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ABSTRACT

A critical decision facing many companies across many industries is the selection of an
optimal mix of product attributes to offer in the marketplace, which is referred to as product
portfolio planning. Product portfolio planning generally involves two stages, namely
portfolio identification and optimization. The former aims to capture and understand
customer needs effectively and accordingly to transform them into specifications of product
offerings. The latter concerns how to determine an optimal mix of these identified offerings
to offer in the marketplace.

Current research and industrial practice have mainly focused on the economic
justification of a given product portfolio, whereas the portfolio identification issue has
received only limited attention. On the other hand, the product portfolio optimization
problem has been typically dealt with from a marketing perspective, with the focus on
customer concerns — how alternative sets of product attributes and options of attribute levels
interact and compete within the target customer segments. From an engineering perspective,
the operational implications of product portfolio decisions have been tackled with a primary
emphasis on the cost and complexity of interactions among multiple products in a
manufacturing environment with increasing variety. Consideration of the customer and
engineering interaction in product portfolio planning has become increasingly important,
manifested by those efforts in many industries to improve the coordination of marketing,
design and manufacturing activities across product and process platforms.

This research develops a systematic framework of product portfolio planning for

portfolio decisions while leveraging both customer and engineering concerns. An association

II



o the use

rule mining system is developed to support product portfolio identification through
knowledge discovery from past sales and product records. A maximizing shared surplus
model, considering customer preferences, choice probabilities, and platform-based product
costing, is proposed to address the product portfolio optimization problem. A heuristic
genetic algorithm is developed to solve the mixed integer combinatorial optimization
problem associated with product portfolio optimization.

To demonstrate the application to the customer-engineering interaction, an associative
classification-based recommendation system is developed to support customer decision
making in mass customization. A Kansei mining system is developed for customer
perception modeling and affective design support. The product portfolio optimization
framework is extended to deal with product family configuration design. The results of case
studies, along with sensitivity analysis and performance evaluation, suggest the significance

of the research problem, as well as the feasibility and potential of the proposed framework.
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Chapter 1: Introduction

CHAPTER 1
INTRODUCTION

This chapter provides an overview of the background knowledge leading to this research.
Based on discussion of the research motivation, the research problem is identified as product
portfolio planning with customer-engineering interaction, which suggests itself as an
important strategy to address the front-end issues of product family development.
Accordingly, research objectives and scopes are defined, along with an outline of a

technological roadmap for product portfolio planning research.
1.1. Background

Today’s consumer markets are changing faster, and consumers are more demanding
than ever (Cox and Alm, 1998). It is not uncommon that customers are willing to pay more
for those products that meet their unique requirements (Moffat, 1990). Manufacturing
companies tend to differentiate their products and provide a huge amount of variety to the
marketplace in order to match diverse consumer needs. However, the explosion of product
variety unavoidably leads to increased costs in design, production, manufacturing, inventory,
and logistics (Da Silveira et al., 2001). In addition, the complexity due to variety proliferation
always causes customer confusion (Huffman and Kahn, 1998).

Mass customization has emerged in direct response to these market challenges (Pine,
1993). It aims at satisfying individual customer needs while staying near mass production

efficiency (Pine, 1993). It recognizes each customer as an individual and provides each of
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them with “tailor-made” products (Tseng and Jiao, 1998). As a consequence, customers can
no longer be lumped into a homogeneous group in the current marketplace (Hart, 1995).

Mass customization appears as a strategy to differentiate companies in a highly
competitive market environment. Compared with mass production, mass customization is
characterized by customer-specific product design (Piller et al., 2004), where customers are
integrated into design activities to inform designers about what they want. Many researchers
have observed that integrating customers into the design and production processes is a
promising strategy for companies to react to the growing demand for individualization
(Duray and Milligan, 1999; Da Silveira et al., 2001; Tseng and Piller, 2003; Piller et al.,
2004). Customer integration enables specific information to be identified, and thus customer
needs and desires are defined and translated into concrete product specifications.

In a mass customization system, customer integration occurs at the product definition
phase along the entire spectrum of product family development according to the concept of
domains (Suh, 2001). As shown in Figure 1-1, product family development in general
encompasses three consecutive stages: (1) product definition — mapping of customer needs
(CNs) in the customer domain to functional requirements (FRs) in the functional domain; (2)
product design — mapping of FRs in the functional domain to design parameters (DPs) in the
physical domain; and (3) process design — mapping of DPs in the physical domain to process
variables (PVs) in the process domain. The customer, functional, physical and process
domains address the customer satisfaction, functionality, technical feasibility, and
manufacturability/cost issues associated with the products, respectively (Jiao and Tseng,
1999a). Within the context of mass customization, product design and process design are

embodied in the respective product and process platforms. Product definition is characterized
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by the product portfolio representing the target of mass customization (i.e., the “right”
product offerings), which in turn becomes the input to the downstream design activities and
is propagated to process design in a coherent fashion. In this regard, a product portfolio
represents the functional specification of product families, i.e., the functional view of product

and process platforms (Jiao and Tseng, 2004).
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Figure 1-1 Product definition within the spectrum of product family development

1.2. Research Motivation

The product definition phase constitutes the front-end issues of product family
development, and is characterized by the product portfolio, it thus must be carefully planned
to facilitate downstream activities. Most existing research has emphasized the back-end
issues of product family development such as design and manufacturing to enhance the
capabilities for mass customization. Over the past decade, a number of strategies and
methods have been proposed for developing mass customized products such as product
family architecture (Tseng and Jiao, 1996), postponement for supply chain management (Lee
and Billington, 1994), design for variety (Ishii and Martin, 1996), and high-variety

production planning and control (Hillier, 2000; Jiao et al., 2000; Martinez et al., 2000), to
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name but a few. The ultimate goal is to fulfill a wide variety of individual needs with
reasonably low costs and short lead times. These efforts are mostly geared towards so-called
technical variety (Jiao and Tseng, 2000) — diversity of engineering realization in order to
achieve various specific customer needs (so-called functional variety) with the focus on the
design and manufacturing phases.

On the technical side, the designers always assume that the customer satisfaction
increases as a result of good performance of technical capabilities (Jiao et al., 2005). In
practice, however, what customers appreciate is not the enhancement of the solution
capability per se, but the functionality of the product, i.e., the functional variety. It is not
uncommon that some product variants are far more preferred as predicted, while others,
although they are equally sound in technical terms, are not favored by customers. In addition,
providing a vast variety of options does not always generate customer contentment; instead,
it may cause a great deal of confusion and may even turn customers away (Tseng and Piller,
2003). Therefore, it is necessary to examine the underlying interrelationship between
customer requirements and product performance, along with the combined effects of multiple
product offerings on both customer satisfaction and engineering implications. This suggests
that the product portfolio needs to be planned with more consideration of both marketing and
engineering decisions and customer perceptions.

1.3. Research Objective and Scope

The primary objective in this research is to develop a systematic framework for product
portfolio planning that supports portfolio decisions while leveraging both customer and
engineering concerns. Specific problem areas in relation to product portfolio planning are

identified as (1) absence of a definite structure for customer requirements; (2) lack of
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decision support for providing the right product portfolio; (3) inability in adapting to diverse
product portfolio planning scenarios; and (4) inability in addressing the granularity issues
inherent in product portfolio decisions. Towards this end, necessary tasks are identified as
follows.
(1) Investigate the rationale of product portfolio planning and develop a systematic
framework of product portfolio planning, in particular,
» Identify the fundamentals of product portfolio planning, including product
portfolio identification and product portfolio optimization;
» Analyze the technical challenges and key research issues of product portfolio
identification and optimization; and
» Develop appropriate solution strategies for product portfolio identification and
optimization.
(2) Develop systematic product portfolio identification methodologies, including:
» Formulate the product portfolio identification problem rigorously;
» Develop systematic procedures and decision-making methods for product
portfolio identification based on association rule mining; and
» Validate the system and methods based on the results of case studies.
(3) Develop systematic product portfolio optimization methodologies, including:
» Formulate the product portfolio optimization problem rigorously;
» Develop an optimization model that addresses customer-engineering interaction;
» Develop approaches to customer behavior and engineering analysis in relation to

product portfolio optimization;
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» Develop a heuristic genetic algorithm to solve the combinatorial optimization
problem associated with product portfolio optimization; and

» Validate the model and solution framework based on the results of case studies.

(4) Apply the product portfolio planning framework to address customer-engineering
interaction, including:

» Develop a recommendation system to provide support for customer decision-
making in mass customization;

» Develop a Kansei mining methodology to support affective design;

» Extend the product portfolio optimization framework to support product family
configuration design; and

» Validate these applications based on the results of case studies.
1.4. Organization of the Thesis

Figure 1-2 presents a snapshot of the technological roadmap of this research that
encompasses motivation and significance, methodology and solution, application, and
validation of the thesis work. The motivation and significance of product portfolio planning
research are discussed in Chapters 1 and 2. Chapter 1 discusses the general background of
this research with an outline of a holistic view of platform-based product development and
product family design. Chapter 2 provides a comprehensive review of the state-of-the-art
research in the field. The review is organized according to various topics in relation to
product families, including platform-based product development, product family design,
manufacturing and production for product families, customer integration for product families,
economic justification, customer needs elicitation and requirement analysis, optimal product

design, product positioning, and product line design. Chapter 3 presents the fundamental
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issues underlying product portfolio planning with customer-engineering interaction.
Discussed in detail are the portfolio strategy, technical implications and key challenges, as
well as the respective solution strategies.

Product portfolio planning implies two fundamental elements, namely product portfolio
identification and product portfolio optimization. Chapters 4 and 5 emphasize these two
topics, respectively. In Chapter 4, an association rule mining system (ARMS) is developed to
support product portfolio identification. The mapping mechanism between the customer and
functional domains is incarnated in the association rules. The ARMS architecture and
implementation issues are elaborated, along with a case study in a consumer electronics
company for generating the portfolio of vibration motor products.

Chapter 5 reports the development of a product portfolio optimization model and the
corresponding solution framework. To leverage both the customer and engineering concerns,
a maximizing shared surplus model, considering customer preferences, choice probabilities
and platform-based product costing, is proposed to address the product portfolio optimization
problem. A heuristic genetic algorithm is developed to solve the mixed integer combinatorial
optimization problem inherent in product portfolio optimization. A case study of notebook
computer portfolio optimization is presented to illustrate the feasibility and potential of the
proposed framework.

Chapter 6 is devoted to the applications of the proposed product portfolio planning
framework to deal with customer-engineering interaction. Three application areas are
demonstrated in relation to customer-engineering interaction, including customer decision-
making in mass customization, affective design, and product family configuration design. An

associative classification-based recommendation system is developed to facilitate customer
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decision making in an online mass customization scenario. A Kansel mining system is
developed to capture customers’ perceptions and to provide affective design support. The
product portfolio optimization framework is extended to tackle product family configuration
design. A generic genetic algorithm is formulated to solve the design evaluation problem,
where a generic encoding scheme is applied to adapt to diverse product family configuration
scenarios, and a hybrid constraint-handling strategy is developed to cope with complex
constraints involved in product family configuration design.

The last chapter, Chapter 7, summarizes the achievements in addressing the research
objectives and tasks. A critical assessment is given to highlight the limitations and possible

improvements of the thesis work, along with recommendations for future work.
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CHAPTER 2
LITERATURE REVIEW

Product family design and platform-based product development have received much
attention over the last decade. This chapter provides a review of the state-of-the-art research
in this field. Major challenges and future research directions are also discussed. It highlights

the motivation to carry out an in-depth study on product portfolio planning.
2.1. Platform-based Product Development

Platform-based product development has been well recognized as an effective means to
achieve the economy of scale in order to accommodate increasing product variety across
diverse market niches (Meyer and Utterback, 1993; Sundgren, 1999). A sizeable body of
research on platform-based product development has been reported over the last decade
(Simpson, 2004).
2.1.1. Product Family

Streams of individual products generated by firms may be thought of as evolving
families of products (Meyer and Utterback, 1993). A product family refers to a set of similar
products that are derived from a common platform and yet possess specific
features/functionality to meet particular customer requirements (Meyer and Lehnerd, 1997).
Each individual product within a product family, i.e., a family member, is called a product
variant or instance. While a product family targets a certain market segment, each product

variant is developed to address a specific subset of customer needs of the market segment.

10
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All product variants share some common structures and product technologies, which form
the platform of the product family (Erens and Verhulst, 1997).

The interpretation of product families depends on different perspectives. From the
marketing and sales perspective, the functional structure of product families exhibits a firm’s
product line or product portfolio and thus is characterized by various sets of functional
features for different customer groups (Agard and Kusiak, 2004). The engineering view of
product families embodies different product technologies and associated manufacturability
and is thereby characterized by various design parameters, components, and assembly
structures (Simpson, 2004; De Lit and Delchambre, 2003).

2.1.2. Product Platform

Product platforms have been defined diversely, ranging from being general and abstract
(Robertson and Ulrich, 1998) to being industry and product specific (Sanderson and Uzumeri,
1995). In addition, the meaning of platform differs in scope. Some definitions and
descriptions focus mainly on the product or artifact itself (Meyer and Utterack, 1993;
McGrath, 1995), whereas others try to explore the platform concept in terms of a firm’s value
chain (Sawhney, 1998).

There are two streams of research prevailing in the field of developing product
platforms. One perspective refers to a platform as a physical one, namely a collection of
“elements” shared by several products. Accordingly, the major concern is how to identify the
common denominators for a range of products (Wilhelm, 1997). The effort is geared towards
the extraction of those common product elements, features, and/or subsystems that are stable
and well understood, so as to provide a basis for introducing value-added differentiating

features (Moore et al., 1999). Meyer and Lehnerd’s work (1997) is the representative of

11
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another dominating perspective to product platform. They define a product platform as “a set
of subsystems and interfaces developed to form a common structure from which a stream of
derivative products can be efficiently developed and produced” (Meyer and Lehnerd, 1997).
The major issue is to exploit the shared logic and cohesive architecture underlying a product
platform. McGrath (1995) defines product platform as a collection of the common elements,
especially the underlying core technology, implemented across a range of products.
Robertson and Ulrich (1998) define a platform as the collection of assets that are shared by a
set of products. The assets include components, processes, knowledge, as well as people and
relationships.

Baldwin and Clark (2000) define three aspects of a product platform: (1) its modular
architecture, (2) the interfaces, and (3) the standards that provide design rules to which the
modules must conform. To facilitate platform-based product family development, interface
management is reported as a distinct process of defining the physical interfaces between
subsystems (Sundgren, 1999). Zamirowski and Otto (1999) discern three types of product
platforms: modular platforms, scalable platforms, and generational platforms. A modular
platform is used to create variants through configuration of existing modules (Meyer and
Lehnerd, 1997). A scalable platform facilitates the differentiation of variants that possess the
same function with varying capacities. A generational platform leverages product life cycles
for rapid next generation development (Martin and Ishii, 2002). One endeavor towards
product platform development is to design product families in the way of “stretching” or

“scaling” (Rothwell and Gardiner, 1990).
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2.1.3. Product Architecture

The concept of architecture, with respect to product design, is synonymous with the
layout, configuration, or topology of functions and their embodiment (van Wie et al., 2003).
Product architecture can be defined as the way in which the functional elements of a product
are arranged into physical units and the way in which these units interact (Ulrich and
Eppinger, 1995). Fujita and Yoshida (2004) point out one important characteristic to discern
the architecture of a family of products from that of a single product — the simultaneous
handling of multiple products. Erens and Verhulst (1997) consider the functional and
physical architectures for product families and describe them using a package of single
product models. Yu et al. (1999) approach product architectures from a functional
perspective by defining the architecture based on customer demands. Ulrich (1995) discusses
the relationship between product architectures and managerial problems related to product
strategies.

The typology of product architectures suggests that the architecture can be either
integral or modular (Muffatto and Roveda, 2002). Modularity has been well studied from
many perspectives (Fixson, 2002; Bi and Zhang, 2001). Ulrich and Tung (1991) define five
categories of modularity, i.e., component swapping, component sharing, fabricate-to-fit, bus
and sectional modularity. Pine (1993) adds a sixth: mix modularity, which is frequently
encountered in the painting and chemical industries. While most extensions (Kusiak and
Huang, 1996; Du et al.,, 2001) are built upon these basic modularity types, the current
practice mostly refers to the product architecture as physical structures in terms of physical

parts or components (Henderson and Clark, 1990).
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While modularity deals with the mapping from functions to components, integrality
involves standardization and decoupling of the interfaces between components (Ulrich and
Eppinger, 1995). Robertson and Ulrich (1998) observe that increasing modularity with
proper integrity is conducive to the management of tradeoff between distinctiveness and
commonality in product architectures. Sosa et al. (2003) observe the importance of integrality
and modularity in design team interactions and introduce a method of identifying whether a
system is modular or integral based on analysis of component interactions using a design
structure matrix (DSM). Fixson (2002) constructs a DSM to analyze the total number of
functions that components under consideration provide on the other, based on which modular
and integral architectures are identified. Whitney (2003) studies total modularity and
interfaces in the context of design economy. Cutherell (1996) finds that integral architectures
are often driven by product performance or cost, while modular architectures are driven by
variety, product change, engineering standards, and service requirements.

Jiao and Tseng (1999a) assert that a product family architecture involves systematic
planning of modularity and commonality in terms of building blocks and their configuration
structures across the functional, technical and structural views. Zamirowski and Otto (1999)
point out the necessity to develop the product architecture and platform by synchronizing
multiple views such as those from customer needs, functional structures and physical
architectures. The leveraging of modularity and commonality in product family architecture
development is also supported by Siddique et al. (1998). Muffatto and Roveda (2002) study
multiple aspects of product architectures including functions, requirements, technological
solutions, product concepts, product strategies and platforms, as well as production and

assemblies. To address the question of how differences in the product architecture affect
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resource consumption during the design phase, Eppinger et al. (1994) link the task structure

of the design process to the product architecture.
2.2. Product Family Design

Corresponding to the scalable and modular product platforms, there are two types of
approaches to product family design. One common approach is called scalable (namely
parametric) product family design, whereby scaling variables are used to ‘‘stretch’ or
“‘shrink’” the product platform in one or more dimensions to satisfy a variety of customer
needs. The other approach is referred to as configurational product family design, which aims
to develop a modular product platform, from which product family members are derived by
adding, substituting, and/or removing one or more functional modules (Du et al., 2001).
2.2.1. Scalable Product Family Design

Scalable product family design involves two basic tasks (Simpson, 2004). The first one
is platform selection — to determine which design parameters take common values. While
many existing methods assume that the platform architecture is known a priori (Fujita et al.,
1999), some approaches determine platform variables along with scalable variables during
optimization (Akundi et al., 2005; Dai and Scott, 2004). The subsequent task is to determine
the optimal values of common and distinctive variables by satisfying performance and
economic requirements. Most approaches consider only a single product platform, where
each platform variable is shared across the entire product family. This strategy excels in
computational simplicity, but may lead to a situation where some low-end products may be
over-designed and certain high-end products may be under-designed (Dai and Scott, 2004).
The other strategy is to consider multiple product platforms in product family design, such

that design variables can be shared by any subset of product variants within the product
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family (de Weck et al., 2003). Multiple-platform design enhances exploration of the solution
space, whereas sacrificing the computational efficiency (Seepersad et al., 2002).
2.2.2. Configurational Product Family Design

The configurational approach to product family design is also frequently called module-
based product family design (Simpson, 2004). It is based on the development of modular
product architectures. As defined by Ulrich and Tung (1991), a modular product architecture
involves one-to-one mappings from functional elements in the function structure to the
physical components of a product, where decoupled interfaces between components can be
specified. Ulrich (1995) points out that the modular product architecture allows each
functional element of the product to be changed independently by changing only the
corresponding component. This is advantageous to produce custom-built products from
standard models. It also makes standardization possible, which is essential to achieve the
economy of scale; therefore, using modular product architectures, variety can be created by
configuring existing building blocks. Salient issues regarding configurational product family
design include module identification, interface standardization, and architecture embodiment
as discussed next.

Erlandsson et al. (1992) develop a method with three major steps to help identify
product modules. In their method, the right product specification is attained by adopting
quality function deployment (QFD). Module creation, interface analysis and module
configuration are carried out by creating different modular structures according to the QFD
matrix (i.e., the house of quality). Erixon and Ostgren (1993) extend this method by applying
the QFD matrix to modular analysis and coin it as modular function deployment (MFD) with

focus on the evaluation of module integration. Yu et al. (2003) apply the DSM as a tool to

16



Chapter 2: Literature Review

identify highly interactive groups of product elements and to cluster them into modules.
Holttd and Salonen (2003) compare three modularization methods using commercial
products. They reveal that the MFD method is the least repeatable, whereas the computerized
DSM method is the most repeatable, and the heuristic approach falls in between. Malmstrom
and Malmgqvist (1998) integrate the DSM and MFD methods to tackle both technical and
economical aspects in the early stages of product architecture development. Stone et al.
(2000) formulate a set of heuristics for grouping functions to form a module. Holttd et al.
(2003) develop a five-step algorithm for grouping and creating a dendrogram for finding
common modules across products for platforming a product family. Salhieh and Kamrani
(1999) employ a clustering technique for identifying design modules. Otto et al. (2000)
propose a framework for architecting a family of products that share interchangeable
modules. They define a modularity matrix for one family of products from a manufacturer,
allowing commonalties to be easily identified. Gershenson et al. (2003) provide an extensive
comparison of several DSM-based methods for identifying modular architectures.
2.2.3. Metrics for Product Family Design

Product family design essentially entails a type of multi-objective optimization
(Simpson et al., 2005). In many cases, such multiple criteria decision-making, given a
number of alternatives at different levels of abstraction of the product architecture, requires
tradeoffs between three criteria: cost, revenue and performance. In addition, it needs to weigh
the revenue from product cannibalization by commonality with respect to the cost savings
from commonality (Robertson and Ulrich, 1998).

(1) Modularity. Prasad (1998) studies the product and process complexity associated

with design for variety, highlighting the importance of determining the right amount of
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decomposition. To quantify such a granularity paradox, a measure of communication effort is
introduced in order to achieve an optimal balance. Gershenson et al. (2003) develop a
measure of relative modularity for modular product design. Mikkola and Gassmann (2003)
assume that the degree of modularity in a given product architecture is constrained by the
composition of its components. Allen and Carlson-Skalak (1998) introduce some measures of
modularity for conceptual design. Ulrich (1995) simply defines the function-to-component
ratio for each product as a modularity metric. Holttd and Salonen (2003) propose a measure
of modularity based on singular value decomposition of the binary DSM. Guo and
Gershenson (2004) develop a metric to measure product modularity using a component-to-
component connectivity matrix. Siddique and Rosen (2001) account for both functional and
form issues in their partitioning method that involves combinatorics. Stone et al. (2000)
develop product family and customer needs ratings for modules.

(2) Commonality. Kota et al. (2000) develop a measure that captures the level of
commonality in a product family. With application to automotive underbodies, Siddique et al.
(1998) propose to measure component commonality and connection commonality in order to
capture characteristics of platform commonality and product variety. Maupin and Stauffer
(2000) take into account simplicity, direct costs, and delayed differentiation for commonality
metrics. Emphasizing on component sharing, Ramdas et al. (2003) present a methodology for
determining which version of a set of related components should be offered to optimally
support a defined finished product portfolio. In the work of Fellini et al. (2002), an optimal
design problem is formulated as the maximization of commonality by choosing the product
components to be shared without exceeding a user-specified performance loss tolerance and

subject to different levels of performance losses. McAdams and Wood (2002) develop a
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quantitative metric for design-by-analogy based on the functional similarity of products.
Thevenot and Simpson (2005) compare various commonality indices for assessing product
families, including the Degree of Commonality Index (Collier, 1981), Total Constant
Commonality Index (Wacker and Trelevan, 1986), Product Line Commonality Index (Kota
et al., 2000), Percent Commonality Index (Siddique et al., 1998), Commonality Index
(Martin and Ishii, 1997), and Component Part Commonality Index (Jiao and Tseng, 2000).

(3) Variety/Distinctiveness. Martin and Ishii (1997) quantify the costs of providing
variety in order to quantitatively guide designers in developing products that incur minimum
variety costs. Through commonality analysis, van Wie et al. (2006) study how differences
between platform elements and differentiating elements are evidenced in the product layout
or configuration. Simpson and D'Souza (2004) introduce a genetic algorithm-based approach
to product family design that balances the commonality of the products in the family with the
individual performance (i.e., distinctiveness) of each product in the family. Dobrescu and
Reich (2003) propose a variety index and a standardization index that resemble the
commonality indices of Martin and Ishii (2002).

(4) Cost. Kim and Chhajed (2001) develop an economic model that considers a market
consisting of a high segment and a low segment. They determine that large commonality
decreases production costs but makes the products more indistinguishable from one another,
which makes the product more desirable for the low segment but less desirable for the high
segment. Fisher et al. (1999) present an analytic model of component sharing based on
empirical testing of varying practice of component sharing for automotive braking systems.
Fujita and Yoshida (2004) develop a monotonic cost model for the assessment of benefits of

commonality. Gonzalez-Zugasti et al. (2000) propose a methodology to design product
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platforms and variants with consideration of technical performance requirements and product
family costs. Fixson (2005) outlines a roadmap for product architecture costing from a
product life cycle perspective. Park and Simpson (2005) examine the effects of commonality
decisions on individual costs based on activity-based costing. To link modularity and the cost,
Fixson (2002) develops a multi-dimensional product architecture description method that
considers the level of function-component allocation, interface intensity, interface
reversibility, and interface standardization. Siddique and Repphun (2001) assess the cost
implications of product architectural decisions when product architectures allow sharing of
parts, modules, or components of a product across product families. The savings from the
reuse of designs are shown to affect both development cost and time (Siddique, 2001).

(5) Profit/Valuation. Numerous methods dealing with optimal design use various
objectives originated from the profit or expected revenue (Fujita and Yoshida, 2004; Nelson
et al., 2001). Many studies have revealed that such a profit measure based on the dollar value
is unrealistic in most cases (Tarasewich and Nair, 2001). As such, researchers have been
developing various instruments to improve the measurement of profit performance.
Balakrishnan and Jacob (1996) introduce share of choices as the objective. Michalek et al.
(2005) formulate the evaluation problem as profit maximization by minimizing the technical
performance deviation. De Weck et al. (2003) propose to optimize product platform design
by maximizing overall product family profitability and reducing the development time and
cost. Typical approaches to estimate costs and values coincide with the traditional principle
of capital budgeting that is based on discounted cash flows (DCF) analysis. When dealing
with numerous options associated with product family design, the DCF approach tends to

underestimate the upside potentials to a design project from management flexibility (Kogut
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and Kulatilaka, 1994). Real options have been applied to value specific aspects of product
development, such as design modularity (Baldwin and Clark, 2000). Otto et al. (2003)
explore the real options concept for determining proper levels of independent product
architectural attributes.

(6) Platform-related Metrics. Meyer and Lehnerd (1997) develop two platform related
measures, named platform efficiency and platform effectiveness, for evaluating the
performance of product families. Focusing on the generational aspect of product platforms,
Martin and Ishii (2002) develop two indices, called Generational Variety Index and Coupling
Index, to measure a product’s architecture. De Weck et al. (2003) adopt a market segment
model using the sales volume, the price and the competing product alternatives for product
family and platform portfolio optimization. Jiao and Tseng (2004) develop a design
customizability index and a process customizability index for evaluating the cost
effectiveness of a design to be customized in order to meet individual customer needs. Zha et
al. (2004) introduce two metrics, market efficiency and investment efficiency, for the
evaluation and selection of product design for mass customization.

2.2.4. Product Family Modeling

Baldwin and Clark (2000) develop a discipline-independent data model to provide
constructs for modeling products with optional contents. Felfernig et al. (2001) apply the
unified modeling language to the modeling of configuration knowledge bases for mass
customizable products. The initiative of Product Family Classification Tree emphasizes the
classification of end-products and/or modules from a functional viewpoint (Bei and
MacCallum, 1995). To facilitate representations from multiple perspectives, Generic Product

Modeling is advocated to represent product families from both commercial and assembly
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views (Wortmann et al., 1997). Siddique and Rosen (1999) develop a graph grammar
approach to product platform design. Set-based modeling is an attempt to formalize the
representation of product platform design and manufacturing processes (Finch, 1999).
Minnistd (2000) studies the conceptual modeling of product families, with particular
emphasis on the problems related to the evolution of product family descriptions and the
product individuals created according to them.

Van Wie et al. (2003) consider product architecture representation as organizing a
deluge of information in terms of both function and form. To model product family
configuration, Zhang et al. (2005) propose to organize and manage product knowledge
through a knowledge component that includes configuration rules and constraints. Bohm and
Stone (2004) investigate the representation of functionality for supporting reuse. Sharman
and Yassine (2004) study some forms of abstraction for describing product architectures,
including DSM, molecular diagrams, and visibility-dependency signature diagrams. Costa
and Young (2001) introduce a product range model (i.e., product families) for information
modeling of variant and adaptive design. Tiihonen et al. (1998) develop a method of
managing and modeling a product family as a configurable product, which is based on the
conceptualization of components, attributes, resources, ports, contexts, functions and
constraints. Jiao et al. (1998) observe different data types underlying product families that
involve product-to-product, product-to-family and family-to-family relationships. To
characterize variety and its derivation, Jiao et al. (2000) propose a generic variety structure

consisting of common product structures, variety parameters, and configuration constraints.
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2.2.5. Product Family Design Support Systems

Kusiak and Huang (1996) and O'Grady and Liang (1998) put forth design with modules
that centers around module selection. Liang and O’Grady (2000) focus on a particular design
environment where modules may be available from one or more geographically dispersed
sources, and where data concerning the modules may be in a multitude of databases scattered
across the globe. Huang and Liang (2001) develop a formalism for design with modules,
such that customer requirements are met using modules from suppliers geographically
separated through diverse computer platforms.

Online product configurators have recently received much attention to enable customers
to interactively specify and adapt a product according to their individual preferences (Sabin
and Weigel, 1998). Bramham and MacCarthy (2003) examine the empirical evidence of
available configurators in terms of matching configurator attributes against business
strategies. Hvam (2004) reviews the design and implementation of product configuration
systems from the viewpoint of industrial applications. Simpson et al. (2003) investigate a
framework for web-based platform customization. Common configuration systems for
product families necessitate product-specific knowledge and often overstrain customers
(Blecker et al., 2004). Advisory systems are thus advocated to guide customers according to
their profile and requirements through a personalized configuration process ending with the
generation of product variants that better fulfill the real customer needs (Blecker et al., 2004).
Ardissono et al. (2003) report on an EU-funded project, CAWICOMS Workbench, which
aims at next generation Web-based applications that support distributed configuration of

products and services within a supply chain.
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2.3. Manufacturing and Production for Product Families

While seeking technical solutions is the major concern in design, it is at the production
stage that product costs are actually committed, and product quality and lead times are
determined per se. For a given design, the actual cost depends on how production is planned
and to what extent the economy of scale can be realized within the existing manufacturing
capabilities. This implies that the claimed rationale of product family design can only be
fulfilled at the production stage (Jiao and Tseng, 2004).

The traditional approach to deal with a large number of variants associated with product
families is to treat each product as an individual bill-of-materials (BOM), which however
leads to a data explosion problem (Olsen and S@tre, 1996). To overcome the limitations of
traditional BOMs in handling a large number of variants, the generic BOM (GBOM) concept
is developed by van Veen (1992). The GBOM defines a generic product as a set of variants
that can be identified through specifying alternative values for a set of parameters (Hegge
and Wortmann, 1991). The generic bill-of-materials-and-operations is put forth by Jiao et al.
(2000) by unifying BOMs and routings to accommodate large numbers of product and
process variants. For multi-product and multi-process production systems, Aydiny and Gugor
(2005) develop a relational database approach to generating BOMs and executing MRP.

Meyer and Lehnerd (1997) expand the common definition of a platform to include
possible commonality in processes and production. In particular from the production and
assembly perspectives, a platform implies a focus on commonality of production tools,
machines and assembly lines (Sanchez, 1994). As a consequence, some companies in the

automotive industry have considered it more interesting to define a platform on a
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manufacturing-assembly basis rather than on a product development basis, so as to better
exploit commonality among production process (Wilhelm, 1997).

A benefit of designing product families comes from a reduction of components in
inventory and component handling, reduction of component types and manufacturing
processes, and increased production volumes (Fisher et al., 1999). However, sharing
components in a product family may lead to a lack of distinctiveness, and shared components
in one product often exceed the requirements of other products, which causes additional
production costs (Krishnan and Gupta, 2001). Nobelius and Sundgren (2002) point out that
the potential managerial difficulties associated with the part sharing process involve
organizational, strategic, technology and cost related issues. Tsubone et al. (1994) study the
relationship between component part commonality and manufacturing flexibility. Siddique et
al. (1998) and Wilhelm (1997) demonstrate that the level in the product hierarchy at which

commonality is pursued varies with respect to the deployment of production processes.
2.4. Customer Integration for Product Families

The driving force behind product family design and development is the enterprises’
positioning of customers at the center of value creation and involving customers into the
product fulfillment process. On the technical side, designers have always assumed that
customers’ satisfaction with the designed product is sufficiently high as long as the product
meets the prescribed technical specifications; however, what customers appreciate is not the
enhancement of the solution capability but the functionality of the product. This means that
the traditional dimensions of customer satisfaction may deserve scrutiny, for example,
identifying those product characteristics that cause different degrees of satisfaction among

customers; understanding the interrelation between the buying process and product
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satisfaction; determining the optimal amount of customization and customer integration; and
justifying an appropriate number of choices from the customers’ perspective.

Equally important are customers’ decision-making processes. In the end, providing
decision support to customers is important. This coincides with consumer behavior in
business systems based on customer involvement in the product customization process
(Huffman and Kahn, 1998). While most platform-based customization approaches
implemented in practice are based on offering a huge number of variety and choices, the
perception of choice and the joy or burden of configuration experienced by customers are not
well understood. Many questions are pending. For example, what are the incentives for
integrating customers into value creation? What factors drive customers to interact with a
configurator? How many variants should be explored and changed before making a final
decision? Are there any specific patterns that customers follow when interacting with a
platform-based product development system? And how can various players (customers,
designers, suppliers, production engineers, etc.) communicate well within the same platform
of product family design? Toward this end, product family development needs to be
incorporated with more marketing and engineering decisions (Michalek et al., 2005), as well
as customer perceptions (Blecker et al., 2004).

2.5. Economic Justification

Product family design and development is associated with new cost and profit structures
that can be coined as “economies of scale and scope”. Current research on the economic and
performance evaluation of product families is dominated by empirical studies, ad hoc
samples, or broad approaches based on cost accounting. Traditional cost accounting by

allocating fixed costs and variable costs across multiple products may produce distorted cost-
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carrying figures due to possible sunk costs associated with investment into product and
process platforms (Jiao and Zhang, 2005). Safizadeh et al. (2000) derive results from an
empirical study of 142 manufacturing plants, such that plants that provide a high degree of
customization incur high cost structures; however, when controlling for production processes
the tradeoff disappears. This means once a company has defined its product range along with
an appropriate production process, platform-based customization that falls within the range
offered does not cost any extra.

The economic justification of product families requires the identification of proper
measures and performance indicators to characterize different outcomes of a product
customization system. This task is imperative because the current accounting systems are not
designed for assessing the true economical benefits from the total value chain point of view.
Even if the focus is shifted from cost control to value creation, existing accounting and
control systems are mostly dominated by the practice of product costing. Savings and
additional costs resulting from different degrees of interaction with the customers are not
covered by most industrial accounting systems. Activity-based costing and the balanced
score card approaches may provide initial solutions; however, approved ratios for calculating
the value of customer relationships are still missing; nor are parameters for evaluating the
extent of the market research information gained by aggregated customer knowledge.
Moreover, the value contribution should be evaluated from the customers’ perspective. Only
if the increment in the customer-perceived value or utility suffices enough can product

customization become a mass phenomenon.
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2.6. Customer Needs Elicitation and Requirement Analysis

Approaches to defining product specifications by capturing, analyzing, understanding,
and projecting customer requirements, sometimes called the Voice of the Customer (VoC),
have received a significant amount of interest in recent years (McKay et al., 2001). A method
used for transforming the VoC to product specifications has been developed by Shoji et al.
(1993), in which semantic methods, such as the Kawakita Jiro (KJ) method (i.e., affinity
diagram) and multi-pickup method (MPM), are applied as the basis for discovering
underlying facts from affective language. Kano et al. (1984) propose a model to categorize
different types of customer requirements for product definition.

