COLLOQUIUM MATHEMATICUM

PRODUCT PRESERVING GAUGE BUNDLE FUNCTORS ON VECTOR BUNDLES

BY
WŁODZIMIERZ M. MIKULSKI (Kraków)

Abstract

A complete description is given of all product preserving gauge bundle functors F on vector bundles in terms of pairs (A, V) consisting of a Weil algebra A and an A-module V with $\operatorname{dim}_{\mathbb{R}}(V)<\infty$. Some applications of this result are presented.

0. Let us recall the following definitions (see e.g. [4]).

Let $F: \mathcal{V B} \rightarrow \mathcal{F} \mathcal{M}$ be a covariant functor from the category $\mathcal{V B}$ of all vector bundles and their vector bundle homomorphisms into the category $\mathcal{F M}$ of fibered manifolds and their fibered maps. Let $B_{\mathcal{V B}}: \mathcal{V B} \rightarrow \mathcal{M} f$ and $B_{\mathcal{F M}} \rightarrow \mathcal{M} f$ be the respective base functors.

A gauge bundle functor on $\mathcal{V B}$ is a functor F satisfying $B_{\mathcal{F M}} \circ F=$ $B_{\mathcal{V B}}$ and the localization condition: for every inclusion of an open vector subbundle $i_{E \mid U}: E \mid U \rightarrow E, F(E \mid U)$ is the restriction $p_{E}^{-1}(U)$ of $p_{E}: F E \rightarrow$ $B_{\mathcal{V B}}(E)$ over U and $F i_{E \mid U}$ is the inclusion $p_{E}^{-1}(U) \rightarrow F E$.

Given two gauge bundle functors F_{1}, F_{2} on $\mathcal{V B}$, by a natural transformation $\tau: F_{1} \rightarrow F_{2}$ we shall mean a system of base preserving fibered maps $\tau_{E}: F_{1} E \rightarrow F_{2} E$ for every vector bundle E satisfying $F_{2} f \circ \tau_{E}=\tau_{G} \circ F_{1} f$ for every vector bundle homomorphism $f: E \rightarrow G$.

A gauge bundle functor F on $\mathcal{V B}$ is product preserving if for any product projections $E_{1} \stackrel{\mathrm{pr}_{1}}{\rightleftarrows} E_{1} \times E_{2} \xrightarrow{\mathrm{pr}_{2}} E_{2}$ in the category $\mathcal{V} \mathcal{B}, F E_{1} \stackrel{F \mathrm{pr}_{1}}{\longleftrightarrow} F\left(E_{1} \times E_{2}\right)$ $\xrightarrow{F \mathrm{pr}_{2}} F E_{2}$ are product projections in the category $\mathcal{F} \mathcal{M}$. In other words, $F\left(E_{1} \times E_{2}\right)=F\left(E_{1}\right) \times F\left(E_{2}\right)$ modulo $\left(F \mathrm{pr}_{1}, F \mathrm{pr}_{2}\right)$.

In this paper we prove that all product preserving gauge bundle functors F on $\mathcal{V B}$ are in bijection with the pairs (A, V) consisting of a Weil algebra A and an A-module V with $\operatorname{dim}_{\mathbb{R}}(V)<\infty$, and that the natural transformations between two product preserving gauge bundle functors on the category $\mathcal{V B}$ are in bijection with the morphisms between corresponding pairs.

Some applications of the above classification results are also presented.

[^0]The product preserving and fiber product preserving bundle functors on some other categories on manifolds have been described by many authors [1]-[8].

All manifolds are assumed to be Hausdorff, finite-dimensional, without boundary and of class C^{∞}. All maps between manifolds are assumed to be of class C^{∞}.

1. Let $A=\mathbb{R} \oplus n_{A}$ be a Weil algebra and V be an A-module with $\operatorname{dim}_{\mathbb{R}}(V)<\infty$. We generalize the construction of bundles of infinitely near points [9].

Example 1. Given a vector bundle $E=(E \xrightarrow{p} M)$ let $T^{A, V} E=$ $\left\{(\varphi, \psi) \mid \varphi \in \operatorname{Hom}\left(C_{z}^{\infty}(M), A\right), \psi \in \operatorname{Hom}_{\varphi}\left(C_{z}^{\infty}\right.\right.$, f.l. $\left.\left.(E), V\right), z \in M\right\}$, where $\operatorname{Hom}\left(C_{z}^{\infty}(M), A\right)$ is the set of all algebra homomorphisms φ from the (unital) algebra $C_{z}^{\infty}(M)=\left\{\operatorname{germ}_{z}(g) \mid g: M \rightarrow \mathbb{R}\right\}$ into A and where $\operatorname{Hom}_{\varphi}\left(C_{z}^{\infty}\right.$,f.l. $\left.(E), V\right)$ is the set of all module homomorphisms ψ over φ from the $C_{z}^{\infty}(M)$-module C_{z}^{∞}, f.l. $(E)=\left\{\operatorname{germ}_{z}(h) \mid h: E \rightarrow \mathbb{R}\right.$ is fiber linear $\}$ into V. Then $T^{A, V} E$ is a fibered manifold over M. A local vector bundle trivialization $\left(x^{1} \circ p, \ldots, x^{m} \circ p, y^{1}, \ldots, y^{k}\right): E \mid U \cong \mathbb{R}^{m} \times \mathbb{R}^{k}$ on E induces a fiber bundle trivialization $\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{m}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{k}\right): T^{A, V} E \mid U \cong A^{m} \times V^{n}=$ $\mathbb{R}^{m} \times n_{A}^{m} \times V^{n}$ by $\widetilde{x}^{i}(\varphi, \psi)=\varphi\left(\operatorname{germ}_{z}\left(x^{i}\right)\right) \in A, \widetilde{y}^{j}(\varphi, \psi)=\psi\left(\operatorname{germ}_{z}\left(y^{j}\right)\right)$ $\in V,(\varphi, \psi) \in T_{z}^{A, V} E, z \in U, i=1, \ldots, m, j=1, \ldots, k$. Given another vector bundle $G=(G \xrightarrow{q} N)$ and a vector bundle homomorphism $f: E \rightarrow G$ over $\underline{f}: M \rightarrow N$ let $T^{A, V} f: T^{A, V} E \rightarrow T^{A, V} G, T^{A, V} f(\varphi, \psi)=$ $\left(\varphi \circ \underline{f}_{z}^{*}, \psi \circ f_{z}^{*}\right),(\varphi, \psi) \in T_{z}^{A, V} E, z \in M$, where $\underline{f}_{z}^{*}: C_{\underline{f}(z)}^{\infty}(N) \rightarrow C_{z}^{\infty}(M)$ and $f_{z}^{*}: C_{\underline{f}(z)}^{\infty, \text { f.l. }}(G) \rightarrow C_{z}^{\infty, \text { f.l. }}(E)$ are given by the pull-back with respect to \underline{f} and f. Then $T^{A, V} f$ is a fibered map over \underline{f}, and $T^{A, V}$ is a product preserving gauge bundle functor on $\mathcal{V B}$.
2. Let F be a product preserving gauge bundle functor on $\mathcal{V B}$.

