BASELINE, UNNORMALIZED POE (UPOE), AND NORMALIZE POE
(POE). NOTE THAT “N/P” DENOTES “NO PREFERENCE”. THE SYSTEMS

WHICH ACHIEVED SIGNIFICANTLY BETTER PREFERENCE AT p < 0.05
LEVEL ARE IN THE BOLD FONT.

Speaking Preference score p
Speaker rate baseline uPoE PoE N/P (t-test)

30.0 39.5 – 30.5 0.032
fast 25.3 – 41.9 32.8 0.001

– 29.4 34.0 36.6 0.190
35.8 35.0 – 29.2 0.438

Female normal 31.1 – 38.8 30.1 0.068
– 31.1 33.0 35.9 0.356

32.4 41.1 – 26.5 0.045
slow 28.2 – 45.4 26.4 <0.001

– 32.6 39.8 27.6 0.086

27.6 42.4 – 30.0 0.002
fast 31.0 – 41.5 27.5 0.021

– 33.0 34.0 33.0 0.418
31.4 42.4 – 26.2 0.018

Male normal 28.6 – 43.7 27.7 0.002
– 33.2 34.5 32.3 0.398

23.8 47.6 – 28.6 <0.001
slow 28.5 – 46.3 25.2 <0.001

– 30.6 35.6 33.8 0.164

normal speech), and slow (1.25 × total number of frames in

normal speech) speech samples were synthesized with these

duration models. The technique to predict state durations

given the total number of frames with full covariance duration

models [16] was used to control the speaking rate for the PoE

duration models. The listening tests were carried out using

Amazon Mechanical Turk (http://www.mturk.com/). To ensure

that pairs of speech samples were played equally often in

AB as in BA order, both orders were regarded as different

pairs. Thus there were 2 × 100 evaluation pairs in the test.

One subject could evaluate a maximum of 40 pairs, they were

randomly chosen and presented for each subject. Each pair

was evaluated by two subjects. After listening to each pair of

samples, the subjects were asked to choose their preferred one.

Note that the subjects could select “No preference” if they had

no preference.

Table III shows the preference test results. Note that uPoE

and PoE in the table correspond to the conventional unnormal-

ized and the proposed normalized PoE duration models. It can

be seen from the table that both the unnormalized and normal-

ized PoE duration models were preferred to the baseline state

duration models if the speaking rate was modified. However,

the differences between the baseline and combined duration

models were not significant without speaking-rate modification

for the female speaker. The use of phone and syllable-level

duration models can provide information about correlations

of the state durations across states within phones and sylla-

bles, respectively. This information can help to predict more

realistic state durations when the speaking rate is modified,

because this information is incorporated while determining the

state durations [16]. On the other hand, this information is not

required to predict state durations if the speaking rate is not

modified. Thus the use of the higher-level duration models

did not give statistically significant improvements over the

baseline system. Although there was no statistically significant
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(a) trajectory HMM (b) PoE (trajectory HMM*GV)
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Fig. 3. Graphical model representation of (a) trajectory HMM and (b) PoE
(trajectory HMM*GV) models (T = 5).

difference between the unnormalized and normalized PoE

duration models, there was a slight consistent preference to

the normalized PoE.

C. Speech parameter generation including global variance

term as PoE

The second experiment investigated the effect of joint

estimation of trajectory HMMs and GV Gaussian distributions.

The graphical model representations of (a) a trajectory HMM

and (b) a PoE with a trajectory HMM and GV distribution

are illustrated in Fig. 3. Contrastive divergence learning was

applied to update the PoE of speech parameter generation

including the GV term. Instead of using the entire database

at each iteration of contrastive divergence learning, the data

was split into two batches of 550 utterances each, and only

the data from one batch used at each iteration. In this exper-

iment, 10 000 stochastic gradient iterations were used, each

performing a contrastive divergence learning step with 10

MCMC iterations (V = 10). The learning rate was started

from η = 0.01 and annealed (halved) at every 2 000 iterations.

To improve the learning speed, the momentum method was

used [23]. The parameter updates at iteration j, {∇λ
(j)
k }, were

supplemented by its momentum term, {0.9∇λ
(j−1)
k }. The

inclusion of a momentum term has been found to increase the

rate of convergence dramatically [23]. To draw samples from

p (c | q,λ,λgv), HMC sampling [2], [18] with 20 leap-frog

steps was used. The leap step was fixed to 0.001. The context-

dependent logarithmic GV without silence [37] rather than

standard, context-independent linear GV [29] was used in this

experiment. αgv was set utterance-length adaptively (αgv =
1/3T ) as suggested in [29]. Contrastive divergence learning

was applied to the spectral part of the model parameters, i.e.,

the model parameters for logF0 and band aperiodicities were

not updated as the effect of GV was small for these speech

parameters.