In this regard, market researchers have emphasized customer profiling by applying
regression analysis to compare customer characteristics and to determine their overall
ranking in contribution towards profitability (Jenkins, 1995). Traditionally, market analysis
techniques are adopted for investigating customers’ responses to design options. For example,
conjoint analysis is widely used to measure preferences for different product profiles and to
build market simulation models (Green and DeSarbo, 1978). Louviere et al. (1990) use
discrete choice experiments to predict customer choices pertaining to design options. Turksen
and Willson (1993) employ fuzzy systems to interpret the linguistic meaning regarding
customer preferences as an alternative to conjoint analysis. Others have taken a qualitative
approach and used focus groups to provide a reality check on the usefulness of a new product
design (LaChance-Porter, 1993). Similar techniques include one-on-one interviews and
similarity-dissimilarity attribute rankings (Griffin and Hauser, 1992). While these types of
methods are helpful for discovering the VoC, it is still difficult to obtain design requirement

information because marketing folks do not know what engineers need to know. It is difficult
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to apply the VoC alone to achieve a synergy of marketing and engineering concerns in
developing product specifications (Veryzer, 1993).

As a structured questioning methodology built upon Kelly’s repertory grid technique
(Kelly, 1955), the laddering technique has been widely used to transform customers’
psychological factors into useful inputs for design applications (Rugg and McGeorge, 1995).
Many methods and tools in the field of knowledge acquisition, such as observation, self-
report (Cortazzi and Roote, 1975), interview, protocol, ethnographic methods (Mead, 1928),
and sorting techniques (Shaw, 1980), have some applicability in requirement elicitation for
product development (Shaw and Gaines, 1996). Maiden and Rugg (1996) propose a
framework called acquisition of requirements (ACRE) to assist practitioners in understanding
the strengths and weaknesses of each of the methods for requirement elicitation. Chen and
his co-authors propose an integrated approach to the elicitation of customer requirements by
combining picture sorts, fuzzy evaluation, laddering, and neural network techniques (Chen
and Occena, 1995; Chen et al., 2000, 2002; Yan et al., 2001, 2002).

From an engineering design perspective, Hauge and Stauffer (1993) develop a
taxonomy of product requirements to assist in traditional qualitative market research. To
elicit knowledge from customers (ELK), the taxonomy of customer requirements is deployed
as an initial concept graph structure in the methodology for question probe — a method used
in the development of expert systems. While ELK aims at making customer information
more useful to the designer, the taxonomy developed for ELK is too general to be a domain
independent framework (Tseng and Jiao, 1998). McAdams et al. (1999) propose a matrix
approach to the identification of relationships between product functions and customer needs.

A key component of Quality Function Deployment (QFD; Clausing, 1994) is the customer

29



Chapter 2: Literature Review

requirements frame to aid the designer’s view in defining product specifications. Researchers
at IBM have applied structured brainstorming techniques to build customer requirements into
the QFD process (Byrne and Barlow, 1993). While QFD excels in converting customer
information to design requirements, it is limited as a means of actually discovering the VoC
(Hauge and Stauffer, 1993). Olewnik and Lewis (2005) posit that ‘the use of QFD as a
quantitative decision support tool in engineering design is potentially flawed’. To empower
QFD with market aspects, Fung and Popplewell (1995) propose to pre-process the VoC prior
to its being entered as customer attributes into the House of Quality (HoQ). In this process,
the VoC is categorized using an affinity diagram (KJ method). Fung et al. (1998) further
adopt the Analytic Hierarchy Process (AHP; Saaty, 1980) to analyze and prioritize customer
requirements. Fung et al. (2002) extend their QFD-based customer requirement analysis
method to a non-linear fuzzy inference model. Fukuda and Matsuura (1993) also propose to
prioritize the customer’s requirements by AHP for concurrent design. Although such research
work has been developed to elicit customer needs, the work is not so effective, and leads to
misread customers’ actions and thoughts (Zaltman, 2003).

In summary, most approaches assume product development starts from a clean sheet of
paper; however, in practice, most new products evolve from existing products, i.e., so-called
variant design (Prebil et al., 1995). Historical data, product evolution paths, and feedback
from customers on current products are often considered only implicitly, if not ignored. As a
result, product design seldom has the opportunity to take advantage of the wealth of customer
requirement information accumulated in existing products. In addition, these methods do not
explicitly differentiate the customer preference from the designer’s preference of requirement

information (Tarasewich and Nair, 2001), nor do any approach exist to handle the mapping
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from the customer domain to the functional domain effectively. Furthermore, new product
development for mass customization is facing the challenge of maintaining the continuity of
manufacturing and service operations. Therefore, product definition should effectively
preserve the strength of product families to obtain significant cost savings in tooling, learning
curves, inventory, maintenance, and so on. This demands a structured approach to product
definition and to the capturing of the gestalt of requirement information from previous

designs as well as existing product and process platforms.
2.7. Optimal Product Design

While traditional design emphasizes more on the designers’ perspective (Tarasewich
and Nair, 2001), measuring customer preferences in terms of expected utilities is the primary
concern of optimal product design (Krishnan and Ulrich, 2001) or decision-based design
(Hazelrigg, 1998). In typical preference-based product design, conjoint analysis (Green and
Krieger, 1985) has proven to be an effective means to estimate individual level part-worth
utilities associated with individual product attributes. In order to simulate the potential
market shares of proposed product concepts, scaled preference evaluations need to be
collected from respondents with regard to a subset of multi-attribute product profiles (stimuli)
constructed according to a fractional factorial design. From these preference data,
idiosyncratic part-worth preference functions are then estimated for each respondent using
regression analysis. Attribute level part-worth utilities can also be computed from
respondents’ simulated choice data, which is called a choice-based conjoint analysis and
hence establishes a direct connection between preference and choice (Kuhfeld, 2004). The

conjoint-based searching for optimal product designs always results in combinatorial
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optimization problems because typically discrete attributes are used in conjoint analysis
(Kaul and Rao, 1995; Kohli and Sukumar, 1990; Nair et al., 1995).

Multi-attribute utility analysis is widely used to predict composite utilities for any
feasible product profile constructed from the underlying attribute level part-worth utilities
(Keeney and Raiffa, 1976). It assumes that the utilities of multiple attributes are mutually
independent (Wassenaar and Chen, 2001). This may not hold true for a product portfolio
where the customer-perceived utility of a particular attribute may change due to the
availability of other offerings (for example, comparing with counterpart attributes or levels).

In addition, combining different individual attribute utility functions into a single multi-
attribute utility function inevitably involves multi-attribute weighting and normalization. The
weights are determined based upon the rank ordering of alternatives; however, a selected
alternative may result from the underlying weighting method rather than the quality of the
alternative itself (Saari, 2000). Arrow and Raynaud (1986) also point out that group voting
always leads to intransitive outcomes, in which the preference of neither a group of decision
makers nor a set of criteria can be captured by multi-attribute ranking.

Normalization is often employed to facilitate a comparison of alternatives when
attributes involve different dimensions or metrics. It is difficult to judge rigorously a
normalizing range, within which each normalized value is determined based on the relative
position of the actual attribute level (Wassenaar and Chen, 2001). The weighted sum method
is often used to model the relative importance among multiple attributes by assigning
different weights to the attributes. The assignment of weights is subjective in nature and
often becomes biased when an attribute is correlated to a product’s success (Arrow and

Raynaud, 1986). Besides, the weighted sum assumes a linear attribute tradeoff, which is only
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true for limited variation of attribute levels (Wassenaar and Chen, 2001), but not for the case
of a product portfolio, where the number of attributes and their levels may be very large.
Hence, Wassenaar and Chen (2001) posit the necessity to use a single criterion approach to
decision-based design, which should reflect many different issues regarding customers,

design and manufacturing.
2.8. Product Positioning

Product positioning involves decisions about abstract perceptual attributes and
customer heterogeneity (Kaul and Rao, 1995). To optimize a new product’s positioning,
Shocker and Srinivasan (1979) propose a framework using joint space models of customer
perceptions and preferences. Joint space analysis entails the mapping between locations of
existing products and ideal points for each individual or market segment. The basic principle
lies in the multidimensional scaling of customer perceptions via factor analysis, discriminant
analysis or similarity scaling (Green and Krieger, 1989). Using a joint mapping of ideal
points and product locations, a manager can model customers’ choices of existing products,
predict their responses to new products, and hence identify optimal new product concepts
(Sudharshan et al., 1987).

A number of multidimensional scaling-based algorithms have been developed,
dependent upon the number of ideal points (individuals or segments) in the joint space (Kaul
and Rao, 1995). Consequently, as the number of ideal points rises, so does the complexity of
the optimization problem. Genetic algorithms have been proven to outperform most existing
optimal positioning algorithms in dealing with the choice set size heterogeneity between the
customer’s decision setting and variations in the size of the individuals’ choice sets

(Balakrishnan and Jacob, 1996).
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On the other hand, many algorithms have been formulated with the attempt to improve
the realism of the customer choice setting. Deterministic first choice models assume
customers choose the offered product that is closest to the ideal point. Probabilistic choice
settings postulate the customer’s propensity to buy a particular product based on a weighted
distance between the ideal point and the offered product. Discrete choice analysis is widely
used to identify patterns in choices that customers make among competing products (Ben-
Akiva and Lerman, 1985). It allows for the examination of the interaction between market
shares and product features, price, service, and promotion with respect to different classes of
customers. Sudharshan et al. (1987) find that a probabilistic choice model tends to provide

better solutions and larger share projections for new product positioning.
2.9. Product Line Design

Most of the literature on product line design tackles the optimal selection of products by
maximizing the surplus — the margin between the customer-perceived utility and the price of
the product (Kaul and Rao, 1995; Kohli and Sukumar, 1990). Other objectives widely used in
selecting products among a large set of potential products include maximization of profit
(Monroe et al., 1976), net present value (Li and Azarm, 2002), a seller’s welfare (McBride
and Zufryden, 1988), market share (Kohli and Krishnamurti, 1987), and share of choices
(Balakrishnan and Jacob, 1996) within a target market. Pullman et al. (2002) combine QFD
and conjoint analysis to compare the most preferred features with those profit maximizing
features so as to develop designs that optimize product line sales or profit. Kota et al. (2000)
propose a product line commonality measure to capture the level of component commonality
in a product family. The key issue is to minimize non-value added variations across models

within a product family without limiting customer choices.
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While numerous papers in the marketing literature deal with the selection problem using
various objectives originated from the profit, few of them explicitly model the costs of
manufacturing and engineering design (Yano and Dobson, 1998). Dobson and Kalish (1988,
1993) extend the model of Green and Krieger (1985), which does not incorporate prices or
costs, to include per-product fixed costs. Recent product line design models allow for more
complex cost structures. Raman and Chhajed (1995) and Kim and Chhajed (2001) observe
that, in addition to choosing which products to produce, one must also choose the process by
which these products are manufactured. Ramdas and Sawhney (2001) consider situations
where the fixed cost of a component is shared by two products. Dobson and Yano (1994)
allow for complex interactions by admitting per-product fixed costs, resources that can be
shared by multiple products, as well as technology choices for each. Morgan et al. (2001)
examine the benefits of integrating marketing implications of product mix with more detailed
manufacturing cost implications, which sheds light on the impact of alternative
manufacturing environment characteristics on the composition of the optimal product line.
Chidambaram and Agogino (1999) formulate portfolio analysis as an optimization problem
consistent with the manufacturer's goal of incurring minimal costs in the redesign of existing
standard components, while meeting customer specifications and satisfying design
constraints.

Another dimension in product line design research is price. Robinson (1988) suggests
that the most likely competitive reaction to a new product in the short term is a change in
price. Choi and DeSarbo (1994) apply game theory to model competing firms' reactions in
price and employ a conjoint simulator to evaluate product concepts against competing brands.

Dobson and Kalish (1988, 1993) discuss the tradeoffs involved in price setting and choice of
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the number of products. Guiltinan (1993) emphasizes strategic thinking about the length of a
product line by identifying those situations in which variety is an important competitive
variable, so as to examine the relationship between variety and cost, to understand the
underlying determinants of cannibalization and complementarity, as well as to assess the
consequences of not responding to competitive innovations.

Furthermore, product line design basically involves two issues (Li and Azarm, 2002): (1)
generation of a set of feasible product alternatives, and (2) subsequent selection of promising
products from this reference set to construct a product line. Along this line, existing
approaches to product line design can be classified into two categories (Steiner and Hruschka,
2002). One-step approaches aim at constructing product lines directly from part-worth
preference and cost/return functions. On the other hand, two-step approaches first reduce the
total set of feasible product profiles to a smaller set, and then select promising products from
this smaller set to constitute a product line. Most of the literature follows the two-step
approach and emphasizes on the maximization of profit contributions in the second step
(McBride and Zufryden, 1988; Dobson and Kalish, 1993; Chen and Hausman, 2000). The
determination of a product line from a reference set of products is thereby limited to partial
models due to the underlying assumption that the reference set is given a priori. Following
the two-step approach, Green and Krieger (1985; 1989) introduce several heuristic
procedures with consideration of how to generate a reference set appropriately. On the other
hand, Kohli and Sukumar (1990) and Nair et al. (1995) adopt the one-step approach, in which
product lines are constructed directly from part-worth data rather than by enumerating
potential product designs. In general, the one-step approach is more preferable, as the

intermediate step of enumerating utilities and profits of a huge number of reference set items
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can be eliminated (Steiner and Hruschka, 2002). Only when the reference set contains a small
number of product profiles can the two-step approach work well. As a result, few papers in
the marketing literature allow a large number of attributes for describing a product (Yano and

Dobson, 1998).
2.10. Summary

Substantial progress has been achieved in the areas of product family design and
platform-based product development. Future research lies in taking a holistic view to find
system-wide solutions. More specifically, product family design needs to incorporate more
front-end issues such as explicit customer modeling and integration, product demand and
market segmentation, along with the economic evaluation of product families.

While the field of product families has matured rapidly over the last decade, there are
still a number of relatively unexplored topics that offer numerous opportunities for scholarly
inquiry. As discussed in this review, the unanswered questions may be examined through a
wide variety of approaches, both theoretically and methodologically. It highlights the
motivation to carry out an in-depth study on product portfolio planning, as discussed in the

following chapters.
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CHAPTER 3
FUNDAMENTALS OF PRODUCT PORTFOLIO PLANNING

This chapter develops a systematic framework for product portfolio planning. The
fundamental issues are identified. The technical challenges and key research issues of
product portfolio planning are analyzed, and the corresponding solution strategies are

proposed.
3.1. Portfolio Strategy

Nowadays, most manufacturing is characterized as mass customization — to satisfy individual
customer needs by introducing product proliferation while taking the advantage of mass
production efficiency (Pine, 1993). To compete in the marketplace, manufacturers have been
seeking for expansion of their product lines and differentiation of their product offerings with
the intuitively-appealing belief that large product variety may stimulate sales and thus
conduce to revenue (Ho and Tang, 1998). Initially, variety does improve sales as the
offerings become more attractive, but as the variety keeps increasing, the law of diminishing
returns suggests that the benefits do not keep pace (Child et al., 1991). The consequence of
variety explosion manifests itself through several ramifications, including increasing costs
due to an exponential growth of complexity, inhibiting benefits from economy of scale,
exacerbating inventory imbalances and warehouse suffocation, and jeopardizing the
efficiency of manufacturing processes and distribution systems, to name but a few

(Wortmann et al., 1997). Facing such a variety dilemma, a company must optimize its
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external variety with respect to the internal complexity resulting from product differentiation
(Tseng and Jiao, 1996).

On the other hand, the practice of making a wide variety of products available and
letting customers vote on the shelf seems not only to be wasteful or unaffordable, but also
tends to constrain customers’ ultimate satisfaction, leading to so-called mass confusion
(Huffman and Kahn, 1998). Pine et al. (1993) have reported on the common problem of
companies giving customers more choices than they actually want or need. For example,
Toyota found that 20% of its product variety accounted for 80% of its sales, and Nissan
reportedly offered 87 different types of steering wheels (Chandler and Williams, 1993).
Therefore, rather than creating various products in accordance with all anticipating customer
needs, it becomes an important campaign for the manufacturer to offer the “right” product
variety to the target market.

Such decisions as to the optimal amount of product offerings adhere to the general
wisdom as suggested in the Boston Consulting Group's notion of product portfolio strategy
(Henderson, 1970). While representing the spectrum of a company’s product offerings, the
product portfolio must be carefully set up, planned and managed so as to match those
customer needs in the target market (Warren, 1983). The customers must be involved;
otherwise, it is simply the manufacturer who provides variety for the marketplace (Duray, et
al., 2000). The product portfolio strategy has far-reaching impact on the company’s business
success to achieve financial goals in maximizing return and R&D productivity, to maintain
the competitive edge of the business by increasing sales and market share, to allocate scare
resources properly and efficiently, to forge the link between project selection and business

strategies, to better communicate priorities within the organization both vertically and
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horizontally, and so on (Cooper et al., 2001). Documented common examples of product
portfolios involve film (Jaime, 1998), electronics assembly (Mosher, 1999), photocopiers
(Zamirowski, 1999), vehicle options (Roberson, 1999), and commercial aircraft models
(Weir, 2000), among many others.

The general gist of planning a product portfolio is exhibited by such procedures as: (1)
capture and identify customer real needs; (2) develop conjoint data of market shares; (3)
define market segments based on clustering analysis; (4) define portfolio attribute targets
using the centroids of clustered results; (5) generate product alternatives in a portfolio by
permuting all portfolio attribute levels; and then (6) determine an optimal combination of
product alternatives (Wedel and Kamakura, 1998). Therefore, product portfolio planning, in
general, involves two main stages: portfolio identification and optimization (Li and Azarm,
2002). The goal of portfolio identification is to capture and understand customer needs
effectively and to transform them into specifications of product offerings (e.g., functional
features) accordingly. The key issue of portfolio optimization is to determine an optimal

setup or configuration of these planned offerings (e.g., the go/no go decision of an offering).
3.2. Product Portfolio Identification

Current researchers and industrial practitioners in this field involve themselves mostly in
the economic justification of product portfolio (e.g., product line design), viz., the latter stage
of product portfolio planning. They usually imply that the specification of offerings in a
product portfolio is given. However, the first issue - how to identify customer needs and
generate product portfolio specifications - has received only limited attention. During this
phase, many factors need to be considered, including any combination of customer needs,

corporate objectives, product ideas and related technological capabilities, etc. Usually,
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product offerings are represented as a list of functional features and target values. This
information is often a mix of quantitative values and qualitative descriptions of product
functionality. In most cases, the company may produce a formal document that requires to
undergo routinely many amendments along with scrutiny, or to be signed off by many
individuals (Prasad, 1996). Even though product portfolio identification is of paramount
importance, past research has not addressed it well, nor has actual practice availed to
formulate effective means. This may stem from the complications inherent in the product
portfolio identification process, as discussed next.

3.2.1. Technical Challenges

To leverage the market benefits of customization and the costs of providing variety, it is
reasonable to fulfill mass customization within a company’s capabilities in design and
production. In practice, this is often achieved by developing product and process platforms
(Simpson, 2004; Jiao et al., 2003). A product platform performs as a base product from
which product families can variegate designs to satisfy individual customer requirements
(Meyer and Lehnerd, 1997). Corresponding to a product platform, production processes can
be organized as a process platform in the form of a bill-of-operations (e.g., standard routings),
hence facilitating build - or configure-to-order production for given customer orders (Jiao et
al., 2000). Both product and process platforms originate from and are thus supposed to
conform to a planned product portfolio.

Consistent with the product definition process, product portfolio identification involves
a tedious elaboration process enacted among customers, marketing, and designers, as shown
in Figure 3-1. Tseng and Jiao (1998) point out the difficulties associated with product

definition. Their observations are also supported in the study by Tarasewich and Nair (2001).
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Understand
customer needs

Customer Designer

Negotiate with
engineering

—____

Customer Domain ﬁ Functional Domain

Engineering Concerns
v"Product Technology
v'Process Capability
v'Resources

Customer
Needs

Figure 3-1 Tedious negotiation process inherent in product portfolio identification

First, the customer requirements are normally qualitative and tend to be imprecise and
ambiguous due to their linguistic origins. In most cases, requirements are negotiable and
conflict with one another, and thus tradeoffs are often necessary. Frequently, customers,
marketing staff and designers employ different sets of context to express the requirements.
Differences in semantics and terminology always impair the ability to convey requirement
information effectively from customers to designers due to their different positions (Zaltman,
2003). The differentiation of requirements in terms of CNs and FRs is of practical
significance. An organization should put considerable efforts in capturing the genuine or
“real” needs of the customers (CNs), rather than too much focus on the technological issues
(FRs) during the early stages of product development (Yan et al., 2002).

Second, there rarely exists any definite structure of requirement information. Variables
used to describe requirements are often poorly understood and are usually expressed in

abstract, fuzzy, or conceptual terms, leading to work on the basis of vague assumptions and
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implicit inference. A few researchers have enforced a hierarchical structure or an AND/OR
tree structure for the articulation of customer requirements, for example, the requirement
taxonomy (Hauge and Stauffer, 1993), the customer attribute hierarchy (Yan et al., 2001),
and the FR topology (Tseng and Jiao, 1998). Nevertheless, the non-structured nature of
requirement information itself coincides with those findings in nature language processing
(Shaw and Gaines, 1996).

Third, the interrelationships (i.e., mapping) between CNs and FRs are often not clearly
available in the early stages of design. Customers are often not aware of the underlying
coupling and interrelationships among various requirements with regard to product
performance. It is difficult, if not impossible, to estimate the consequences (in particular, in
terms of economic, scheduling and quality concerns) of specifying different requirements.
Christopher et al. (1980) discern customer needs and product specifications and point out the
mapping problem between them is the key issue in “design for customers”.

Fourth, the specification of requirements results from not only the transformation of
customer requirements from those end-users, but also considerations of many engineering
concerns, involving any internal customer from downstream of the design team along the
product realization process (Du et al., 2003). In practice, product development teams must
keep track of a myriad of requirement information derived from different perspectives on the
product life-cycle, such as product technologies, manufacturability, reliability,
maintainability, and environmental safety, to name but a few (Prudhomme et al., 2003).

Therefore, the process of product portfolio identification can be described as:

A« I'(CNs,Eng.), where A represents a portfolio of product offerings, CNs indicate the

customer needs of end-users, Eng. means engineering considerations associated with CNs,
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and 7" denotes the mapping relationship from CNs and Eng. to a particular product
portfolio, A .
3.2.2. Strategy for Solution

Due to the difficulties inherent in the portfolio identification process, reusing knowledge
from historical data suggests itself as a natural technique to facilitate the handling of
requirement information and tradeoffs among many customer, marketing and engineering
concerns. Tseng and Jiao (1998) propose to identify FR patterns from previous product
designs for addressing a broad spectrum of domain-specific customer requirements and to
organize requirement information during design. In their model, various FRs are grouped
according to the similarity among customers (i.e., market segments). The focus is on the
functional domain. Du et al. (2003) extend the idea to study the patterns of CNs for better
customization and personalization. Chen et al. (2002) apply neural network techniques to
construct a customer attribute hierarchy (CAH) in order to improve customer requirement
elicitation. Both ideas emphasize on the customer domain. While these proposed solutions
emphasize the identification of either CN or FR patterns, the mapping relationship between
CNs and FRs has not been taken into account. We assert that FR patterns should not be
identified in isolation from those patterns of CNs, and vice versa. The patterns of CN-FR
mappings play an important role in bringing engineering concerns into product portfolio
identification as well as in determining CN and FR patterns within a cohesive context.

To this end, this research proposes to apply data mining techniques to improve the
product portfolio identification process. Data mining has been well recognized for decision
support by efficient knowledge discovery of previously unknown and potentially useful

patterns of information from past data (Chen et al., 1996). As one of the important
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applications of data mining, association rule mining lends itself to the discovery of
knowledge associated with mappings from CNs to FRs. Based on association rule mining,
this research develops an inference system for effective product portfolio identification

presented in Chapter 4 in detail.
3.3. Product Portfolio Optimization

Product portfolio optimization has been traditionally dealt with in the management and
marketing fields with the focus on portfolio optimization based on customer preferences. The
objective is to maximize profit, share of choices, or sales (Urban and Hauser, 1993).
Consequently, measuring customer preferences among multi-attribute alternatives has been a
primary concern in marketing research. Among many methods developed, conjoint analysis
has turned out to be one of the most popular preference-based techniques for identifying and
evaluating new product concepts (Green and Krieger, 1985; 1996). A number of conjoint-
based models have been developed with particular interests in mathematical programming
techniques for optimal product line design (for example, Dobson and Kalish, 1993; Chen and
Hausman, 2000). These models seek to determine optimal product concepts using customers’
idiosyncratic or segment-level part-worth (i.e., customer-perceived value of a particular level
of an attribute) preference functions that are estimated within a conjoint framework (Steiner
and Hruschka, 2002). While many methods excel in determining optimal or near-optimal
product designs from conjoint data, traditional conjoint analysis is limited to considering
input from the customers only, rather than analyzing distinct conjoint data from both
customers and engineering concerns (Tarasewich and Nair, 2001).

In the engineering community, product portfolio decisions have been extensively

studied with a particular focus on the costs and flexibility issues associated with product
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variety and mix (for example, MacDuffie et al., 1996; de Groote, 1994; Lancaster, 1990).
However the effect of product lines on the profit side of the equation has been seldom
considered (Yano and Dobson, 1998). Few industries have developed an effective set of
analyses to manage the profit due to variety and the costs due to complexity simultaneously
in product portfolio decision making (Otto et al., 2003). It is imperative to take into account
the combined effects of multiple product offerings on both profit and engineering costs
(Krishnan and Ulrich, 2001). Therefore, product portfolio optimization should be positioned
at the crossroads of engineering and marketing, where the interaction between the customer
and engineering concerns is the linchpin (Markus and Véncza, 1998). In particular, portfolio
decisions with customer-engineering interaction need to address the tradeoffs between
economies of scope in profit from the customers and markets and diseconomies of scope in
design, production, and distribution at the backend of product fulfillment (Yano and Dobson,
1998). Moreover, achieving a synergy of engineering concerns among products in portfolio
planning is deemed to be increasingly beneficial given those efforts in many industries to
improve the coordination of design and manufacturing activities across product families and
platforms (Morgan et al., 2001; Chidambaram and Agogino, 1999).
3.3.1. Objective Function

Among those customer preference or sellers’ value-focused approaches, the objective
functions widely used for solving the portfolio optimization problem are typically formulated
by measuring the consumer surplus — the amount that customers benefit by being able to
purchase a product for a price that is less than they would be willing to pay. The idea behind
it is that the expected revenue (utility less price) comes from the gain between customer

preferences (utility indicating the dollar value that they would be willing to pay) and the
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actual price they would pay, while the price implies all related costs. A general form is given

as follows (see, for example, Green and Krieger, 1985):

Z(Uij_pj)PijQi > (1)

1
Maximize
i=l j=I

where p; denotes the price customers actually pay for j-th product; U, represents the
dollar value customers in i-th market segment would willing to pay for j-th product; P,

indicates the probability that customers in i -th segment choose j -th product; and Q, denotes

the market size of i -th market segment.

With more focus on engineering concerns, the optimization problem is approached by
measuring the producer surplus — the amount that producers benefit by selling at a market
price that is higher than they would be willing to sell. The principle is to measure the
expected profit (price less cost) based on the margin between the actual price they would
receive and the cost (indicating the dollar value they would be willing to sell for), while the
price implies customer preference. A general form is given as follows (see, for example,

Yano and Dobson, 1998):

Maximize izj:(pj—Cf )PUQ,.—CJ.F , )

i=1 j=I

where p; denotes the price the producer would be willing to sell for j-th product; F, and
Q, bear the same meaning as in Eq.(1); C/Y and Cf indicate the variable cost and allocated

fixed cost per product, respectively.
In practice, either the consumer or producer surplus-based optimization approach
encounters difficulties when dealing with pricing or cost accounting. As a matter of fact,

price competition is one of the most complicated topics in marketing research, where a
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number of approximations have to be assumed such as price equilibrium, monopolistic
producers, oligopoly, market mavenism, etc. (Choi and DeSarbo, 1994). The formidable
hindrance of cost estimation lies in its reliance on detailed knowledge of product design and
process plans (Jiao and Tseng, 1999b). A complete description of product design, however, is
rarely available at the portfolio planning phase, nor exists any well-defined relationship, at
the early design stage, between various attribute levels and their cost figures to be committed
in manufacturing. More difficult is the allocation of variable and fixed costs among products
(Dobson and Kalish, 1993), although a linear-additive fixed cost function is always employed
(Moore et al., 1999).

Considering the customer-engineering interaction in product portfolio optimization, the
aforementioned economic surpluses should be leveraged from both the customer and
engineering perspectives. This research proposes to use a shared surplus to leverage both the
customer and engineering concerns. Then the objective function can be formulated as follows:

1 J U
Maximize E[V]= ZZFUPUQiyf , 3)

i=1 j=1 &

where E [V] denotes the expected value of the shared surplus, V , which is defined as the
utility per cost, modified by the probabilistic choice model, PU., and the market size, Q,, and
C, indicates the cost of offering specific products, i.e., j -th product. The model

development will be clarified in Chapter 5.

The underpinning principle of the shared surplus coincides with the implications of
customer values in marketing — the customer's expectations of product quality in relation to
the actual amount paid for it. It is often expressed as the ratio of the customer-perceived

utility to the costs to produce it (Zeithaml, 1988). In addition, introduction of the shared
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surplus contributes to the maintenance of a consistent measure for the relative comparison of
various alternatives on a common ground, while avoiding the intricate pricing and cost
estimation problems. This is consistent with the findings reported by Choi and DeSarbo
(1994) — “exact cost estimates are not necessary as long as the relative magnitudes are in
order.” Furthermore, the incorporation of a choice model into customer values enables the
modeling of customer decision-making when facing similar product offerings from
competitors or even competing products from the same brand. In practice, customer-
perceived value of a product tends to decrease if there are counterparts, whereas a premium
value can be expected for a unique product owing to limited choices for the customer.

3.3.2. Technical Challenges

In terms of the shared surplus-based optimization model, the main challenges involved
in product portfolio optimization are listed next.

First, in most cases, it is hard to measure customer preference (Zaltman, 2003).
Customers are always forced to make difficult tradeoffs among competing products. For
example, as in real purchase decisions, buyers cannot get all of the best features at the lowest
price. It is difficult to simulate the tradeoffs among performance, price, and various product
specifications. In addition, customer preferences are heterogeneous. For every two customers
whose preferences differ from each other, their appreciations of the same product design may
be distinct. The ways they make tradeoffs are also different.

Second, it is difficult to predict the customer choice patterns especially in the
marketplace given a competitive situation. The choice patterns vary a lot according to the
available product offerings, customer characteristics, etc. In addition, the information that

influences the choice patterns is always unobservable.
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Third, cost estimation is deemed to be very difficult, especially at the portfolio planning
phase. Furthermore, traditional cost accounting by allocating fixed costs and variable costs
across multiple products may produce distorted cost-carrying figures due to possible sunk
costs associated with investment into product and process platforms. It is quite common in
mass customization that design and manufacturing admit resources (and thus the related costs)
to be shared among multiple products in a reconfigurable fashion, as well as per-product
fixed costs (Moore et al., 1999). In fact, Yano and Dobson (1998) have observed a number of
industrial settings, where a wide range of products are produced with very little incremental
costs per se, or very high development costs are shared across broad product families, or
fixed costs and variable costs change dramatically with product variety. They have pointed
out that “the accounting systems, whether traditional or activity-based, do not support the
separation of various cost elements”.

Fourth, the product portfolio is developed directly from the discrete attributes. As the
number of attributes and levels associated with a product increases, so does the number of

possible combinations of products for portfolios. A product with nine attributes of three

levels each may produce 3’ = 19683 possible variants. A product portfolio consisting of

maximal three such products may yield (3°) +(3°) +(3°) =7.62598x10” possible
combinations. Complete enumeration to obtain optimal product selections in portfolio
optimization becomes numerically prohibitive (Tarasewich and Nair, 2001). The conjoint-
based search for an optimal product portfolio always results in a combinatorial optimization

problem because typically discrete attributes are used in conjoint analysis (Kaul and Rao,
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1995). Nearly all of these problems are known to be mathematically intractable or NP-hard
(Nair et al., 1995).
3.3.3. Strategy for Solution

To this end, conjoint analysis, probabilistic choice rules, a pragmatic costing approach,
and genetic algorithms are adopted to deal with the technical challenges involved in product
portfolio optimization.

(1) Conjoint analysis. Conjoint analysis (CA) has turned out to be one of the most
popular preference-based techniques for handling situations in which a decision-maker has to
deal with options that simultaneously vary across two or more attributes (Green et al., 2001).
Rather than forcing consumers to think separately about individual attributes, conjoint
analysis allows the consumers to make judgments about the overall products and then uses
statistical analysis to uncover the value system that must be behind the preference judgments.

(2) Probabilistic choice rules. Probabilistic choice rules closely resemble real-world
customer choices. The key concept of probabilistic choice rule model is the random utility
function (Manski, 1977) where the random utility due to observational deficiencies resulting
from the unobserved attributes is addressed.

(3) Pragmatic costing approach. A pragmatic costing approach is developed by Jiao and
Tseng (1999b). The idea is to allocate costs to those established time standards from well-
practiced work and time studies, thus relieving the tedious tasks for identifying various cost
drivers and cost-related activities. The key is to develop mapping relationships from different
attribute levels to their expected consumptions of standard times within legacy process

capabilities. These part-worth standard time accounting relationships are built into the
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product and process platforms (Jiao et al., 2003). Any product configured from available
attribute levels is justified based on its expected cycle time.

(4) Combinatorial optimization algorithm. Comparing with traditional calculus-based or
approximation optimization techniques, genetic algorithms (GA) have been proven to excel
in solving combinatorial optimization problems (Steiner and Hruschka, 2002). The GA
approach adopts a probabilistic search technique based on the principle of natural selection
by survival of the fittest and merely uses objective function information, and thus is easily
adjustable to different objectives with little algorithmic modification (Holland, 1992). An
important feature of a GA is that it allows product profiles to be constructed directly from
attribute level part-worth data (Kohli and Sukumar, 1990). This is particularly preferable to
reference set enumeration if the number of attributes and their levels is large and most multi-
attribute products represented by different attribute level combinations are economically and
technologically feasible (Nair et al., 1995). Towards this end, this research develops a
heuristic GA approach for product portfolio optimization. The details are presented in

Chapter 5.
3.4. Summary

As a strategy for portfolio decisions, product portfolio planning involves two stages:
portfolio identification and optimization. In this chapter, the implications, technical
challenges, and the corresponding solution strategies involved in these two stages are
discussed in detail. Product portfolio identification aims at transforming the customer needs
into product specifications. The main challenge is the semantic nature of customer needs.
The unstructured, ambiguous customer requirement information makes it difficult to identify

the real customer needs. Association rule mining is identified as the solution strategy to
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discover useful patterns associated with requirement analysis enacted among customers,
marketing folks, and designers. On the other hand, product portfolio optimization aims at
determining an optimal configuration of the identified specifications with the objective of
achieving the best shared surplus performance. Genetic algorithms, conjoint analysis, etc.,
are proposed as the solution strategies to deal with the involved difficulties. The detailed
system framework, modeling, and implementation issues for product portfolio identification

and optimization are presented in Chapters 4 and 5, respectively.
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CHAPTER 4
PRODUCT PORTFOLIO IDENTIFICATION BASED ON
ASSOCIATION RULE MINING

This chapter develops explicit decision support to improve product portfolio identification by
efficient knowledge discovery methodology. An association rule mining method is proposed
to establish the mapping mechanism between customer needs and product specifications. The
product portfolio identification problem is formulated in Section 4.1. The methodology and
system implementation are proposed for efficient product portfolio identification in Sections
4.2 and 4.3. An application to generate a vibration motor portfolio is presented to validate the
feasibility of the proposed methodology and system in Section 4.4. The results of sensitivity
analysis evaluate the system performance in Section 4.5. The chapter is concluded with a
discussion in Section 4.6.