Example 2. (i) Let $A^{F}=\left(G^{F} \mathbb{R}, G^{F}(+), G^{F}(\cdot), G^{F}(0), G^{F}(1)\right)$, where $G^{F}: \mathcal{M} f \rightarrow \mathcal{F M}, G^{F} M=F\left(M \xrightarrow{\mathrm{id}_{M}} M\right), G^{F} f=F f: G^{F} M \rightarrow G^{F} N$, and where $+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is the sum map, $\cdot: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is the multiplication $\operatorname{map}, 0: \mathbb{R} \rightarrow \mathbb{R}$ is the zero and $1: \mathbb{R} \rightarrow \mathbb{R}$ is the unity. Then A^{F} is a Weil algebra.
(ii) Let $V^{F}=(F(\mathbb{R} \rightarrow \mathrm{pt}), F(+), F(\cdot), F(0))$, where pt is the one point manifold, $\mathbb{R} \rightarrow$ pt is the vector bundle, $+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is the sum map, which is a vector bundle homomorphism $(\mathbb{R} \rightarrow \mathrm{pt}) \times(\mathbb{R} \rightarrow \mathrm{pt}) \rightarrow(\mathbb{R} \rightarrow \mathrm{pt})$ over pt $\times \mathrm{pt} \rightarrow \mathrm{pt}, 0: \mathbb{R} \rightarrow \mathbb{R}$ is the zero map, which is a vector bundle homomorphism $(\mathbb{R} \rightarrow \mathrm{pt}) \rightarrow(\mathbb{R} \rightarrow \mathrm{pt})$ over $\mathrm{pt} \rightarrow \mathrm{pt}$, and $\cdot: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is the multiplication map, which is a vector bundle homomorphism $\left(\mathbb{R} \xrightarrow{\mathrm{id}_{\mathbb{R}}} \mathbb{R}\right) \times$
$(\mathbb{R} \rightarrow \mathrm{pt}) \rightarrow(\mathbb{R} \rightarrow \mathrm{pt})$ over $\mathbb{R} \times \mathrm{pt} \rightarrow \mathrm{pt}$. Then V^{F} is an A^{F}-module with $\operatorname{dim}_{\mathbb{R}}\left(V^{F}\right)<\infty$.
3. Let F be a product preserving gauge bundle functor on $\mathcal{V B}$ and $\left(A^{F}, V^{F}\right)$ be the corresponding pair. Let $T^{A^{F}}, V^{F}$ be the product preserving gauge bundle functor for $\left(A^{F}, V^{F}\right)$. We prove $F \cong T^{A^{F}, V^{F}}$.

For every vector bundle $E=(E \xrightarrow{p} M)$ we construct a fibered map $\Theta_{E}: F E \rightarrow T^{A^{F}, V^{F}} E$ covering id_{M} as follows. If $y \in F_{z} E, z \in M$, we define $\varphi_{y}: C_{z}^{\infty}(M) \rightarrow A^{F}, \varphi_{y}\left(\operatorname{germ}_{z}(g)\right)=F(g \circ p)(y) \in A^{F}=F\left(\mathbb{R} \xrightarrow{\mathrm{id}_{\mathbb{R}}} \mathbb{R}\right)$, $g: M \rightarrow \mathbb{R}$, where $g \circ p: E \rightarrow \mathbb{R}$ is considered as a vector bundle homomorphism $(E \xrightarrow{p} M) \rightarrow\left(\mathbb{R} \xrightarrow{\text { id }_{\mathbb{R}}} \mathbb{R}\right)$ over $g: M \rightarrow \mathbb{R}$. Then φ_{y} is an algebra homomorphism. If $y \in F_{z} E, z \in M$, we define $\psi_{y}: C_{z}^{\infty, \text { f.l }}(E) \rightarrow V^{F}$, $\psi_{y}\left(\operatorname{germ}_{z}(f)\right)=F(f)(y), f: E \rightarrow \mathbb{R}$ is fiber linear, where f is considered as a vector bundle map $(E \xrightarrow{p} M) \rightarrow(\mathbb{R} \rightarrow \mathrm{pt})$ over $M \rightarrow \mathrm{pt}$. Then ψ_{y} is a module homomorphism over φ_{y}. We put $\Theta_{E}(y)=\left(\varphi_{y}, \psi_{y}\right) \in T_{z}^{A^{F}, V^{F}} E$, $y \in F_{z} E, z \in M$.