Initializing the MCMC sampler at the data point, which

is a typical setting used in contrastive divergence learning,

may not always work well for training the PoE for speech

parameter generation including the GV term. This is because

the feature function of this PoE is highly non-linear and its

model distribution may have multiple modes. It is known

that contrastive divergence learning does not work well if

the model distribution has multiple modes and these modes

are separated by low-probability regions. One way to address

this problem is to give advance knowledge of the location of

w/o GV

0 2 4 6 8

Frequency (kHz)

unnormalized PoE

0 2 4 6 8

Frequency (kHz)

normalized PoE

(MCMC init by data)

0 2 4 6 8

Frequency (kHz)

normalized PoE

(MCMC init by gen)

0 2 4 6 8

Frequency (kHz)

Fig. 4. Generated spectra from trajectory HMMs without GV, unnormalized
PoE for speech parameter generation including the GV term, normalized PoE
estimated by contrastive divergence learning with MCMC initialized by data
points, and normalized PoE estimated by contrastive divergence learning with
MCMC initialized by generated trajectory.

these modes to the MCMC sampler [11]. Based on a similar

idea, here the MCMC sampler was initialized at the trajec-

tory determined by speech parameter generation including

the GV term. This trajectory is in a local optimum (mode)

of p (c | q,λ,λgv) and is the particular mode of interest.

Thus initializing the MCMC sampler by this trajectory sounds

feasible for training this PoE.12

Figure 4 plots the generated spectra from the estimated PoEs

with different initialization of the MCMC sampler. It can be

seen from the figure that initializing the MCMC sampler by

data points removed the effect of GV and the generated spectra

became flatter than the conventional unnormalized PoE for

speech parameter generation including the GV term. On the

other hand, the formant structure of spectra generated from the

estimated PoE with generated trajectory-based initialization

looks clearer than that of the conventional unnormalized PoE

one. From this result, the PoE with generated trajectory-based

initialization was used in the following experiment.

A paired-comparison preference listening test was con-

ducted. This test compared the naturalness of the synthesized

speech generated from the conventional unnormalized PoE

and proposed normalized PoE for speech parameter generation

12A similar idea to use the most probable samples for training MRFs with
contrastive learning has been proposed in the machine learning area [31].
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including the GV term over 100 evaluation sentences. The

listening test conditions were the same as those in the previous

section except that each pair was evaluated by three subjects

rather than two subjects.

TABLE IV
PREFERENCE SCORES (%) BETWEEN THE CONVENTIONAL

UNNORMALIZED POE AND PROPOSED NORMALIZED POES FOR SPEECH

PARAMETER GENERATION INCLUDING THE GV TERM. N/P DENOTES “NO

PREFERENCE”. THE SYSTEMS WHICH ACHIEVED SIGNIFICANTLY BETTER

PREFERENCE AT p < 0.05 LEVEL ARE IN THE BOLD FONT.

Preference score p
Speaker uPoE PoE N/P (t-test)

Female 25.9 44.8 29.3 <0.001
Male 29.2 49.2 21.6 <0.001

Table IV shows the preference test result. Note that uPoE

and PoE in the table correspond to the conventional unnormal-

ized and the proposed normalized PoEs for speech parameter

generation including the GV term. It can be seen from the

table that the proposed normalized PoEs for speech parameter

generation including the GV term achieved a significantly

better preference score than the conventional unnormalized

PoE one.

VI. CONCLUSIONS

To achieve high quality speech synthesis multiple statistical

models, trained at different levels, are often combined together.

Each of these models is normally trained individually. At

synthesis time, the likelihood contribution from each of the

models is weighted, and the most likely trajectory from this

combined distribution used for synthesis. This article has

shown that this process can be described within a product

of experts framework. For Gaussian experts trained on linear

transforms of the underlying features, closed-form solutions

for the estimation of the mean parameters, and a gradient

ascent based approach for estimation of the variance pa-

rameters are detailed. For more general experts, either using

non-Gaussian distributions, or non-linear transformations of

the features, a contrastive divergence based training scheme

is described. Training all the experts together allows the

contribution of each expert to be derived within the training

process (via the model variance) rather than relying on a

separately tuned set of weights.

Training multi-level models in this product of experts frame-

work was evaluated for both linear Gaussian experts, duration

modelling, and non-linear experts, the incorporation of a

global variance model. The joint training of a global variance

expert and trajectory model yielded statistically significant

preference scores over the standard individual training of

the models. For duration modelling, a slight preference, not

significant, for the jointly trained models was observed.

This article has described a general approach for train-

ing and combining multiple models for statistical parametric

speech synthesis within the product of experts framework.

The scheme can be applied to a wide-range of experts within

the statistical parametric speech synthesis domain. Using the

consistent joint training of multiple experts will be more

important as the diversities in the experts increases.

Future work includes investigation of other feature functions

(e.g., segmental features [20]) and/or distributions (e.g., Stu-

dent’s t distribution or “unigauss” distribution [9]) for experts

and updating window coefficients of each experts [3], within

the proposed framework.
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