4.1. Problem Formulation

Figure 4-1 illustrates the principle of product portfolio identification based on association
rule mining. In general, customer needs can be described as a set of features or attributes,

A={a,,a.,---,ay }. Each feature, a, |Vie [1,---,M], may take on one out of a finite set of
options, A’ ={a;,a’,+,a;, }. That is, a,=::a; | 3a; € A, where j=1,,n;, denotes the j-th
option of a;. Suppose all customers comprise a set, C ={c;,c.,---,¢s }, where S denotes the

total number of customers. In the customer domain, requirement information of a particular

customer, ¢, € Cldse[l,---,S], can be depicted by a vector of certain options of these

features, for example, a; = [a}},a;},---,a;} ,], where a;; refers to the 3-rd option of feature a,
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as desired by customer c,, a; the 2-nd option of feature a,, and a;, the 1-st option of

feature a, . The population of customers’ needs becomes a set, A" = {E,a;,-.,a; }, which

characterizes the customer domain.
In the functional domain, the functionality of each product is characterized by a set of

FRs, V ={v,,v,,---,vs} . Each FR, v,IVqe[l,---,N], possesses a few possible values,
V, =i, v v, ). That is, v, =: v, 13v, €V, , where r=1n,, denotes the r-th
possible value of v, . Suppose all existing products comprise a set, P =1{p,, p»,---, pr }, where

T refers to the total number of products. The requirement specification of a particular

product, p, e P|3re[l,---,T], can be represented as a vector of certain FR values of those

FRs, for example, v, = [v}’z,v;,---,v;5], where v;, means product p, involves the 2-nd value

of FR v,, v;, the 1-st value of FR v,, and vj; the 5-th value of FR v, . All the instances of

FRs (i.e., FR values) in the functional domain constitute a set, V" = W;,v3, -, vr }

Based on the company’s sales records and product documentation, we can extract

transaction data related to which customer was met with which product. Therefore,

transaction data can be summarized as CN-FR pairs in the form of <a_;>, where s and ¢

stand for customer ID and product ID, respectively. Each pair of such transaction data not
only indicates a specific case of requirement information from both the customer and
manufacturer viewpoints, but also implies a particular instance of the mapping relationship
between the customer and functional domains.

The difference between the customer and functional domains suggests that what a

customer de facto perceives is the CNs, rather than FRs. While providing customer-perceived
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diversity in CNs, the manufacturer must seek for economy of scale in product fulfillment,
which is achieved by FRs. In addition, mass customization is by no means to provide
whatever customers may want, as excessive variety results in a dramatic increase in costs
(Huffman and Kahn, 1998). As postulated in the classic Hotelling-Lancaster model
(Hotelling, 1929), some products close together on the spectrum are better substitutes than
those further apart. This implies that customers are willing to choose from those products
with functional values closest to their desired values if they cannot find any product on the
market that exactly matches their desired values. Consumer behavior study also suggests that
the consumers falling into the same cluster usually hold the same purchase trend, and thus the
customer can be met by providing a product such that the total variations of functionality
from what the customer prefers are the smallest. This implies that individual customers
within a cluster can most probably be satisfied with a product whose functional values
assume the mean values of different expectations by all customers in the same cluster
(namely, the centroid of the cluster).

Therefore, in order to take advantage of commonality in product family design, existing
instances of FRs, V", should be analyzed and clustered according to the similarity among
them (Tseng and Jiao, 1996). This process is called FR clustering. The result is a few FR

clusters, noted as X ={y,,%,,-.X.}, where y,€ X |Vle[l,---,L], meaning the [-th FR

cluster. As a result, all FR instances related to a FR cluster, i.e., g, ~V" cV", can be

grouped and represented by the characteristics of ¥, — the mean value of these FR instances,
1

4 =[x, xs,---,xi] , and the variation range of these FR instances within g, ,

A =[8],6,---,8.]. Therefore, each FR cluster can be described as a tuple: g, = (u,4).
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Subsequently, these identified FR clusters become the functional specification of
product offerings that can be derived from common product platforms and are supposed to be
able to accommodate all of the customer needs (Du et al., 2001). In other words, the
specification of a product portfolio should cover a group of existing and latent CNs by
mapping these needs to the identified FR clusters. At this stage, data mining techniques are

applied to figure out the mapping relationship between CNs and FR clusters, noted as

A" = X , where an association rule, =, indicates an inference from the precedent (A") to

the consequence ( X ). As a result, a product portfolio specification, A, consists of two

elements: FR clusters and mappings from CNs to FR clusters, namely, A = <X ,:>> .
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Preprocessing

Mining Association Rules FR Clustering Data Mining

Association Rules ———
A'SX FR Clusters ~ X
I — s © /X
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Figure 4-1 Product portfolio identification based on association rule mining
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4.2. Methodology

4.2.1. FR Clustering

Clustering analysis refers to a process of grouping a set of physical or abstract objects
into classes of similar objects. A cluster is a collection of objects that are similar to one
another within the same cluster yet dissimilar to the objects in other clusters (Han and
Kamber, 2001). The specification of FRs usually presents in the form of numerical, binary or
nominal variables. To handle both quantitative and qualitative variables, this research adopts
a fuzzy clustering approach to FR clustering. Fuzzy equivalence relations excel in revealing
the similarity between any two objects involving subjectiveness and imprecision
(Zimmermann, 1985). Fuzzy clustering is used to create a hierarchical decomposition of the
given set of objects, in which each object forms a separate group and successively the objects
or groups close to one another are merged at different similarity levels. In this case, historical
data about FR instances contained in the platform can be used to measure the similarity
degree based on the compatibility of FR value ranges. Comparing with the most popular
clustering technique, k-means method, fuzzy clustering partitions FR instances based on the
similarity degree that is derived from the real data of FR values, rather than subjectively pre-
defined clusters. By varying the similarity threshold, different clusters can be derived to

justify the granularity criteria for the product portfolio.
Given a collection of objects (i.e., FR instances), Z =V " =, |Vt = 1,---,T}, a fuzzy set
F in Z is defined as a set of ordered pairs: F ={(z,¢:(z))l ze Z}, where ¢;(z) is called

the membership function of z in F that maps Z to [0,] ] The membership function is also

58



Chapter 4: Product Portfolio Identification based on Association Rule Mining

referred to as the degree of compatibility or degree of truth. A certain set of objects that
belong to the fuzzy set F at least to the degree A is called the A -cut.

Assume Z is a finite, non-empty set called the universe. Let R be a fuzzy relation in
ZxZ ,thatis, R={(x,y)IV(x,y)e Z ><Z)}, then according to (Lin and Lee, 1996):

(1) R is reflexive if @x(z,2)=11Vze Z;

(2) R is symmetric if @x(z,x)= @x(x,2)1Vx,z€ Z; and

(3) R is max-min-transitive if @x (z,x) 2 MAX ey {min{¢R (z,y), Or (y,x)}}, ie., R-RCR.

If R is reflexive and symmetric, R is said to be a fuzzy compatible relation. If R is
reflexive, symmetric, and transitive, R is said to be a fuzzy equivalence relation. Fuzzy
clustering becomes a set of T objects of Z to be clustered, given a fuzzy compatible relation
R defined on Z . Assume R’ denotes the ¢-th power of fuzzy relation R, i.e., R' =R oR,

where o is max-min composition. Then the max-min-transitive closure of R, denoted as R",

T
can be defined as R’ =URi . Therefore, R* is a fuzzy equivalence relation. Assume
i=1

0<A<1I and let R; ={(z,x)1 @, (z,x)> A, Vx,ze Z}. Then we know from (Wang and
McCauley-Bell, 1996) that:
(1) R; is an equivalence relation on Z ; and

(2) Let G;, denote the partition on Z induced according to R;. Then for each Be GR;’
there exists E e GR; ,sothat BC E,aslongas A'< 4.

As a result, A -cut of fuzzy equivalence relation R*, R;, becomes an equivalence
relation. As A increases, a finer partition can be achieved. With a hierarchy of partitions of

objects, k -clusters of objects can be identified. Figure 4-2 illustrates the nested partitions
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corresponding to a fuzzy equivalence relation defined based on the FR instances. Given

different values of the similarity threshold, A, different clustering results can be obtained.
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(c) Different FR clusters resulted from different values of similarity threshold

Figure 4-2 Fuzzy clustering of FR instances

4.2.2. Association Rule Mining
FR clustering can separate data items into clusters of items, but it cannot explain the

clustering results specifically. It needs other methods to figure out the underlying
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mechanisms of CN-FR mapping between the customer and functional domains. Knowledge
is usually represented in the form of rules. Rules are used for deducing the degree of
association among variables, mapping data into predefined classes, identifying a finite set of
categories or clusters to describe the data, etc. Therefore, this research employs association
rules to explain the meaning of each FR cluster as well as the mapping of CNs to each cluster.
Association rule mining is one of the major forms of data mining and is perhaps the most
common form of knowledge discovery in unsupervised learning systems (Chen et al., 1996).
Association rules are produced by finding the interesting associations or correlation
relationships among a large set of data items. The flexibility of association rule induction lies
in its capability to deal with those qualitative data that cannot be treated by traditional
operations research methods.

The basic problem of mining association rules is introduced by Agrawal et al. (1993).
Let [ = {i,,iz,---,im} be a set of literals, called items. Let DB be a database of transactions,
where each transaction, 7, is a set of items such that 7 < I, and each transaction is
associated with an identifier, called TID . Given Z < I, a transaction 7 contains Z if and
only if Z < T. An association rule is an implication of the form X =Y , where X c I,
YcI,and X NY =O. The association rule X = Y holds in DB with confidence ¢ if ¢%
of the transactions in DB that contain X also contain Y . This is taken to be a conditional

probability, P(y/xIVxe X,VyeY ). The association rule X = Y has support s in DB if

s% of the transactions in DB contain X and Y . The support is taken to be a probability,

P(xAnylVxe X ,VyeY).
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While the confidence denotes the strength of implication, the support indicates the
frequencies of the occurring patterns in the rule. Given a minimum confidence threshold,

min _conf , and a minimum support threshold, min _ sup , the problem of mining association

rules becomes a search for all the association rules whose confidence and support are larger
than the respective thresholds. Based on whether or not they can meet the thresholds

(min_conf and min _sup ), association rules are distinguished between strong rules and

weak ones. A set of items is referred to as an itemset. An itemset that contains k items is

called a k-itemset. Given a minimum support threshold, min _ sup , an itemset is called large
if its support is no less than min _ sup . Association rule mining involves a two-step process

(Agrawal et al., 1993):

(1) Discover all large itemsets whose support is larger than the predetermined minimum
support threshold. Itemsets with minimum support are called frequent itemsets; and

(2) Generate strong association rules from the large itemsets.

The most crucial factor affecting the performance of mining association rules lies in the
first step. After the large itemsets are identified, the corresponding association rules can be
derived in a straightforward manner. Efficient counting of large itemsets is hence the focus of
most prior studies on algorithms for mining association rules.

4.3. ARMS Architecture and Implementation

Knowledge discovery for CN-FR mapping mechanisms is an interactive and iterative
process. Based on association rule mining, an inference system can be constructed for
effective product portfolio identification. Figure 4-3 illustrates the architecture of such an

association rule mining system (ARMS). The system involves four consecutive stages
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interacted one and another to achieve the goals, namely the data preprocessing, FR clustering,
association rule mining and rule evaluation, and presentation modules. First, historical data
are selected and transformed to proper target data sets, which are further analyzed and
preprocessed for subsequent mining procedures. The data mining procedure then starts to
search for interesting patterns using the clustering module and rule mining module. After
mining of association rules, rule evaluation is performed to eliminate any weak rules under
the initial criteria predefined by the system. The useful rules are stored with different

presentation styles in the knowledge base that may be in the forms of case bases, rule bases,

and others.

K 1. Data Preprocessing Module

FR Instance Weighted &
s Standardization [ dardized
Raw Data Target Data . * : Standardize
v'Sales Records | Transformation v (numerical) (Max-Min) V'( numerical )
v'Product v v
Documentation — FR Prioritization -
\ (AHP) nghts
A V*( binary &nominal )
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\ FR Clusters )
FR Clusters
(" 3. Association Rule Mining Module ) Users
Apriori
—~ Algorithm Subset Product
'@)g:>{ Frequent Itemsets l||:>{ Association Rules ‘ rocuc
= I 1) Patterns Portfolio
I Generation
4. Rule Evaluation and Presentation Module I L
Product
Rule Refinement Rules/Cases Rule Portfolio
Y — . A=(X,
Evaluation Presentation < :>
- J

Figure 4-3 ARMS system architecture
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4.3.1. Data Preprocessing

Before proceeding to rule mining of data sets, raw data must be preprocessed in order to
be useful for knowledge discovery. Three tasks are involved at this stage, as described next.

(1) Target data transformation. Generally, there are lots of data records in a company’s
databases. Only those records that correlate closely with the mining purpose are taken into
account. Based on raw data stored in the company, target data sets should be identified,
regarding such data cleaning and filtering tasks as integration of multiple databases, removal
of noises, handling of missing data files, etc.

All target data should be organized into a proper transaction database. This involves
understanding the variables, selection of attributes and metrics, and identification of entity
relationships among data. Within the ARMS, sales records and product documentation are
transformed into transaction data (71D ). Transaction data consists of customer records (C)
and their ordered products ( P). Each customer is described by his/her choices of certain
options (A") for some functional features ( A). The product ordered by this customer is

described by specific values (V") of related FRs (V). The results of CN-FR mappings, i.c.,

<a_f;>, are embodied in the transaction records (<C,P> ). Figure 4-4 shows the entity

relationships among these target data sets.

(2) Prioritization of FR variables. The specification of FRs involves multiple variables,
e,V :{vq}IVq =1,---,N . These FR variables contribute to the overall functionality of a
product differently — some may play more roles than others. Hence, FR variables should be
prioritized to differentiate their different effects, in particular those important ones. The

relative importance of FR variables is usually quantified by assigning different weights. That
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is, each v, is associated with a weight, w,, subjective to ZL w, =1. For the ARMS, the

AHP (Saaty, 1980) is adopted for the prioritization of FR variables, owing to its advantages

in maintaining consistence among a large number of variables through pair-wise comparisons.

Customer | 1..* 1 Trargag,tion 1 1. | Product
Cs Iseiyoos part_of a,,v, <> part of D Wi=1..1
1 1 ‘R
part_of part-of part_of
1.7 1.% 1.% 1..%

Feature |1 * Option FR Value | * 1 FR
a; Wiztm <>XO—R a,-j- |vj:1,...,,,, V;, |v,:1,...,,,q T Vy |vq:1_...,N

Figure 4-4 Entity relationships of target data sets

(3) Standardization of FR values. Prior to clustering analysis of FR instances, all V*
data needs to be transformed into standard forms because FR variables may involve different
metrics and ranges of values. In general, expressing a variable in smaller units will lead to a
larger range for that variable, and thus a larger impact on the clustering structure. To avoid
dependence on the choice of different metrics or dominance of certain variables over others,
those FR instances that are of a numerical type should be standardized to become
dimensionless. This is achieved by normalization. Many methods are available such as the z-
score method, the max-min normalization method (Han and Kamber, 2001). The ARMS

adopts the latter method. Assume some of the FR variables,v, € V IVk =1,---,0 < N, are of
numerical type. It means that their values, v, € V, |Vr=1,---,n,, are numerical, where n,
refers to the number of values that v, can assume. Applying the max-min method, each

individual value of v,, v, , can be normalized to become a dimensionless number ranged

between 0 and 1, that is,
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vy, —minfyy 1Vj=1,n, }

N_vy, = )

max{vzj IVj=1,---,nk}—min{ij IVj=1,---,nk}’
where N_v,, denotes the normalized value for the r-th value of FR v,, v,, is the original
values of v, , and max{v; 1Vj=1,--,n,} and min{v;; |Vj =1,---,n,} are the maximum and
minimum values among all values of v, with size-n, , respectively.

In some cases, those non-numerical FR instances, such as nominal FRs, should be
transformed into normalized numerical values. For instance, the data type of FR “coating
material” is originally a nominal type (i.e., character strings). A scaling transformation can be
applied such that, for example, “Au coating” is supplanted by 0.2, “Alloy coating” becomes
0.4, and so on. When all FR instances possess the same measurements and ranges, we can
proceed to the FR clustering process.

4.3.2. FR Clustering

Within the ARMS, FR clustering includes two steps: distance measure and fuzzy
clustering. As a preparatory stage for fuzzy clustering, the distance measure module
measures the dissimilarity between FR instances in order to define the fuzzy compatible
relations among such data objects.

(1) Distance measure. In general, each FR instance, v_f:[vf,,vZ,,---,v;j,,---,va,]e v,
where Vv, =v, , dv, €V, , Vr=1,--,n,, may involve three types of FR variables:
numerical, binary, and nominal. For example, v;, may be a numerical value while v;, may be
a binary or nominal value. The distance between any two FR instances indicates their

dissimilarity and thus is measured as a composite distance of three distance components

corresponding to these three types of FR variables.
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Numerical FRs — A number of methods for distance measure have been proposed for
purpose of numerical clustering, including the Euclidean distance, Manhattan distance,
Minkowski distance and weighted Euclidean distance measure (Han and Kamber, 2001). The
ARMS employs the weighted Euclidean distance. It is the most popular method for
calculating the distance between multi-dimensional objects, while still considering the

relative importance of each dimension. It is computed as the following,

(. Y
I sy \/ > w, (V_vy, =N (5)

where dumerica (v,?* ,Vj?) indicates the numerical distance between two FR instances, v; and v;,

Vv_?,v_je V', w, means the relative importance of the ¢-th numerical FR variable,
v, € Ve <V, Q represents the total number of numerical FR variables among the total

size- N FR variables (Q <N ),and N_v, and N_v, denote the normalized values of original

v, and v, according to Eq.(4), respectively,

Binary FRs — A binary variable assumes only two states: 0 or 1, where 0 means the
variable is absent, and 1 means it is present. The ARMS uses a well-accepted coefficient for
assessing the distance between symmetric binary variables, called the simple matching
coefficient (Han and Kamber, 2001). It is calculated as the following,

a, +a;

dbinary (v: ’ v; ) = s
o +o,+o;+o

(6)

where dinarn (v_v_,) indicates the binary distance between two FR instances, v and v_,,
Vv_?,v_je V*, «, is the total number of binary FR variables in V (i.e., v, € V" V) that

equal to 1 for both v and v_,, a, is the total number of binary FR variables that equal to 1
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for v; but 0 for v_, , a; 1s the total number of binary FR variables that equal to O for v but 1

for v_, ,and «a; is the total number of binary FR variables that equal to O for both v and v_, .

Nominal FRs — A nominal variable can be regarded as a generalization of a binary
variable in that it can take on more than two states. This type of variable can not be expressed
by numerical values but by qualitative expressions with more than one option. Therefore, the
simple matching coefficient can also be used here to measure the nominal distance between

two FR instances containing nominal FR variables (Han and Kamber, 2001):

oo (v_:,v_;)=%, (7)

where d omica (v,?* ,v}) indicates the nominal distance between two FR instances, v, and v;,
Vvi,v;€ V", ¥ means the total number of nominal FR variables in V (i.e., v, e V""" V)

that assume the same states for v, and v_,, and S is the total number of nominal variables
among total size- N FR variables (8 < N ).

Given a set of FR variables, V = {v,,v2,~--,vN}, every FR instance assumes a certain
value for each of the FR variable, and thus consists of a combination of numerical, binary
and/or nominal FR values, that is, V"« gV gy =V . As a result, the overall
distance between v; and v_, comprises three components: the numerical, binary and nominal
distances. A composite distance can thus be obtained by the weighted sum:

d (v: ’ vj ) = Wnumericaldnumerical (V: ’ vj )+ Wbinarydhinary (vl ’ vj )+ Wno min aldnomina[ (vt ’ vj )7 (8)

z (Wnumeriz?ul + mmaw + Wm)minal ) = ] (9)

b
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where Wericar s Wainay @and W, refer to the relative importance of numerical, binary and
nominal distances, respectively. These weights can be determined in the similar way as that
of FR variables — applying the AHP.

(2) Fuzzy clustering. The first step of fuzzy clustering is to define a fuzzy compatible

relation, R, for a given set of FR instances, V' = v?,v_Z,---,E}. The R is constructed in a

matrix form, that is, R = Lo(;,vj )]TxT Iy, ,vj)e V'xV", where (v_v_,) suggests pair-wise
relationships among FR instances. Within the context of FR clustering, R is called the

compatible matrix. A matrix element p(v_v_,) indicates the similarity grade between any two

FR instances, v

L

and vj . As a measure of similarity, it can be derived from the

aforementioned dissimilarity measure that is determined by the distance between FR

instances. Then we have the following:

(a) Normalize the distance measure between v and v_, based on Egs. (4) and (8), i.e.,

d(v?,vj-j—min{d(v;,v;)IVx,y =],~-~,T}

max{d(vi,v;jIVx,y:],..-,T}—min{d(vi,v;jva,y:],...’T}

N_d(f, v_jj - (10)

where N_d\v; ,v_j)e [0,1] is the normalized value of original distance d (v_,v_,), and
d(v_i,v_i)l Vv_i,v_j,e V" stands for a distance measure between any two FR instance based on
pair-wise comparisons, (x,y)e TxT ; and

(b) Derive the similarity grade p(v_,v_,) from the normalized distance measure

N d (v_Z), since it indicates the dissimilarity, i.e.,
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ol v )=1-n_al? 7). (11)
Hence, we have 0 < p(v_v_,) < 1. In addition, we can infer that p(v_v_)z 1\WVi=1,--T,
suggesting that R is reflexive, and p(v_f,v_j):p(v_j,v_f)lw,j:],---,T, suggesting R 1is
symmetrical. As a result, matrix R= %(;v_j)]rﬂ I p(Zv_j)e [0,1] becomes a fuzzy
compatible relation defined on V' . Representing a subset of Cartesian product V' XV"
matrix R is called a fuzzy compatible matrix.
The second step is to construct a fuzzy equivalence relation for V' with transitive

closure of the fuzzy compatible relation defined above. The fuzzy compatible matrix R is a

fuzzy equivalence matrix if and only if the transitive condition can be met, i.e.,

p(v_,v_,)z max{minﬂo(v_f,v_i),p( )IVV_ viviev }} (12)
To convert a compatible matrix to an equivalence matrix, the “continuous

multiplication” method is often used. Multiplication in fuzzy relations is also known as max-

min composition (Lin and Lee, 1996). Let R( Y )and R(v&,v,) be two fuzzy compatible

relations, then RoR = [(v_,v_,), max{min{o(v_f,v_j), p(v_,v_,)}ﬂ is also a fuzzy compatible relation.
To achieve the max-min-transitive closure of R, the flowchart of max-min composition is
shown in Figure 4-5.

The third step is to determine A -cut of the equivalence matrix. The A -cut is a crisp set,
R, , that contains all the elements of the universe, V", such that the similarity grade of R is

no less than A . That is,

R, =[e07 Vi), (13)
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==\ |1 lfp(;,v_,)Z/i — =
where T(v,-,v,)—{o zfp(v_v_,)</l p(v,»,vj)e [0,1]. (14)

Calculate R2, R4,..., R*

Y

Compare R**1) and R?**

Identical?
Dk oRk CRZ(k*])

Yes

Return R*=::R?k

Figure 4-5 The flowchart of converting a compatible matrix to an equivalent matrix
Then each A -cut, R,, is an equivalence relation representing the presence of similarity
among FR instances to the degree A. For this equivalence matrix, there exists a partition on
V", w(R,), such that each compatible matrix is associated with a set, w(R)={w(R;)}. The

ARMS applies a netting method (Yang and Gao, 1996) to identify partitions of FR instances
with respect to a given equivalence matrix. The netting method is a technique dealing with
the equivalent matrix. It works via a threshold to indicate the similarity degree between
objects, and thus partitioning similar objects into the same cluster. By varying the threshold,
different clusters can be derived. The procedure of generating a fuzzy netting graph is
summarized as the following,

(a) Fill the signals of the elements in the diagonal;

(b) Replace element 1 as signal * and element O as blank;
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(c) Connect longitude and latitude to the nodes where the signals * are located; and
(d) Assign the elements that are connected through the nodes into the same cluster.

The value of Ae[0,1] indicates the similarity threshold of a A -cut. Given an
equivalence matrix, different clustering results can be obtained according to individual
similarity thresholds, as shown in Figure 4-2(c). In practice, the value of A is often
determined by domain experts with many practical considerations (Lin and Lee, 1996).
Furthermore, latent and future customer needs, trends of product and process technologies,
repeatability in design and manufacturing, ease of configuration, core competencies, and
many others, are also important dimensions of decision making for the threshold.

Finally, with the hierarchy of partitions of objects, k -clusters of objects can be
identified. Each FR cluster, y; = (,ul,A,)IVl =1,---,L, is described by a vector of its mean,
= [x,’] ]N, and a vector of its variation range, 4 = [d!], .

For a numerical FR value (i.e., v, ~ v, € V"™"), the mean value and the variation

range are calculated as the following,
X, =Zv;/n,, (15)
1=1
J, :max{‘v;—x;‘IVtzl,---,n,}, (16)
where Vge [],- - N ] , V; = [vq, ]N eV’ , and n, refers to the number of FR instances

associated with the /-th FR cluster, i.e., Vv_,* ~nINVt=1,---n; £T.
For a binary FR value (i.e., v,, ~ v, € V"), the mean value and the variation range are

determined as the following,
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, {] if o 2 ay .

0 ifoy <ay
4, =0, (18)
where Vge[l,---,N], Vv_fz[v:,]NeV* , Oy +0ay =n,, n, refers to the number of FR

instances associated with the /-th FR cluster, i.e., Vv_f ~xlINVt=1,---n, <T, o is the total
number of FR instances that assume a 1-state for v,, and ay is the total number of FR
instances that assume a O-state for v, .

For a nominal FR value (i.e., v, ~ v, € V"), the mean value and the variation range

are determined as the following,

xb=v, 1 r=max(a,), (19)

4, =0, (20)
where Vge [1,---,N], ¥v = [v;]N e V", v, represents the r-th state of v, that possesses 7,
possible states, i.e., 3r€ [1,n,], and @, is the total number of FR instances that assume a v,, -
state for v, .

4.3.3. Association Rule Mining

As reviewed in Section 4.1, traditional association rule mining (Z = Y ) conforms to the
general model of market basket analysis, where all items are assumed to belong to one
itemset of transaction data (Z </ and Y < ). In the ARMS scenario, rule mining involves
two different itemsets, that is, Z< A" and Y V", corresponding to the customer and
functional domains, respectively. Based on the clustered FR instances, association rules

regarding the mappings between individuals A" and V™ turn out to be the association rules

73



The Sinasanore (or r

o the use of thi

Chapter 4: Product Portfolio Identification based on Association Rule Mining

mapping A" to FR clusters, X , that is, A° = X . Therefore, the ARMS’s transaction data
comprises these two itemsets, i.e., DB ~ <A*,X> , where A" = {57 Vs = I,--~,S} and
X = {}(, IVI=1,-- -,L}. Itemset A" consists of a number of sales records of CNs embodied in
various combinations of customer choices for diverse options of features, i.e.,
{a;1Vi=1-- .M ,¥j=1--,n}, where a; corresponds to the j-th option of feature a;, which
possesses n; possible options. Each customer’s order indicates a particular combination of
these options, i.e., a = [a,ij-]M . Itemset X comprises a set of FR clusters in the form of mean-
variation tuples, i.e., {(,uz,Az ) = ([xf, ]N,[df ]N )I Vi=1,-- -,L} . As a result, the general form of an
association rule in the ARMS is given as the following,

QAN AN => BiAPo-ABr-ABr [Support = s%; Confidence = c%],  (21)

where 3o e {aju, IVe= 1 E<M , 3B e {x},8 )}y, IVf =1, F<N, and s% and

i=1

XL

c% refer to the support and confidence levels for this rule, respectively. They are calculated

based on the following,

% = count(a; A -+ A O APy /\'BZ.“/\'BF)XIOO%, 22)
count(DB)

% = count(a; A -+ Aap APy A’BZH./\’BF)XIOO%, 23)
COI/H’lt(Cn /\az"'/\aE)

where count(a; Acz---Aate ABi ABr- A Br) is the number of transaction records in DB
containing all items @, @.,..., and ar as well as S, f,...,and Br, count(DB) is the total
number of data records contained in DB, and count((){] /\052'--/\0{5) is the number of

transaction records in DB containing all items @, , @ ,..., and & . In general,
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count(DB)=S , because each TID corresponds to a s—¢ pair. In addition, the set
{a, 0, ., ,a } embodies a non-empty subset of {a}; IVie[ILM}3je [I,n,»]}, whereas
the set {B), 8.+, B+, Br } exhibits a non-empty subset of {(x.,8!)IvVqe [1,N}3le [1,L]}.
The association rule in Eq. (21) means that the data occurrence of «;, ,..., and @ will
most likely (at a s% -support and with a ¢% - confidence) associate with the data occurrence
of B, p>,...,and Br.

A good number of efficient algorithms for mining association rules have been proposed
(Chen et al., 1996). The ARMS adopts a well-known algorithm, called Apriori algorithm
(Agrawal and Srikant, 1994) to determine frequent itemsets. The idea driving Apriori
algorithm is to use an iterative approach known as a level-wise search, where k -itemsets (the
itemsets that containing k items) are used to explore (k +1) -itemsets. Apriori property,
where all nonempty subsets of a frequent itemset must also be frequent, helps reduce the
search space and improve the efficiency of the level-wise generation of frequent itemsets.
Once the frequent itemsets are identified from DB, it is straightforward to generate strong
association rules from them. For a large volume of source relations, the performance of rule
generation may be slow. Rather than updating the association rule base continuously, the
ARMS derives association rules incrementally by storing the record counts of previous
computing data into the existing rule set and adding the new record counts during the new
data computing process. Table 4-1 shows the procedure of such an incremental strategy for

rule mining.
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Table 4-1 Algorithm of incremental mining of association rules in the ARMS

01:  Begin

02:  Let N =count(DB); /* Total data record count */

03:  Let S, =min_sup; /* Minimum support threshold specified by the user */
04:  Let C, =min_conf ; /* Minimum confidence threshold specified by the user */

05: Fori=1to N do

06: Begin

07: Let S = count(oy "Gt ~Op ABIAPo--ABr); /% Call the Apriori algorithm */
08: Let C = count(oy ntta--- Al ; /* Call the Apriori algorithm */
09: Let s =(S/N)x100% ;

10: Let ¢ =(S/C)x100% ;

11: If s28, and c2C,

12: Then Rule; is derived;

13: End if;

14: End;

15:  End;

4.3.4. Rule Evaluation and Presentation

Based on all the association rules created, the evaluation and presentation module comes
into play to refine these rules in order to keep the most relevant and valuable rules in the
knowledge base in the form of either case bases or rule bases. The characteristics of each FR
cluster should also be explored based on the rules and the related support and confidence
levels. Moreover, the causality of original association rules are defined for single feature

options, as the precedent of each rule is a subset of {a,} and the consequence of each rule is a

subset of {(xfjé}j)} per se. Nevertheless, inference relationships do exist in various

combinations of more feature options. This means a need for generating combinatorial rules.
Finally, users can retrieve all the rules stored in the knowledge base to understand the
mappings of CNs to FRs clearly, to gain insights into the consequences of diverse customer
preferences on the product fulfillment, and thus to justify the proper specification of product

offerings in a portfolio.
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4.4. Case Study

The potential of ARMS has been tested in an electronics company that produces a large
variety of vibration motors for major world-leading mobile phone manufacturers. The
company had conducted extensive market studies and derived data of customer expressions
of various functionality related to mobile phones. These data have been collected from
market surveys and analyzed based on natural language processing. As far as the “Alarm”
function is concerned, the related features and their options are summarized in Table 4-2.
Those CNs listed in Table 4-2 provide the ground for diverse specifications of the “Alarm”
function as perceived by different mobile phone users. A variety of the “Alarm” functions
correspond to different vibration motor designs. In other words, the “Alarm”- related CNs of
mobile phones are fulfilled by the FRs of vibration motors. Based on existing product
documentation and consultation with design engineers, we know that the functional
specification of vibration motors is described by a set of FRs and their values, as shown in
Table 4-3. Among these 9 FRs, the “Pbfree” is of binary type and the “Coating” is of
nominal type, while all the rest are numerical variables.

It is interesting to observe the difference between CNs and FRs in this case. What
customers really perceive is how they feel about the “Alarm” function of mobile phones.
Customers have no idea of the implications of this functionality in engineering — vibration
motors. From the company’s viewpoint, CNs refer to mobile phones, whereas FRs are related
to vibration motors. When the company makes decisions about its vibration motor portfolio,
it has to understand the mapping mechanisms between the customer and functional domains,
as well as the tradeoffs of requirement specification between mobile phones and vibration

motors.
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Table 4-2 List of CNs
Feature Option
al\Vi=1,--M Description | a;1Vj=1--,n, Code Description
aj All Feel the vibration very strongly
a, Feel .Of a, Al2 Alarmed by vibration without vibrating
vibration suddenly
a; Al3 Sensitive to the vibration
a A21 Buy an exp.ensive mobile phone with desire
for a long time use
. i | w | an | G el oo
a A23 Try latest fa;hion of mobile phones at a
moderate price
a; A3l Portable
a; Size as A32 Comfortable to hold
as A33 Not easy to lose
ai A4l Little noise
a, Vosl(l)lligfi of a, Ad2 Alarmed independent of vibration
as A43 Alarmed by both vibration and sound
as Material as AS51 Green material for environment friendliness
as Weight as A61 As light as possible
Table 4-3 List of FRs
FR FR Value
v,IVg=1,--,N | Description Type Vo IVr=1,-n, Code Description
Vi V11 100 mA
v, Current Numerical Vi, V12 80 mA
Vis V13 60 mA
v, Pbfree Binary vil V21 1 (Yes)
29 V22 0 (No)
Vi V3l 8 mm
Vs Length Numerical Vi V32 12 mm
Vi V33 10 mm
Vi V41 5 mm
V4 Diameter Numerical Vi v42 4 mm
Vi V43 6 mm
Vs V51 Au
Vs Coating Nominal Vi V52 Alloy
Vs V53 None
Vg Angle Numerical sz Vol 40°
12 V62 55°
v; Strength Numerical VZI V7l 7 Ke
V72 V72 4 Kg
Vs Weight Numerical Vf’ V8l 2g
Vs V82 3¢g
Vo Hardness Numerical v%] Vol 40 HB
Vo V92 70 HB
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Based on sales records, target data is identified and organized into a transaction database,
as shown in Table 4-4. For illustrative simplicity, only 30 out of hundreds of transaction
records are used in the case study here. As shown in Table 4-4, each customer order indicates
the customer’s choice of certain feature options related to the “Alarm” function of mobile
phones, which is presented as a specific instance of a subset of A ={a; }M . Corresponding to
the 30 customers (end-users of mobile phones), there are 30 vibration motors provided,

whose requirement information are described as particular instances of FR vector, [vq, ]N .

Table 4-4 Transaction database

Record (71D ) CNs (a; IVs=1,---,5) FRs (v IVt=1,--T)
T001 All, A21, A31, A43, A51, A6l V11, V21, V31, V42, V53, V62, V71, V82, V92
T002 All, A21, A43, A51 V11, V21, V31, V41, V51, V61, V71, V81, V92
T003 Al2, A22, A33, A6l V12, V21, V33, V43, V51, V61, V72, V82, VI1
T028 Al13, A22, A33, A4l, A6l V13, V22,V31, V42, V52, V61, V72, V81, VI1
T029 All, A21, A31, A43, A51, A6l V12, V22,V33, V43, V52, V62, V72, V81, V92
T030 Al12, A22, A33, A42, A61 V11, V22,V33,V42, V53, V61, V72,V82, VIl

To prioritize 9 FR variables, the AHP is applied. A 9-scale rating system is used to
provide subjective judgments of preference, as shown in Table 4-5. The result of each weight
associated with each FR variable is given in Table 4-6.

Table 4-5 Scale for subjective judgment

Verbal judgment of preference | Numerical rating
Extremely preferred 1
Very strong to extremely
Very strongly preferred
Strongly to very strongly
Strongly preferred
Moderately to strongly
Moderately preferred
Equally to moderately
Equally preferred

NeliecdEN o N AU, § SN RUSY | )

Due to different metrics used for FR variables, all FR instances in Table 4-4 need to be
standardized based on the max-min normalization method. After that, the distances between

every two FR instances are calculated to quantify the dissimilarity among them. The SPSS
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software package (SPSS 12.0 for Windows, http://www.spss.com/) is used to obtain the
weighted Euclidean distance measures. The 30 records of product specifications are input
into the SPSS software for processing, in which the original data are normalized
automatically and then the distances are calculated. The pair-wise measures of distances are
presented as a 30 x 30 matrix. Figure 4-6 shows the raw data for distance measures of

numerical FR instances before the normalization. The normalized distance measures of

numerical FR instances are presented in a matrix form, [N_d,,....u (v ,vj)]wxm, as shown in
Figure 4-7. The results of distance measures for binary and nominal FR instances,

Nd,, . and |N.d,..0v,v , are shown in Figures 4-8 and 4-9,
[ ry (7 J )]30><30 (7 )]30><30 g

J
respectively. Based on these three distance components, the composite distances are
calculated and presented as a dissimilarity matrix, [d (E,v_j?)]mm, for all FR instances, as
shown in Figure 4-10. Based on the relative importance of FR variables, the weights
associated with numerical, binary and nominal distance components are determined as
Woimericat = Wi + W3 + Wy +Ws + w7 + ws + wo =0.677 , Whinary = w2 = 0.304 and
Wiomina = ws = 0.019 , respectively.