Proposition 1. $\Theta: F \rightarrow T^{A^{F}, V^{F}}$ is a natural isomorphism.
Proof. It is sufficient to show that Θ_{E} is a diffeomorphism for any vector bundle E. Applying vector bundle trivializations, we can assume that $E=$ $\mathbb{R}^{m} \times \mathbb{R}^{k}$ is a trivial vector bundle over \mathbb{R}^{m}. Since F and $T^{A^{F}, V^{F}}$ are product preserving and E is a (multi) product of $\mathbb{R} \xrightarrow{\operatorname{id}_{\mathbb{R}}} \mathbb{R}$ and $\mathbb{R} \rightarrow$ pt, we can assume that E is either $\mathbb{R} \xrightarrow{\text { id }} \mathbb{R}$ or $\mathbb{R} \rightarrow \mathrm{pt}$.
(I) $E=\left(\mathbb{R} \xrightarrow{\mathrm{id}_{\mathbb{R}}} \mathbb{R}\right)$. Consider $G^{F} \mathbb{R} \xrightarrow{\Theta_{E}} T^{A^{F}, V^{F}}\left(\mathbb{R} \xrightarrow{\mathrm{id}_{\mathbb{R}}} \mathbb{R}\right) \xrightarrow{\widetilde{x}^{1}} A^{F}$, where \widetilde{x}^{1} is induced by $x^{1}=\operatorname{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}$ (see Example 1). This composition is the identity $\operatorname{map} G^{F} \mathbb{R}=A^{F}$. Hence Θ_{E} is a diffeomorphism.
(II) $E=(\mathbb{R} \rightarrow \mathrm{pt})$. Consider $F(\mathbb{R} \rightarrow \mathrm{pt}) \xrightarrow{\Theta_{E}} T^{A^{F}, V^{F}}(\mathbb{R} \rightarrow \mathrm{pt}) \xrightarrow{\tilde{y}^{1}} V^{F}$, where \widetilde{y}^{1} is induced by $y^{1}=\operatorname{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}$. This composition is the identity $\operatorname{map} F(\mathbb{R} \rightarrow \mathrm{pt})=V^{F}$. Hence Θ_{E} is a diffeomorphism.
4. Let (A, V) be a pair, where A is a Weil algebra and V is an A-module with $\operatorname{dim}_{\mathbb{R}}(V)<\infty$. Let $T^{A, V}$ be the corresponding gauge bundle functor on $\mathcal{V B}$. Let $(\widetilde{A}, \widetilde{V})$ be the pair corresponding to $T^{A, V}$.

Proposition 2. $(A, V) \cong(\widetilde{A}, \widetilde{V})$.
Proof. Clearly, $\widetilde{A}=T^{A, V}\left(\mathbb{R} \xrightarrow{\mathrm{id}_{\mathbb{R}}} \mathbb{R}\right)$ and $\widetilde{V}=T^{A, V}(\mathbb{R} \rightarrow \mathrm{pt})$. Let $\mathcal{O}=$ $\widetilde{x}^{1}: T^{A, V}\left(\mathbb{R} \xrightarrow{\mathrm{id}_{\mathbb{R}}} \mathbb{R}\right) \rightarrow A$ and $\Pi=\widetilde{y}^{1}: T^{A, V}(\mathbb{R} \rightarrow \mathrm{pt}) \rightarrow V$, where \widetilde{x}^{1} is induced by $x^{1}=\operatorname{id}_{\mathbb{R}}$ and \widetilde{y}^{1} is induced by $y^{1}=\operatorname{id}_{\mathbb{R}}$ (see Example 1).

Then $\mathcal{O}: \widetilde{A} \rightarrow A$ is an algebra isomorphism and $\Pi: \widetilde{V} \rightarrow V$ is a module isomorphism over \mathcal{O}.
5. Let $\left(A_{1}, V_{1}\right)$ and $\left(A_{2}, V_{2}\right)$ be pairs, where A_{i} is a Weil algebra and V_{i} is an A_{i}-module with $\operatorname{dim}_{\mathbb{R}}\left(V_{i}\right)<\infty, i=1,2$. Let (μ, ν) be a morphism from $\left(A_{1}, V_{1}\right)$ into $\left(A_{2}, V_{2}\right)$, i.e. $\mu: A_{1} \rightarrow A_{2}$ is an algebra homomorphism and $\nu: V_{1} \rightarrow V_{2}$ is a module homomorphism over μ.

Example 3. Let $E \rightarrow M$ be a vector bundle. We define $\tau_{E}^{\mu, \nu}: T^{A_{1}, V_{1}} E \rightarrow$ $T^{A_{2}, V_{2}} E, \tau_{E}^{\mu, \nu}(\varphi, \psi)=(\mu \circ \varphi, \nu \circ \psi),(\varphi, \psi) \in T_{z}^{A_{1}, V_{1}} E, z \in M$. Then $\tau^{\mu, \nu}:$ $T^{A_{1}, V_{1}} \rightarrow T^{A_{2}, V_{2}}$ is a natural transformation.
6. Let $\tau: F_{1} \rightarrow F_{2}$ be a natural transformation between product preserving gauge bundle functors on $\mathcal{V B}$. Let $\left(A^{F_{1}}, V^{F_{1}}\right)$ and $\left(A^{F_{2}}, V^{F_{2}}\right)$ be the pairs corresponding to F_{1} and F_{2}.

Example 4. Let $\left(\mu^{\tau}, \nu^{\tau}\right)=\left(\tau_{\text {id }: \mathbb{R} \rightarrow \mathbb{R}}, \tau_{\mathbb{R} \rightarrow \mathrm{pt}}\right):\left(A^{F_{1}}, V^{F_{1}}\right) \rightarrow\left(A^{F_{2}}, V^{F_{2}}\right)$. Then $\left(\mu^{\tau}, \nu^{\tau}\right)$ is a morphism of pairs.
7. We are now in a position to prove the following theorem.

