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We prove that if there exist Hadamard matrices of order 4m, 4n, 4p, and 4q then 
there exists an Hadamard matrix of order 16mnpq. This improves and extends the 
known result of Agayan that there exists a Hadamard matrix of order 8mn if there 
exist Hadamard matrices of order 4m and 4n. © 1992 Academic Press, Inc. 

A weighing matrix [3] of order n with weight k, denoted W= Wen, k), 
is a (0, ± 1) matrix satisfying WWT = kIn- A Wen, n) is an Hadamard 
matrix. 

Two matrices X and Yare said to be amicable if Xyt = Yxt. They are 
disjoint if X (\ Y = ° (here, n denotes the Hadamard, or entry-wise, product. 
of matrices ). 

LEMMA 1. If there exist Hadamard matrices of order 4m and 4n then 
there exist two (± 1) matrices, Sand R of order 4mn, satisfying 

(i) SST + RRT = 8mnI4mn , 

(ii) SRT = RS T = 0. 

Proof We write 
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where Hand K are the given Hadamard matrices, each Hi being of size 
m x 4m and each Ki being of size n x 4n, i = 1, 2, 3,4. Now take 

R = HH j + H2)T x K j + ~(Hj - H2)T x K2, 

s= HH3 + H4)TX K3 + ~ (H3 - H4)TX K4· 

Clearly both Rand S are square ± 1 matrices, and RRT + SS T = ~(Hi HI + 
HrH2 +HjH3+HrH4)x4nI. Since (HiHI +HrH2+HjH3+HrH4)= 
HTH, we have RRT + SS T = 8mnI4mn- Since KiKJ = 0 for i"# j, Rand S are 
as claimed. 

This is Theorem 3 in [2], where Sand R of are called an orthogonal pair. 

LEMMA 2. If there exist Hadamard matrices of order 4m and 4n then 
there exist two disjoint, amicable W( 4mn, 2mn). 

Proof Let Rand S be the matrices constructed in Lemma 1. Let 
X = ~(R + S) and Y = ~(R - S). We calculate 

XXT = yyT = !(RRT + SST) = 2mn I 4mn-

X and Yare disjoint since Rand S are ± 1 matrices.· Therefore, X and Y 
are the desired weighing matrices. 

This is Theorem 2 and Lemma 3 of [4], where it was obtained using 
M-structures. It may also be deduced from Theorem 3 and 7 of [2], which 
follows our method. The fact that the matrices are amicable is not needed 
for the theorem which follows. The two lemmas are clearly equivalent, for 
we may also write S=X+ Y, R=X- Y. 

THEOREM 1. If there exist Hadamard matrices of order 4m, 4n, 4p, 4q 
then there exists an Hadamard matrix of order 16mnpq. 

Proof By Lemma 2, there exist two disjoint W( 4mn, 2mn), X and Y. By 
Lemma 1, there exist two (± 1) matrices Sand R of order 4pq satisfying (i) 
and (ii). 

Let H = X x S + Y x R. Then H is a (± 1) matrix and 

HHT = XXT X SST + yyT X RRT = 2mnI4mn x (SST + RRT) 

= 2mnI4rnn x 8pqI4pq = 16mnpqIl6mnpQ' 

Thus H is the required Hadamard matrix. 
Theorem 1 gives an improvement and extension for the result of 

Agayan [1] that if there exist Hadamard matrices of order 4m and 4n then 
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there exists an Hadamard matrix of order Smn. Using the result of Agayan 
repeatedly on four Hadamard matrices of order 4m, 4n, 4p, 4q, gives an 
Hadamard matrix of order 32mnpq. 
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