Table 4-6 Relative importance among FR variables

FR (v,) Weight ()
v, 0.219
Vv, 0.304
Vs 0.046
vy 0.031
Vs 0.019
Vs 0.066
v, 0.157
Vs 0.095
Vo 0.083

z w, =1
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Figure 4-6 Raw data for distance measures of numerical FR instances
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Figure 4-7 Result of distance measures for numerical FR instances
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Figure 4-8 Result of distance measures for binary FR instances
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Figure 4-9 Result of distance measures for nominal FR instances
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Figure 4-10 Dissimilarity matrix based on distance measures for all FR instances

Based on the dissimilarity matrix, a fuzzy compatible matrix, R, is determined, as
shown in Figure 4-11. Obviously, R meets both the reflexive and symmetric characteristics.
To obtain a fuzzy equivalence matrix, the max-min composition is applied. The result of
R*=RoR is shown in Figure 4-12. As R’ # R, we know R’ is not a fuzzy equivalence
matrix yet. Continuing to apply the max-min composition, R* = (R R)o (R0 R) is obtained,
which equals to R’. The result of R’ is also shown in Figure 4-12. As a result, R turns out
to be a fuzzy equivalence matrix. Based on R*, the A -cut is derived with a similarity
threshold setting at 0.84. The result of the A -cut is shown in Figure 4-13.

With the obtained A -cut, a fuzzy netting graph is constructed, as shown in Figure 4-14.
Based on the partitions derived from the fuzzy netting graph, 3-clusters of FR instances are
identified. The mean value and variation range for each FR cluster are calculated based on

those FR instances that are grouped into this cluster. The result of FR clustering is given in
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Table 4-7, in which, for example, FR cluster, }%; , is associated with its mean,

i, =[100,Y, 9.2, 4.5, Au, 44.5, 67, 24, 49]

5, =100 12050,

ES

* * * *
Vs, Viis Viz, Via, Vis, Vu

924
446 .

64 .74

7 .62

648 .

.52 .82

75 71 .

.88 .88 .73
76 .76 .
78 .78 .
762 .5
84 .84 .
76 .75

7 62 .
83 .83 .

85 .85

,and vy .

7 .29 .63 .84

9

Figure 4-11 Result of R

7 .78 85 1
82 6 52 6

Figure 4-12 Result of R’

1

.76
62
81
75
.59
.78

78
.78

75
.76
.56
5.78

1
.62
.83
.83
.59

76 .

.62

62 .
73 .
AR
AR
79 .
75
81 .
76 .
75
59 .
75 4
76 .
75
81

59 .

76 1
78 82 1
88 .79 .8

79

and

29
28

78
.76
.63

59
57
.59
.59

variation

76 711
69 15 .77 87 1
71 42 86 .69 .71 1

751
75 .86 1
87876 130

30x30

range,

105, 27, 06, 21], and contains 10 FR instances, including v; , v3, v; ,
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Figure 4-13 Result of a 1 -cut with 4
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Figure 4-14 Fuzzy netting graph
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Table 4-7 Result of FR clustering

FR Cluster Clustered FR Instances
2 Mean Value (y; ) Variation Range ( 4;) ({‘Tj ~ i IVi=1m ST})
[100,Y,9.2,4.5,Au, (V] V5 V7 V8 VI Vi2s
Xi 44.5,6.7.2.4.49] [0,0,1.2,0.5,0,10.5,2.7,0.6, 21] . 8 * .
V]4 s V]5 s V24 s V29 }
Txx % % % %
{Vg’ Vg V55V9s V0> V]3>
[78.3,Y,11.17,5,Alloy, — T
X2 47.4.52.42.57.5] [21.7,0,1.17,0.5,0,8,2.5,0.58,17.5] V175 V19 Va0 » V235 Vg »

[67.5,Y,10.75,5.13,None, (v Vg Vig: vars Vo »
3 42,5513 2.38.47.5) [12.5,0,1.25,0.87,0,12.5,1.87,0.62,22.5] 160 718 T2l

* * *
V255> V275 V28 }

The resulted FR clusters comprise an itemset, X ={(x,§,5,§)que [1,9]:31 € [1,3]}, as

shown in Table 4-8. The characteristics of each FR cluster entail the specification of a
product platform — a set of base values together with the related variation ranges, and
therefore they can be used to suggest standard settings for a vibration motor portfolio. These
items are added to the transaction database. The link of each customer order to a FR instance

is then replaced with the link to the items of the FR cluster to which this FR instance belongs.

For mining rules between itemsets A and X , a data mining tool, called Magnum Opus
(Version 2.0, http://www.rulequest.com/), is employed. All data are extracted from the
transaction database and input as a text file to Magnum Opus. The system allows data to be
input as identifier-item files that list customers to be analyzed in the identifier-item format.
Each customer has a unique identifier consisting of two columns: one for the identifier and
one for the item. Under either search mode, Magnum Opus finds a number of association
rules specified by the user. The search guarantees that only those rules with the highest
values on the specified metric are found according to user-specified search settings. Magnum
Opus will find fewer than the specified number of association rules if the search is terminated

by the user or there are fewer than the specified number of associations that satisfy user
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specified search settings. In this case, the maximum number of associations is set to 10000 to

make sure that the association rules can be derived completely, shown in Figure 4-15.

_'_%Magnum Opus Demo - 001.doc = ||:||5|

File Edit Modes Action Yiew Help

== @@ el2]
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Figure 4-15 Association rule induction in the Magnum Opus

Table 4-8 Specification of vibration motor portfolio based on FR clusters

. FR Value
FR Variable Base Value Variation Range
100 +0
Current (mA) 78.3 +21.7
67.5 +12.5
Pbfree 1 (Yes) +0
9.2 +1.2
Length (mm) 11.17 +1.17
10.75 +1.25
4.5 +0.5
Diameter (mm) 5.5 +0.5
5.13 +0.87
Au +0
Coating Alloy +0
None +0
44.5 +10.5
Angle (°) 47 +8
42.5 +12.5
6.7 +2.7
Strength (Kg) 4.5 +2.5
5.13 +1.87
24 +0.6
Weight (g) 242 +0.58
2.38 +0.62
49 +21
Hardness (HB) 57.5 +17.5
47.5 +22.5
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At the end of rule mining, the system generates 37 association rules, as shown in Table
4-9. These rules serve as the basis of knowledge discovery. Some rules, for example, Rules
31, 32 and 33, are coupled and should be aggregated into one. The possibility of some rule
combinations is also considered to discover more implicit rules. For example, Rules 15, 16
and 17 together with Rules 23, 24 and 25 can give more insights to optimize the size of
motors. In addition to such rule refinement, the characteristics of each FR cluster and implicit
relationships among them are explored to gain more understanding of vibration motor design
specifications, so as to identify prominent settings of particular FR variables, to analyze the
tradeoffs between different customer perceptions on mobile phones and the relevant FR
values of vibration motors, and so on. All the identified patterns of CNs, FRs and the
mapping are built into the knowledge base and are utilized to assist users in portfolio
decision making based on the generated portfolio (see Table 4-8).

4.5. Sensitivity Analysis

To evaluate the performance of ARMS, the sensitivity of the identified product portfolio
is studied with respect to varying values of data mining parameters, including the similarity
threshold, and the minimum support and confidence levels. These parameters involve two
modules of the ARMS: FR clustering and association rule mining, respectively.

The FR clustering module entails the specification of an optimal value of similarity
threshold for the A-cut. Essentially, it gives rise to a tradeoff issue of FR granularity inherent
in mass customization (Tseng and Jiao, 1996). With a large (small) value of the A-cut, more
(fewer) FR clusters will be identified. These FR clusters affect the downstream planning of
the product and process platforms. At the economic latitude, the cost of introducing more

FRs (i.e., finer FR clustering) and its contribution to customer-perceived values should reach
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a balance at the right level of aggregation of the product and process platforms. If the
differentiation of FRs is too spread or too low a level of aggregation, such as at the nuts and
bolts level, then the number of DPs and PVs may be too many, and product fulfillment
becomes difficult to leverage investments. To the contrary, if the FR aggregation is at a very
high level, such as complete subassemblies, then the repetition may not be sufficient to take
advantage of mass production efficiency.

Table 4-9 Result of association rule mining

Rule 1: Green material for environment friendliness\=>pf_y\[Support=0.882; Strength=1.000];

Rule 2: Alarmed independent of vibration\&Not easy to lose\&Catch up the mobile phone style occasionally at a low
price\=>h_57.5[+17.5\[Support=0.265; Strength=0.900];

Rule 3: Alarmed independent of vibration\&Try latest fashion of mobile phones at a moderate price\&Not easy to lose\=>
c_78.3[+21.7]\[Support=0.265; Strength=0.900];

Rule 4: Alarmed independent of vibration\&Buy an expensive mobile phone with desire for a long time use \=>
1_11.17[£1.17]\[Support=0.265; Strength=0.900];

Rule 5: Alarmed independent of vibration\=>h_57.5[+17.5]\[Support=0.294; Strength=0.833];

Rule 6: Not easy to lose\&Alarmed independent of vibration\=> a_47[+8]\[Support=0.265; Strength=0.900 ];

Rule 7: Not easy to lose\&Comfortable to hold\&Catch up the mobile phone style occasionally at a low
price\=>w_2.42[+0.58]\[Support=0.265; Strength=0.750];

Rule 8: Not easy to lose\=> w_2.42[+0.58\&h_57.5[£17.5]\[Support=0.265; Strength=0.900];

Rule 9: Catch up the mobile phone style occasionally at a low price\=>co_None\[Support=0.324; Strength=0.688];

Rule 10: Buy an expensive mobile phone with desire for a long time use\&Feel the vibration very strongly\=>h_49[+21]\[Support=0.206;
Strength=1.000];

Rule 11: Buy an expensive mobile phone with desire for a long time use\=>s_6.7[+2.7]\[Support=0.206; Strength=1.000];

Rule 12: Buy an expensive mobile phone with desire for a long time use\&Alarmed by both vibration and
sound\=>a_44.5[+10.5]\[Support=0.206; Strength=1.000];

Rule 13: Buy an expensive mobile phone with desire for a long time use\&Portable\=>a_44.5[+10.5\[Support=0.265; Strength=0.818];

Rule 14: Buy an expensive mobile phone with desire for a long time use\=>co_Au\[Support=0.206; Strength=1.000];

Rule 15: Feel the vibration very strongly\&Portable\=>1_9.2[+1.2]\[Support=0.206; Strength=0.875];

Rule 16: Feel the vibration very strongly\=>c_100[+0]\[ Support=0.206; Strength=0.875];

Rule 17: Feel the vibration very strongly\&As light as possible\=>d_4.5[+0.5]\[Support=0.265; Strength=0.750];

Rule 18: As light as possible\=>a_42.5[+12.5]\[Support=0.206; Strength=0.875];

Rule 19: As light as possible\&Little noise=>w_2.38[+0.62]\[Support=0.206; Strength=0.875];

Rule 20: As light as possible\=>co_None\[Support=0.206 ; Strength=0.875]

Rule 21: Alarmed by the vibration without vibrating suddenly\=>s_4.5[+2.5]\[Support=0.294; Strength=0.833];

Rule 22: Alarmed by the vibration without vibrating suddenly\=>1_11.17[+1.17]\[Support=0.294; Strength=0.833];

Rule 23: Portable\&As light as possible\=>d_4.5[+0.5]\[Support=0.265; Strength=0.818];

Rule 24: Portable\&Feel the vibration very strongly\=>1_9.2[£1.2]\[Support=0.265; Strength=0.818];

Rule 25: Portable\=>a_44.5[+10.5]\[Support=0.294; Strength=0.833];

Rule 26: Sensitive to the vibration\=>d_5.13[+0.87]\[Support=0.235; Strength=0.800];

Rule 27: Sensitive to the vibration\&Little noise\=>c_67.5[+12.5]\[Support=0.235; Strength=0.800];

Rule 28: Sensitive to the vibration\&Little noise\&As light as possible\=>h_47.5[+22.5]\[Support=0.235; Strength=0.727];

Rule 29: Little noise\&As light as possible\=>s_5.13[+1.87]\[Support=0.206; Strength=0.700];

Rule 30: Little noise\=>c_67.5[+12.5]\[Support=0.206; Strength=0.700];

Rule 31: Alarmed by both vibration and sound\=>a_44.5[+10.5]\[Support=0.206; Strength=0.700];

Rule 32: Alarmed by both vibration and sound\=>d_4.5[+0.5]\[Support=0.206; Strength=0.700];

Rule 33: Alarmed by both vibration and sound\=>1_10.75[£1.25]\[Support=0.206; Strength=0.700];

Rule 34: Comfortable to hold\=>w_2.40[+0.6]\[Support=0.206; Strength=0.700];

Rule 35: Try latest fashion of mobile phones at a moderate price\&Alarmed by both vibration and sound\=>c_78.3[+21.7]\[Support=0.206;
Strength=0.700];

Rule 36: Try latest fashion of mobile phones at a moderate price\=>d_5.5[+0.5]\[Support=0.206; Strength=0.700];

Rule 37: Try latest fashion of mobile phones at a moderate price\=>co_Alloy\[Support=0.294; Strength=0.833];
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An optimal granularity can normally be determined by assessing the performance of the
product and process platforms in accordance with the resulting FR clusters. Jiao et al. (2004a)
apply real options theory to the valuation of flexibility enabled by the product and process
platforms. On the other hand, the construction of the product and process platforms embodies
a type of fixed costs (Meyer and Lehnerd, 1997; Du et al., 2001). Therefore, we introduce a

performance measure for the A-cut, ¥ 4 as the following,

_E|v]
-2

wh , (24)

where E[V] denotes the expected value of the product and process platforms, which is
determined based on a real options framework (Jiao et al., 2004b; Gonzalez-Zugasti et al.,

2001), and C” stands for the fixed cost of the product and process platforms. Furthermore,
Jiao and Tseng (2004) posit the rationale of justifying cost implications of the product and
process platforms based on process variations. Following Jiao and Tseng (2004) and Jiao et
al. (2004b), we employ a process capability index to measure the above fixed cost, as the

following,

60

1
Ccf = I[)’FEPTI — IBFeUSL—LSL , (25)
where S is a constant indicating the average dollar cost per variation of process capabilities,

USL, LSL and o are the upper specification limit, lower specification limit and standard
deviation of part-worth cost estimates corresponding to individual FR clusters, respectively.
The part-worth cost estimates are determined using a pragmatic approach based on standard

time estimation (Jiao et al., 2004b).
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To analyze the sensitivity of product portfolio identification, a total number of 17 runs
of FR clustering are generated by changing A value from 0.1 to 0.95 with an increment of
0.05. Using process data of vibration motors in Jiao et al. (2003) and flexibility valuation
data of vibration motors in Jiao et al. (2004a), the result of sensitivity analysis is obtained. As
shown in Figure 4-16, the performance measure in Eq. (24) is presented as a normalized
comparison. The result clearly shows that a A value of 0.84 yields the best performance of FR

clustering for product portfolio identification.
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Figure 4-16 Sensitivity analysis of product portfolio identification
with respect to similarity threshold

The difficulty in association rule mining originates from the need for determining
appropriate thresholds for the support and confidence levels. If the support and confidence
thresholds are planned with low values, useful information may be overwhelmed by
excessive rules. To the contrary, certain relationship patterns that are of interest may be
ignored if the support and confidence criteria are specified too strictly.

Association rules basically suggest the mapping relationships between CNs and FRs. To

meet the required CNs, the associated FRs must be fulfilled through configuration of DPs
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and PVs within the existing product and process platforms — a process of product variant
derivation (Du et al., 2001). Such a variant derivation exhibits the accounting of a type of
variable costs (Meyer and Lehnerd, 1997). Jiao et al. (2004b) review the implications of
customer-perceived value per unit cost in regard to the measure of profitability. Therefore,
we introduce a performance measure of association rule mining, **, based on the ratio of
utility to variable cost, as the following,

AR L3 Uij
=22 (26)
J

i=1 j=I
where the resulted product portfolio comprises j=1,---,J products that are offered to meet a

target market segment with i =1,---,1 customers, U; denotes the utility of the i-th customer
with respect to the j-th product, and C]V is the related variable cost of producing this product
variant. As suggested in Jiao et al. (2004b), product level utilities, {U i1, ,» are derived from

part-worth utilities of individual CNs based on conjoint analysis (Green and Krieger, 1978).

Likewise, product costs, {C‘I/ }J , are determined by the regression of part-worth cost estimates

of individual FRs. The association rules indicate what FRs are to be used to satisfy what CNs.
Such customer choice and product instantiation can be implemented by introducing binary
variables to the part-worth regressions (Jiao et al., 2004b).

To analyze the sensitivity of association rule mining, a total number of 18x18=324 runs
of ARMS are set up by enumerating all combinations of the min_sup and min_conf values,
where both the min_sup and min_conf values are changed from 0.05 to 0.95 with an
increment of 0.05. Using utility data of vibration motors in Jiao et al. (2004a) and process

data of vibration motors in Jiao et al. (2003), the result of sensitivity analysis is obtained. As
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shown in Figure 4-17, the performance measure in Eq. (26) is presented as a normalized
comparison. The result of sensitivity analysis suggests that the optimal criteria of association

rule mining are given as the support and confidence thresholds of 0.5 and 0.6, respectively.

Normalized Performance Measure

g 05

04 == aa mm/“’“f

& ' - " .
@ 02 = - gz 93

Figure 4-17 Sensitivity analysis of product portfolio identification with respect to

minimum support and confidence levels
4.6. Summary

As witnessed in the case studys, it is profound to discern CNs from FRs in the respective
customer and functional domains. Such a contextual difference in requirement information,
as a matter of fact, constitutes the major tradeoffs inherent in the product definition process.
While customers concern about the “Alarm” function of a mobile phone, designers have to
interpret the implications of these CNs in terms of the functional specification of a vibration
motor. During this process, engineering concerns play different roles in analyzing CNs and
FRs. In accordance, product portfolio identification should seek for a synergy of these two
sets of requirement information so as to achieve the desired “dynamic” functional variety

while keeping ‘“stability” in technical variety (Du et al., 2001). Therefore, the ARMS
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specifies a portfolio in terms of clusters of FRs while bearing on correspondence to CNs. We
believe this is more reasonable than most models in market research and requirement
management, in which customer groups, market segments, or requirement patterns are all
built upon the assumption that CNs and FRs connote the same semantic set of requirements.
In this sense, ARMS is more applicable to those consumer products than capital products
(industrial products, e.g., power supplies). Consumer products usually involve more explicit
interfaces between customers and engineering, whereas capital products involve less explicit
customer involvement in engineering. In addition, knowledge recovery by data mining
should be more useful for variant designs rather than new designs. Moreover, we advocate
the importance of reusing knowledge from past data in order to deliver mass customization
within the existing capabilities. In this regard, the portfolio identification has to conform to
the product and process platforms that have been installed in the company. So the
specification of product offerings in a portfolio indeed represents the functional view of the
product and process platforms.

In terms of requirement pattern recognition, association rule mining is advantageous
over the traditional method based on decision trees. The key difference between the two
techniques lies in that the decision tree method can only produce rules that are mutually
exclusive, while association rule mining can produce rules that may not be mutually
exclusive (Berson et al., 1999). The reason behind this originates from the way they operate.
Association rule mining seeks to go from the bottom up and collect all possible patterns that
are of interest, and then use these patterns for some prediction targets. Decision trees, on the
other hand, work from a prediction target downward in a manner known as a “greedy” search.

They look for the best possible split on the next step. Furthermore, decision trees deal with
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data records that belong to the same category, whereas association rule mining can handle
data records from different itemsets.

Nevertheless, the applicability of ARMS requires intensive collaboration with domain
experts and considerations of particular problem contexts. Decisions on the proper similarity
threshold and reasonable support and confidence levels may be too complex, and tricky as
well, for enterprise managers. In practice, this can be alleviated through iterative interactions
between portfolio identification and portfolio evaluation, as what we have done in the
sensitivity analysis. Usually, a few scenarios with different settings of these parameters are
identified and then input into ARMS. Based on the results, their performances are evaluated
against a few pre-defined business objectives. Then the best setup is determined, and the
portfolio specification is refined. Hence, portfolio identification and its evaluation are
iterative in implementation and thereby should be integrated within a unified framework of
product portfolio planning.

While data mining techniques excel in identifying hidden patterns of mapping
relationships between CNs and FRs, a practical data mining application is often complex,
involving a number of interactive and iterative steps (Han and kamber, 2001). The processing
of data throughout the data mining process deserves particular attention for the achievement
of good results. This is, however, often neglected and difficult to implement in practice. Pyle
(1999) provides a comprehensive coverage of existing data preparation techniques, including
discretization, dimensionality reduction, normalization, etc. Treatment of missing values and
data cleaning are important exercises for the implementation of data mining. The post-
processing of discovered patterns is also important. This may involve interpreting association

rules, analyzing the patterns automatically or semi-automatically, or identifying those truly

95



o the use

Chapter 4: Product Portfolio Identification based on Association Rule Mining

interesting and useful patterns for the user. Also important is to extract target data sets from
transaction records based on a thorough understanding of the application domain and the
application goals.

As for association rule mining, the support-confidence framework has been the subject
of much criticism. The confidence measure does not adequately capture the intuitive and
natural semantics of direct associations, in which the associations are obvious (Adamo, 2001).
To improve this, Brin et al. (1997) propose an alternative measure, called conviction, to
account for the strength of direct associations. In addition, the support-confidence framework
tends to favor those rules with dense consequent. As a result, the rule generation process
inclines to overstress those rules with a high consequent support. For instance, certain biased
rules involving negated attributes are likely to appear in the outcome, making it contain many
spurious rules (Aggarwal and Yu, 1998). Towards this end, a number of improvements have
been proposed, including improvement-based rule pruning, collective strength, correlated
attribute-set enumeration, intensity measure, and so on (Adamo, 2001). Moreover, traditional
association rule mining adopts only a single minimum support in rule generation; however,
classification data often contains a huge number of rules, which may cause combinatorial
exploration. To tackle such an unbalanced data class distribution, Liu et al. (1998) introduce
the use of multiple class minimum supports to rule generation by assigning a different
minimum support for each class. By incorporating appropriate measures into the association
rule mining process, the quality of the rules could be improved dramatically. For example,
the Magnum Opus data mining tool employed in this study provides five instruments:
coverage, support, strength, lift, and leverage. In the current mining process, we have only

used two of them: support and strength. Conjoint use of all these five measures could
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improve the predictive accuracy of association rule mining substantially
(http://www.rulequest.com/MOnew.html). However, the challenge lies in how to apply

appropriate measures in accordance with the specific problem context of domain applications.
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CHAPTER 5
PRODUCT PORTFOLIO OPTIMIZATION
BASED ON HEURISTIC GENETIC ALGORITHM

In this chapter, the product portfolio optimization problem is formulated (see Section 5.1). To
leverage both customer and engineering concerns, a maximizing shared surplus model,
considering customer preferences, choice probabilities and platform-based product costing, is
proposed (see Sections 5.2 and 5.3). A heuristic genetic algorithm procedure is applied to
solve the mixed integer combinatorial optimization problem involved in product portfolio
optimization (see Section 5.4). Initial findings from a case study of notebook computer
portfolio optimization suggest the importance of the research problem, as well as the
feasibility and potential of the proposed framework (see Section 5.5). Sensitivity analysis is
conducted to evaluate the system performance (see Section 5.6). The chapter concludes with
a discussion (see Section 5.7).

5.1. Problem Formulation

This research addresses the product portfolio optimization problem with the goal of
maximizing an expected surplus from both customer and engineering perspectives. More
specifically, we consider a scenario where a large set of product attributes,
A= {ak lk=1,--K }, have been identified based on customer needs (the available method is
discussed in Chapter 4, for example, Jiao and Zhang, 2005), given that the firm has the
capabilities (both design and production) to produce all these attributes. Each attribute,

Va, € A, possesses a few levels, either discrete or continuous, i.e., A, = {a:, Il = ],~-~,Lk}.
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One advantage of using discrete levels is that it does not presume linearity with respect to the
continuous variables (Train, 2003).

A set of potential product profiles, Z = {Z‘i lj=1,--,J }, are generated by choosing one
of the levels for certain attributes, subjective to satisfying certain configuration constraints.

That is, a product assumes certain attribute levels that correspond to a subset of A. Each

product, VzZ JEZ, is defined as a vector of specific attribute levels, i.e., Z ;= [a; } , Where
I Ak

any a, = indicates that product Z ; does mnot contain attribute a, ; and any a, #Q
J J

represents an element of the set of attribute levels that can be assumed by product Z;, i.e.,

W | e <A xxaL).
A product portfolio, A, is a set consisting of a few selected product profiles, i.e.,
A= {Zj lj= ],~--,J7L}Q Z,3J7 e{l,---,J}, denotes the number of products contained in the

product portfolio.

The cost of offering product Z; is denoted as {Cj}J. The manufacturer must make

decisions about which products to offer as well as their respective prices, {pj}l. As for

portfolio decisions, the manufacturer must also determine what combinations of attributes
and their levels should be introduced, or be discarded from product offerings. This is
different from traditional product line design, which involves the selection of products only,
yet leaves the sets of attributes and their levels intact, and assumes the products are generated
a priori by enumerating all possible attribute levels. In this sense, this research adopts a one-

step approach to the optimal product line design problem, which excels in simultaneously
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optimizing product generation and selection when facing a large number of combinations of
attributes and their levels (Steiner and Hruschka, 2002).

There are multiple market segments, S = {s[. li=1,---,1}, each containing homogeneous
customers, with a size, Q, . The customer-engineering interaction is embodied in the

decisions associated with customers’ choices of different products. Various customer

preferences on diverse products are represented by respective utilities, {U p }” . Product
demands or market shares, P, }” , are described by the probabilities of customers’ choosing
products, denoted as customer or segment-product pairs, {(si,z ; )}” e SXZ.

Customers choose a product based on the surplus buyer rule (Kaul and Rao, 1995). They
have the option of not buying any product (if none produces a positive surplus) or buying
competitors’ products. Assume that competitors do not respond to the manufacturer’s moves,
meaning that, in the short run, the competition does not react by introducing new products.
This is supported by the findings of Robinson (1988). As a result, competitive reactions
appear implicitly in the customer utilities, which are influenced by the attributes and prices of
competing products. In addition, assume that neither price nor supply discrimination is
allowed. That is, each offered product bears the same price for all segments, and each
segment can buy any of the products offered (Yano and Dobson, 1998). Moreover, assume
that customers can access complete information regarding the available products and their
prices. The growing presence of electronic commerce for business-to-business and business-

to-customer sales is also expanding the availability of product and price information.
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5.2. Optimization Model

As discussed in Chapter 3, a maximizing shared surplus model is proposed to leverage
both the customer and engineering concerns inherent in the product portfolio optimization

problem. The objective function is formulated as the following:

1 J U
Maximize E[V]zZZF”BiQ,ij, (27)
Jj

i=l j=1
where E[-] denotes the expected value of the shared surplus, V , which is defined as the

utility per cost, modified by the probabilistic choice model, {P[j }” , and the market size, {Q; }1 ,
C; indicates the cost of offering product Z;, and y; is a binary variable such that y, =1 if

the manufacturer decides to offer product z, and y; =0 otherwise.

To select the best product portfolio with nearly the same shared surplus, a selection rule
is adopted to identify the most balanced product portfolio. According to Li and Azarm (2002),
a balanced product portfolio means that all products contribute evenly or nearly evenly to the
shared surplus; otherwise, it is an unbalanced product portfolio. In general, a balanced
product portfolio is more preferable, as it tends to perform more stably when unexpected
changes occur in the market. An unbalanced product portfolio, on the contrary, may suffer
significantly when market changes diminish the performance of one or two dominating
products in the portfolio. To quantify the extent of a balanced distribution of products’
individual contributions to the entire product portfolio, an unbalanced index is defined as the

following:

BT

J=1
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where M is the total number of products in a portfolio, E [VJ is the expected shared surplus

of product Z;, and E[V] is the expected shared surplus of all products, {Zj}lj,‘. . In an

absolutely balanced portfolio, the shared surplus of portfolio is evenly distributed among all

)

products, i.e., E[V] - ﬁ’ thus ¥ — 0 . Therefore, the lower the value of the unbalanced

index is, the more balanced is the distribution of shared surplus (fitness) among the products,
and thus the more desirable is the portfolio.
5.2.1. Conjoint Analysis and Customer Preference

Given a set of attributes and their levels, conjoint analysis starts with a factorial design.
To avoid the combinatorial explosion problem if all possible pairings of attribute levels are
used, an efficient design is required (Green and Krieger, 1996). The design of experiments
technique can be used to select the attribute combinations. The factors of an experimental
design are variables that have a few levels. Experiments are performed to study the effects of
the factor levels on the response, or dependent variable. In a conjoint study, the factors are
the attributes of the potential products, and the response is a rating or ranking of customer
preferences. The rows of a design are called runs and correspond to product profiles in a full-
profile conjoint study. A special type of fractional-factorial design is the use of an orthogonal
array. An orthogonal array helps reduce the number of combinations using efficient designs
that are both orthogonal and balanced, and hence optimal. Efficient designs specially tailored

to conjoint studies are supported in a number of software packages, such as Sawtooth, SPSS

and SAS (Wittink and Cattin, 1989).
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When conjoint utilities are measured using a continuous function, either a quadratic
function (Pekelman and Sen, 1979) or a vector model of preference, the resulting utility
function can be directly applied to the planning model in Eq. (27). Among many preference
models used in conjoint analysis, part-worth models are most general and widely used in
commercial applications (Wittink and Cattin, 1989). Therefore, this research adopts a
linearization of part-worth for the analysis, although any continuous function can be used
without loss of generality.

Following the part-worth model, the utility of the i -th segment for the j-th product, U,

is assumed to be a linear function of the part-worth preferences (utilities) of the attribute
levels of product 7 i i.e.,

K L

Uy =3 (wystyx +7,)+ &5, (29)

k=1 I=1

S

where u,, is the part-worth utility of segment s, for the [ -th level of attribute a, (i.e., a,)
individually, w, is the utility weights among attributes, {ak }K, contained in product Z;, 7;

is a constant associated with the derivation of a composite utility from part-worth utilities

with respect to product Z;, €, is an error term for each segment-product pair, and x, is a
binary variable such that x,, =1 if the [ -th level of attribute a, is contained in product Z;
and x;, =0 otherwise.

There are a number of methods available to estimate regression utility weights, {w i }J'K ,

and the constant, {7[]. }J, given a set of observed choice data, including full-profile conjoint

analysis, adaptive conjoint analysis, hybrid conjoint analysis, and experimental choice
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analysis, or choice-based conjoint analysis (see http://www.sawtoothsoftware.com). In
addition, a great deal of research in marketing has been devoted to recovering model
parameters through latent classes, such as using finite mixtures, hierarchical Bayes methods,
the maximum likelihood formulation, and the least squares method (Lilien et al., 1992).

In the above formulation, customer behavior is modeled at the segment level, although
one could also assume individual level part-worth utilities without loss of generality. As
observed by Wittink and Cattin (1989), market segmentation ranks among the primary
purposes of suppliers in conjoint studies. If segmentation issues are of particular interest,
individual level part-worth estimations might further be clustered to form market segments
(i.e., post hoc segmentation). Moreover, a number of procedures for simultaneously
performing market segmentation and calibrating segment-level part-worth utilities in conjoint
analysis have been developed in recent years. Such methods for simultaneous segmentation
and estimation have been proposed for both the traditional conjoint analysis and the choice-
based conjoint analysis (Wedel and Kamakura, 1998).

5.2.2. Choice Model and Product Demand

Conjoint analysis yields a preference model, for example a main-effect part-worth
model, which defines the functional relationship between attribute levels of a product and a
customer’s or a segment’s overall utility attached to it. Based on this preference model,
customers’ choices can be modeled by relating preference (utility) to choice. The traditional
deterministic first choice rule of preferences assumes that a customer chooses the product
from the choice set according to the highest associated utility with certainty. Neglect of

uncertain factors in the first choice rule may lead to suboptimal results at the aggregate
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market level, as market shares of products with higher utilities across customers or segments
tend to be overestimated (Kaul and Rao, 1995).

Probabilistic choice rules can provide more realistic representations of the customer
decision making process (Sudharshan et al., 1987). Some probabilistic choice rules can offer
flexibility in calibrating actual choice behavior such as the option of mimicking the first
choice rule (Kaul and Rao, 1995). In general, there are two types of probabilistic choice rules
(Ben-Akiva and Lerman, 1985): the generalized (or powered) Bradley-Terry-Luce share-of-
utility rule and the conditional multinomial logit choice rule (MNL). With the assumption of
independently and identically distributed error terms, the logit choice rule suggests itself to
be a discrete choice model (Ben-Akiva and Lerman, 1985). Discrete choice models are best
suited to estimate customer preferences directly from choice data (Green and Krieger 1996) —
the case of product portfolio optimization, where customers’ choices are directed to the
attribute levels that constitute products. Moreover, with discrete choice models, preference
estimation and model calibration can be performed simultaneously and tests for statistical
inferences about a particular model and its parameters are available (Ben-Akiva and Lerman,
1985). Therefore, this research employs the logit choice rule to model product demands.

Under the MNL model, the choice probability, P, that a customer or a segment,

L

ds,e S, chooses a product, EIZje Z , with N competing products, is defined as the

following:

Pij N (30)
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where 4 is a scaling parameter. As i — o, the logit behaves like a deterministic model,
whereas it becomes a uniform distribution as # — 0. Therefore, as with the BTL model,

calibration on actual market shares can be carried out subsequently to elaborate preference

estimation by post hoc optimization with respect to # (Train, 2003).

Based on a customer survey, the response rate - how often each product alternative is
chosen - can be depicted as a probability density distribution. The demand for a particular

product is the summation of the choice frequency of each respondent, Vs, € S, adjusted for

the ratio of respondent sample size versus the size of the market population (Train, 2003).
The accuracy of the demand estimates can be increased by identifying unique customer
utility functions per market segment, or class of customers to capture systematic preference
variations (Ben-Akiva and Lerman, 1985). Estimates of future demand can also be facilitated
using pattern-based or correlation-based forecasting of existing products. Forecasts of
economic growth and the estimated change of the socioeconomic and demographic
background of the market populations help to refine these estimates (Lilien et al., 1992).
5.2.3. Dealing with Engineering Costs

The premise of existing profit-maximizing approaches is to assume that costs can be
estimated, provided that the manufacturer has established an operating cost accounting
system (Dobson and Kalish, 1993). As discussed in Chapter 3, cost estimation, however, is
deemed to be very difficult, especially at the portfolio optimization phase. The cost
advantages in mass customization rest with the achievement of mass production efficiency.
Rather than the absolute amount of dollar costs, what is important to justify optimal product

offerings is the magnitudes of deviations from existing product and process platforms due to
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design changes and process variations in relation to product variety. Therefore, Jiao and
Tseng (2004) have proposed to model the cost consequences of providing variety based on
varying impacts on process capabilities. The process capability index lends itself to an
instrument for handling the sunk costs related to product families and shared resources.

To circumvent the difficulties inherent in estimating the accurate cost figures, this
research adopts a pragmatic costing approach based on standard time estimation developed
by Jiao and Tseng (1999b). The idea is to allocate costs to those established time standards
from well-practiced work and time studies, thus relieving the tedious tasks for identifying
various cost drivers and cost-related activities. The key is to develop mapping relationships
from different attribute levels to their expected consumptions of standard times within legacy
process capabilities. These part-worth standard time accounting relationships are built into
the product and process platforms (Jiao et al., 2003). Any product configured from available
attribute levels is justified based on its expected cycle time. This expected cycle time is
accounted by the aggregation of part-worth standard times. The rationale is particularly
applicable to portfolio optimization, where “the optimal product profiles are not as sensitive
to absolute dollar costs as they are to the relative magnitudes of cost levels” (Choi and
DeSarbo, 1994).