Theorem 1. The correspondence $F \mapsto\left(A^{F}, V^{F}\right)$ induces a bijective correspondence between the equivalence classes of product preserving gauge bundle functors F on $\mathcal{V B}$ and the equivalence classes of pairs (A, V) consisting of a Weil algebra A and an A-module V with $\operatorname{dim}_{\mathbb{R}}(V)<\infty$. The inverse correspondence is induced by the correspondence $(A, V) \mapsto T^{A, V}$.

Proof. The correspondence $[F] \mapsto\left[\left(A^{F}, V^{F}\right)\right]$ is well defined. For, if τ : $F_{1} \rightarrow F_{2}$ is an isomorphism, then so is $\left(\mu^{\tau}, \nu^{\tau}\right):\left(A^{F_{1}}, V^{F_{1}}\right) \rightarrow\left(A^{F_{2}}, V^{F_{2}}\right)$.

The correspondence $[(A, V)] \mapsto\left[T^{A, V}\right]$ is well defined. For, if (μ, ν) : $\left(A_{1}, V_{1}\right) \rightarrow\left(A_{2}, V_{2}\right)$ is an isomorphism, then so is $\tau^{\mu, \nu}: T^{A_{1}, V_{1}} \rightarrow T^{A_{2}, V_{2}}$.

From Proposition 1 it follows that $[F]=\left[T^{A^{F}, V^{F}}\right]$. From Proposition 2 it follows that $[(A, V)]=\left[\left(A^{F}, V^{F}\right)\right]$ if $F=T^{A, V}$.
8. Let F_{1} and F_{2} be two product preserving gauge bundle functors on $\mathcal{V B}$. Let $\left(A^{F_{1}}, V^{F_{1}}\right)$ and $\left(A^{F_{2}}, V^{F_{2}}\right)$ be the corresponding pairs.

Proposition 3. Let $(\mu, \nu):\left(A^{F_{1}}, V^{F_{1}}\right) \rightarrow\left(A^{F_{2}}, V^{F_{2}}\right)$ be a morphism. Let $\tau^{[\mu, \nu]}: F_{1} \rightarrow F_{2}$ be a natural transformation given by the composition $F_{1} \xrightarrow{\Theta} T^{A^{F_{1}}, V^{F_{1}}} \xrightarrow{\mu^{\mu, \nu}} T^{A^{F_{2}}, V^{F_{2}}} \xrightarrow{\Theta^{-1}} F_{2}$, where Θ is as in Proposition 1 and $\tau^{\mu, \nu}$ is described in Example 3. Then $\tau=\tau^{[\mu, \nu]}$ is the unique natural transformation $F_{1} \rightarrow F_{2}$ such that $\left(\mu^{\tau}, \nu^{\tau}\right)=(\mu, \nu)$, where $\left(\mu^{\tau}, \nu^{\tau}\right)$ is as in Example 4.

Proof. First we prove the uniqueness part. Suppose $\bar{\tau}: F_{1} \rightarrow F_{2}$ is another natural transformation such that $\left(\mu^{\bar{\tau}}, \nu^{\bar{\tau}}\right)=(\mu, \nu)$. Then $\bar{\tau}$ coincides
with τ on the vector bundles $\mathbb{R} \xrightarrow{\text { id }_{\mathbb{R}}} \mathbb{R}$ and $\mathbb{R} \rightarrow$ pt because of the definition of (μ^{τ}, ν^{τ}). Hence $\bar{\tau}=\tau$ by the same argument as in the proof of Proposition 1.

The existence part follows from the easily verified equalities $\Theta_{\mathbb{R} \rightarrow \mathrm{pt}}^{-1} \circ$ $\tau_{\mathbb{R} \rightarrow \mathrm{pt}}^{\mu, \nu} \circ \Theta_{\mathbb{R} \rightarrow \mathrm{pt}}=\nu$ and $\Theta_{\mathrm{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}}^{-1} \circ \tau_{\mathrm{id} \mathbb{R}}^{\mu, \mathbb{R}^{\prime} \rightarrow \mathbb{R}} \circ \Theta_{\mathrm{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}}=\mu$.

Now, the following theorem is clear.
Theorem 2. Let F_{1} and F_{2} be two product preserving gauge bundle functors on $\mathcal{V B}$. The correspondence $\tau \mapsto\left(\mu^{\tau}, \nu^{\tau}\right)$ is a bijection between the natural transformations $F_{1} \rightarrow F_{2}$ and the morphisms $\left(A^{F_{1}}, V^{F_{1}}\right) \rightarrow$ $\left(A^{F_{2}}, V^{F_{2}}\right)$ between corresponding pairs. The inverse correspondence is (μ, ν) $\mapsto \tau^{[\mu, \nu]}$.
9. As an application of Theorems 1 and 2 we describe all the so-called excellent pairs, i.e. pairs (F, π) where F is a product preserving gauge bundle functor on $\mathcal{V B}$ and $\pi: F \rightarrow \mathrm{id}_{\mathcal{V} \mathcal{B}}$ is a natural epimorphism (i.e. π is a natural transformation such that $\pi_{E}: F E \rightarrow E$ is a surjective submersion for any vector bundle E).

