University of Wollongong

Research Online

Product of four Hadamard matrices

R. Craigen

Jennifer Seberry

University of Wollongong, jennie@uow.edu.au
Xian-Mo Zhang
University of Wollongong, xianmo@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Craigen, R.; Seberry, Jennifer; and Zhang, Xian-Mo: Product of four Hadamard matrices 1992.
https://ro.uow.edu.au/infopapers/1063

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Product of four Hadamard matrices

Abstract
We prove that if there exist Hadamard matrices of order $4 m, 4 n, 4 p$, and $4 q$ then there exists an Hadamard matrix of order 16 mnpq . This improves and extends the known result of Agayan that there exists a Hadamard matrix of order $8 m n$ if there exist Hadamard matrices of order $4 m$ and $4 n$.
\section*{Disciplines}
Physical Sciences and Mathematics
\section*{Publication Details}
R. Craigen, Jennifer Seberry and Xian-Mo Zhang, Product of four Hadamard matrices, Journal of Combinatorial Theory (Ser A), 59, (1992), 318-320.

Note

Product of Four Hadamard Matrices
R. Craigen
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Jennifer Seberry and Xian-Mo Zhang
Department of Computer Science, University of Wollongong, Wollongong, NSW, 2500, Australia
Communicated by V. Pless

Received September 24, 1990

Abstract

We prove that if there exist Hadamard matrices of order $4 m, 4 n, 4 p$, and $4 q$ then there exists an Hadamard matrix of order 16 mnpq . This improves and extends the known result of Agayan that there exists a Hadamard matrix of order 8 mn if there exist Hadamard matrices of order $4 m$ and $4 n$. © 1992 Academic Press, Inc.

A weighing matrix [3] of order n with weight k, denoted $W=W(n, k)$, is a $(0, \pm 1)$ matrix satisfying $W W^{\mathrm{T}}=k I_{n}$. A $W(n, n)$ is an Hadamard matrix.

Two matrices X and Y are said to be amicable if $X Y^{t}=Y X^{t}$. They are disjoint if $X \cap Y=0$ (here, \cap denotes the Hadamard, or entry-wise, product of matrices).

Lemma 1. If there exist Hadamard matrices of order $4 m$ and $4 n$ then there exist two (± 1) matrices, S and R of order $4 m n$, satisfying
(i) $S S^{\mathrm{T}}+R R^{\mathrm{T}}=8 m n I_{4 m n}$,
(ii) $\quad S R^{\mathrm{T}}=R S^{\mathrm{T}}=0$.

Proof. We write

$$
H=\left(\frac{\frac{H_{1}}{H_{2}}}{\frac{H_{3}}{H_{4}}}\right), \quad K=\left(\frac{\frac{K_{1}}{K_{2}}}{\frac{K_{3}}{K_{4}}}\right)
$$

where H and K are the given Hadamard matrices, each H_{i} being of size $m \times 4 m$ and each K_{i} being of size $n \times 4 n, i=1,2,3,4$. Now take

$$
\begin{aligned}
R & =\frac{1}{2}\left(H_{1}+H_{2}\right)^{T} \times K_{1}+\frac{1}{2}\left(H_{1}-H_{2}\right)^{T} \times K_{2}, \\
S & =\frac{1}{2}\left(H_{3}+H_{4}\right)^{T} \times K_{3}+\frac{1}{2}\left(H_{3}-H_{4}\right)^{T} \times K_{4} .
\end{aligned}
$$

Clearly both R and S are square ± 1 matrices, and $R R^{T}+S S^{T}=\frac{1}{2}\left(H_{1}^{T} H_{1}+\right.$ $\left.H_{2}^{T} H_{2}+H_{3}^{T} H_{3}+H_{4}^{T} H_{4}\right) \times 4 n I$. Since $\left(H_{1}^{T} H_{1}+H_{2}^{T} H_{2}+H_{3}^{T} H_{3}+H_{4}^{T} H_{4}\right)=$ $H^{T} H$, we have $R R^{T}+S S^{T}=8 m n I_{4 m n}$. Since $K_{i} K_{j}^{T}=0$ for $i \neq j, R$ and S are as claimed.

This is Theorem 3 in [2], where S and R of are called an orthogonal pair.
Lemma 2. If there exist Hadamard matrices of order $4 m$ and $4 n$ then there exist two disjoint, amicable $W(4 m n, 2 m n)$.

Proof. Let R and S be the matrices constructed in Lemma 1. Let $X=\frac{1}{2}(R+S)$ and $Y=\frac{1}{2}(R-S)$. We calculate

$$
X X^{T}=Y Y^{T}=\frac{1}{4}\left(R R^{T}+S S^{T}\right)=2 m n I_{4 m n}
$$

X and Y are disjoint since R and S are ± 1 matrices. Therefore, X and Y are the desired weighing matrices.

This is Theorem 2 and Lemma 3 of [4], where it was obtained using M-structures. It may also be deduced from Theorem 3 and 7 of [2], which follows our method. The fact that the matrices are amicable is not needed for the theorem which follows. The two lemmas are clearly equivalent, for we may also write $S=X+Y, R=X-Y$.

Theorem 1. If there exist Hadamard matrices of order $4 m, 4 n, 4 p, 4 q$ then there exists an Hadamard matrix of order 16 mnpq .

Proof. By Lemma 2, there exist two disjoint $W(4 m n, 2 m n), X$ and Y. By Lemma 1, there exist two (± 1) matrices S and R of order $4 p q$ satisfying (i) and (ii).

Let $H=X \times S+Y \times R$. Then H is a (± 1) matrix and

$$
\begin{aligned}
H H^{\mathrm{T}} & =X X^{\mathrm{T}} \times S S^{\mathrm{T}}+Y Y^{\mathrm{T}} \times R R^{\mathrm{T}}=2 m n I_{4 m n} \times\left(S S^{\mathrm{T}}+R R^{\mathrm{T}}\right) \\
& =2 m n I_{4 m n} \times 8 p q I_{4 p q}=16 m n p q I_{16 m n p q} .
\end{aligned}
$$

Thus H is the required Hadamard matrix.
Theorem 1 gives an improvement and extension for the result of Agayan [1] that if there exist Hadamard matrices of order $4 m$ and $4 n$ then
there exists an Hadamard matrix of order $8 m n$. Using the result of Agayan repeatedly on four Hadamard matrices of order $4 m, 4 n, 4 p, 4 q$, gives an Hadamard matrix of order 32 mnpq .

References

1. S. S. Agayan, "Hadamard Matrices and Their Applications," Lecture Notes in Mathematics, Vol. 1168, Springer-Verlag, Berlin/Heidelberg/New York, 1985.
2. R. Craigen, Constructing Hadamard matrices with orthogonal pairs, to appear in Ars Combinatoria.
3. A. V. Geramita and J. Seberry, "Orthogonal Designs: Quadratic Forms and Hadamard Matrices," Dekker, New York/Basel, 1979.
4. J. Seberry and X.-M. Zhang, Some orthogonal designs and complex Hadamard matrices by using two Hadamard matrices, to appear in Austral. J. Comb.