The expected cycle time can be used as a performance indicator of variations in process
capabilities (Jiao and Tseng, 2004). The characteristic for the cycle time is of ‘the smaller the
better’ type. The cycle time demonstrates the distinctions between variables that differ as a
result of random error and are often well described by a normal distribution. Hence, the one-

side specification limit process capability index, PCI , can be formulated as the following:
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USL" —u"

PCI = ,
30"

(31

where USL" , 4", and o’ are the upper specification limit, the mean and the standard
deviation of the estimated cycle time, respectively. Variations in the cycle time are

characterized by 4" and o' , reflecting the compound effect of multiple products on

production in terms of process variations. The USL" can be determined ex ante based on the
worst case analysis of a given process platform, in which standard routings can be
reconfigured to accommodate various products derived from the corresponding product
platform (Jiao et al., 2003).

The value of PCI falls between [0,1], where a large value suggests the related
production process is easy to implement (as it involves little deviation from existing
platforms), and a small value a difficult one. As there exist close correlations between cost
and cycle time, the PCI can indicate how expensive a product is expected to be if produced

within the existing capabilities. Introducing a penalty function, the cost function, C,,
corresponding to product Z;, can be formulated based on the respective process capability

index, PCI i that is,

T
1 30'/-

. T_u®
C Z,BePCI’ :IBeUSL “

(32)

where [ is a constant indicating the average dollar cost per variation of process capability,

USL" denotes the upper limit of cycle times for all product variants to be produced within the

process platform, ,uf and O'f are the mean and the standard deviation of the estimated cycle

time for product Z;, respectively.
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The estimated cycle time for product Z;, (/JJTO',T ), is assumed to be a linear function of
the part-worth standard times of the attribute levels assumed by product Z;, modified by the

probabilistic choice model, {P,j }'” and the market size, {Q,. }, ,1.e.,

Ly

I
Z (é/jklulil'xjkl T o, )X ZPUQl , (33a)
i=1

1 I=1

kS

~ N
I

Nl

>~
Il

)
[

k=1 [=1

K L 7
JT \/ZZ(O-IZijkI)ZXZIRjQi’ (33b)

where ¢, and @, are regression coefficients, x,, possesses the same meaning as that in Eq.

(29), and g, and o, are the mean and the standard deviation of the part-worth standard time
associated with the / -th level of attribute a, , respectively.

The meaning of £ is consistent with that of the dollar loss per deviation constant widely

used in Taguchi's loss functions. It can be determined ex ante based on the analysis of
existing product and process platforms. Such a cost function produces a relative measure,
instead of actual dollar figures, for evaluating the extent of process variations among multiple
products. Modeling the economic latitude of product portfolio optimization through the cycle
time performance and the impact on process capabilities can alleviate the difficulties in
traditional cost estimation, which is tedious and less accurate.
5.3. Model Development

Surplus-based optimization models assume customers only choose the product with a
positive surplus as opposite to the lowest price. Otherwise, the price of each offered product
becomes a decision variable, making the problem nonlinear (Yano and Dobson, 1998). To

avoid explicitly, nor necessary, modeling of the price, the general practice is to treat the price
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as a separate attribute that can be chosen from a limited number of values for each product
(Nair et al., 1995; Moore et al., 1999). Adding the price as one more attribute, the attribute

set becomes AE{ak}K where a,,, represents the price possessing a few levels, i.e.,

+1

Ag,, E{a(*KH), =1L} Let ﬁ:[a(*K+1),,-~-,a(K+1)LK+II be the vector of feasible price
levels. Further let x,,, be a binary vector of length L, indicating the presence or
absence of the [ -th price level with respect to product Z;. Then p, = p® X, suggests
the price assigned to product Z;.

Combining Egs. (27), (29), (30) and (32), the product portfolio optimization problem

can be formulated as a mixed integer program, as below:

I J U. eﬂUf/
Maximize E[V]z' Z ;fff < Q,y;» (34a)
i=1 j=1 IB USLT—,u/T zeﬂUﬂz
e n=1
K+1 L,
st Uy= 33 (wyuyx, +7,)+e,, Vie{l, - 1}, Vjell,-,J}, (34b)
k=1 I=1
L
Mx=1, Vie{l, -, J},Vke{l, -, K+1}, (34c)
=1
K+I1 L, ,
> Y x> 0. Vi jell - Jb e, (34d)
k=1 I=I
J
PR TEAR vite{l,---,J},  (34e)
j=1
X0y, €101}, vie{l, - s} vke{l, - K+1}vie{l - L} (34p)
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Objective function (34a) is to maximize the expected shared surplus by offering a product

portfolio consisting of products, {Z j}J , to customer segments, {si}l , each with size Q,.

Market potentials, {Q[}I , can be given exogenously at the outset or estimated through a

variety of techniques based on historical data or test markets (Lilien et al., 1992). Constraint

(34b) refers to conjoint analysis — ensures that the composite utility of segment s, for product
Z; can be constructed from part-worth utilities of individual attribute levels, {Ak }KH.

Constraint (34c) suggests an exclusiveness condition — enforces that exactly one and only
one level of each attribute can be chosen for each product. Constraint (34d) denotes a
divergence condition — requires that several products to be offered must pairwise differ in at
least one attribute level. Constraint (34e) indicates a capacity condition — limits the maximal
number of products that can be chosen for each segment. It can be an inequality or equality.
In the case of an inequality constraint, J' is the upper bound on the number of products that
the manufacturer wants to introduce to a product portfolio, whereas with an equality
constraint, J' is the exact number of products contained in a product portfolio. Constraint
(34f) represents the binary restriction with regard to the decision variables of the
optimization problem.

In the mathematical program of Eq.(34), there are two types of decision variables
involved, i.e., x, and y,, representing two layers of decision-making in portfolio
optimization, respectively. The first layer is the selection of attributes and their levels for
different products (i.e., product generation); the second one decides which products to offer

(i.e., product selection). Both types of decisions depend on a simultaneous satisfaction of the

target segments. The manufacturer’s decisions about what (i.e., layer I decision-making) and
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which (i.e., layer II decision-making) products to offer to the target segments are implied in

various instances of {x w1k, } and {y j IVj}, respectively. As a result, an optimal product

portfolio, A’ E{Z; lj=1,---,J f} is yielded as a combination of selected products

corresponding to {y i IVj}, where each selected product , Z; , comprises a few selected

attributes and the associated levels corresponding to {x it IVj,k,l}. The framework and

solution procedures for product portfolio optimization are schematically shown in Figure 5-1,
where a heuristic genetic algorithm solver is developed to solve the mixed integer

optimization problem.
5.4. Heuristic GA-based Solution

Product portfolio optimization has its origins in the fields of optimal product design
(Krishnan and Ulrich, 2001), product positioning (Kaul and Rao, 1995) and product line
design (Kohli and Sukumar, 1990). All of these problems constitute a type of combinatorial
optimization problems due to their purpose of achieving a near-optimal combination of
discrete products and/or attribute levels (Nair et al., 1995). In general, combinatorial
optimization problems are characterized by a finite number of feasible solutions. Let

E :{ej,e],---,en} be a finite set, 2 a set of feasible solutions defined over E , and
f :42 — R an objective function. A combinatorial optimization problem is to find a solution

in £2 whose objective value is minimum or maximum (Nemhauser and Wolsey, 1988). By
intuition, finding the near-optimal solution for a finite combinatorial optimization problem
could be done by simple enumeration. In practice, however, this technique is often

impossible because the number of feasible solutions may be enormous.
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Chapter 5: Product Portfolio Optimization based on Heuristic Genetic Algorithm

Comparing with traditional calculus-based or approximation optimization techniques,
genetic algorithms (GA) have been proven to excel in solving combinatorial optimization
problems (Steiner and Hruschka, 2002). GA is done from a population of points, rather than a
single point (as with branch-and-bound and other techniques), thus increasing the exploratory
capability. Objective function information is used directly for evaluation, rather than
derivatives used by gradient search techniques. Genetic algorithms evaluate specified
candidate solutions completely versus building profiles one attribute at a time. Except for this,
GAs work with a direct coding of parameters, rather than the parameters themselves.

Hence, a heuristic GA approach is employed in this research to solve the mixed integer
program in Egs. (34a-f). The focus is to develop an efficient algorithm that is capable of
producing acceptable solutions for the combinatorial optimization problem involving a wide
variety of configurations of attributes and their levels as well as product profiles in portfolio
optimization. In accordance with a generic variety structure inherent in product families (Du
et al., 2001), a heuristic GA is formulated as follows.

5.4.1. Generic Encoding

The first step in the implementation of a heuristic GA involves the representation of a
problem to be solved with a finite-length string called chromosome. A generic strategy for
encoding the portfolio optimization problem is illustrated in Figure 5-2, with an example
shown in Figure 5-3. A product portfolio is represented by a chromosome consisting of a
string. Each fragment of the chromosome (i.e., substring) represents a product contained in
the portfolio. Each element of the string, called a gene, indicates an attribute of the product.
The value assumed by a gene, called an allele, represents an index of the attribute level

instantiated by an attribute. A portfolio (chromosome) consists of one to many products
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(fragments of chromosome), exhibiting a type of composition (AND) relationships. Likewise,
each product (fragment of chromosome) comprises one to many attributes (genes).
Nevertheless, each attribute (gene) can assume one and only one out of many possible
attribute levels (alleles), suggesting an exclusive all (XOR) instantiation.

The format of an allele may be a binary, integer, or real value number (Holland, 1992).
Hassan et al. (2004) use binary encoding scheme to find optimal product lines with common
technology choices. Simptson and D’Souza (2004) adopt real value encoding scheme to
design product platform. For portfolio optimization, each attribute (gene) may assume
multiple levels (alleles), resulting in a multi-selection problem. Therefore, the integer format
is adopted to represent multiple choices among attribute levels. Each gene assumes an integer

number corresponding to the index of the attribute level associated with a particular attribute.

Portfolio Association Chromosome
]

1 1

AND/a part of AND/a part of

1.* 1.*
Product Association Fragment of

Chromosome
1 1
AND/a part of AND/a part of
1.* 1.*
Association

Attribute Gene

1 1
XOR/an instance of XOR/an instance of
1.* 1.7

Attribute Level Association Allele

= | = |

Figure 5-2 Generic encoding for product portfolio

Given J' < J products to be selected for a product portfolio, A ={Z j}ﬁ ,and K+1

attributes in each product, z;, a generic string of the chromosome is defined to be composed
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of J substrings, with J —J" empty substrings corresponding to those unselected products,
and containing a total number of J-(K +1) genes, with each substring consisting of K + 1

genes.
Further we introduce an allele equal to O as the default value for every gene. This

indicates that the corresponding attribute is not contained in a product. Then with L, possible
levels for an attribute, a, , the corresponding gene may assume an allele from the set,
{0,],-~-,Lk}, meaning that a total number of L, +/ alleles are available for each gene. This
corresponds to the fact that an attribute, a, , may assume a de facto level, that is,
Ja, € {@,azl,---,a;,---,a;k } If all genes throughout a substring assume {0}, for the alleles,

then it means that the corresponding product is not selected in the portfolio. In this way, a
chromosome enables a unified structure, through which various portfolios consisting of
different numbers of products can be represented within a generic product portfolio,

A={Z f }J . Each individual portfolio can be instantiated from the same generic product

portfolio by indirect identification of zero or non-zero alleles for all substrings (Du et al.,
2001).

For example, the chromosome shown in Figure 5-3 suggests that product Z, is not
selected for the portfolio (i.e., y, =0) as the corresponding substring is totally empty. As far

as product Z, is concerned (i.e., y, = 1), the 1" allele assumes a value of 2 indicating that the
1* attribute of the product chooses the 2™ attribute level associated with this attribute (.e.,

x,,, =1). The last (K + 1) allele of the 1% substring suggests that the price attribute takes on

the 3" price level for product Z; (e, Xygyp3 =1). On the other hand, the k -th allele
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assumes a value of 0, indicating that the k -th attribute is not contained in product Z, (i.e.,

X, =0, Viel{l, -, L}.

*--

4 y I
1 ;

|0|2| ...... |2|---|O iol...lol...loloi Chromosome

[T

Portfolio AE[Z],---, ,

CIIRCIIIIE 3 H

1 ! ! o 1N v
Product ‘Zs[aw ,-~-,a‘ ,-~-,aw ,a )‘ } nnn Fragment of Chromosome
j 12 z KZI_ K+1zj *_ﬁ
~N
~N

O
¢,
Attribute al -ay @ Gene
N

Attribute Level ay e é,a‘;l;",aék,,---,;;h} @ Allele
Figure 5-3 An illustration of generic encoding

Following the basic GA procedures (Gen and Cheng, 2000), the product portfolio
optimization problem is solved iteratively, as depicted below and also shown in Figure 5-4.
5.4.2. Initialization

Initialization involves generating initial solutions to the problem. The initial solutions
can be generated either randomly or using some heuristic methods (Obitko, 2003).
Considering the feasibility of product configurations, an initial population of product

portfolios of size M , {Am }M , is determined a priori and accordingly M chromosome strings

are encoded, respectively. Each chromosome string is assigned a fitness value in lieu of its
expected shared surplus obtained by calculating Eq. (34a).

The population size, M , directly affects the computational efficiency of the GA. A
larger population size gives the algorithm a higher chance of success by exploring a larger

solution space, but it leads to more calculations. Empirical findings by extensive
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Start

Initial population {4},
« Population size (100)

Constraint handling (Rule base)
» Compatibility
+ Selection conditions

Fitness evaluation
- Fitness values E[v]

onverge?
« Moving average rule
+ Convergence rate

» Maximal number of
enerations (1000

No

> Penalty for invalid portfolio chromosomes

Yes

A

» Rank chromosomes by fithess

Select good chromosome for elitism

Select chromosome for reproduction
« Rank selection
« Mating pool

Crossover
* Multi-point random operator
« Crossover rate (0.80)

Mutation
« Mutation rate (0.01)

next generation

Figure 5-4 Procedure of the heuristic genetic algorithm

Return

experimentation have suggested a population size of 100 would produce good solutions for

complex problems (Holland, 1992). This research sets a population size of 100 chromosomes.
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5.4.3. Handling of Configuration Constraints

In order to obtain feasible solutions, each chromosome must satisfy certain
configuration constraints on product generation from combinations of attribute levels. They
constitute two types of constraints: compatibility constraints and selection constraints.
Compatibility constraints refer to the restrictions on choices of attribute levels (e.g., size
compatible) and are generally described as IF THEN rules (Du et al., 2001; Jiao et al., 2004a).
Selection constraints refer to those conjoint, exclusiveness, divergence and capacity
conditions as postulated in Egs. (34b-e).

A number of methods of constraint handling have been reported in the literature, such as
the repairing, variable restricting, and modifying generic operator methods (Gen and Cheng,
2000). This research adopts a penalizing strategy. Whenever a new chromosome is generated,
a constraint check is conducted with respect to all types of constraints, and those invalid ones
are penalized in the population.

Most existing GA implementations incorporate constraint handling into the GA process.
This makes GA operations very complex and less efficient. For example, Steiner and
Hruschka (2002) have introduced extra exit conditions for crossover and mutation in order to
deal with the divergence constraint. This research designs a separate constraint check module
as a filter at the outset of the GA process. The constraint rules are generated based on the
designers’ experience and production capability. The generated rules are stored in a pool.
Whenever a new chromosome is produced, it must be checked with the pool. If any genes of
the new chromosome are found in the pool, the chromosome is penalized. As a result, only

valid chromosomes are kept high fitness, while a standard GA process can be maintained
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without being intervened by concerning the validity of GA operations or the feasibility of
each offspring.
5.4.4. Fitness Function

A fitness function must be used to evaluate the fitness value of each individual
chromosome within the population of each generation. Good chromosomes should probably
be exposed to more opportunities to be selected as a parent, whereas poor ones may not be
selected at all. Within the context of product portfolio optimization, the fitness function used
is the expected shared surplus as described in Eq. (34a).
5.4.5. Selection and Reproduction

With the optimization of an expected shared surplus, the fitness values are continuously
increasing until a near-optimal solution is found. Once the fitness function is defined and
used for the first generation, the GA starts the parent selection and reproduction process.
Parent selection is a process that allocates reproductive opportunities among chromosome
population. The most popular selection method is the roulette wheel selection. The roulette
wheel selection is one probabilistic selection method, that is, a reproduction probability is
assigned to each chromosome based on its fitness value. Then the roulette wheel is filled
using the respective cumulative probabilities of every chromosome. The areas of the sections
on the wheel depend on the fitness values of the associated chromosomes, with fitter
chromosomes occupying larger areas in this biased roulette wheel, thus increasing their
chances of survival. The roulette wheel selection can be implemented by generating random
numbers between 0 and 1 in accordance with the cumulative reproduction probabilities

(Obitko, 2003).
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The advantage of probabilistic selection is that the better the chromosomes are, the more
chances to be selected they have. Thus, those chromosomes with better fitness gain more
opportunities to change their good components to reproduce better offspring, but a biased
selection sometimes may lead to premature convergence although it enables the convergence
of the search (Holland, 1992). Imagine a roulette wheel selection where all the chromosomes
in the population are placed, the size of the section in the roulette wheel is proportional to the
value of the fitness function of every chromosome - the bigger the value is, the larger the
section is. In this case, if one chromosome is dominant in the population, then this dominant
chromosome with bigger fitness value will be selected more times. For example, if the best
chromosome fitness is 90% of the sum of all fitness values, then the other chromosomes will
have very few chances to be selected. Thus, the diversity of the population is destroyed, so as
the performance of the global searching capability of genetic algorithm. In this case, this
research adopts rank selection to select the appropriate chromosomes for crossover and
mutation operations. The rank selection is also a probabilistic selection method. Rank
selection ranks the population first, and then every chromosome receives fitness value
determined by this ranking. The worst will have a fitness of 1, the second worst 2, etc., and
the best will have a fitness of N (number of chromosomes in population). Rank selection
decreases the difference between dominant chromosomes and non-dominant ones, thus all
the chromosomes have a chance to be selected to keep the diversity of the population.

5.4.6. Crossover

After reproduction, pairs of parent strings in the mating pool are picked randomly, and

each pair of strings undergoes crossover with a probability. Crossover requires two

individual chromosomes to exchange their genetic compositions. The offspring thus inherits
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some genes from parents via such operations. While a number of crossover operators are
available for specific encoding schemes (Obitko, 2003), this research adopts a multi-point
random crossover operator. The idea behind multi-point is that parts of the chromosome that
contribute to most of the performance of a particular individual may not necessarily be
contained in adjacent substrings. Compared with single-point crossover operator, the
disruptive nature of multi-point crossover appears to encourage the exploration of the search
space, rather than favoring the convergence to highly fit individuals early in the search, thus
making the search more robust.

For the product portfolio optimization problem, the product portfolio comprises several
different products which are composed of many attributes. The complexity of the problem
results in a long string representing the chromosome. Adopting single-point crossover is
inclined to keep most adjacent substrings intact thus resulting in the premature. In this regard,
for each substring, single-point crossover operator is adopted to encourage its changing. Thus,
the whole chromosome is implemented with a multi-point crossover operation.

Within a generic encoding chromosome, for every substring, one crossover point is
randomly located, and the integer string of an offspring is first copied from the first parent
from the beginning till the crossover point; and then the rest is added by copying from the
second parent from the crossover point to the end. The order of combination is reversed for
the other offspring. In regard to the generic chromosome, for each substring, there are

(K —1) cutting points, and there are in total J-(K —1) cutting points.

The probability of crossover is characterized by a crossover rate, indicating the
percentage of chromosomes in each generation that experience crossover. Crossover aims at

producing new chromosomes that possess good elements of old chromosomes. Nonetheless it
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is also desirable to allow some chromosomes, in particular those good ones, to survive
without change in the next generation (namely elitism). Therefore, this research adopts a
crossover rate of 0.80. In practice, this value could be selected based on sensitivity analysis
of trial examples using crossover rates that range, for example, 0.05-0.95.

5.4.7. Mutation

Mutation is applied to each offspring individually after crossover. It randomly picks a
gene within each string with a small probability (referred to as mutation rate) and alters the
corresponding attribute level at random. This process enables a small amount of random
search, and thus ensuring that the GA search does not quickly converge at a local optimum,
but it should not occur very often; otherwise, the GA becomes a pure random search method
(Holland, 1992). Empirical findings have suggested a mutation rate of 0.01 as a rule of thumb
to obtain good solutions (Gen and Cheng, 2000). While reproduction reduces the diversity of
chromosomes in a population, mutation maintains a certain degree of heterogeneity of
solutions which is necessary to avoid premature convergence of the GA process (Steiner and
Hruschka, 2002).

5.4.8. Termination

The processes of crossover and reproduction are repeated until the population converges
or reaches a pre-specified number of generations. The number of generations has direct
consequence on the performance of the algorithm. A maximal number can be set ex ante at a
large number; however, the algorithm may have found a solution before this number is ever
reached. Then extra computations may have to be performed even after the solution has been
found. Balakrishnan and Jacob (1996) have shown a moving average rule that can provide a

good indication of convergence to a solution. More specifically, the GA process terminates if
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the average fitness of the best three strings of the current generation has increased by less
than a threshold (namely convergence rate) as compared with the average fitness of the best
three strings over three immediate previous generations.

To leverage possible problems of termination by either convergence or maximal number
of generations alone, this research adopts a two-step stopping rule to incorporate both. A
moving average rule is used for the first stopping check. The convergence rate is set at 0.1%.
In practice, this value could be determined based on sensitivity analysis of trial examples
according to the particular problem context. Then a maximal number of generations is
specified as the criterion for the second stopping check. In this case, a number of 1000 is
used. Similarly, this value could be determined based on trial runs in line with specific
problems under study. These two steps complement each other. If the search is very difficult
to converge (for example, in the case of a very tight convergence rate), the second stopping
criterion helps avoid running the GA process infinitely. If can converge at the near-optimal
solution with a few generations, then there is no need to run as many generations as the
maximal number.

Moreover, in each generation the highest fitness value is achieved so far, and its
corresponding string is updated and stored. This makes sure that the best product portfolio
solution found, not only from the final generation but also over all generations, is returned at
convergence. Upon termination, the GA returns the product portfolio with the highest fitness
(expected shared surplus) as well as the contained products in terms of specific
configurations of attribute levels. All intermediate results of each generation (e.g., product
portfolio candidates and their fitness values) and some descriptive statistics (e.g., numbers of

crossovers and mutations, average population fitness, population standard deviation and
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status-quo of product portfolio solution) are recorded in the output report. Thus decision
makers can track the progress of the GA or examine other feasible product portfolio solutions

that are of high fitness values.
5.5. Case Study

The proposed framework has been applied to the notebook computer portfolio
optimization problem for a world-leading computer manufacturing company. The company
had conducted extensive market studies and competition analyses and projected the trends of
technology development in the business sector concerned. Based on existing technologies,
product offerings of notebook computers manifest themselves through various instances of a
number of functional attributes. For illustrative simplicity, a set of key attributes and
available attribute levels are listed in Table 5-1. Among them, “price” is treated as one of the
attributes to be assumed by a product. Every notebook computer is thus described as a viable
configuration of available attribute levels.

It is interesting to observe the importance of product portfolio optimization in this case
study. Taking the “processor” attribute as an example, existing microelectronics technologies
have made it possible to achieve CPU performance ranging from Centrino 1.4 GHz up to
Centrino 2.0 GHz. As a matter of fact, one of two existing competitors of the company does
offer its products with a very fine portfolio, including Centrino 1.4 GHz, 1.5 GHz, 1.6 GHz,
1.7 GHz, 1.8 GHz, and 2.0 GHz. On the other hand, the other competitor only offers
Centrino 1.4 GHz, 1.8 GHz, and 2.0 GHz. It hence becomes imperative to justify the right
suite of variety for the company’s product portfolio, regardless of the fact that all these

attributes levels are technologically feasible. The question lies in whether or not the
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granularity of product offerings can leverage the resulting costs and complexity with respect
to the company’s engineering capabilities.

Table 5-1 List of attributes and their feasible levels for notebook computers

Attribute Attribute Levels
a, Description a;, Code Description
aj, Al-1 | Pentium 2.4 GHz
a, Al-2 | Pentium 2.6 GHz
aj, Al-3 | Pentium 2.8 GHz
a,, Al-4 | Centrino 1.4 GHz
a, Processor a; Al-5 Centrino 1.5 GHz
aj, Al-6 | Centrino 1.6 GHz
a,, Al1-7 | Centrino 1.7 GHz
a Al-8 | Centrino 1.8 GHz
a, Al1-9 | Centrino 2.0 GHz
a;, A2-1 12.1” TFT XGA
a, Display a,, A2-2 14.1” TFT SXGA
a, A2-3 | 15.4” TFT XGA/UXGA
a;, A3-1 128 MB DDR SDRAM
. Momory a32 A3-2 | 256 MB DDR SDRAM
a;, A3-3 | 512 MB DDR SDRAM
a;, A3-4 | 1 GB DDR SDRAM
a,, A4-1 | 40GB
a, Hard Disk a%} Ad2 60 GB
a,, A4-3 | 80GB
a,, Ad-4 | 120GB
a;, A5-1 | CD-ROM
as Disk Drive as, A5-2 | CD-RW
as, A5-3 | DVD/CD-RW Combo
ag, A6-1 Low (below 2.0 KG with battery)
ag Weight a,, A6-2 Moderate (2.0 - 2.8 KG with battery)
a,, A6-3 | High (2.8 KG above with battery)
a, Battery Life a;; ; A7-1 Regular (around 6 hours)
a, AT-2 Long (7.5 hours above)
a, Software a% ; A8-1 Multimedia package
ag, A8-2 Office package
a,, A9-1 Less than $800
a,, A9-2 | $800-$1.3K
a, Price a,, A9-3 | $1.3K-$1.8K
ay, A9-4 | $1.8K-$2.5K
ays A9-5 | $2.5K above
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5.5.1. Customer Preference
Conjoint analysis starts with the construction of product profiles. Given all attributes

and their possible levels as shown in Table 5-1, a total number of Ox4*x3*x2*x5="77760
possible combinations may be constructed. To overcome such an explosion of configurations
with enumeration, orthogonal product profiles are always used in practice (Wittink and
Cattin, 1989). Using the Taguchi Orthogonal Array Selector provided in SPSS software
(www.spss.com), a total number of 81 orthogonal product profiles are generated, shown as
Figure 5-5, comprising 9 factors with each containing 9, 3, 4, 4, 3, 3, 2, 2, and 5 levels, to
explore customer preferences. These profiles are explained in Table 5-2, where columns 2-10
indicate the specification of offerings that are involved in the profiles and column 11 collects
the preferences given by the customers.

Table 5-2 Response surface experiment design

Conjoint Test Preference Scale
least most
Profile | Processor | Display | Memory I;E:;S ]]));ls‘i Weight Bitit;; ry Software Price 1 ?

1 C-1.6 14.17 256 60 CD-R Low Regular | Multimedia <$800 9
2 C-2.0 14.1” 256 80 | CD-RW Low Regular | Multimedia | $1.8-2.5K 5
3 P-2.4 12.17 128 60 | CD-RW | Moderate Long Office $800-1.3K 7
4 C-1.7 12.17 128 40 Combo Low Regular | Multimedia | $1.3-1.8K 4
79 C-1.7 15.4” 256 80 CD-R | Moderate | Regular | Multimedia | $1.8-2.5K 3
80 C-1.5 154 1 120 | Combo Low Regular | Multimedia | $800-1.3K 8
81 C-1.5 14.1” 128 80 | CD-RW High Regular Office $1.3-$1.8K 4

A total number of 30 customers are selected to act as the respondents. Each respondent
is asked to evaluate all 81 profiles one by one by giving a mark based on a 9-point scale,
where “9” means the customer prefers a product most and “1” least. This results in 30x81
groups of data. Based on this data, clustering analysis is used to find customer segments
based on the similarity among customer preferences. Three customer segments are formed:

s,, s,, and s;, suggesting home users, regular users, and professional/business users,
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respectively. These segments, s,, s, and s,, divide the 30 respondents into three respective

groups: (1) customers 1, 2,7, 8, 11, 12, 14, 15, 24 and 29; (2) customers 3, 4, 5,9, 10, 13, 17,
19, 20, 23, 26 and 30; and (3) customers 6, 16, 18, 21, 22, 25, 27 and 28.

3 - SPSS Data Editor g@gl

File Edit Yew Data Transform Analyze Graphs Utiities Window Help
E(E|S B o[- O =k s Fl 2nE e
37 price
prncessn‘ display | mernory | harddisk | diskdriv | weight | batlife software price scale =
| 1jc1B 141" 256 B0 CD-R Lo Regular Mulmedia Less$a00 9
| 2|c20 141" 256 a0 CD-RwY Loy Regular Mulmedia 1.8-2.5k a
| 3|P24 121" 126 60 CD-Rw/ Moderat  Long Office 800-1.3k 7
4|C1.7 12:9* 128 40 Combo Lo Regular Mulmedia 1.3-1.8k 4
j P-28 154" 512 B0 CD-R Moderat  |Long Office Mare2. 5k 3
| B|C15 154" 812 120 CD-R Woderat  [Long Office Iare2 5k 4
| 7|P28 121" 128 a0 Combao High Regular Mulmedia 1.8-2.5k 5
8|C-1.4 154" 256 120 Combo High Regular Mulmedia More2.5k 2
j C-18 141" 512 A0 CD-RwW High Laong Office Less$a00 g
| 10jc-20 121" 12 120 CD-RwY Loy Laong Office Iare2 5k a o
P24 15.4" 256 40 CD-R Moderat  Long Office Less00 7
12{C-1.7 121" 128 a0 Comba High Regular Office 1.8-2.5k &
E P-28 141" 256 80 CD-R Moderat  Regular Mulkmedia 18-2.5k 5
__14|C15B 154" 128 120 CD-R Loy Laong Mulmedia Iare2. 5k 4]
__15]C15 141" 256 60 CD-Rw/ High Long Mulmedia  |B00-1.3k 7
16|C-1.8 154" 212 30 Combo hoderat  Regular Office 1.8-2.5k 4
j P-28 122 128 B0 CD-R Moderat  Regular Mulkedia 800-1.3k 9
_18jC-1.4 141" 12 120 CD-RwY Loy Regular Mulmedia Iare2. 5k 1
| 19]P-26 15.4" 126 40 CD-Rw Lo Long Office LessEB00 o
201C15 15.4" 512 G0 Comba High Long Office 500-1.3k ]
E Cc-20 121" 256 80 Combo High Regular Mulknedia 18-2.5k 7
| 22|P-28 121" 256 120 Combo Woderat  Reqular Office Iare2. 5k 2
_23|c18 14.1" 512 [=21] CD-RWY Loy Regular Mulmedia 1.8-2.5k i
- 24|P-24 15.4" 126 a0 CD-R High Long Office 1.8-2.5k 15
25|C17 1242 128 120 CD-RwW High Long Mulredia More2 5k 3 -
I\Data View/( Watiable Yiew / | 1 L,_‘
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Figure 5-5 Results of orthogonal product profiles

For each respondent in a segment, 81 regression equations are obtained by interpreting
his original choice data as a binary instance of each part-worth utility. Each regression
corresponds to a product profile and indicates the composition of his original preference in
terms of part-worth utilities according to Eq. (29). With these 81 equations, the part-worth
utilities for this respondent are derived. Averaging the part-worth utility results of all
respondents belonging to the same segment, a segment-level utility is obtained for each
attribute level. Columns 2-4 in Table 5-3 show the part-worth utilities of three segments with

respect to every attribute level.
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Table 5-3 Part-worth utilities and part-worth standard times

Attribute Part-worth Utility Part-worth Standard Time

Level (Customer Segment) (Assembly & Testing Operations)
St S5 S3 ' (second) o' (second)

Al-1 0.75 0.65 0.62 497 9.5
Al-2 0.77 0.83 0.82 536 11
Al-3 0.81 0.78 1.18 563 12
Al-4 0.74 0.66 0.61 512 10.5
Al-5 0.77 0.86 0.89 556 11.8
Al-6 0.78 0.77 1.16 589 21
Al-7 0.81 0.79 1.18 598 21.1
Al-8 0.83 0.82 1.21 615 22.3
Al-9 0.84 0.85 1.22 637 24
A2-1 1.18 1.05 0.75 739 35
A2-2 1.21 1.47 1.18 819 37
A2-3 1.25 1.49 1.38 836 39
A3-1 1.02 0.5 0.4 659 24.5
A3-2 1.09 0.9 0.65 699 26.5
A3-3 1.12 1.15 0.93 725 32
A3-4 1.14 1.18 1.11 756 36
A4-1 1.33 0.97 0.63 641 26
A4-2 1.38 1.08 0.78 668 28
A4-3 1.52 1.13 1.08 707 29
Ad-4 1.56 1.19 1.22 865 40
A5-1 0.86 0.93 0.78 293 4.4
A5-2 0.88 1.11 0.82 321 5.1
A5-3 0.92 1.35 0.83 368 5.5
A6-1 0.7 0.2 0.3 215 3.8
A6-2 0.9 0.7 0.8 256 4.0
A6-3 1.1 0.9 0.9 285 4.1
A7-1 0.7 0.6 0.3 125 1.6
AT-2 0.8 0.9 1.2 458 19.1
A8-1 1.2 1.1 1.2 115 1.55
A8-2 0.5 0.8 1.0 68 0.95
A9-1 0 0 0
A9-2 -1.75 -0.35 -0.2
A9-3 -2.25 -0.65 -0.47 N.A. N.A.
A9-4 -2.75 -2.48 -0.6
A9-5 -3.5 -3.3 -0.95

5.5.2. Engineering Cost

Table 5-3 also shows the part-worth standard times for all attribute levels. The company
fulfills customer orders through assembly-to-order production while importing all
components and parts via global sourcing. The part-worth standard time of each attribute
level is established based on work and time studies of the related assembly and testing

operations. With assembly-to-order production, the company has identified and established

129



o the use

Chapter 5: Product Portfolio Optimization based on Heuristic Genetic Algorithm

standard routings as basic constructs of its process platform. Based on empirical studies,
costing parameters are known as USL" =3x10* (hours) and S = 460.

5.5.3. HGA Solution
To determine a near-optimal notebook computer portfolio for the target three segments,
the GA procedure is applied to search for a maximum of expected shared surplus among all

attribute, product and portfolio alternatives. Assume that each portfolio may consist of a

maximal number of J* =5 products. Then a chromosome string comprises 9x5 =45 genes.
Each substring is as long as 9 genes and represents a product that constitutes the portfolio.
Based on the economical analysis, some constraints are generated to ensure the

profitability. The constraints are represented by “IF-THEN” rules, that is, “IF x, =9, THEN
x,#1; IF x, =3, THEN x, #2; IF x, =4, THEN x, #1; IF x, =4, THEN x, #1”.

These constraints restrict the customers from buying high performance notebook computer
with too low price. For every generation, a population size of M =100 is maintained,
meaning that only the top 100 best product portfolios are kept for reproduction.

In addition, it is not uncommon that in the notebook computer business most
manufacturers directly order components and parts from their suppliers. This means that all
the companies possess similar technological capabilities to provide the attributes and levels
listed in Table 5-1. In fact, the produceability of those attributes and levels depends on global
semiconductor suppliers rather than notebook computer manufacturers themselves. Therefore,
we assume that the competitors of the company under this study offer the same product
attributes and levels. As a result, the status-quo product alternatives in the current generation

are used as the pool of competing products for the choice model in Eq. (29).
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5.5.4. Results

The results of GA solution are presented in Figures 5-6. As shown in Figure 5-6(a), the
fitness value keeps improving along the reproduction process generation by generation.
Certain local optima (e.g., around 100 generations) are successfully overcome. The saturation
period (350-500 generations) is quite short, indicating the GA search is efficient. This proves
that the moving average rule is a reasonable convergence measure. It helps avoid such a
possible problem that the GA procedure may run unnecessarily as long as 1000 generations.

Upon termination at the 495™ generation, the GA solver returns the optimal result, which

achieves an expected shared surplus of 8.02%x107*, and an unbalanced index of 0.2, as shown

in Table 5-4.