Thanks to our previous considerations we have:
(a) Let (F, π) be an excellent pair. Then we have $\left(A^{F}, V^{F}\right)$ and a morphism $\left(\mu^{\pi}, \nu^{\pi}\right):\left(A^{F}, V^{F}\right) \rightarrow\left(A^{\operatorname{id} \mathcal{V} \mathcal{B}}, V^{\operatorname{id} \mathcal{V} \mathcal{B}}\right)=(\mathbb{R}, \mathbb{R})$. In other words, we have a triple $\left(A^{F, \pi}, V^{F, \pi}, \varrho^{F, \pi}\right)$, where $A^{F, \pi}=A^{F}, V^{F, \pi}=V^{F}$ and $\varrho^{F, \pi}=\nu^{\pi}: V^{F, \pi} \rightarrow \mathbb{R}$. Of course, $A^{F, \pi}$ is a Weil algebra, $V^{F, \pi}$ is an A^{F} module with $\operatorname{dim}_{\mathbb{R}}\left(V^{F}\right)<\infty$ and $\varrho^{F, \pi}$ is a non-zero module homomorphism over the algebra homomorphism $A^{F, \pi} \rightarrow \mathbb{R}$.
(b) Conversely, let (A, V, ϱ) be a triple, where A is a Weil algebra, V is an A-module with $\operatorname{dim}_{\mathbb{R}}(V)<\infty$ and $\varrho: V \rightarrow \mathbb{R}$ is a non-zero module homomorphism over the unique algebra homomorphism $\kappa: A \rightarrow \mathbb{R}$. Then $\tau^{\kappa, \varrho}: T^{A, V} \rightarrow T^{\mathbb{R}, \mathbb{R}} \cong \mathrm{id}_{\mathcal{V} \mathcal{B}}$ is a natural epimorphism. In other words, we have an excellent pair $\left(T^{A, V, \varrho}, \pi^{A, V, \varrho}\right):=\left(T^{A, V}, \Theta^{-1} \circ \tau^{\kappa, \varrho}\right)$, where $\Theta:$ $\mathrm{id}_{\mathcal{V} \mathcal{B}} \rightarrow T^{\mathbb{R}, \mathbb{R}}$.
(c) Let (F, π) be an excellent pair. Then $\Theta: F \rightarrow T^{A^{F}, V^{F}}$ is an isomorphism of the excellent pairs (F, π) and $\left(T^{A^{F, \pi}, V^{F, \pi}, e^{F, \pi}}, \pi^{A^{F, \pi}, V^{F, \pi}, e^{F, \pi}}\right)$, i.e. we have $\pi^{A^{F, \pi}, V^{F, \pi}, e^{F, \pi}} \circ \Theta=\pi$.
(d) Let (A, V, ϱ) be a triple as above. Let $\left(T^{A, V, \varrho}, \pi^{A, V, \varrho}\right)$ be the corresponding excellent pair. Let $(\widetilde{A}, \widetilde{V}, \widetilde{\varrho})$ be the triple corresponding to $\left(T^{A, V, \varrho}\right.$, $\left.\pi^{A, V, \varrho}\right)$. Then $(\mathcal{O}, \Pi):(\widetilde{A}, \widetilde{V}) \rightarrow(A, V)$ is an isomorphism of the triples $(\widetilde{A}, \widetilde{V}, \widetilde{\varrho})$ and (A, V, ϱ), i.e. we have $\varrho \circ \Pi=\widetilde{\varrho}$.
(e) Let $(\mu, \nu):\left(A_{1}, V_{1}, \varrho_{1}\right) \rightarrow\left(A_{2}, V_{2}, \varrho_{2}\right)$ be a morphism between triples, where A_{i} is a Weil algebra, V_{i} is a V_{i}-module with $\operatorname{dim}_{\mathbb{R}}\left(V_{i}\right)<\infty$ and $\varrho_{i}: V_{i} \rightarrow \mathbb{R}$ is a non-zero module homomorphism over the algebra homomorphism $A_{i} \rightarrow \mathbb{R}, i=1,2$. This means that $(\mu, \nu):\left(A_{1}, V_{1}\right) \rightarrow\left(A_{2}, V_{2}\right)$
is a morphism between pairs such that $\varrho_{2} \circ \nu=\varrho_{1}$. Then $\tau^{\mu, \nu}: T^{A_{1}, V_{1}} \rightarrow$ $T^{A_{2}, V_{2}}$ is a morphism between the excellent pairs $\left(T^{A_{1}, V_{1}, \varrho_{1}}, \pi^{A_{1}, V_{1}, \varrho_{1}}\right)$ and $\left(T^{A_{2}, V_{2}, \varrho_{2}}, \pi^{A_{2}, V_{2}, \varrho_{2}}\right)$, i.e. we have $\pi^{A_{2}, V_{2}, \varrho_{2}} \circ \tau^{\mu, \nu}=\pi^{A_{1}, V_{1}, \varrho_{1}}$.
(f) Let $\tau:\left(F_{1}, \pi_{1}\right) \rightarrow\left(F_{2}, \pi_{2}\right)$ be a morphism between excellent pairs, i.e. $\tau: F_{1} \rightarrow F_{2}$ is a natural transformation such that $\pi_{2} \circ \tau=\pi_{1}$. Then $\left(\mu^{\tau}, \nu^{\tau}\right):\left(A^{F_{1}}, V^{F_{1}}\right) \rightarrow\left(A^{F_{2}}, V^{F_{2}}\right)$ is a morphism between the triples $\left(A^{F_{1}, \pi_{1}}, V^{F_{1}, \pi_{1}}, \varrho^{F_{1}, \pi_{1}}\right)$ and $\left(A^{F_{2}, \pi_{2}}, V^{F_{2}, \pi_{2}}, \varrho^{F_{2}, \pi_{2}}\right)$, i.e. $\varrho^{F_{2}, \pi_{2}} \circ \nu^{\tau}=\varrho^{F_{1}, \pi_{1}}$.

Thus we have the following theorem corresponding to Theorem 1.
Theorem 1^{\prime}. The correspondence $(F, \pi) \mapsto\left(A^{F, \pi}, V^{F, \pi}, \varrho^{F, \pi}\right)$ induces a bijection between the equivalence classes of excellent pairs (F, π) and the equivalence classes of triples (A, V, ϱ) consisting of a Weil algebra A, an A-module V with $\operatorname{dim}_{\mathbb{R}}(V)<\infty$ and a non-zero module homomorphism $\varrho: V \rightarrow \mathbb{R}$ over the algebra homomorphism $A \rightarrow \mathbb{R}$. The inverse bijection is induced by $(A, V, \varrho) \mapsto\left(T^{A, V, \varrho}, \pi^{A, V, \varrho}\right)$.

Remark 1. Let $A=\mathbb{R} \oplus n_{A}$ be a Weil algebra and V be an A-module. If $\varrho: V \rightarrow \mathbb{R}$ is a module homomorphism over the algebra homomorphism $A \rightarrow \mathbb{R}$, then $\operatorname{ker}(\varrho) \supset n_{A} \cdot V$. Conversely, if $\varrho: V \rightarrow \mathbb{R}$ is a functional such that $\operatorname{ker}(\varrho) \supset n_{A} \cdot V$, then it is a module homomorphism over $A \rightarrow \mathbb{R}$.
(g) Let $\left(F_{1}, \pi_{1}\right),\left(F_{2}, \pi_{2}\right)$ be excellent pairs. Let $(\mu, \nu):\left(A^{F_{1}, \pi_{1}}, V^{F_{1}, \pi_{1}}\right.$, $\left.\varrho^{F_{1}, \pi_{1}}\right) \rightarrow\left(A^{F_{2}, \pi_{2}}, V^{F_{2}, \pi_{2}}, \varrho^{F_{2}, \pi_{2}}\right)$ be a morphism between the corresponding triples. Then $\tau^{[\mu, \nu]}: F_{1} \rightarrow F_{2}$ (see Proposition 3) is a morphism between the excellent pairs $\left(F_{1}, \pi_{1}\right)$ and $\left(F_{2}, \pi_{2}\right)$, i.e. $\pi_{2} \circ \tau^{[\mu, \nu]}=\pi_{1}$.

Thus we have the following theorem corresponding to Theorem 2.
Theorem 2'. Let $\left(F_{1}, \pi_{1}\right)$ and $\left(F_{2}, \pi_{2}\right)$ be excellent pairs. The correspondence $\tau \mapsto\left(\mu^{\tau}, \nu^{\tau}\right)$ gives a bijection between the morphisms $\left(F_{1}, \pi_{1}\right) \rightarrow$ $\left(F_{2}, \pi_{2}\right)$ between excellent pairs and the morphisms $\left(A^{F_{1}, \pi_{1}}, V^{F_{1}, \pi_{1}}, \varrho^{F_{1}, \pi_{1}}\right) \rightarrow$ $\left(A^{F_{2}, \pi_{2}}, V^{F_{2}, \pi_{2}}, \varrho^{F_{2}, \pi_{2}}\right)$ between the corresponding triples. The inverse bijection is $(\mu, \nu) \mapsto \tau^{[\mu, \nu]}$.
10. As another application of Theorem 2 we solve the problem of when for a product preserving gauge bundle functor F there is an excellent pair (F, π).

Corollary 1. Let F be a product preserving gauge bundle functor on $\mathcal{V B}$. Then there exists a natural epimorphism $F \rightarrow \operatorname{id}_{\mathcal{B}}$ if and only if $V^{F} \neq\{0\}$.

Proof. If $\pi: F \rightarrow \mathrm{id}_{\mathcal{\mathcal { B }}}$ is a natural epimorphism, then so is $\left(\mu^{\pi}, \nu^{\pi}\right)$: $\left(A^{F}, V^{F}\right) \rightarrow(\mathbb{R}, \mathbb{R})$. Hence, $V^{F} \neq\{0\}$.

Assume $V \neq\{0\}$. Then $n_{A} \cdot V \neq V$. (For, if $n_{A} \cdot V=V$, then $V=$ $n_{A} \cdot V=n_{A}^{2} \cdot V=\ldots=n_{A}^{l} \cdot V=0$ for some l.) So there is a module epimorphism $\varrho: V \rightarrow \mathbb{R}$ over $A \rightarrow \mathbb{R}$. Next, we can apply Theorem 2.
11. As an application of Theorem 1^{\prime} we present two non-equivalent excellent pairs $\left(F, \pi_{1}\right)$ and $\left(F, \pi_{2}\right)$ for some product preserving gauge bundle functor F.