Shared Surplus (x10)

I I I I I I
a Bl 100 150 200 250 200 350 400 450 500 550

Generation

(a) Shared surpluses among generations

18 T T T

Utility with Choice Probability

I L I
o a0 100 150 200 250 0 350 400 450 500 450

Generation

(b) Utilities with choice probability among generations

131



NTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5: Product Portfolio Optimization based on Heuristic Genetic Algorithm

Cost (x10%)
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(c) Costs among generations

Figure 5-6 Results of GA solution

Table 5-4 Optimal solution of notebook computer portfolio

S Chromosome
Product Portfolio A"\ v _[1 1,1,1,3,1,1,2:8.3.3.3.3.1,2,0.4:0,0,0,0,0,0,0,0,0:0,0,0,0,0,0.0,0,0:0.0.0.0.0.0.0.0.0]
Constituent Products {7} Substring z! =[1,2,1,1,1,3,1,1,2] Substring 7! =[8,3,3,3,3,1,2,0.4]
a; aZz aZ aZz
Processor Pentium 2.4 GHz Processor Centrino 1.8 GHz
Display 14.1” TFT SXGA Display 15.4” TFT XGA/UXGA
Auributes {7} - "Memory 128 MB DDR SDRAM___| Memory 512 MB DDR SDRAM
Hard Disk 40 GB Hard Disk 80 GB
Attribute Levels {aZ, }(K . Dis?( Drive CP-ROM Dis?( Drive DVD/CD-RW Combo
* Weight High (2.8 KG above) Weight Low (below 2.0 KG)
Battery Life Regular (around 6 hours) Battery Life Long (7.5 hours above)
Software Multimedia package 6] Nil
Price $800 - $1.3K Price $1.8K - $2.5K
Expected Shared Surplus 3
Eh] 8.02x10
Unbalance Index y 0.2

As shown in Table 5-4, the optimal product portfolio consists of two products, 7| and

Z,. From the specifications of attribute levels, we can see that they basically represent the

low-end and high-end notebook computers, respectively. With such a two-product portfolio,

all home, regular and professional/business users can be served with an optimistic

expectation of maximizing the shared surplus. While low-end notebook computer z,

includes all available attributes, high-end notebook computer Z, does not contain the
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“software” attribute. This may manifest the fact that most professionals prefer to install
software authorized by their business organizations for the purpose of, for example, systems
maintenance and technical support.

5.5.5. Performance Evaluation

w,B ;.

1

Figure 5-6(b) compares the results of utility with choice probability, Z

3 5
=1 j=
among generations. It is interesting to observe that the distribution of utility with choice
probability does not tally with that of the fitness shown in Figure 5-6(a). The optimal solution
(i.e., the last generation) does not produce the best utility performance. On the other hand, a
number of high utility achievements do not correspond to high fitness. Likewise, as shown in
Figure 5-6(c), the distribution of cost performance among generations disorders the pattern of
fitness distribution shown in Figure 5-6(a). This may be explained by the fact that high utility
achievement is usually accompanied with high incurred costs. Therefore, the shared surplus
is a more reasonable fitness measure to leverage both customer and engineering concerns
than either utility or cost alone.

Figure 5-7 compares the achievements, in terms of the normalized shared surplus, cost,
and utility with choice probability, of the top 20 product portfolios in the 495" generation
that returns the optimal solution. It is interesting to see that the peak of utility achievement
(portfolio #6) does not contribute to producing the best fitness as its cost is estimated to be
high. On the other hand, the minimum cost (portfolio #5) does not mean the best

achievement of shared surplus as its utility performance is low. The best portfolio (#1) results

from a good balance between both utility and cost performances.
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Figure 5-7 Performance comparison of top 20 product portfolio population in the 495™
generation

Figure 5-8 shows the performance of individual constituent products in terms of the
unbalanced index for the top 20 portfolios in the 495" generation. It is noted that the top five
portfolios all contain a moderate number of products (2-3), whereas those portfolios
consisting of more products (e.g., portfolios #11, 16 and 19) seldom produce very good
performance. This exactly illustrates the granularity tradeoff issue in product portfolio
planning. In fact, too many products introduced in a portfolio may even bring about
competition among themselves. On the other hand, none of the top 20 portfolios contains
only one product. In practice, a single-product portfolio is not a desired case either, as it
facilitates a limited coverage of diverse customer segments. Figure 5-8 shows that three
product portfolios are outstanding with respect to their shared surplus (portfolio # 1, 2, 3)
with their normalized shared surplus of 1, 0.94, and 0.83 respectively. Among these
portfolios, portfolio 1 is the best with respect to its unbalanced index with an unbalanced

score of 0.2, and thus it is selected as the final choice.
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Figure 5-8 Comparison of constituent products for top 20 product portfolios produced

in the 495™ generation

5.6. Sensitivity Analysis

It is very important to maintain population diversity during the GA searching process.
Low diversity may cause “inbreeding”, thus weakening the exploratory capability (Laumanns,
et al., 2002). Many parameters can influence the population diversity. For example, an
excessively high crossover rate will cause the solution to converge quickly before the
optimum is found. On the other hand, a low crossover rate decreases the population diversity
and results in a long computation time. The mutation rate also influences the GA
performance, as it determines the frequency of random search. Generally, a very low
mutation rate is recommended to avoid that the GA process becomes a pure random search,
which impairs the search capability of the GA. The population size may be the most distinct

factor influencing the population diversity. For a complex problem, a large population size is
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preferred to ensure exploration in a large search space. In this section, the performance of the
heuristic GA is evaluated by means of sensitivity analysis. Based on varying parameter
values, such as the population size, the crossover and mutation rates, the heuristic GA
performance is examined with respect to different problem sizes.

5.6.1. Problem Size

In accordance with different parameter values required for varying problem sizes, three
cases are constructed to represent three different problem sizes for notebook computer
portfolio specification. The first case represents a simple problem size, where three attributes
are selected, including processor, memory, and weight that are of 9, 4, and 3 levels,
respectively. The second case corresponds to a moderate problem size, consisting of six
attributes, i.e., processor, memory, weight, hard disk, display, and battery life, which assume
9, 4, 3, 4, 3, and 2 attributes levels, respectively. The third case stands for a very complex
problem size, in which all nine attributes and their possible levels are considered. Table 5-5
lists all three scenarios.

5.6.2. Experiment Design

The proper parameter values for the population size, the crossover and mutation rates
are recommended through sensitivity analysis. To setup the experiments, 4 values are
considered for population size, namely 20, 50, 80, and 100. Likewise 3 values of crossover
rate (0.6, 0.7, 0.8) and 3 values of mutation rate (0.005, 0.01, 0.03) are used. Therefore,
sensitivity analysis experiment is constructed based on a 4x3x3 full design. For more
complex analysis, where more values are involved, other experimental design methods, such

as orthogonal design and factorial design, can be employed. The values of these parameters
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are selected based on the rule-of-thumb from most GA applications - a crossover rate of at
least 0.6 and a very low mutation rate.
5.6.3. Parameter Selection

The full design generates 36 scenarios. For each scenario, the GA is run 10 times to
collect the mean of its fitness values. Thus, the parameter values with respect to each
problem size are recommended on the basis of 360 test runs. The average degree of
approximation (Ave_App) associated with GA solutions is adopted as the performance
indicator of each problem type. The best GA parameter values are recommended as shown in
Table 5-5.

As illustrated in Table 5-5, a larger population size is required for a complex problem in
order to maintain population diversity. A population of diverse products is necessary to
guarantee thorough exploration of the search space so as to achieve a high degree of average
approximation. The crossover rate (p.) of 0.8 is recommended to encourage more
chromosomes to exchange their promising parts and to generate the offspring with better
performance. It also demonstrates the tendency that a higher crossover rate leads to better
approximation. For complex problems, a higher mutation rate is recommended to avoid the
search’s falling into local optimum. For the simple problem type, a lower mutation rate is
recommended so that the search does not become a pure random search.

Table 5-5 Parameter selection with respect to different problem sizes

Parameter Value and Performance
Number

Problem | Number of | Problem . R

. . Population Crossover Mutation of
Type Attributes Size Runs
Size Ave_App P. Ave_App P. Ave_App

Simple 3 15 20 97.3% 0.6 95.6% 0.005 96.2% 360
Moderate 6 30 50 96.7% 0.7 96.3% 0.01 95.8% 360
Complex 9 45 100 94.2% 0.8 97.1% 0.01 94.1% 360
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Figure 5-9 shows the average degree of approximation with respect to each population
size based on an interval of 20 within the range [20, 160] for the complex problem type. The
crossover and mutation rates are set to be 0.8 and 0.01, respectively. As illustrated in Figure
5-9, too large a population size (160) may contribute to the improvement of performance to

only a modest extent.
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Figure 5-9 Performance with respect to different population sizes
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Figure 5-10 Performance with respect to different crossover rate values
Figure 5-10 shows the average degree of approximation for varying crossover rate based
on an interval of 0.1 within the range [0.6, 1.0] for the complex problem type. The population
size and mutation rate are set to be 100 and 0.01, respectively. It suggests that too large a

crossover rate may decrease the performance. This is consistent with previous findings from
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GA applications, that is, a large crossover rate may cause too many chromosomes to change,

thus leading to premature.
5.7. Summary

Differing from the conventional product line design problem, product portfolio
optimization must not only optimize a mix of products but also in the meantime optimize the
configurations of individual products in terms of specific attributes. This chapter proposes a
maximizing shared surplus model to examine the combined effects of multiple product
offerings on both customer preferences and engineering costs. The model allows product
portfolios to be constructed directly from part-worth utility and cost.

A heuristic genetic algorithm is developed and applied to solve the combinatorial
optimization problem involved in product portfolio optimization. The study indicates that the
GA works efficiently in searching for optimal product portfolio solutions. Although the
model is used to solve a seller’s problem of introducing a new product portfolio with the
objective of maximal shared surplus, the proposed framework could easily be adjusted to
handle such complex problems as maximizing share-of-choices and extending an existing
product portfolio by allowing for already existing items to be owned by the seller. This is
supported by the flexibility of the GA procedure that merely uses objective function
information, and therefore is capable of accommodating different fitness criteria without any
substantial modification of the algorithm.

As demonstrated in the case study, the strength of GA lies in the ability to carry out
repeated runs without major changes of parameter values or defining different initial
populations, thus improving the chance of finding an optimal or at least a near optimal

solution. It is also possible to insert solutions obtained from other techniques into the initial
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population. Hence, rather than generating all of the members of the initial population at
random, the GA can use a prior knowledge about potential optima to arrange the initial
population or improve on an existing solution that can perform as a kind of lower bound or

benchmark for GA performance.
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CHAPTER 6
APPLICATIONS TO CUSTOMER-ENGINEERING
INTERACTION

Product portfolio planning lends itself to the discovery of the underlying coupling and
interrelationships among various requirements with regard to product performance, as well as
the combined effects of multiple product offerings on both customer satisfaction and
engineering implications. Thus, it provides insights for applications involving customer-
engineering interaction. For example, customers may be supported to make decisions with
more engineering concerns. On the other hand, engineering design could be enhanced by
capturing more customer satisfaction. In this chapter, three applications are demonstrated: (1)
customer decision-making (see Section 6.1); (2) affective design (see Section 6.2); and (3)
product family configuration design (see Section 6.3). For each application, the related
background knowledge, system architecture, implementation procedure, and validation are

described in detail.
6.1. Customer Decision-Making

With the advent of customer-driven marketing, it has been envisioned that e-commerce will
emerge as a primary style of manufacturing in the coming decade and beyond (Economist,
2001). The capabilities of e-commerce enable the customer’s involvement in design,
manufacturing, and service, thus making it possible for product/service providers to interact
directly with customers to capture their requirements. A number of online product

customization systems have been launched recently (for example, Dell.com, Idtown.com, and
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Cannondale.com). These systems support providers to respond to a high variety of
requirements and orders by customizing the offerings anticipating the customer requirements.
However, many online customization systems encounter difficulties when dealing with
the support for customers’ finding the valuable products that match their heterogeneous
needs, namely, the personalization problem. It is not uncommon that searching for
information or buying complex products (e.g., digital products) via the Internet are always
frustrating (Francisco et al., 2005). As in the World Wide Web, the available products and
the corresponding amount of electronic information lead to the problem of information
overload. Online customers have to access all of the information in order to find what they
most prefer. Without face-to-face advice, customers always have difficulties in making
tradeoffs among numerous competing products on the Internet. For example, as in real
purchase decisions, buyers cannot get all of the best features at the lowest price. In some
cases, for specific products, especially for digital products, professional knowledge is always
required for evaluation. It is difficult for non-experts to compare products’ performances. For
example, online customers may be frustrated by the information of digital camera products
because they do not know how each feature or its parameters can influence picture quality.
Recommendation systems are traditionally used in e-commence sites to solve the
personalization problem by guiding customers to find products they would like to purchase
(Yong et al., 2005). A number of recommendation systems have been proposed for different
businesses (for example, Group-Lens recommendation system and Ringo). Most of them are
either homogeneous (i.e., content-based filtering) or heterogeneous (i.e., collaborative
filtering) product recommendation systems (Yuan and Cheng, 2004); however, both of the

two paradigms yielded few promising results. The content-based filtering (CBF) approach
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recommends products to target customers according to the preferences of their neighbors
(Hill et al., 1995); however, it is often inhibitive to estimate the preference similarities
between various customers. For example, similar preferences may be defined as the
preferences of customers who have similar ratings of items (Yoon and Jae, 2004). It is
difficult to obtain accurate customer ratings of products especially when special knowledge is
needed for rating. The collaborative filtering (CF) approach, on the other hand, recommends
products to target customers based on their past preferences (Basu et al., 1998). When facing
new customers, this type of recommendation systems cannot recommend a new product as no
historical preference records are available (Avery and Zeckhauser, 1997). Nevertheless, both
approaches require customers to express their requirements according to system pre-defined
formats (e.g., product ratings or customer profiles), and thus real customer requirement
information may be distorted.

Due to the drawbacks of traditional approaches, a new paradigm is preferred to advise
proper products by capturing accurate individual requirement information (Cheung et al.,
2003). As individual customer requirements are heterogeneous, an open environment is
required to allow customers to express their diverse requirements completely to their liking.
On the other hand, to avoid the difficulties involved in preference estimation, it is preferred
to establish such models that allow the prediction of product labels according to customer
requirements directly. As a result, the main difficulties involving in establishing
recommendation systems for personalization in B2C e-commerce applications can be
summarized into two categories. First, customers always use their natural languages to
express what they need. Their requirements are normally qualitative and tend to be imprecise

and ambiguous due to their linguistic origins. Synonyms are expected to express the same
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requirements. Further, numerous words that contribute nothing to information retrieval are
always found. Second, classification methods have been proven to be an effective means to
predict future data objects for which the class label is unknown. Many efficient methods,
such as decision trees, regression models, etc., have been developed to identify the
relationships between the objects and class labels; however, these methods only excel in
classifying the structured data - the object data are organized into a fixed set of attributes or
dimensions. Therefore, commonly used relational data-oriented classification methods cannot
be adopted to classify customer requirements which are organized into a set of text-based
documents.

As discussed in Chapter 4, association rule mining lends itself to the discovery of useful
patterns associated with requirement analysis enacted among customers and excels in dealing
with semi-structured data. This section presents an associative classification-based
recommendation system for personalization in B2C e-commerce applications. A set of
associated, frequently occurring text patterns (classifiers) are built by applying an association
rule learning method to a training set of requirement text documents. These classifiers are
used to predict the product labels for new customer requirements and distinguish one label
from others. Thus, products are recommended to customers according to the inner established
model that anticipates specific customer needs.

6.1.1. Problem Formulation

By semantic analysis, customer requirements can be described as a set of phrases,

PE{pl,pz,-u,p,}. Let Cs{cl,cz,m,c,} be a set of class labels, each representing a

specific product. Suppose there are sales records for S customers and all the sales records
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comprise a transaction database, 7. Every transaction record, 7, |Vs=1,2,...,S , comprises
the customer requirement record and the record of the product he/she purchased. For each
customer s|Vs=1,2,...,5 in the transaction database, the corresponding requirement record
is described as a set of phrases, P", where P" < P. The corresponding product record

indicates a class label, C(z,), where C(t,) =c i I1dje(l,...,J], showing which product he/
she purchased. Thus, transaction records can be summarized as (P,C) pairs with the form of
t,={P",C(t,)}IVs=1,2,...8 . Suppose there are K new object customers for whom the

class labels are unknown. The object customers comprise an object database, O, where

O ={o, }, . For each customer k|Vk=1,2,..,K in the object database, the requirement

record is described as a set of phrases, P*, where P* c P and P # P" |Vs=1,2,...,S.
Thus, the recommendation problem based on customer requirements is noted as

P* = ¢ i Idjell,...,J], where an association rule, =, indicates an inference from the
customer requirements ( P’ ) to the class label (¢ J13jell,.J]).

6.1.2. Framework and Methodology: Recommendation System

Based on an associative classification method, an inference system can be constructed
for recommendation problems. The system comprises four consecutive stages: (1) the
requirement preprocessing module, (2) associative classifier generation module, (3)
classification module, and (4) system performance validation module. First, historical
requirement data is selected and transformed into proper phrase data sets. Data mining
procedure then starts to search for a set of associated, frequently occurring phrase patterns

(classifiers). The generated classifiers are pruned by which only those classifiers with good
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quality are kept for recommendations. When new requirement information comes, the system
identifies the corresponding class labels using multiple classifiers. Finally, the performance
of the whole system is validated to evaluate how accurately the system will give good
recommendations.

6.1.2.1. Requirement preprocessing module

Customer requirements are usually expressed by natural language where many common
words occur which contribute nothing to information retrieval. For example, the words “a”,
“the”, “of”, “for”, etc., are irrelevant for information even though they may appear frequently.
These common words should be filtered out. On the other hand, a group of different words
may share the same word stem. To reduce variations in words and increase the scope of
searches, these words should be transformed into their canonical forms. In this regard, a
stemming algorithm (Porter, 1980) and a common stopword list in English (Fox, 1992) are
adopted to reduce the dimensions of the text documents and improve the efficiency of the
classifier extraction.

Customer requirements may bear the same semantic meaning even though they are
represented by different expressions (Carbonell, 1992). To generalize the requirement
information, semantic analysis is adopted. In this research, four thesaurus collections are
used to match the requirements. Each collection is composed of several sub-collections, each
containing a set of synonyms. The four thesaurus collections are represented as
N={N, N,..}, V={V.,V,,..}, ADJ ={ADJ,,ADJ,....}, ADV ={ADV, ,ADV,....} , for nouns,
verbs, adjectives, and adverbs, respectively. Several semantic rules are represented as IF-
THEN rule formats and stored in the semantic rule database to indicate the inference

relationship between requirements and a set of predefined phrases, PE{pl,pz,---,p,}.
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Suppose after stopwords removal and stemming, a particular customer requirement is

transformed into a word set, Y ={y,,y,,y;} ., and the semantic meaning of such a

requirement is represented as IF-THEN rule formats as the following,

IF y eV,,y,e ADJ ,and y, € N,

THEN the semantic meaning of Y is associated with p,.

After preprocessing, customer requirements are represented as a set of phrases that are
used in the following procedures to generate the classifiers.
6.1.2.2. Associative classifier generation module

As the association rule learning method excels in finding the complex relationships
among a huge number of semi- or non-structured items, it is adopted here to generate the
classifiers. The general form of associative classifiers is given as the following,

0NN, NO, = B [Support: §%; Confidence= c%], (35)

where Vz=12,..Z, a, =p/l3diell... 1], ,Bzcj I3jell,...,J] ; and for any two

elements in the precedence, &, and a,, where x, ye[l,...Z]and x#y, . N a, = D, the

meanings of the association rule in Eq. (35), as well as s% and c%, are the same as those
discussed in Chapter 4.
6.1.2.3. Classification module

(1) Classifier pruning. For the classifiers generated by association rule learning, one
important problem is that the number of the classifiers can be very large. Excessive
classifiers extend the time to identify the class labels for given requirement information.

Besides, noisy and redundant information impairs the classification quality. To enable the
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timely and accurate responses, this research applies CBA-CB algorithm (Liu et al., 1998) to
produce the best classifiers out of the whole set of rules.

The driving idea of CBA-CB algorithm is that only those rules that are more general and
hold high confidence levels are necessary for the classification task. The unnecessary rules
should be pruned by database coverage. Thus, a small number of rules are kept for efficient
recommendations. The principles of CBA-CB algorithm are as follows,

(1) Given two rules, r, = c; Idjell,....J] and r,=>c¢; I3 je[l,...,J], the first rule is
more general than the second one if r, < r; and

(2) Given two rules, r, and Iy Ty has a higher precedence than I namely r, > T if
(a) the confidence of r, (con(r,)) is greater than that of r ; or (b) con(r,) = con(r,), but the
support of r_ ( sup(r,) ) is greater than that of r, 5 or (¢) con(r,)=con(r,) and
sup(r,) =sup(r,), but r, is generated earlier than r, .

Suppose M rules are generated by the classifier generation module and comprise a rule

set, R, where R={r,,r,,....1,,}. Bach rule, r, INm=12,...,.M , is pruned according to the
first principle. After pruning, general rules are selected and stored in a pruned rule set, R, .
We rank all the rules in R, in a descendent order according to the second principle and
record the ranked rules in a rule set, R, . For each rule in R, r, |V r, € R,, the phrases
involving in its precedent part comprise a set, PR™, where PR™ < P. Let C(r, ) present the
class label associated with r,, where C(r,,) =c i I3 je(l,...,J]. We set a cover-count zero

for each transaction record, ¢ |V s =1,2,...,§ , namely CC(¢,) =0. With respect to each rule,
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r, IV r, € R,, next search all the records in the transaction database. For any record,
t,13sell,...,S], if it satisfies the condition, PR™ < P, it is selected. All the selected
transaction records comprise a new set, T', where T T . The cover-count is increased by
one for all the transaction records in set T . For any rule, r, |V 7, € R,, if it satisfies the
condition, C(r,,)) =C(t,)|dse[l,...,S], where t € T, it is put into the filtered rule set, R,..
Then we delete the corresponding rule in set R, and empty set T . Finally, we delete record
t,1dse[L..,S§] in the transaction database that satisfies the condition,
CC(t,)2013s€el,...,S], where J is a threshold for cover-count.

(2) Classification based on multiple classifiers. By CBA-CB algorithm, the pruned rules
in set R, are the most significant and finally selected as classifiers to predict the class labels
for new requirement information. Suppose the object customers comprise an object database,

O, where O ={o, }, . For customer k |3k € [L,...,K] in the object database, the requirement
record is described as a set of phrases, P*, where P c P and P™ # P"|Vs=1,2,...,S.
We select rules from set R, which satisfy the condition, PR™ < P* |Vr,,r, € R,, and put
the selected rules in the classifier rule set, R.. All the rules in set R. are grouped based on
their associated class labels. Suppose N groups are generated, where G ={g,, 8,8y}
and each group, g, IVn=12,..,N , associates with a class label, namely
C(g,)=c i I3 jell,...,J]. Thus, the classification based on multiple classifiers can be

formulated as the follows,

P* = C(g)IVn=12,..,N, (36)
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St Zcon(rm) 2y|Vr,,r, €8, (37)
where P represents the requirement information of customer & | 3k € [1, ..., K] in the object
database; C(g,) means the class label associated with n—thgroup |dne[l,...,N]; con(r,)
is the confidence of rule r, |Vr, ,r, € R, ; and ¥ is the threshold. Equations (36) and (37)

indicate that for the rules selected as classifiers, their associated class labels are selected as
recommended ones only if their accumulative confidence satisfies the particular threshold.
This enables multiple class labels to be identified based on strong patterns thus adapting to
the recommendation problems where multiple recommendations are preferred by allowing
customers to make comparisons among a small set of similar products.
6.1.2.4. System performance validation module

To evaluate how accurately the proposed recommendation system assigns class labels
according to future customer requirements, this research applies the accuracy measurement

(Han and Kamber, 2001) to validate the system performance. A test set is used to measure
the recommendation accuracy. Suppose the test set, T, comprises S records, where

T = {Z}S. For each record in set T, Z: {PE,C(Z)HVS =1,2,..., S, the associated class

labels assigned by the classification module comprise a set C “

Then the recommendation accuracy is computed using the following,

S
a=>yv15, (38)
s=1

1 ifC(t)eC" IVt eT
st v, = | T, =128, (39)
0 otherwise
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where a indicates the recommendation accuracy, namely the percentage of the transactions

in the test set that are correctly classified; v, | Vs =1,2,...,S is a binary variable such that

v, =1 if transaction E Vs =12,..,S is correctly classified, and O otherwise.

6.1.3. System Analysis and Design

To enable the application of the associative classification-based recommendation system
to personalization in B2C e-commerce, this research implements the proposed
recommendation system in an Internet programming environment. Figure 6-1 illustrates the
function model of the associative classification-based recommendation system. The model
comprises five functions. First, customer requirements in the transaction database are
extracted and transformed into a set of predefined phrases. The requirement transformation is
implemented by the requirement preprocessing function where the stemming algorithm,
stopwords removal methodology, and semantic analysis are integrated to process the natural
requirements. Allowing the transformed transaction records, the second function, classifier
generation function, creates a set of classifiers using the Apriori algorithm. The classifier
pruning function then implements the pruning work to remove the noisy and redundant
information and the refined rules are stored in the classifier rule database. To validate the
system performance, the testing function uses the generated classifiers to assign the class
labels for a test set where the class labels are already known. If the performance is validated,
the classifiers stored in the classifier rule database are used for future classification tasks.
Finally, when new customer requirements occur, they are first processed by the requirement

preprocessing function and transformed into the corresponding phrases. Then the
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classification function searches all the classifiers that satisfy the transformed requirements,

thus assigning the corresponding class labels.

Sales recor;d Requirement Transformed transaction record
— S|preprocessing
New Al B
requirement Classifier Set of classifiers
1\ generation
Semantic A2 ] Pruned classifiers
analysis Pruning :
A3
Apriori
algorithm CBA-CB Testin Validated classifiers
pruning gA 4
Class
Transformed requirements AC(tiéJSrtaCy Classificatig\n labels
5

Figure 6-1 Function model of the associative classification-based recommendation
system

6.1.4. Web-based Architecture and Implementation

The design, development, and database access for the associative classification-based
recommendation system in an Internet environment can be illustrated by the three-tier
architecture (Huang and Mak, 2000) as shown in Figure 6-2.

The first tier includes the application clients, namely the customers shopping online.
The application clients are involved in the recommendation system only when they are
connected with the Web server. There are two types of middle tiers: (1) the Web server and
(2) the application server. The Web sites are created by the Web server for applications. The
application server is a piece of software to execute the computation activities. In this research,
as the pruned classifiers have been generated and stored in the classifier rule database via
complex offline work, the Web server and the application server are deployed on the same
computer to handle the simplified online tasks. The third tier is the database server to manage
the relevant data and rules. In this research, the database is deployed on a computer separate

from the Web server.
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Figure 6-2 Three-tier architecture of the associative classification-based
recommendation system in an Internet environment

(1) Client. The clients can be HTML pages, attached components to HTML pages, and
programs that can be downloaded from a Web site and then installed, configured and
executed on the client machine. Clients and servers communicate with each other through
HTTP by exchanging HTML files. For the proposed recommendation system, on the client
side, customers, who search and buy products via the Internet, are allowed to log in the Web
page and submit their requirement information expressed by their languages to the server and
ask for recommendations for the most valuable product alternatives via HTML file format.

(2) Application Server. The application server deals with the computation tasks. It
receives client-side requests and information and then processes the data. For the proposed
system, the application server comprises two individual servers: the requirement
preprocessing server, and the classification server. The requirement preprocessing server
deals with the requirement information preprocessing task. When new customer requirement

information comes, the requirement preprocessing server searches the semantic rule database
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where a set of semantic rules are stored as “IF-THEN” rule formats to indicate the
relationships between phrases and natural requirement information. All the rules that satisfy
the condition of the requirements are triggered, and the corresponding action clauses (phrases)
are identified to match the original requirement information. The classification server assigns
the class labels for specific requirement information. Via a lot of offline work, such as
classifier generation, pruning, and testing, a set of classifiers are built and stored in the
classifier rule database for future classification task. Allowing the new transformed customer
requirements, the server finds all the classifiers that satisfy the conditions of such
requirements by searching the classifier rule database. The proper class labels are then
recommended to match the new requirements based on the identified multiple classifiers.

(3) Database Server. For the conventional approach, if there are changes, the Web
designers have to manually adjust all the related categories to reflect the changes. With the
database, the Web designers are only required to update those tables containing the related
categories without altering the interface. The database server is deployed to manage the data
and rules. There are two rule databases in the proposed system, namely, the semantic rule
database and the classifier rule database. All of the rules in both of the two databases are
described as “IF-THEN” rule formats to represent the relationships between original
requirement information and phrases, as well as transformed requirement information and
class labels, respectively. To enable the Web application work with rule databases, ODBC,
which is a system-level interface communicating with the database, is necessary. ODBC
provides a common set of application interfaces (API) to communicate with the database
using SQL and Access. For each application server, ODBC is adopted to work with other

databases thus integrating diverse applications.
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To implement the associative classification-based recommendation system in an Internet
environment, this research applies Active Server Pages (ASP) to create the dynamic and
interactive personalized pages for the Web site. ASP is a language-independent server-side
scripting technology. The most two common scripting languages, VBScript and Jscript, are
supported by ASP. ASP provides an open, compile-free application environment in which
HTML, scripts, and reusable ActiveX server components can be combined to create dynamic
and powerful Web-based solutions. In addition, ASP runs on the server; thus, most browsers
will be supported to gain the entire contents of the Web pages to ensure the accessibility to
the clients. Further, ASP allows the connection to a database using Active Data Objects
(ADO). Data can be simply displayed from an ODBC-compliant database and formatted. To
allow the rules to be queried and managed efficiently, this research deploys the Web database
query run on Microsoft’s Internet Information Server (IIS). All of the rules in the two
databases, the semantic rule database and the classifier rule database, are represented as “IF-
THEN” (condition-action) formats. Given the query request, the query processor searches for
a set of rules whose conditions (IF) satisfy the request. The actions (THEN) of the fired rules
are then triggered.

6.1.5. Prototype System and Evaluation

The prototype of the proposed associative classification-based recommendation system
has been constructed for mobile phone B2C e-commerce application. Based on the historical
sales records, transaction database is established comprising 50 transaction records, as shown
in Table 6-1, where customer requirements are described as a set of phrases and the
corresponding class labels indicate the mobile phone that has been purchased. Allowing the

transaction database, the classifiers are identified. After pruning, the pruned classifiers are
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used to assign the class labels for future customer requirements. Figure 6-3 shows part of the
classifiers where the second column indicates the customer requirements represented as
phrases, the third column shows the confidence levels, and the fourth column represents
diverse mobile phone products.

Table 6-1 Transaction database records

Record Requirement Phrases Product Class Label

f P={pi.ps..pr} C={er.crroney}

t More functions, smallest, lightest, camera, large buttons Samsung SGH-D730
t Larger screen, office function, usb connectivity, picture transfer Panasonic X800

t Scheduler, e-mail, news, voice communication Nokia 9300

Ly Little functions, cheap, high voice quality Motorola C117

ty Stylish, elegant, black, video, friendly keypad, small, camera Nokia 7610

Iy Stylish, elegant, black, light, colorful screen Nokia 8910

= Select C:\WINDOWS\System32\emd.exe - mysql -u r... =] E4|

| | |
+ + +

| 1 1 +cape | 0.776 | 71

| 2 | *trys | 8.776 | T

| 3 | +clear | 0.954% | 10 | J
| 4 | +stylish | 0.954% | 10 |

| 5 | +eleg | 8.954 | 10 |

| 6 | +model | 8.954 | 10 |

| 7 | *defin | 0.954% | 10 |

| 8 | +screen | 8.917 | 19 |

| 9 | +8910 | 8.917 | 10 |

| 10 | +black | 8.776 | 51

| 11 | +color | 8.776 | 51

| 12 | +slide | 0.776 | 51

| 13 | +cool | ©.776 | 5 1

| 14 | +8310 | ©.752 | 51

| 15 | +featur | 8.752 | 51

| 16 | +review | B.752 | 5 |

| 1T | +screen | ©.752 | 5 1

| 18 | *revieew | ©.853 | 21

| 19 | +9300 | ©.853 | 21

| 20 | +stai | 8.853 | 21 7
4| | »

Figure 6-3 Classifier rule database
The system performance has been validated using 50 test records, shown in Figure 6-4.
As explained in Table 6-2, the second column indicates the mobile phone product that has
been purchased in each test record, and the third column lists the mobile phone products that

are recommended by the associative classification-based recommendation system using
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classifiers. The value of v. shown in the fourth column is either one or zero to indicate

whether the recommendation system advises the correct products. In this case, 42 test records

are correctly recommended, resulting in the recommendation accuracy of 84%. After

validation, the generated classifiers are stored in the classifier rule database for further

retrieval, update, and query.

Microsoft Access - [Table1 : Table] E|[E|Fg|
File Edit ‘“iew Insert Format Records Tools Window Help -8 X
- E8 SRY 83 TE M

In | Recordl original label | recommedned label | V= |A

| 1 1 Motorola EBS01 Motorola EBE01, Holia HTO 1

L Z 2 Siemens SH1 Hokia ETO, Samsung SGH-DTZ0 1]

L 3 3| Hokia 3230 Hokia 3230, Motorola ATBS1 1

L 4 4 TCL ES00 TCL ESO0, Hokia 3230 1

L 5 S Fhilip=s SBEO Hokia HTO,Motorola ¥3 1]

| B B Samsung D518 Samszung D518 1

L T T Siemens A3l Siemens A3, Holia TR0 1

L g 5 Samsung EBZ23 Hokia HT0, Samsung EBZ25 1

| ] 9 Siemens AFS1 Philips TBE, Hokia HTO a

L 10 10 Siemens CT5 Siemens CTS 1

| 11 11 Sam=sung D545 Samszung 03458, SonyEricsson 1

| 1z 12/ Motorola EBS01 Motorola EBE01, Holia HTO 1

L 13 153 Motorola V3 Motorola W3, TCL DSGE 1

| 14 14 SonyEricssonKT90C SonyEricssenkTo0C 1

| 15 15 Sam=sung X705 Samszung X708, Fhlips 588 1

L 16 16 Samsung D515 Samsung D515, Siemens CF110 1

L 17 1T Fhilips TGS Philips TBS, Holkia ETO 1

L 13 18 Holkia HTO Hokia HTO 1

L 19 19 SonyEricssontS10C SonyEricsseniS10C 1

| e 20 Samsung X703 Samsung D720, Phlips 588 ol
Record: 4] 4 50 4] of 50
Datashest View Him

Figure 6-4 Validation records

Table 6-2 System performance results

Record | Original Class Label Recommended Class Labels
1 cay) cr
t_ Motorola E680i Motorola E680i, Nokia N70
1
1 Siemens SX1 Nokia E70, Samsung SGH-D720
2
t_ Nokia 3230 Nokia 3230, Motorola V3, Motorola A768i
3
P Samsung X478 Samsung X478, Nokia 1110, Samsung E568
49
1 Samsung E628 Samsung E628, Nokia 9300
50
S
v, 42
s=1
a 84%
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Online customers are now allowed to search and buy mobile phone products via the
Internet. The dynamic Web pages produced by ASP are not affected by the type of browser
the online customer is using. Thus, online customers can access the recommendation system
through the Internet more conveniently. Connecting with the database through the ODBC
proxy server, data and rules can be easily retrieved to support the application server to
process the classification tasks. The most valuable product alternatives are then identified
and represented to the online customers via HTML file format. Figure 6-5 shows the
recommendation results for two different customer requirements. For example, Figure 6-5(a)
indicates that the customer wants to buy a mobile phone that has a scheduler and can send
email. The recommendation result is Nokia 9300 shown in Figure 6-5(b), which is deemed as
the most valuable mobile phone for the corresponding requirements supported by the
associative classification-based recommendation system. Figure 6-5(c) and 6-5(d) show
another customer requirement and the corresponding results, where the customer asks for the
mobile phone that is stylish, elegant, and in black color, and Nokia 7610 and 8910 are
recommended for the customer’s further comparison. Supported by the associative
classification-based recommendation system, customers are able to find the mobile phone
products online that accord with their requirements mostly among numerous available mobile
phones. The multiple recommendations also allow customers to make further comparisons
among a reduced product set online. This helps the information overload problem, thus

improving the efficiency and effectiveness of B2C e-commerce.
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Figure 6-5 Customer requirements and the recommendation results

6.2. Affective Design

In today’s competitive environment, satisfying customer needs has become a great
concern of almost every company (Cross, 2000). While there are various customer needs, the

functional and affective needs have been recognized to be of primary importance for
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customer satisfaction (Khalid, 2001). In particular, mass customization and personalization
are increasingly accepted as an important instrument for firms to gain competitive advantages
(Tseng and Piller, 2003). Moreover, with the development of global markets and modern
technologies, it is likely that many similar products will be functionally equivalent.
Customers may find it is difficult to distinguish and choose among many product offerings
(Huffman and Kahn, 1998). Design for performance (e.g., functional design) and design for
usability (e.g., ergonomic design) no longer empower a competitive edge because product
technologies turn to be mature, or competitors can quickly catch up (Khalid and Helander,
2004). In this regard, it is imperative to design products by engaging customers' emotions or
attention so as to differentiate products from each other.