Example 5. Let $A=C_{0}^{\infty}\left(\mathbb{R}^{2}\right) / m^{3}$ be the Weil algebra where m is the maximal ideal in $C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Let $t^{i}=\left[\operatorname{germ}_{0}\left(x^{i}\right)\right] \in A$ for $i=1,2$, where x^{1}, x^{2} are the usual coordinates on \mathbb{R}^{2}. Then $1, t^{1}, t^{2},\left(t^{1}\right)^{2},\left(t^{2}\right)^{2}, t^{1} t^{2}$ form a basis (over \mathbb{R}) of A and $t^{1}, t^{2},\left(t^{1}\right)^{2},\left(t^{2}\right)^{2}, t^{1} t^{2}$ form a basis (over \mathbb{R}) of the maximal nilpotent ideal $n_{A} \subset A$. Define $V \subset A$ to be the vector subspace generated by $t^{1},\left(t^{1}\right)^{2},\left(t^{2}\right)^{2}, t^{1} t^{2}$. Then V is an ideal in A, and hence V is a module over A. Moreover, $n_{A} \cdot V$ is spanned by $t^{1} t^{2},\left(t^{1}\right)^{2}$. Define two functionals $\varrho_{1}, \varrho_{2}: V \rightarrow \mathbb{R}$ by $\varrho_{1}\left(t^{1}\right)=\varrho_{1}\left(\left(t^{1}\right)^{2}\right)=\varrho_{1}\left(t^{1} t^{2}\right)=0, \varrho_{1}\left(\left(t^{2}\right)^{2}\right)=1$, $\varrho_{2}\left(\left(t^{1}\right)^{2}\right)=\varrho_{2}\left(t^{1} t^{2}\right)=\varrho_{2}\left(\left(t^{2}\right)^{2}\right)=0$ and $\varrho_{2}\left(t^{1}\right)=1$. Then ϱ_{1}, ϱ_{2} are module homomorphisms over the algebra homomorphism $A \rightarrow \mathbb{R}$ because $\operatorname{ker}\left(\varrho_{i}\right) \supset n_{A} \cdot V$ for $i=1,2$. The triples $\left(A, V, \varrho_{1}\right)$ and $\left(A, V, \varrho_{2}\right)$ are not equivalent. (For, suppose that there exist an algebra isomorphism $\mu: A \rightarrow A$ and a module isomorphism $\nu: V \rightarrow V$ over μ such that $\varrho_{2} \circ \nu=\varrho_{1}$. We have $1=\varrho_{1}\left(\left(t^{2}\right)^{2}\right)=\varrho_{2}\left(\nu\left(\left(t^{2}\right)^{2}\right)\right)$. Then $\nu\left(\left(t^{2}\right)^{2}\right)=t^{1}+\alpha\left(t^{1}\right)^{2}+\beta t^{1} t^{2}+\gamma\left(t^{2}\right)^{2}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$. Since $\mu^{-1}\left(t^{1}\right) \in N, \mu^{-1}\left(t^{1}\right) \cdot\left(t^{2}\right)^{2}=0$. Hence $0=$ $\nu\left(\mu^{-1}\left(t^{1}\right) \cdot\left(t^{2}\right)^{2}\right)=\mu\left(\mu^{-1}\left(t^{1}\right)\right) \cdot \nu\left(\left(t^{2}\right)^{2}\right)=t^{1} \cdot \nu\left(\left(t^{2}\right)^{2}\right)=\left(t^{1}\right)^{2}$, a contradiction.) Then (by Theorem $\left.1^{\prime}\right)$ the corresponding pairs $\left(T^{A, V, \varrho_{1}}, \pi^{A, V, \varrho_{1}}\right)=$ $\left(T^{A, V}, \pi^{A, V, \varrho_{1}}\right)$ and $\left(T^{A, V, \varrho_{2}}, \pi^{A, V, \varrho_{2}}\right)=\left(T^{A, V}, \pi^{A, V, \varrho_{2}}\right)$ are not equivalent.
12. As an application of Proposition 1 we have:

Corollary 2. Let F be a product preserving gauge bundle functor on $\mathcal{V B}$. For every vector bundle $p: E \rightarrow M$ we have a canonical vector bundle stucture (and a canonical A^{F}-module bundle structure) on $F p$: $F E \rightarrow F M$, where M is the vector bundle $\mathrm{id}_{M}: M \rightarrow M$ and $p: E \rightarrow M$ is the vector bundle map covering id_{M}. For every vector bundle map $f: E \rightarrow G$ over $\underline{f}: M \rightarrow N$ the map $F f: F E \rightarrow F G$ is a vector bundle map (and an A^{F}-module bundle map) over $F \underline{f}: F M \rightarrow F N$.

Proof. Using the isomorphism Θ from Proposition 1 we can assume that $F=T^{A, V}$, where A is a Weil algebra and V is an A-module with $\operatorname{dim}_{\mathbb{R}}(V)$ $<\infty$. Now, the statements follow from Example 1.
13. Using Corollary 2 one can define the composition $F_{2} \circ F_{1}$ of product preserving gauge bundle functors F_{1} and F_{2} on $\mathcal{V B}$.

Example 6. Let $p: E \rightarrow M$ be a vector bundle. Then $F_{1} p: F_{1} E \rightarrow$ $F_{1} M$ is also a vector bundle (Corollary 2). Applying F_{2}, we define a fibered manifold $F_{2} \circ F_{1}(E):=F_{2}\left(F_{1} E \xrightarrow{F_{1} p} F_{1} M\right)$ over M, where the projection $F_{2} \circ F_{1}(E) \rightarrow M$ is the composition $F_{2} \circ F_{1}(E) \rightarrow F_{1} M \rightarrow M$ of projections for F_{2} and F_{1}. Let $f: E \rightarrow G$ be a vector bundle homomorphism covering $\underline{f}: M \rightarrow N$. Then $F_{1} f: F_{1} E \rightarrow F_{2} E$ is a vector bundle homomorphism over $F_{1} f$ (Corollary 2). We put $F_{2} \circ F_{1}(f):=F_{2}\left(F_{1} f\right): F_{2} \circ F_{1}(E) \rightarrow$ $\left.F_{2} \circ F_{1} \overline{(} G\right)$ and get a fibered map covering f. It follows that $F_{2} \circ F_{1}$ is a product preserving gauge bundle functor on $\overline{\mathcal{V}} \mathcal{B}$.
14. We now compute the pair $\left(A^{F_{2} \circ F_{1}}, V^{F_{2} \circ F_{1}}\right)$ corresponding to the composition $F_{2} \circ F_{1}$ of product preserving gauge bundle functors F_{1} and F_{2} on $\mathcal{V B}$.

By tensoring $A^{F_{1}}$ and $A^{F_{2}}$ we obtain the Weil algebra $A^{F_{1}} \otimes_{\mathbb{R}} A^{F_{2}}$. By tensoring $V^{F_{1}}$ and $V^{F_{2}}$ we obtain the module $V^{F_{1}} \otimes_{\mathbb{R}} V^{F_{2}}$ over $A^{F_{1}} \otimes_{\mathbb{R}} A^{F_{2}}$.

Proposition 4. $\left(A^{F_{2} \circ F_{1}}, V^{F_{2} \circ F_{1}}\right) \cong\left(A^{F_{1}} \otimes_{\mathbb{R}} A^{F_{2}}, V^{F_{1}} \otimes_{\mathbb{R}} V^{F_{2}}\right)$.
Proof. We have to construct an algebra isomorphism $\widetilde{\mu}: A^{F_{1}} \otimes_{\mathbb{R}} A^{F_{2}} \rightarrow$ $A^{F_{2} \circ F_{1}}$ and a module isomorphism $\widetilde{\nu}: V^{F_{1}} \otimes_{\mathbb{R}} V^{F_{2}} \rightarrow V^{F_{2} \circ F_{1}}$ over $\widetilde{\mu}$.

For any point $a \in A^{F_{1}}$ the map $i_{a}: \mathbb{R} \rightarrow A^{F_{1}}, i_{a}(t)=t a, t \in \mathbb{R}$, is a homomorphism between vector bundles $\operatorname{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}$ and $\operatorname{id}_{A^{F_{1}}}: A^{F_{1}} \rightarrow$ $A^{F_{1}}$. Applying F_{2}, we obtain $F_{2}\left(i_{a}\right): A^{F_{2}} \rightarrow A^{F_{2} \circ F_{1}}$. Define $\widetilde{\mu}: A^{F_{1}} \times A^{F_{2}} \rightarrow$ $A^{F_{2} \circ F_{1}}, \widetilde{\mu}(a, b)=F_{2}\left(i_{a}\right)(b), a \in A^{F_{1}}, b \in A^{F_{2}}$. Using the definitions of the algebra operations, one can show that $\widetilde{\mu}$ is \mathbb{R}-bilinear. Then (by the universal factorization property) we have a linear map $\tilde{\mu}: A^{F_{1}} \otimes_{\mathbb{R}} A^{F_{2}} \rightarrow A^{F_{2} \circ F_{1}}$, $\widetilde{\mu}(a \otimes b)=F_{2}\left(i_{a}\right)(b), a \in A^{F_{1}}, b \in A^{F_{2}}$. Considering bases (over \mathbb{R}) of $A^{F_{1}}$ and $A^{F_{2}}$ and using the product property for F_{2}, one can prove that $\widetilde{\mu}$ is an isomorphism. Using again the definitions of the algebra operations, one can show that $\widetilde{\mu}$ is an algebra isomorphism.

For any point $u \in V^{F_{1}}$ the map $i_{u}: \mathbb{R} \rightarrow V^{F_{1}}, i_{u}(t)=t u, t \in \mathbb{R}$, is a homomorphism between the vector bundles $\mathbb{R} \rightarrow \mathrm{pt}$ and $V^{F_{1}} \rightarrow \mathrm{pt}$. Applying F_{2}, we obtain $F_{2}\left(i_{u}\right): V^{F_{2}} \rightarrow V^{F_{2} \circ F_{1}}$. Define $\widetilde{\nu}: V^{F_{1}} \times V^{F_{2}} \rightarrow$ $V^{F_{2} \circ F_{1}}, \widetilde{\nu}(u, w)=F_{2}\left(i_{u}\right)(w), u \in V^{F_{1}}, w \in V^{F_{2}}$. Similarly to $\widetilde{\mu}, \widetilde{\nu}$ is also $\mathbb{R}-$ bilinear. Then we have a linear map $\widetilde{\nu}: V^{F_{1}} \otimes_{\mathbb{R}} V^{F_{2}} \rightarrow V^{F_{2} \circ F_{1}}, \widetilde{\nu}(u \otimes w)=$ $F_{2}\left(i_{u}\right)(w), u \in V^{F_{1}}, w \in V^{F_{2}}$. Similarly to $\widetilde{\mu}, \widetilde{\nu}$ is a linear isomorphism. Using the definitions of the module operations, one can show that $\widetilde{\nu}$ is a module isomorphism over $\tilde{\mu}$.

Corollary 3. $F_{2} \circ F_{1} \cong F_{1} \circ F_{2}$.
Proof. The exchange isomorphism $\left(A^{F_{1}} \otimes_{\mathbb{R}} A^{F_{2}}, V^{F_{1}} \otimes_{\mathbb{R}} V^{F_{2}}\right) \cong$ $\left(A^{F_{2}} \otimes_{\mathbb{R}} A^{F_{1}}, V^{F_{2}} \otimes_{\mathbb{R}} V^{F_{1}}\right)$ induces the natural isomorphism $F_{2} \circ F_{1} \cong$ $F_{1} \circ F_{2}$.

REFERENCES

[1] M. Doupovec and I. Kolář, On the jets of fibered manifold morphisms, Cahiers Topologie Géom. Différentielle Catégoriques 40 (1999), 21-30.
[2] D. J. Eck, Product preserving functors on smooth manifolds, J. Pure Appl. Algebra 42 (1986), 133-140.
[3] G. Kainz and P. W. Michor, Natural transformations in differential geometry, Czechoslovak Math. J. 37 (1987), 584-607.
[4] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[5] I. Kolář and W. M. Mikulski, On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105-115.
[6] O. O. Luciano, Categories of multiplicative functors and Weil's infinitely near points, Nagoya Math. J. 109 (1988), 69-89.
[7] W. M. Mikulski, Product preserving bundle functors on fibered manifolds, Arch. Math. (Brno) 32 (1996), 307-316.
[8] -, On the product preserving bundle functors on k-fibered manifolds, Demonstratio Math. 34 (2001), 693-700.
[9] A. Weil, Théorie des points proches sur les variétés différentiables, in: Géométrie Différentielle (Strasbourg, 1953), Colloq. Internat. CNRS 52, CNRS, Paris, 1953, 111-117.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A05.
 Key words and phrases: bundle functors, natural transformations, Weil algebras.