When designing products, customers’ affective needs must be considered (Jordan, 2000).
Affect is said to be a customer’s psychological response to the perceptual design details (e.g.,
styling) of the product (Demirbilek and Sener, 2003). Affect is a basis for the formation of
human values and human judgment. For this reason it might be argued that models of product
design that do not consider affect are essentially weakened (Helander and Tham, 2003). Until
recently, the affective aspects of designing and design cognition have been substantially
absent from formal theories of design (Helander et al., 2001). Affective design is the
inclusion or representation of affect (e.g., emotions, subjective impressions, visual
perceptions, etc.) in design processes (Khalid, 2004). Many research issues are implied,
including, for example, (1) how to measure and analyze human reactions to affective design;
and (2) how to assess the corresponding affective design features. In the end, it is necessary

to develop theories and predictive models for affective design.
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The main challenge for affective design is to grasp the customers’ affective needs
accurately and subsequently to design products that match these needs. In most cases, it is
very hard to capture the customers’ affective needs due to their linguistic origins. Since
subjective impressions are difficult to translate into verbal descriptions, affective needs are
relatively short-lasting emotional states and tend to be imprecise and ambiguous (Helander
and Khalid, 2005). Sometimes, without any technical experience, the customers do not know
what they really want until their preferences are violated. In practice, customers, marketing
folks and designers employ different sets of context to express their understanding of affect
information. Differences in semantics and terminology impair the coherence of transferring
affective needs effectively from customers to designers. Furthermore, the sender-receiver
problem which may arise during the communication process between customers and
designers is a further reason leading to the misconception of customer affective needs
(Blecker and Kreutler, 2004).

Kansei Engineering has been developed to deal with customers’ subjective impressions
(called Kansei in Japanese) regarding a product (Nagamachi, 1989). Using Kansei words, the
customers are guided to express their affective needs, their feelings, and their emotional
states. These emotional and sensory wants are then translated into perceptual design elements
of the product (Nagamachi, 1996). While Kansei words excel in describing affective needs,
the mapping relationships between Kansei words and design elements are often not clearly
available in practice. Designers are often not aware of the underlying coupling and
interrelationships among various design elements with regard to the achievement of

customers’ affective satisfaction. Clausing (1994) discerns customer needs and product
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specifications and points out that the mapping problem in between is the key issue in “design
for customers”.

In addition, there rarely exists any definite structure of affective need information.
Kansei words are usually expressed in abstract, fuzzy, or conceptual terms, leading to work
on the basis of vague assumptions and implicit inference. A few researchers have enforced a
hierarchical structure or an AND/OR tree structure for the articulation of customer needs, for
example, the requirement taxonomy (Hauge and Stauffer, 1993), the customer attribute
hierarchy (Yan et al., 2001), and the functional requirement topology (Tseng and Jiao, 1998).
Nevertheless, the non-structured nature of affect information itself coincides with those
difficulties in natural language processing (Shaw and Gaines, 1996).

Due to the above hindrances inherent in the Kansei mapping process, reusing
knowledge from historical data suggests itself as a natural technique to facilitate the handling
of affective need information, as well as tradeoffs among many design elements. To this end,
this section proposes to apply data mining techniques to improve the identification of
customers’ affective needs and the mapping of these needs to affective design elements.
Based on association rule mining, this section develops an inference system for affective
design decision support. The Kansei mining system utilizes valuable information latent in
customers’ impressions on existing affective designs.

6.2.1. Problem Formulation

As shown in Figure 6-6, affective design involves a mapping process from affective
needs in the customer domain to perceptual design elements in the design domain. It
illustrates how a designer may achieve affective design and how the customer of the product

will perceive and react. In general, customer affective needs can be described using a set of
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Kansei words, F={f Im=1,---,M}, where f =: f e F". Suppose that there are multiple
market segments, S = {si li=1,---,1 } , each containing homogeneous customers. The
customers in each segment comprise a set, C, = {cl,c2,~-~,cN/_ J", where N, denotes the total
number of customers involved in i -th segment. For each segment, the affect information of a
particular customer, ¢, € C |3n,e [1,---,Ni], can be depicted as a vector of certain Kansei
words, for example, f_n* = [ Fosforrees fg*], where f, refers to the 2-nd Kansei word employed

by customer ¢, , f, the 4-th Kansei word, and f; the 8-th Kansei word. The entire

population of customers’ affective needs constitute a set, F~ = {fT*, Frvofu }

Customer Domain Design Domain

Understand
affective needs

Customer Designer

Da:zzl.i.ﬁg - e

Affective
Customer
Needs

Negotiate with

V designers 5

Figure 6-6 Mapping in affective design

Affective design yields many products that are desired by different customers. Each

product is characterized by a set of perceptual design elements (DEs), V = {v; lg = 1,-~~,Q},
where v'=:1v, €V, . All existing products comprise a set, P={p,, p,,-:, p;}, where T

refers to the total number of products. The specification of a particular product,

p,€ePl3te [1,---,T], can be represented as a vector of certain DEs, for example,
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v_;ks [v;,v;,-~-,vZ], where v, means that product p, involves the 2-nd DE, v; the 3-rd DE,
and v, the 6-th DE. All the instances of DEs comprise a set, V' =, Vo ,E}

Differentiation between the customer domain ( F') and the design domain (V") is
consistent with the fact that customers’ affective impressions are associated with products,
rather than individual DEs. The customers do not know what their affective needs mean by

mapping to specific DEs. The mapping relationship between customer affective needs and
perceptual design elements is thus noted as F~ =V, where an association rule, =,
indicates an inference from the precedent ( F ") to the consequence (V). All association rules

constitute the knowledge base for the mappings from Kansei words to DEs, A = < fi= v2> .

6.2.2. Kansei Mining

Figure 6-7 illustrates the architecture of the Kansei mining system, which consists of
four modules, namely Kansei database construction, Kansei mining, goodness evaluation,
and rule refinement and presentation. First, a relational database is established to document
all target data extracted from past sales records and previous product specifications. All
records are assorted by affective needs, design elements, and Kansei words. Then the Kansei
mining procedure is initiated to search for interesting patterns. From Kansei mining, many
useful rules are generated. Then goodness evaluation is enacted to justify the quality of rules
with respect to individual segments. Finally, the rule refinement and presentation module
comes into play to identify the most relevant and valuable rules and accordingly constructs

the knowledge base.
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Figure 6-7 Kansei mining system architecture

6.2.2.1. Kansei database construction

Before proceeding to rule mining of data sets, raw data must be preprocessed in order to
be useful for knowledge discovery. For association rule mining, it is most important to
establish the transaction records first and then find the items involved in each transaction.
One-to-one relationships should be established among various fields in the same transaction.
A relational database model is considered for the Kansei database, as it allows files to be
related by means of a common field which makes the model flexible. Figure 6-8 shows the

entity relationships among transaction data.

Customer Correspond_to Correspond_to Product
€y, onmtiom, <1> ) 2
1
1 1 1 41
Transaction
Part_of " > Part_of
1. 1 1 1.
Affgctive Needs| 4 « 1_* |Design Elements|
fm IVm:l,m,M Paﬂ_of Paft_Of Vq qu=1;..’N

Figure 6-8 Organization of transaction data
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The sales records are extracted from the company’s legacy databases and are stored in
the need information table labeled with the customer ID. The perceptual design elements are
identified from previous product specifications and are stored in the product document table
labeled with the product ID. The affective need information table thus contains all transaction
records that entail the translation of customers’ affect information to Kansei words. Kansei
words are identified a priori from customer needs based on market research. Kansei words
are mostly adjectives and sometimes nouns. A mobile phone customer, for example, may use
such Kansei words as ‘“comfortable”, “highly qualified” and “cute” to articulate his/her
subjective impression on a particular design that comprises a few perceptual design elements.
The product document table contains information about existing design elements that
constitute various product styles. These two tables are related through customer-product pairs
that relate each customer ID to a product ID used to meet this customer, thus embodying
mapping transaction data from previous designed products.
6.2.2.2. Kansei mining

The general form of an association rule in Kansei mining is given as the following,

AN ANA AN, =B AL AB AP,
’ (40)
[Support: §%; Confidence= c%]

where Ela'xe{f;}M IVx=1-- X <M, EIﬁye{vZ}QIVyzl;n,YSQ , the meanings of the

association rule in Eq. (40), as well as s% and c%, are the same with those discussed in
Chapter 4.
6.2.2.3. Goodness evaluation

Each association rule indicates a particular correspondence between certain Kansei

words and a few design elements. Such a correspondence can be useful to suggest the
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underlying inference mechanism of affective design. Therefore, the goodness of each
association rule has to be evaluated in order to find relevant and valuable mapping patterns.
This is elaborated more in Section 6.2.3.
6.2.2.4. Rule refinement and presentation

Based on the evaluation results, the associated rules are refined to keep the most
meaningful rules in the knowledge base in the form of either case bases or rule bases. The
characteristics of each segment should also be explored based on the rules and the related
support and confidence levels. Moreover, the causality of original association rules are

defined for single DE options, as the precedent of each rule is a subset of {fm} and the
consequence of each rule is a subset of {(n,t)} per se. Nevertheless, inference relationships

do exist in various combinations of more DE options. This means there is a need for
generating combinatorial rules. To solve such a rule refinement problem, the Kansei mining
system adopts an equivalence class method proposed by ChangChien and Lu (2001). Finally,
users can retrieve all of the rules stored in the knowledge base to understand the mappings of
affective needs to DEs clearly, to gain insights into the consequences of diverse customer
preferences on different product images, and thus to justify the proper specification of
product offerings in terms of perceptual features.
6.2.3. Goodness Evaluation for Association Rule Refinement

One of the challenges of association rule mining lies in the decision of thresholds, i.e.,
the minimum support and minimum confidence levels. Generally, allowing low levels of the
thresholds may produce overwhelmed information; however, using too strict threshold levels

may result in possible omission of useful mapping patterns. It is difficult to determine
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appropriate parameters for granularity, especially at the stage when the underlying patterns
are still unknown. While arbitrary decisions for such parameters are deemed to be improper,
most practitioners rely on the conjecture of domain experts.

In the case of Kansei mining, it is more preferable to adopt a two-step approach to
generate the most promising rule patterns. At first, a set of raw rules are generated by
specifying low values for the support and confidence thresholds. Low threshold levels
warrant there are enough raw rules are yielded. The fact is that all rules generated using
higher threshold levels are de facto subsets of the rule sets generated from less strict mining.
And then, these raw rules are evaluated according to their goodness and are thus refined by
discarding poor rules. Such a two-step approach circumvents the difficulties in justifying
reasonable support and confidence thresholds, and thereby helps to identify meaningful rules.
6.2.3.1. Goodness index

It is necessary to choose the right criterion of goodness for rule refinement.
Corresponding to certain customer needs represented as a bundle of Kansei words, the
designer provides a bundle of design elements considered most approximate to meet the
customer’s expectation. From the designer’s viewpoint, a customer’s affective satisfaction
can be interpreted as the customer’s expected utility measured based on the customer’s
perceived benefits embodied in a combination of Kansei words. Nevertheless, from the
customer’s perspective, his/her perceived benefits may vary when designers deliver different
bundles of design elements. This implies that the achieved utility of a design in terms of
design elements is different from the original customer’s expected utility in terms of Kansei

words, although these design elements are supposed to be mapped from the specified Kansei
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words. The customer’s perceived benefits from delivered design elements constitute the
achieved utility, indicating what they really gain.

Therefore, the difference between the expected and achieved utilities reveals the degree
of a customer’s affective satisfaction. The theory of modern service marketing suggests that
the more difference between the customers’ gained service level and their expected service
level, the more satisfied they are (Zeithaml and Bitner, 2001). More delight can even be
created by achieving more than the expected utility (Kano et al., 1984). Such a difference
further explains to what extent offering certain design elements can fit the customers’
affective needs. As a result, a goodness index for mapping rules is introduced as the ratio of
the achieved utility to the expected utility. The higher value of the ratio, the higher the
quality of the rule will be. Such a ratio-based index is advantageous over the conventional
approaches based on weighted sum. It enables a dimensionless measure of relative magnitude,
in addition to overcoming the tedious issue of determining importance weights.
6.2.3.2. Segment-level goodness evaluation

Due to the heterogeneous nature of customer needs, measuring the customer perceived
utility is difficult. For every two customers whose needs differ from each other, their
appreciation of the benefits gained from the same product design may be distinct. In practice,
companies always provide diverse products to accommodate different customers. For a
product that is to serve certain customer needs, the perceived benefits may be less for those
customers with dissimilar requirements; hence the average perceived benefit of a design is
dominated by the majority of similar customer needs. This may distort the evaluation of a
design if considering disparate customers at the same time. Market segmentation has

convinced us that groups of customers with similar needs are likely to present a more
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homogeneous response to products and marketing programs (Kotler, 1994). As a result, rule
refinement should be implemented at the segment level. That means both expected and
achieved utilities should be measured according to the customers belonging to the same
segment. Within the same segment, customer affective needs and rule patterns are similar.

Assume that there exist multiple market segments, S = {si li =1,---,1}. For each segment,
s;, a number of J raw rules are generated from the first step of Kansei mining. The
customer’s perceived benefits of DEs suggested by the j -th rule are measured as the

achieved utility, {U ij}},.,’ corresponding to the customer’s expected utility of those Kansei

words in relation to the j-th rule, {UUE }”. Suppose that there are L transaction records

involved in the transaction database. Each transaction record comprises two item-sets, i.e.,

F" and V'. For each segment, s,, the customer’s expected utility for the item-set F~

involved in [-th transaction, where [ =1,---,L, is represented by {U HF } and the customer’s

1-L°
expected utility for the item-set V" involved in [-th transaction is represented by {U v }1 .-

A number of procedures for simultaneously performing market segmentation and
calibrating segment-level part-worth utilities have been developed in recent years (Wedel and
Kamakura, 1998). Among many methods, conjoint analysis has proven to be an effective
means to estimate individual level part-worth utilities associated with individual product
attributes (Green and Krieger, 1985). This research thus applies conjoint analysis to

determine the expected and achieved utilities. A goodness index is computed as the following,

A
_Uij

i~ y7E°
Uij

(41a)
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Q
st. U} :a?+z;u;;qu, Vied{l, -1}, Viell,,J}, (41b)
o
Qo
Ui =al +> uix,, Vie{l, -1}, Vief{l -, J}, (41c)
gq=1
Q
Uy =Uj =a,+ Y u,y,, Vie{l I}, vie{l, L}, (41d)
g=1
viell,--,J}, Vied{l, -, L},
Xy, € 0.1}, (41e)

\V/C]E {1)""Q}’

where /1,7 indicates the goodness of the j-th rule for segment s,, U; denotes the achieved

utility of the j-th rule with respect to segment s,; U, stands for the expected utility of the

i
j -th rule for segment s,; U, represents the total utility of all Kansei words involved in the
[ -th transaction for segment s,; U, is the total utility of all design elements included in the
[ -th transaction for segment s, ; u,f; means the achieved part-worth utility of the g -th design
element for segment s, ; ufj represents the expected part-worth utility of segment s, in

relation to the ¢ -th design element; and constants af, af and a, are respective intercepts.

Equation (41a) is to measure the goodness of the j-th rule, that is, to what extent the

design elements involved in this rule fit the customer’s expected utility. Equations (41b) and

(41c) refer to the procedure of conjoint analysis — ensure that the composite utilities to be

constructed from part-worth utilities of individual design elements, {vZ}Q. Equation (41d)

indicates that the customer expectations embodied in diverse customer needs are modeled as

the expected part-worth utilities of individual design elements, {vZ}Q. Constraint (41e)
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represents a binary restriction, where x, is a binary variable such that x;, =1 if the g -th
design element is contained in j -th rule, and x, =0 otherwise; and y, is a binary variable

such that y, =1 if the g -th design element is contained in /-th transaction, and y, =0

otherwise.
6.2.4. Case Study

The potential of Kansei mining has been tested in a company that produces a large
variety of mobile phones. The company has conducted extensive market studies and
competition analyses and projected the trends of design technologies in the business sector
concerned. The historical data about the customer affective needs of mobile phones are
assorted according to well-known Kansei words related to mobile phones (Khalid and
Helander, 2004). As shown in Table 6-3, a total number of 15 Kansei words are used to
describe affect information as perceived by different mobile phone users. Based on existing

designs, a total of 23 perceptual design elements are extracted, as shown in Table 6-4.

Table 6-3 Kansei words for mobile phones

foI¥m=1,--,M | Description | Code f.I¥m=1,-- M | Description Code
f Portable F1 f Comfortable F9
f Sturdy F2 o Dazzling F10
I Enjoyable F3 7 Mature F11
f Dignified F4 1, Fashionable F12
f Cheerful F5 £ Friendly F13
A Natural F6 I Cute F14
A Delightful F7 I Futuristic F15
f Stimulating F8
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Table 6-4 Perceptual design elements for mobile phones

Code V4
Vu
Code
Vu
Code V12
|
V" |l ‘
Code V16
v "?ZJ:.'L, j__ J
Code V17 V20
g\ |
S & .
Code V21 V22
| | B
v s 1 st |
- =

It is interesting to notice the difference between the customers’ and designers’ views on
affective design of mobile phones. What customers really perceive is how they feel about the
impression of a particular mobile phone design. Their affective needs are expressed in their
own language (Kansei words). It is in the design domain where the affective aspect of a
mobile phone is interpreted in terms of individual design elements. There is a practical need
to fill the gap between the customers’ expectations in the customer domain and product
fulfillment in the design domain.
6.2.4.1. Transaction database

The set of Kansei words are stored in the affect information database, while perceptual
design elements are stored in the product specification database. These two databases are

interrelated with each other according to customers’ choices of mobile phones. The target
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data are extracted from previous customer need information and product specifications and
are organized into a transaction database, as shown in Table 6-5. Each transaction record
indicates which design elements are used for fulfilling a customer’s affective expectation.

Table 6-5 Transaction database

Record o Kansei Words Design Elements
TID =l vm=1...m] v IVE=10,T
T0O1 F1, F2, F6, F11, F13 V1, V5, V8, V10, V12, V15, V18, V20
T002 F1, F3, F6, F7, F11, F13 V3, V5, V12, V15, V18, V20, V21
g T004 F2, F3, F6, F7, F9, F11, F13, F14 V1, V3, V5, V10, V13, V21, V22
3 T024 F6, F7, F9, F13, F14 V3, V5, V8, V9, V18, V20, V22
T025 F3, F7, F11,F13, F14 V3, V6, V10, V13, V18, V20, V21, V22
T029 F1, F6, F7, F9, F13, F14 V3, V5, V8, V13, V15, V18, V20, V22
T003 F5, F8, F12, F15 V2,V4,V6,V7,V9,V17,V19
T005 F3, F4, F8, F10, F12, F15 V2, V6, V7, V9, V16, V17, V19, V21
2 T006 F5, F8, F12, F15 V2,V4,V6,V7,V9,V17,V19
3 T027 F3, F4, F5, F8, F10, F12 V2,V4,V6,V7,V10, V11, V17, V19
T028 F3, F5, F8, F12, F15 V2,V4,Ve6,V7,V10, V17, V21
T030 F4, F5, F10, F12 Ve, V10, V11, V13, V17, V19

For illustrative simplicity, only 30 out of hundreds of transaction records are used in the
case study here. As shown in Table 6-5, the set of Kansei words for each customer indicates

the customer’s affective needs for his/her choice of mobile phones, which are described as a
particular instance of the subset of F = {f; }M . Among the 30 mobile phone designs provided
to satisfy the 30 customers, the design elements used in each design are represented as

specific instances of the DE vector, [v;]Q .

6.2.4.2. Association rule mining
As shown in Table 6-5, the 30 transaction records are organized in two segments, s, and
s,, which are identified based on established market research of the company. Segment s,

includes customer records 1, 2, 4, 7, 8, 11, 12, 14, 15, 18, 21, 24, 25 and 29. Segment s,
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consists of customers 3, 5, 6, 9, 10, 13, 16, 17, 19, 20, 22, 23, 26, 27, 28 and 30. A data
mining tool, Magnum Opus (Version 2.0, www.rulequest.com), is employed to find the
mapping relationships between the Kansei word item-set and the design element item-set for
each segment. The mining process runs two times and terminates with two sets of rules
containing 265 and 173 association rules for segments 1 and 2, respectively. For illustrative
simplicity, only 20 rules are presented here for each segment, as shown in Table 6-6.

Table 6-6 Association rules produced by Kansei mining

Rule Inference Relationship Support | Confidence
1 portable = V15 0.633 0.323
2 | portable = V12 0.633 0.267
3 | delightful = V3 0.300 0.289
4 | enjoyable = V21 0.329 1.000
5 | mature = V10 0.233 0.322
6 | mature = V18 0.233 0.368
7 natural = V18 0.267 1.000
8 | delightful = V22 0.300 0.323
- 9 | comfortable = V22 0.267 0.933
& | 10 | portable = V5 & V15 & V12 0.633 0.315
% 11 | delightful = V13 & V3 0.300 0.267
» | 12 | cute=> V12 0.600 1.000
13 | delightful & cute = V3 & V22 0.264 0.875
14 | natural & mature & friendly = V18 & V20 & V10 0.206 0.764
15 | delightful & comfortable & cute = V22 & V3 & V12 0.263 0.872
16 | natural & delightful & friendly = V18 & V20 & V3 & V8 0.212 0.864
17 | mature & natural & friendly & comfortable = V18 & V20 & V22 & V10 0.200 0.664
18 | cute & portable = V12 & V5 & V15 0.526 0.835
19 | mature & enjoyable & sturdy = V18 & V20 & V8 & V10 0.200 0.763
20 | natural & portable & friendly = V12 & V10 & V5 & V15 0.200 0.625
1 enjoyable = V21 0.600 1.000
2 | fashionable = V2 0.467 0.433
3 | fashionable = V7 0.467 0.226
4 | dignified = V17 & V19 0.700 0.227
5 | dignified = V19 0.700 0.323
6 | fashionable = V6 0.467 0.200
7 | cheerful = V7 & V4 0.627 0.375
8 | dignified = V17 0.700 0.289
N 9 | stimulating = V6 0.362 0.362
& | 10 | cheerful = V6 & V2 0.627 0.482
% 11 | dazzling = V17 & V9 0.533 0.875
» | 12 | stimulating = V7 0.362 0.325
13 | cheerful & stimulating = V7 & V4 0.300 1.000
14 | dazzling & cheerful = V17 & V6 & V2 0.206 0.764
15 | enjoyable & dignified = V17 & V19 & V21 0.233 0.825
16 | dignified & dazzling = V17 & V19 & V9 0.267 0.923
17 | dazzling & fashionable & stimulating = V17 & V2 & V9 0.327 0.671
18 | futuristic & dignified & enjoyable & stimulating = V17 & V19 & V21 0.300 0.648
19 | enjoyable & futuristic & cheerful = V19 & V21 & V2 0.253 0.876
20 | dazzling & futuristic = V17 & V19 0.325 0.712
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6.2.4.3. Goodness evaluation

The achieved utility of an association rule is derived from the customer’s perceived
utility in terms of related design elements to this rule. Customer perceived utilities are
determined based on conjoint analysis. Conjoint analysis starts with the construction of
testing choice sets. Orthogonal experiments are designed using the Orthogonal Array
Selector provided by SPSS software (www.spss.com). A total of 36 and 27 orthogonal testing

choice sets are generated for segments s, and s, , shown in Figures 6-9 and 6-10,

respectively. With these choice sets, two fractional factorial experiments are designed to
explore the achieved utility of every design element for each segment. The results of

respective experiment designs are explained in Tables 6-7 and 6-8. For instance, a value of 1

in columns 2-15 of Table 6-7 indicates that v; is involved in the choice sets, and 0 means

that it is not selected. The last column of Table 6-7 collects the perceived benefits by the

respondents.
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Figure 6-9 Testing choice sets for segment 1
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Table 6-7 Response surface experiment design for segment 1

Conjoint Test (Segment 1) Preference Scale
Choice | V1 V3 V5 V6 V8 V9 V10 12 Vi3 Vi5 Vi8 V20 V21 V22 i i

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 7

0 1 1 0 0 1 1 0 0 1 1 0 0 1 5

3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 9
34 0 0 0 1 0 0 0 1 0 0 0 1 0 0 4
35 1 1 1 0 1 1 1 0 1 1 1 0 1 1 5
36 0 1 1 1 0 1 1 1 0 1 1 1 0 1 2
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Figure 6-10 Testing choice sets for segment 2

Table 6-8 Response surface experiment design for segment 2

Conjoint Test (Segment 2) Preference Scale
Choice | V2 V4 V6 V7 V9 V10 Vi1 Vi3 Viée V17 V19 V21 1 )
1 1 1 0 1 1 0 1 1 0 1 1 0 8
2 0 1 1 0 1 1 0 1 1 0 1 1 5
3 1 0 1 1 0 1 1 0 1 1 0 1 3
25 0 0 1 0 0 1 0 0 1 0 0 1 5
26 1 0 0 1 0 0 1 0 0 1 0 0 2
27 0 1 0 0 1 0 0 1 0 0 1 0 6
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For the two segments, a total of 14 and 16 customers are selected to act as the
respondents, respectively. Each respondent is asked to evaluate 36 (or 27) choices one by one
based on a 9-point scale, where “9” means the customer perceives the most benefit and “1”
the least. This results in 14x36 =504 and 16x27 =432 groups of data for two segments,

respectively. For each respondent in segment s, or s,, a total of 504 or 432 regression

equations are obtained by interpreting his/her original choice data as a binary instance of the
part-worth utility. Each regression corresponds to a bundle of design elements and indicates
the achieved benefit perceived by the respondent. By running multivariate regression, where
DE is encoded as 1 if it is contained in the regression model, O otherwise, the achieved part-
worth benefits for the respondent are derived. Averaging the achieved part-worth benefits of
all respondents within one segment, a segment-level achieved utility is derived for each
individual design element.

Likewise the expected part-worth utility of each design element is derived based on the
conjoint analysis procedure. Rather than relying on choice set construction, the respondents
are asked to evaluate their perceived benefit of each Kansei word contained in a transaction
record. The design elements involved in this transaction suppose to deliver a utility as much

as what the respondent expects using Kansei words. Thus, all the transaction records become

the choice sets, where v; is encoded as 1 if it is contained in the transaction, and O otherwise.

The customers’ expected benefits are used as the assessment criteria for each choice in the
fractional factorial experiment. Table 6-9 shows the results of the respective expected and

achieved part-worth utilities of every design element within two segments.
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Table 6-9 Part-worth utilities for individual design elements

Segment 1 Segment 2
DE Expected | Achieved DE Expected | Achieved
Utility Utility Utility Utility
VA1 0.08 0.05 V2 1.27 1.65
V3 1.67 1.95 V4 1.37 0.73
V5 1.86 1.13 V6 1.41 0.82
V6 0.03 0.04 V7 1.14 0.61
V8 1.28 1.31 V9 0.83 1.24
V9 0.11 0.14 V10 0.13 0.11
V10 0.86 0.91 V11 0.12 0.07
V12 1.73 1.04 V13 0.04 0.06
V13 1.46 1.45 V16 0.05 0.07
V15 0.93 0.31 V17 1.23 1.56
V18 0.93 0.96 V19 1.24 1.85
V20 1.28 1.25 Va1 0.82 0.87
V21 1.47 1.45
V22 1.12 1.26

Based on the part-worth utilities, the achieved utility, U ;, and the expected utility, U UE ,

of every association rule for each segment are composed according to Egs. (41b-e) and
shown in Table 6-10. Accordingly, the corresponding goodness index for each rule is

calculated using Eq. (41a). The results are shown in Figure 6-11.

6.2.4.4. Rule refinement

As shown in Figure 6-11, high goodness measures indicate a good mapping relationship
in terms of the achievement of the customer’s affective satisfaction, whereas a low value
indicating poor rules. Among those good mapping rules, some designs (for example Rule 3
for segment 1 and Rule 5 for segment 2) outperform the customers’ original expectations

(A4;=117>1 and 4,,=1.49>1), which is consistent with the wisdom suggest by Kano

diagram (Kano et al., 1984). Such designs are considered “delighters” for customer

satisfaction, in addition to those “must-have” designs whose achievements fall into

A< 4; <1. On the other hand, those rule patterns yielding poor goodness assumed by Table

179



Chapter 6: Applications to Customer-Engineering Interaction

6-10 (for example, 4, =0.33) do not contribute much to customers’ satisfaction, and thus

should be discarded. A threshold of 4 =0.7 is determined a priori by domain experts. As a
result, Rules 1, 2, 10, 12, 18, and 20 are ignored for segment 1, and Rules 3, 6, 7, 9, 12, and
13 are discarded for segment 2. The results of rule refinement are shown in Table 6-11.

Table 6-10 Result of goodness evaluation

Segment 1 Segment 2
Rule # vq US_ Ufj Rule # vq UZA_/ UZE_/‘
1 V15 0.31 | 0.93 1 V21 0.87 | 0.82
2 V12 1.04 | 1.73 2 V2 1.65 | 1.27
3 V3 1.95 | 1.67 3 V7 0.61 | 1.14
4 V21 1.45 | 1.47 4 V17, V19 3.41 | 247
5 V10 0.91 | 0.86 5 V19 1.85 | 1.24
6 V18 0.96 | 0.93 6 V6 0.82 | 1.41
7 V18 0.96 | 0.93 7 V4, V7 1.34 | 2.51
8 V22 1.26 | 1.12 8 V17 1.56 | 1.23
9 V22 1.26 | 1.12 9 V6 0.82 | 1.41
10 V5, V12, V15 2.48 | 4.52 10 V2, V6 2.47 | 2.68
11 V3, V13 3.4 3.13 11 V9, V17 2.8 2.06
12 V12 1.04 | 1.73 12 V7 0.61 | 1.14
13 V3, V12 299 | 34 13 V4, V7 1.34 | 2.51
14 V10, V18, V20 3.12 | 3.07 14 V2, V6, V17 4.03 | 3.91
15 V3, V12, V22 4.25 | 4.52 15 V17,V19,V21 | 428 | 3.29
16 V3, V8, V18, V20 5.47 | 5.16 16 V9, V17, V19 476 | 3.3
17 V10, V18, V20, V22 | 4.38 | 4.19 17 V2, V9, V17 4.45 | 3.33
18 V5, V12, V15 2.48 | 4.52 18 V17,V19,V21 | 428 | 3.29
19 V5, V10, V18, V20 4.25 | 4.93 19 V2, V19, V21 4.37 | 3.33
20 V5, V10, V12, V15 3.39 | 5.38 20 V17, V19 3.41 | 2.47
1.6
| /.‘ Segment 2 a
% 1: r //!\ A II. \\ " //!\\ //., \.\.—l/.
g LA ! 'I{r"'\‘*_‘/’“\;_‘\. //,'*\\\ _F/\{A'—\
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Figure 6-11 Comparison of goodness evaluation for two segments
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Table 6-11 Refined rule sets for two segments

Association Rule #

Segment 1 3,4,5,6,7,89, 11,13, 14, 15,16, 17, 19

Segment2 | 1,2,4,5,8,10, 11, 14, 15,16, 17,18, 19, 20

6.2.5. Validation for Affective Design Support

To validate the rationale of identified Kansei mapping relationships in support of
affective design, a separate set of past designs are used for testing. Five transaction records
from each segment are selected. Another 20 respondents for each segment are invited as the
customers to evaluate these testing products (referred to as existing designs). Based on the
original affective needs documented in respective transaction data, the Kansei mining system
suggests another set of designs (referred to as inferred designs). Following the conjoint
analysis procedure, these 40 respondents indicate their perceived utilities through Kansei
word for the existing designs as well as the inferred designs. Then the expected utility of
affective needs, the achieved utility of existing design, and the achieved utility of inferred
design are derived for every original product in each segment. The support for affective
design manifests itself through improvements in the achieved utility and goodness measure at
both the product and segment levels.

Table 6-12 shows the part-worth expected and achieved utilities of every design element.
These part-worth utilities are derived from the responses of 40 customers. As different
groups of respondents are engaged, their perceived part-worth utilities may bear slight
variation (e.g., Table 6-9 vs. Table 6-12). Table 6-13 summarizes the performances of the

existing and inferred designs as perceived by the testing group of respondents. All inferred
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designs outperform the originally designed products. The maximal improvement of

customer’s perceived utilities reaches 27.59%, with a minimum of 0.916%. In terms of

goodness measure, the improvement is as much as 27.48% maximum and 0.882% minimum.

At the segment level, the overall performance is also improved. The improvements of the

achieved utility and goodness measure for segment s, are 12.35% and 13.21%, respectively.

The cohort performance of segment s, is also improved, with 10.89% and 10.65% for the

utility and goodness measure, respectively. The reason for such improvement appears to be

straightforward. All inferred designs are derived based on previous best practices encoded

into association rules, whereas the original designs resulted from the rules-of-thumb by

individual designers.

Table 6-12 Part-worth utilities perceived by testing groups

Segment 1 Segment 2
DE Expected | Achieved DE Expected | Achieved
Utility Utility Utility Utility
\A 0.06 0.05 V2 3.72 1.63
V3 1.63 1.91 V4 1.42 0.81
V5 1.73 1.16 V6 1.43 0.75
V6 0.08 0.03 V7 3.17 1.06
V8 1.23 1.34 V9 0.85 1.28
V9 0.13 0.07 V10 0.07 0.08
V10 0.92 1.41 Vi1 0.13 0.11
V12 1.12 1.08 V13 0.06 0.04
V13 1.45 0.39 V16 0.11 0.09
V15 0.97 0.38 V17 1.17 1.52
V18 0.97 1.05 V19 1.31 1.92
V20 1.34 1.31 V21 0.58 1.21
Va1 1.48 1.42
V22 1.08 1.35
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Table 6-13 Performance comparison of design achievement

Transaction Affective Needs Existing Product Inferred Product Improvement (%)
D Kansei  |Expected Design Achieved | Goodness Design Achieved | Goodness Utility Goodness
Words Utility Elements Utility Index Elements Utility Index Index
F2, F3, F7, V3, V5, V10, V3, V8, V10,
1 Fo, F14 7.67 V5, V20, V22 7.52 0.98 V5, V20, V22 7.70 1.004 2.393 2.449
2 6, F7,F9, 5.76 Vi, Vi, 5.51 0.957 V3, V10, V18, 7.03 1.220 27.59 2748
F11,F13 V18, V20, V22 V20, V22
- F6, F7, V8, V10, V12, V3, V10, V12,
g, 3 Fi1, F14 8.11 V13, V15, 7.26 0.895 V15, V18, V20, 8.49 1.045 16.94 16.76
§ V20, V22 V22
4 F8, F, F7, 6.46 V3, V10, V12, 6.1 0.944 V3, V10, V13, 7.26 1124 19.02 19.07
F11,F14 V13, V20 V18, V21
F2, F3, V3, V5, V10, V3, V8, V10,
5 Fi1,F13 7.67 V18, V20, V22 8.19 1.068 V18, V20, V22 8.37 1.091 2.198 2.154
Segment Average 6.916 0.969 7.77 1.097 12.35 13.21
F3, F4, V2, V6, V9, V2, V9, V17,
6 6.74 7.64 1.134 7.71 1.144 0.916 0.882
F10 V19, V21 V19, V21
7 F4, 75, 5.33 Va4, V&, V17, 5.00 0.938 v, Ve, V17, 5.82 1.092 16.4 16.42
F10 V19 V19
% 8 F8, F10, 7.07 VA, VT, VS, 6.59 0.932 V2,V7, V8, 7.41 1.048 12.44 12.45
= F12, F15 V17,V19 V17,V19
3 9 F4, FS, F8, 9.40 V2, V4, V6, 7.91 0.841 V2, V4, V7, V9, 9.43 1.003 19.22 19.26
F10, F12 V9, V17,V19 V17,V19
10 F8, F4, F8, 8.50 VA, VI, VS, 8.02 0.944 V2,V7, V9, 8.62 1.014 7.481 7.415
F10, F15 V17,V19, V21 V17,V19, V21
Segment Average 7.032 0.958 7.798 1.06 10.89 10.65

6.3. Product Family Configuration Design

Developing product families has been well recognized as an effective means to achieve
the economy of scale in order to accommodate increasing product variety across diverse
market niches (Meyer and Utterback, 1993; Sundgren, 1999). In addition to leveraging the
cost of delivering variety by reusing proven elements in a firm’s activities and offerings,
product family design (PFD) can offer a multitude of benefits including reduction in
development risks and system complexity, improved ability to upgrade products, and
enhanced flexibility and responsiveness of manufacturing processes (Sawhney, 1998).

PFD is often modeled as a type of configuration design, namely PFCD, which aims at

selecting and arranging combinations of a set of predefined components/modules to generate
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an optimal mix of design alternatives subject to customer requirements and engineering or
physical constraints. As the number of components/modules increases, the number of
possible configuration design alternatives may be huge, and thus complete enumeration to
obtain optimal design alternatives becomes numerically prohibitive (Tarasewich and Nair,
2001). Comparing with traditional calculus-based or approximation optimization techniques,
genetic algorithms (GAs) have been proven to excel in solving combinatorial optimization
problems (Steiner and Hruschka, 2002). However, either a specific GA or universally
applicable GA has difficulties in dealing with the PFCD problem. This may stem from the
complications inherent in the PFCD problem as elaborated next.

(1) Complexity of product family data. Instead of a collection of individual product
variants, the organization of product family data needs to explicate the relationships between
variants, i.e., deal with the product family rather than individual variants. Moreover, PFCD is
implemented from both a commercial viewpoint and a technical viewpoint. Product variants
thereby should be represented in terms of customer requirements, end-products,
subassemblies, components, features and feature levels, as well as their relationships for
engineering purposes. In the meantime, product variants propagate along the product
structure by exploring the bill-of-materials (BOM). The vast and complex variants institute
multiple levels of configuration and a large number of choices, and thus diverse individual
configuration spaces need to be explored. Traditional GAs have difficulties in distinguishing
configuration spaces and are not reusable in various configuration cases. This means that
when configuration spaces change their contents according to diverse customer requirements,

both the objective models and chromosome representation schemes need to be modified to
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adapt to the varied problem. As such, traditional GAs are only suitable for individual PFCD
scenarios, but not the entire PFCD space.

(2) Constraint handling. There are mainly two types of constraints involved in PFCD:
compatibility constraints and selection constraints (Du et al., 2001). Compatibility constraints
refer to the restrictions on choices of variants’ contents (e.g., components, features, feature
levels) and are generally described as IF-THEN rules. Selection constraints refer to customer
requirements for variants’ conditions (e.g., budget). Although a universally applicable GA
based on universal encoding may be adapted to diverse PFCD scenarios, real problems are
too complex to allow direct encoding, where the chromosome represents the original solution
of a given problem as a whole (Gen and Cheng, 1997). For such complex problems as PFCD,
a universally applicable GA often yields infeasible offspring due to the ineffectiveness in
constraint handling (Kamrani and Gonzalez, 2003).

Inspired by the generic variety structure (GVS) (Jiao and Tseng, 1999), and the heuristic
genetic algorithm discussed in Chapter 5, this section presents a generic genetic algorithm
(GGA) for the PFCD problem. Distinguishing “generic” from “universal”, the GGA does not
attempt to encompass the entire solution within a single chromosome. Instead, the GGA is
developed by formulating a generic encoding scheme, which adapts to diverse PFCD
scenarios in accordance with a generic variety structure. An efficient constraint-handling
strategy is incorporated into the GGA process to facilitate the generation of feasible offspring
efficiently. The GGA enables the reusability of GAs along with the variation of configuration

spaces in various PFCD scenarios thus improving the efficiency of PFCD problem-solving.
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6.3.1. Configuration Space Formulation

Product family configuration design starts with creating a PFA (Product Family
Architecture) generic variety structure (GVS) representation. Subsequently, customers are
allowed to propose requirements according to customizable features represented in the GVS.
A configuration space is then developed from the synthesized information embodied by a set
of predefined modules and the customer requirements. All possible configuration alternatives
are included in the configuration space. An optimization algorithm is then employed to
produce the optimal configuration alternatives according to the objective function. As shown
in Figure 6-12, within the GVS, all product variants of a family share a common structure. A
combined decomposition/classification tree is adopted to represent functional classification
from an abstract level to individual instances. In Figure 6-12, a node denotes a P variable

while a leaf represents an instance of a P variable. The functional specification of a product

family can be represented by a P vector, i.e., P, ={P:,P,>Ps>P4>Ps}, and the specific

specification of a product variant within this family is an instance of this P vector, e.g.,

P

Variant

={P111>Pia1> Paras P31 Pay} - The configuration constraints manifest themselves

through restrictions on the combinations of the P vector instances and are expressed as a
XOR (i.e., exclusive OR) relationship. For example, Figure 6-12 shows a size-compatible
constraint among instances p,,,, Py, and p,,.

Consistent with the GVS, a configuration space is established as a hierarchical structure
where a number of feasible configuration design alternatives, modules, candidates, features,
design parameters, and their relationships are described within a single formalism. As shown

in Figure 6-13, a configuration space is represented as an AND/OR graph. The configuration
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space is composed of N configuration design alternatives, each of which is configured by M
modules. Each module contains a number of available candidates, among which only one can
be chosen for final solutions. Each candidate is assumed to contain two functional features
and two corresponding design parameters. The hierarchical structure makes it easy to identify
multi-level configurations of subassemblies, intermediate parts, and component parts, as well
as to explicate their interrelationships. Product variants can be identified along the spectrum
of the GVS-based configuration model. Comparing with traditional approaches based on
“enumeration” or “selection”, which may work in a limited choice case, the GVS-based

configuration model makes it possible to handle a large variety of variants involved in PFCD,

and provides a concise way of “combination” for improving the efficiency of optimization.

p [oar ]
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Ds | Rubber holderl

Ds | Frame | Py Armature Ds Magnet
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Figure 6-12 A generic structure for representing variety
6.3.2. Problem Formulation

Suppose a set of modules are identified, M E{ml,mz,---,mK}. Each module,

m, |Vke [I,--,K] , may take on one out of a finite set of candidates,
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M, E{mzl,mzz,m,m;k }. That is, m, =::m), 13m, € M, where [ =1,---,L,, denotes the I-
th candidate of m, . Each module, m, |Vke [1,-~-,K ] , comprises a set of features,
F, ={f, t=1,---,T,}. Each feature, Vf, € F, , possesses a few levels, which are either
discrete or continuous, i.e., F, = {f,;q lg=1,--,0,}. A set of feasible configuration design

alternatives, A E{al,az,---,a,}, where a; = [mZ,]K [Vie [1,---,1]; le [1,---,Lk], are generated

by choosing one of the candidates for certain modules, subject to satisfying specific

configuration constraints.

| Configuration space |
>

Alternative 1 Alternative N

| candidate 11, | [ candidatera1 | - [ Candidate K1 | ~ | Candidate K1 |
N W

Configuration constraints

Figure 6-13 A configuration space
6.3.3. Optimization Model
Similar to the framework of product portfolio optimization, a maximizing shared surplus
model is adopted for PFCD performance evaluation (as discussed in Chapter 5). Such a
metric is advantageous over conventional metrics for PFCD, which focus more on
engineering concerns. The objective function and involved issues are like those discussed in

Chapter 5. Comparing with the product portfolio planning problem, where products are
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constructed directly from individual attributes, PFCD involves multiple levels of
configurations including end-products, subassemblies, components, features, and feature
levels.

6.3.4. Generic GA Design

The GAs are widely recognized owing its capability to produce acceptable solutions for
combinatorial optimization problems involving a wide variety of configurations.
Traditionally, a problem-specific encoding scheme is used to deal with a particular
configuration space, where a unique optimization model is formulated. As a result, a specific
GA can only be applied to solve a single PFCD scenario. The complexity of using a problem-
specific GA is illustrated in Figure 6-14. Figure 6-14 shows three distinct PFCD cases where
each GA-based PFCD case is a separate process.

The generic genetic algorithm (GGA) is developed to enable diverse configuration
spaces by making use of a generic encoding scheme that originates from the GVS. The use of
the GGA for PFCD is far more straightforward compared to the traditional GA. The
complexity of using the GGA is denoted in Figure 6-15 where the three GGA-based PFCD
cases follow a common process.

Configuration space (CS)

Optimization model (OM)

o @
Q @ Encoding (E)
)

Genetic algorithm (GA)

Figure 6-14 Problem-specific GAs for PFCD
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K’ ) Configuration space (CS)

@ Generic optimization model (GOM)

@ Generic encoding (GE)

° w Instantiation (1)

@ Generic genetic algorithm (GGA)

Figure 6-15 The GGA for PFCD

6.3.4.1. Generic encoding

In response to specific customer requirements, diverse configuration spaces need to be
formulated. A generic encoding is able to characterize the variation of configuration spaces
and diverse product variants. The generic encoding represents the PFCD problem using a
finite-length string called a chromosome. Each fragment of the chromosome (i.e., substring)
represents a module candidate contained in the product family. Each element of the string,
called a gene, indicates a feature contained in the module candidate. The value assumed by a
gene, called an allele, represents an index of the feature level instantiated by a feature. PFCD
calls for many candidates (fragments of chromosome), exhibiting a type of composition
(AND) relationships. Likewise, each candidate (fragment of chromosome) comprises many
features (genes). Nevertheless, each feature (gene) can assume one and only one out of many
possible feature levels (alleles), suggesting an exclusive all (XOR) instantiation.

The integer format is adopted for representing multiple choices. Given K module
candidates to be selected for a product family, and for each module candidate

kIVkell,..,K], there are T, features to be selected. Thus, a generic string of the
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K
chromosome is defined to be composed of K substrings, containing a total of ZTk genes,
k=1

with each substring consisting of 7, genes.

Further we introduce an allele that equals to 0 as the default value for every gene. This

indicates that the corresponding feature is not contained in a module candidate. Then with Q,
possible levels for a feature, f,,, the corresponding gene may assume an allele from the set,
{O,l,m,Q,}, meaning that a total number of Q, +1 alleles are available for each gene. In this

way, a generic encoding enables a unified structure through which various module candidates
consisting of different numbers of feature levels can be represented within a generic product
family.
6.3.4.2. Hybrid constraint handling

One challenge of GAs for solving combinatorial optimization problems is constraint
handling, in which genetic operators tend to manipulate the chromosomes randomly and
often yield infeasible offspring. Several techniques have been proposed to handle constraints
with genetic algorithms. The available techniques can be classified into four categories: the
rejecting, repairing, modifying and penalty strategies. Since PFCD involves both
compatibility and selection constraints, it is difficult to use a single strategy to deal with
distinct characteristics of these two types of constraints simultaneously. Selection constraints
refer to range restrictions, that is, feasible solutions should be within a specific range (e.g.,
binary restriction on decision variables). Compatibility constraints deal with restrictions on

combinations. For example, when two candidates are incompatible in terms of functional
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features or design parameters, only one of them can be chosen for a configuration design
alternative.

As a result, a hybrid constraint-handling strategy is proposed to deal with this difficulty.
A hybrid strategy applies rejecting, penalty strategies, and modifying the genetic operator
strategy to handle different constraints along the entire evolutionary process, as shown in
Figure 6-16. At the initialization stage, a rejecting strategy is conducted to handle infeasible
chromosomes. A separate constraint check module is designed as a filter. The compatibility
constraints are described as a set of “IF-THEN” rules and stored in a pool. Whenever a new
chromosome is initialized, it must be checked against the pool. Those chromosomes that do
not satisfy certain compatibility constraints are rejected right away. In this way, only those
valid chromosomes are kept in the population. A penalty strategy is only implemented at the
evaluation stage where infeasible chromosomes are penalized for violating certain selection
constraints. The penalty technique is used here to keep a certain amount of infeasible
solutions in each generation. It does not simply reject the infeasible solutions in each
generation because some of them may contain much more useful information about the
optimal solutions than some feasible solutions. The penalty strategy helps acquire a balance
between information preservation and selective power.

Moreover, a modifying genetic operator strategy is proposed to convert the chromosome
representation scheme and generate a specialized crossover operator to maintain the
feasibility of chromosomes in terms of compatibility constraints. Motivated by the design
attribute encapsulation method (Qiu et al., 2002), this research proposes a Module
Encapsulation Method (MEM) to modify the genetic operator. Based on the MEM, the

overall modules are encapsulated into several groups, such that those modules whose
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candidates’ combinations will result in infeasible chromosomes are encapsulated in one
group. Figure 6-17 shows an incompatible interrelationship between modules. According to
the identified interrelationships, incompatible modules are grouped together, for example,
modules 1, 4, and 6 are encapsulated in one group, and modules 3 and 5 are in another group.
In turn, all combinations of those inter-group modules always produce feasible chromosomes.
According to the module groups, the module partitions are mapped into the chromosome
representation scheme. Subsequently, crossover can be performed in a particular way — the
encapsulated modules within a group will be handled as a whole, and the cutting points can
occur only at the boundary of groups. As a result, the MEM enables the genetic operator to
always generate feasible offspring, thus improving the efficiency of producing feasible
chromosomes.

Initialization

H

v v

[ Peasible | [ Infeasible | <— Refecting |

Evaluation

v v

| Feasible | | Infeasible |H Penalty I

Selection

Crossover Modifying

Mutation

v v

Feasible || Infeasible |

Figure 6-16 Constraint-handling mechanism of GGA
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Figure 6-17 Generic operator based on encapsulation of modules

The overall procedure of the GGA is like that of the heuristic GA discussed in Chapter 5.
6.3.5. Case Study

The GGA has been applied to a type of motor family configuration design in an
electronics company that produces a large variety of vibration motors for major world-
leading mobile phone manufacturers. A customized electronic motor comprises mainly six
modules, namely “armature”, “frame”, “bracket”, “weight”, “magnet”, and “rubber holder”.
The mechanical structure of a motor is shown in Figure 6-18. Each of the six modules
possesses a few candidates. Customers may ask for customized products by selecting
candidates according to their preferences and needs. Each selected candidate assumes a
combination of diverse feature levels and correspondingly a group of design parameters that

fulfill the target functionality.

Weight

Rubber holder Magnet

Armature

Figure 6-18 The mechanical structure of a motor

194



Chapter 6: Applications to Customer-Engineering Interaction

6.3.5.1. Configuration space construction

The first step for motor family configuration design is to build a generic variety
structure for capturing diverse customer requirements and creating a configuration space.
Figure 6-19 shows the generic variety structure of these motors, where all of the
compositions and their relationships are presented as a hierarchy. Figure 6-19 also shows the
compatibility constraints between feature ‘“speed” and feature ‘“current”. A set of
requirements from a particular customer are shown in Table 6-14. Based on the predefined
modules and the particular customer requirements, available candidates of each module are

generated to create a configuration space, as shown in Table 6-15.

o 7A e

Weight [Armature | [ Frame | [ Magnet | [ Bracket | [Rubber holder]
A 8

Holding) (Speed
& [

9~11K

(80]

9~12K

(8) (4] (10~12k] (o] (60]

BuJ (z] (NiCu) (whie) (P )

Feature compatible

Figure 6-19 The generic variety structure of motors

Table 6-14 A particular customer’s requirements

Module Customizable function Required feature level
feature
Armature Pb free Yes
Frame Length 10.5mm
Diameter Nil.
Connecting method X
Bracke! Coating il
Weight Speed (9000~12000)rpm
Magnet Pb free Nil.
Rubber holder Shape P
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Table 6-15 Available candidates of each module

Module Required feature level | Candidate | Feature combination Design parameter
code

Wire diameter = 50um
DimensionA = 3.8mm
DimensionB = 14.5mm
Wire diameter = 35pm
DimensionA = 3.5mm
DimensionB = 12.5mm
Wire diameter = 25um
DimensionA = 3mm

Current = 100mA
At Pb free = Yes

Current = 80mA
Armature Pb free = Yes A12 Pb free = Yes

Current = 60mA

A13 -
Pbfree = Yes DimensionB = 11.5mm
Length = 10.5mm Length = 10.5mm
A21 Diameter = 8.5mm Diameter = 8.5mm
_ Length = 10.5mm Length = 10.5mm
Frame Length = 10.5mm A22 Diameter = 13mm Diameter = 13mm
Length = 10.5mm Length = 10.5mm
A23 Diameter = 15.5mm Diameter = 15.5mm
Color = Black
A31 CM=X Angle = 30°
Coating = Au
Color = Black
A32 o CM,\T )é | Angle = 30°
oating = Ni-Cu allo
Bracket Connecting method (CM) = X C(?Ior —Blue Y
A33 CM=X Angle = 30°
Coating = Au
Color = Blue
A34 CM=X Angle = 30°
Coating = Ni-Cu alloy
Radius = 2.5mm
Shape =A
Ad1 HS = Min3kg Length = 3mm

Weight = 4.5gram
Wire diameter = 50um
Radius = 3.5mm
Length = 3.5mm
Weight = 5.5gram
Wire diameter = 35um
Radius = 4mm

Speed = (9000~12000)rpm

Shape = A
A42 HS = Min3.5kg
Speed = (9000~12000)rpm

Shape = A ~
A3 HS = Mindkg Lepgth =4.5mm
Speed = (9000~12000)pm | . 'Veight=6.5gram
Wire diameter = 25um
Weight Speed = (9000~12000)rpm Radius = 2mm
Shape = B Length = 2.5mm
Ad4 HS = Min3kg ‘

Weight = 4.5gram
Wire diameter = 50um
Radius = 3mm
Length = 3mm
Weight = 5.5gram
Wire diameter = 35um
Radius = 3.5mm

Speed = (9000~12000)rpm

Shape =B
A45 HS = Min3.5kg
Speed = (9000~12000)rpm

Shape =B -
Speed = (9000~12000)rpm Wire diameter = 25um
’ Ni A51 Pb free = Yes Nil.
agnet Il A52 Pb free = No Nil.
Color =red
A6 Shape = P Hardness = 60HB
Rubber holder Shape =P A62 Color = white Hardness = 70HB
Shape =P -
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6.3.5.2. Customer-perceived benefit and engineering costs

The particular customer-perceived benefit from a motor product and the engineering
costs are measured as discussed in Chapter 5. The part-worth utilities and the part-worth
standard times for all feature levels are shown in Table 6-16.

Table 6-16 Part-worth utilities and part-worth standard times

Part-worth standard .
Feature Part-worth time Feature Part-worth Part-worth standard time
level utility w ot level utility w ot
(second) (second) (second) (second)
F111 1.85 0.65 0.01 F321 1.67 1.97 0.035
F112 1.21 0.97 0.021 F411 3.12 3.35 0.016
F121 1.12 1.45 0.21 F412 1.46 2.23 0.36
F122 1.76 0.58 0.033 F511 1.35 1.06 0.43
F123 2.65 1.42 0.31 F512 0.63 1.27 0.39
F131 1.53 0.78 0.11 F521 1.36 0.27 0.045
F132 0.87 0.21 0.03 F522 1.32 0.46 0.026
F133 0.5 0.2 0.012 F523 0.97 2.21 0.53
F134 0.52 0.18 0.023 F531 0.8 0.72 0.22
F211 2.49 1.18 0.2 F532 1.6 1.08 0.087
F212 2.32 0.19 0.013 F611 0.6 0.87 0.031
F221 1.22 1.03 0.021 F612 1.2 1.53 0.058
F222 0.65 0.62 0.008 F621 1.1 1.22 0.11
F223 0.32 0.25 0.12 F622 0.56 2.37 0.65
F311 2.18 2.3 0.02

6.3.5.3. Generic GA solution and results

The GGA procedure is applied to search for a maximum design performance, namely,
shared surplus. The chromosome string comprises 13 genes. According to the compatibility
constraints shown in Figure 6-19, genes 3 and 5 are grouped together. Then the chromosome
is represented as v, =[x,,x,,{x;, X5}, X0, X5 ]

The result of the GGA solution is presented in Table 6-17, where the optimal result
achieves the shared surplus of 0.276.

6.3.6. Efficiency Analysis

The GGA efficiency lies in generating feasible solutions efficiently and effective search

along the entire GVS. This section examines the efficiency of the GGA in terms of the

probability of generating feasible solutions and the GGA complexity.
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Table 6-17 Optimal solution of motor family configuration design

Chromosome v, =11,1,3,1,1,1,1,1,1,1,2,1,2]
Feature Feature level Design parameter
Current 100mA Wire diameter = 50pm
Pb-free (A) Yes DimensionA = 3.8mm
Length 10.5mm Length = 10.5mm
Diameter 8.5mm Diameter = 8.5mm
Color (B) Black
CM X Angle = 30°
Coating Ni-Cu alloy
Shape (W) A Radius = 2.5mm
HS Min3kg Length = 3mm

Weight = 4.5gram
Speed 9000-12000mm | \irg diameter = 35um
Pb-free (M) No Nil.
Color (R) Red _
Shape (R) P Hardness = 60HB
Performance | 0.276

6.3.6.1. Feasible solution generation

This research adopts the MEM to modify the genetic operators. Infeasible chromosomes
are encapsulated into one group, and thus combinations of the inter-group modules always
produce feasible chromosomes. As a result, the probability of generating feasible solutions is

improved, as proven next.

Let A={m,,,**,M,,....M¢;} be a solution. Suppose all elements of A comprise a set,
E={e, e o€ ;). where J denotes the total number of elements. Encapsulate all the
elements whose combinations result in infeasible solutions in the same group. That is, the set
A is divided into G subsets, S ={s;,"**,s,,...,5;}, where G < K . Let N ={n;,---,n,,...n;}

be a set of element number of S, where each n . |Vg e [l,2,...,G] denotes the number of

G
elements contained in s, - Then it is true that J =an . Let W E{wl,-~-,wg,...,wG} and
g=l1

VE{vl,---,vg,...,vG} be two sets of S , where each W, |Vg €[l1,2,...,G] indicates the

number of possible element combinations contained in s,, and each v, IVgell2,..,G]

g 9
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indicates the number of feasible element combinations. Thus, for each v, Vg € [1,2,...,G], it
is true that v, <w, .

The probability of generating feasible solutions without using the MEM, denoted as

Py e » can be calculated as the following,

J
Py view =z P(feale;)xP(e;/wo_c_ fea)x P(wo_c_ fea), (42a)
j=1
ViV Ve _T° (42b)
P(feale.)=—"x—2x..x—5% = voIw),
(feale)) . v H< o)
C 42¢
P(ej/wo_c_fea)zllzng (42¢)
g=1
= 42d
Pwo _c fea)——x —:H(v /w) (42d)
W Wz

where P(fea/e;) denotes the conditional probability of generating feasible solutions under
the condition that e i is chosen for mutation; P(e i /wo _c _ fea) indicates the conditional
probability of e; to be chosen for mutation under the condition that the crossover operator

generates feasible solutions without following the MEM; and P(wo _c _ fea) denotes the
probability of generating feasible solutions after crossover without applying the MEM.

Combining Egs. (42a-d), Py ., is calculated using the following,

ZG:”x
Py viem ZAZ(ej/wo_c_fea)xﬁ(vg/w ) IQI(V Iw, ) _ (43)
J=1 g=1 g=1

Denote the probability of generating feasible solutions using the MEM as P,,,, , which

is calculated as the following,
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G
Py :z P(feals, )X P(s,/w_c_ fea)x P(w_c_ fea), (44a)

g=1

s.t. v (44b)
P(feals,) =4
w

8

G 44c
P(sg/w_c_fea)zng/an, (44e)
g=l1

P(w_c_ fea)=1, (444d)
where P(fea/s,) denotes the conditional probability of generating feasible solutions under
the condition that s, is chosen for mutation; P(s,/w_c_ fea) indicates the conditional
probability of s, to be chosen for mutation under the condition that the crossover operator

adopts the MEM; and P(w _c_ fea) denotes the probability of generating feasible solutions
using the MEM for crossover. Abiding by the MEM, the crossover operator always generates
feasible solutions, that is, P(w_c_ fea) =1. Combining Eqgs. (44a-d), the result of P,,,, is

given as the following,

G G
PMEM :Z(vgng/wgzng)' (45)
g=1 g=1

Based on Egs. (43) and (45), it can be proven that:

G G
Py = |:(V1W2 X WGl VW X W, + .+ VoW, X...wG_lnG)/ng an

g=1 g=1
G G ]
2| (W XV, XV XA+ V00 XV Xy o+ VeV XV XnG)/ngan (46)
g=1 g=l1
G G 2
= (vg/wg)ZH(vg/wg) =Py yeu
g=l1 g=1
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The result of Eq. (46) proves that the GGA does improve the probability of generating
feasible solutions when adopting MEM.
6.3.6.2. Complexity analysis

Although it is always taken for granted that computers are capable of performing any
computation, in practice there are a large class of programs that cannot be solved efficiently
due to improper construction of the problem itself. Effective data structures thus are of
primary importance for reducing complexity of the problem. Based on the GVS, the GGA
constructs a configuration space represented by an AND/OR tree structure. The single
formalism enables the efficient and effective search patterns, thus decreasing the difficulties
in solving the PFCD problem.

With a GVS, the configuration space can be assumed to be represented as a balanced

tree. Let H be the height of the tree, and n be the node number at every level of the tree.
Then the total number of nodes is given as n”~'. This requires O(n”) comparisons for each
solution to be found. When this process continues to rank all the solutions, the complexity

becomes O(n").

Given a total number of n™ variables, a regular GA, where no generic structure is
available to describe the variables, requires O(nHH) comparisons for each solution to be
found. When this process continues to rank all the solutions, the complexity becomes
O(nHH) . Such a comparison of complexity clearly suggests that the GVS-based

configuration model reduces the complexity of the GA search substantially. Therefore, the

GGA is much more advantageous over a regular GA approach.
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6.4. Summary

This chapter demonstrates the application of the product portfolio planning framework
to customer-engineering interaction. First, an associative classification-based
recommendation system is proposed for customer decision-making in an online mass
customization scenario. Customers are supported to make decisions when facing
overwhelming amount of information. By applying knowledge discovery techniques, the
associative classification-based recommendation system overcomes the drawback of other
popular methods for recommendation systems, namely content-based and collaborative-
based methods. Thus, it is particularly useful in e-commerce sites that offer millions of
products.

On the other hand, this chapter proposes a Kansei mining system to support affective
design. By Kansei mining, the Kansei mapping patterns are generated and stored in a
knowledge base and act as an interface through which the customers can interact directly
with the designers. Whenever affective needs are required, the designers can start the design
work without the tedious and iterative elaboration process between customers and marketing.

Finally, a generic genetic algorithm approach is developed to facilitate product family
configuration design, where combinatorial explosion always occurs and is known to be
mathematically intractable or NP-hard. A generic encoding scheme is developed to adapt to
diverse PFCD scenarios. A hybrid constraint-handling strategy is proposed to handle
complex and distinguishing constraints at different stages along the evolutionary process.
The three applications are validated by the mobile phone recommendation system prototype,
and case studies of mobile phone affective design and motor family configuration design,

respectively.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

This concluding chapter summarizes the findings of this study in Section 7.1 and the
contributions of the thesis work in Section 7.2. The limitations and possible improvements of
this research are also discussed, along with avenues for future research, in Sections 7.3 and

7.4, respectively.
7.1. Conclusions

The competitive paradigm has shifted from designer-centered to customer-driven. Enterprises
in all branches of industry are being forced to react to the growing individual demand. The
manufacturing companies intend to provide product variety by expanding their product lines
and differentiating their products, thus making their products more attractive. However, as
variety keeps increasing, companies with expending products face problems of increasing
costs due to an exponential growth of complexity, the inhibition of benefits from economy of
scale, and exacerbation of inventory imbalances. Moreover, the practice of giving customers
more choices than they actually want may lead to a paradox of mass confusion. As a result, a
company must optimize its external variety with respect to the internal complexity resulting
from product differentiation. Therefore, rather than creating various products in accordance
with all anticipating customer needs, it becomes an important campaign for the
manufacturing companies to offer the “right” product variety to the target market.

The economic success of providing a variety of product offerings depends on the ability

to capture customer needs in the target market while leveraging upon customer and
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engineering interaction. Previous research work has emphasized customer requirement
elicitation, but it is limited to the discovery of the “voice of customers” without explicitly
distinguishing market and customer preference from engineering concerns. This leads to the
inability to examine the combined effects of multiple product offerings on both customer
satisfaction and engineering implications.

Product portfolio planning lends itself as an important strategy for portfolio decisions. It
involves two main stages, namely product portfolio identification and optimization. The
methodology of product portfolio identification is based on the mining of association rules so
as to provide an integration of requirement information from both customer and design
viewpoints within a coherent framework. For most variant product designs, where market
segments have been established and product platforms have been installed, the association
rule mining methodology can improve the efficiency and quality of portfolio identification by
alleviating the tedious, ambiguous and error-prone process of requirement analysis enacted
among customers, marketing, and designers. Generating the portfolio based on knowledge
discovery from past data helps maintain the integrity of existing product and process
platforms, as well as the continuity of the infrastructure and core competencies, hence
leveraging existing design and manufacturing investments. The application of data mining
opens opportunities for incorporating experts’ experiences into the projection of portfolio
patterns from historical data, thereby enhancing the ability to explore and utilize domain
knowledge more effectively.

Product portfolio optimization addresses both diverse customer preferences across
market segments, and engineering costs that vary with the composition of a product portfolio.

By integrating marketing inputs with detailed cost information attained through coordinated
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product and process platforms, product portfolio optimization captures the tradeoffs between
the benefits derived from providing variety to the marketplace, and the cost savings that can
be realized by selecting a mix of products that can be produced efficiently within a

company’s manufacturing capabilities.
7.2. Contributions

The major contribution of the thesis work manifests itself through the development of a
coherent framework of product portfolio planning for product portfolio decisions while
leveraging both customer and engineering concerns. The deliverables are entailed from the
strategy, fundamentals, methodology, tools, applications, and validation aspects, as
elaborated next.

(1) At the strategy level, the following consensuses are clarified (Chapters 1 and 2):

» Distinguish functional variety from technical variety in the respective customer
and functional domains; and

» Examine the importance of front-end issues with respect to the entire spectrum
of platform-based product development and product family design.

(2) At the fundamental level, the following findings are achieved (Chapter 3):

» Analyze the fundamentals of product portfolio planning, which is concerned
with product portfolio identification and product portfolio optimization; and

» ldentify key technical challenges associated with product portfolio identification
and optimization and accordingly develop the solution strategies.

(3) In terms of the methodology, the following developments are delivered (Chapters 4

and 5):
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» Discover the underlying interrelationships between customer requirements and

>

product performances, where customers’ preferences are distinguished from
those of engineering; and
Model the combined effects of multiple product offerings on customer

satisfaction and engineering implications.

(4) In terms of supporting tools for product portfolio planning, the following aspects are

investigated:

>

>

Apply data mining techniques to customer requirement elicitation (Chapter 4);
Explore market research techniques for customer satisfaction modeling and
customer behavior analysis in a mass customization scenario (Chapter 5); and
Synthesize optimization techniques to deal with a number of conflicting goals
from the customer and engineering perspectives regarding product portfolio

optimization (Chapter 5).

(5) In terms of application, the potential of the product portfolio planning framework is

demonstrated through the following (Chapter 6):

>

Develop an associative classification-based recommendation system to support
customer decision making in mass customization;

Develop a Kansei mining system for customer perception modeling and
affective design support; and

Extend the product portfolio optimization framework to deal with product

family configuration design.

(6) As for validation, three industrial cases are investigated, including the following:
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» A case study and sensitivity analysis for generating the vibration motor portfolio
in order to validate the feasibility of the product portfolio identification
framework (Chapter 4);

» A case study and sensitivity analysis of notebook computer portfolio
optimization to illustrate the feasibility and potential of the product portfolio
optimization framework (Chapter 5);

» A prototype of mobile phone recommendation system for supporting customer
decision making in online mass customization (Chapter 6);

» A case study of mobile phone affective design to justify the applicability of the
Kansei mining methodology (Chapter 6); and

» A case study and efficiency analysis of motor product family configuration
design to indicate the feasibility of the generic genetic algorithm approach and

the shared surplus-based product family design configuration (Chapter 6).
7.3. Limitations

Product portfolio planning aims at developing decision support for manufacturing
companies to offer the “right” products to match diverse customer needs. The problem
formulation, system framework, architecture, and the corresponding implementations have
been proposed and investigated in the thesis work. The limitations of current work mainly
stem from the assumptions related to the product portfolio planning framework, in particular
related to the following aspects.

(1) The reliability and effectiveness of product portfolio identification depend on the
quality of knowledge. Product portfolio identification aims at reusing knowledge from

historical data to facilitate the handling of requirement information and tradeoffs among
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many customer, marketing and engineering concerns. The opportunity lies in taking the
advantage of the wealth of customer requirement information accumulated in existing
products and company databases. As a result, the performance relies on the knowledge
acquired and represented. In this respect, the quality of latent knowledge plays an important
role in product portfolio identification. In addition, knowledge must be constantly refined and
updated to keep the customer requirement information current and valid.

(2) The robustness of product portfolio optimization needs to be improved by
investigating more complex competitive scenarios. This work assumes that in the short term,
competitors do not react by introducing new products or adjusting their product price. As a
result, competitive reactions are implicitly modeled in the customer utilities, which are
supposed to be influenced by the attributes and prices of competing products. To adapt to

complex market situations, it is necessary to investigate more complex competitive scenarios.
7.4. Future Work

Product portfolio planning tackles the front-end issues of product family development. It
can be enhanced by considering more complex scenarios. From a holistic view, there is still
much to be desired in order to achieve system-wide solutions for product family design and
platform-based product development. In this regard, the following areas appear to be
promising avenues for further research efforts.

(1) Active competition modeling. One of the fruitful directions would be the modeling
of active competition. In most cases, complete information about the competitors is not
available. To maintain dominance, competitors always adjust their competition strategies.
For example, most competitors eventually react to new entries with changes in their prices.

The dynamic markets and uncertain information make it difficult to make decisions.
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Therefore, the competitive scenarios and market dynamics should be analyzed to develop a
systematic approach to study decision making in conflicting situations where two or more
decision makers are involved. This may be verified by explicitly modeling competitive
reactions within a game theoretic framework or by deriving competitive strategies in conjoint
analysis under the Nash equilibrium concept (see e.g., Choi and DeSarbo, 1994).

(2) Dynamic customer behavior analysis. If interactions among diverse product
attributes are to be considered, customer behavior will become more dynamic and
complicated. The interactions may be verified by factor analysis. Extended utility functions,
such as a quadratic utility function, afford the opportunity for dynamic customer behavior
analysis. The extended utility function may be constructed using central composite designs,
which contains an imbedded fractional factorial design with center points that allow the
estimation of curvature and second-order effects. Another area of interest would be discrete
choice analysis for predicting the choices that customers will make between alternatives
provided by a product portfolio. It encompasses a variety of experimental design techniques,
data collection procedures, and statistical procedures (see e.g., Watson, et al., 2002;
Hayakawa, 1976).

(3) Product family design support. Although the basic principles of product family
design are understood and well documented in the literature, quite a few fundamental issues
require further examination, for instance, to what extent can a product family architecture
and platform best represent the capability of an enterprise? How can product families be
matched with an existing set of resources and enterprise capabilities? How should product
platforms and architectures evolve in accordance with changes in customers’ requirements,

product technologies and enterprise capabilities? Product architecture and platform modeling
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is one of the fruitful research topics. Comparing with numerous efforts in product family
optimization design, this field has so far received least attention, and little achievement has
been reported. It is imperative to call for rigorous research that synthesizes useful ingredients
from those establishments in the artificial intelligence field such as configuration topology,
software product families, and architectural modeling (see e.g., Jiao, et al., 2006).

(4) Product platform risk management. The risks related to product family development
need to be addressed properly. Developing product platforms in most cases requires more
investments and development time than developing a single product, which may delay the
time to market and affect the return on investment time. The risks may undermine the
competitiveness of the entire product line, and therefore a broad array of products may feel
the pain. Organizational forces may also hinder the ability to balance commonality and
distinctiveness (see e.g., Meyer and Lehnerd, 1997; Robertson and Ulrich, 1998).

(5) Extended platforms for collaborative product families. A product family should
ideally be built on sharing a multidimensional core of assets such as standardized
components, manufacturing, supply and distribution processes, customer segmentation and
brand positioning. To support the coordination of the demand and supply chains with product
families, it is necessary to extend platform thinking to the entire continuum of product
fulfillment, including customer platforms, brand platforms, product platforms, process
platforms, and global platforms. Greater complexity must be introduced to product family
design decisions when considering more decision variables or parameters pertinent to the

coordination across the product, manufacturing process and supply chain domains.
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