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PRODUCT PRESERVING GAUGE BUNDLE FUNCTORS

ON VECTOR BUNDLES

BY

WŁODZIMIERZ M. MIKULSKI (Kraków)

Abstract. A complete description is given of all product preserving gauge bundle
functors F on vector bundles in terms of pairs (A, V ) consisting of a Weil algebra A and
an A-module V with dimR(V ) <∞. Some applications of this result are presented.

0. Let us recall the following definitions (see e.g. [4]).

Let F : VB → FM be a covariant functor from the category VB of all
vector bundles and their vector bundle homomorphisms into the category
FM of fibered manifolds and their fibered maps. Let BVB : VB →Mf and
BFM →Mf be the respective base functors.

A gauge bundle functor on VB is a functor F satisfying BFM ◦ F =
BVB and the localization condition: for every inclusion of an open vector
subbundle iE|U : E|U → E, F (E|U) is the restriction p−1E (U) of pE : FE →

BVB(E) over U and FiE|U is the inclusion p
−1
E (U)→ FE.

Given two gauge bundle functors F1, F2 on VB, by a natural transforma-
tion τ : F1 → F2 we shall mean a system of base preserving fibered maps
τE : F1E → F2E for every vector bundle E satisfying F2f ◦ τE = τG ◦ F1f
for every vector bundle homomorphism f : E → G.

A gauge bundle functor F on VB is product preserving if for any product

projections E1
pr
1←−E1×E2

pr
2−→E2 in the category VB, FE1

Fpr
1←−−F (E1×E2)

Fpr
2−−→FE2 are product projections in the category FM. In other words,

F (E1 × E2) = F (E1)× F (E2) modulo (Fpr1, Fpr2).

In this paper we prove that all product preserving gauge bundle functors
F on VB are in bijection with the pairs (A, V ) consisting of a Weil algebra A
and an A-module V with dimR(V ) < ∞, and that the natural transforma-
tions between two product preserving gauge bundle functors on the category
VB are in bijection with the morphisms between corresponding pairs.

Some applications of the above classification results are also presented.
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The product preserving and fiber product preserving bundle functors on
some other categories on manifolds have been described by many authors
[1]–[8].
All manifolds are assumed to be Hausdorff, finite-dimensional, without

boundary and of class C∞. All maps between manifolds are assumed to be
of class C∞.

1. Let A = R ⊕ nA be a Weil algebra and V be an A-module with
dimR(V ) < ∞. We generalize the construction of bundles of infinitely near
points [9].

Example 1. Given a vector bundle E = (E
p
→M) let TA,V E =

{(ϕ, ψ) | ϕ ∈ Hom(C∞z (M), A), ψ ∈ Homϕ(C
∞, f.l.
z (E), V ), z ∈ M},

where Hom(C∞z (M), A) is the set of all algebra homomorphisms ϕ from
the (unital) algebra C∞z (M) = {germz(g) | g : M → R} into A and where
Homϕ(C

∞, f.l.
z (E), V ) is the set of all module homomorphisms ψ over ϕ from

the C∞z (M)-module C
∞, f.l.
z (E) = {germz(h) | h : E → R is fiber linear}

into V . Then TA,V E is a fibered manifold over M . A local vector bundle
trivialization (x1 ◦ p, . . . , xm ◦ p, y1, . . . , yk) : E|U ∼= R

m × R
k on E induces

a fiber bundle trivialization (x̃1, . . . , x̃m, ỹ1, . . . , ỹk) : TA,V E|U=̃Am×V n =
R
m × nmA × V

n by x̃i(ϕ, ψ) = ϕ(germz(x
i)) ∈ A, ỹj(ϕ, ψ) = ψ(germz(y

j))
∈ V , (ϕ, ψ) ∈ TA,Vz E, z ∈ U , i = 1, . . . ,m, j = 1, . . . , k. Given another

vector bundle G = (G
q
→N) and a vector bundle homomorphism f : E → G

over f : M → N let TA,V f : TA,V E → TA,VG, TA,V f(ϕ, ψ) =

(ϕ ◦ f∗z, ψ ◦ f
∗
z ), (ϕ, ψ) ∈ T

A,V
z E, z ∈ M , where f∗z : C

∞
f(z)(N) → C∞z (M)

and f∗z : C
∞, f.l.
f(z) (G) → C∞, f.l.z (E) are given by the pull-back with respect

to f and f . Then TA,V f is a fibered map over f , and TA,V is a product
preserving gauge bundle functor on VB.

2. Let F be a product preserving gauge bundle functor on VB.

Example 2. (i) Let AF = (GFR, GF (+), GF (·), GF (0), GF (1)), where

GF :Mf → FM, GFM = F (M
idM−→M), GF f = Ff : GFM → GFN , and

where + : R × R → R is the sum map, · : R × R → R is the multiplication
map, 0 : R → R is the zero and 1 : R → R is the unity. Then AF is a Weil
algebra.
(ii) Let V F = (F (R → pt), F (+), F (·), F (0)), where pt is the one point

manifold, R → pt is the vector bundle, + : R × R → R is the sum map,
which is a vector bundle homomorphism (R→ pt)× (R→ pt)→ (R→ pt)
over pt×pt → pt, 0 : R → R is the zero map, which is a vector bundle
homomorphism (R → pt) → (R → pt) over pt → pt, and · : R × R → R is

the multiplication map, which is a vector bundle homomorphism (R
idR−→R)×
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(R → pt) → (R → pt) over R × pt → pt. Then V F is an AF -module with
dimR(V

F ) <∞.

3. Let F be a product preserving gauge bundle functor on VB and

(AF , V F ) be the corresponding pair. Let TA
F ,V F be the product preserving

gauge bundle functor for (AF , V F ). We prove F ∼= TA
F ,V F .

For every vector bundle E = (E
p
→M) we construct a fibered map

ΘE : FE → TA
F ,V FE covering idM as follows. If y ∈ FzE, z ∈ M , we

define ϕy : C
∞
z (M)→ AF , ϕy(germz(g)) = F (g ◦ p)(y) ∈ A

F = F (R
idR−→R),

g : M → R, where g ◦ p : E → R is considered as a vector bundle homo-

morphism (E
p
→M) → (R

idR−→R) over g : M → R. Then ϕy is an algebra
homomorphism. If y ∈ FzE, z ∈ M , we define ψy : C

∞,f.l
z (E) → V F ,

ψy(germz(f)) = F (f)(y), f : E → R is fiber linear, where f is considered

as a vector bundle map (E
p
→M) → (R → pt) over M → pt. Then ψy is

a module homomorphism over ϕy. We put ΘE(y) = (ϕy, ψy) ∈ T
AF ,V F

z E,
y ∈ FzE, z ∈M .

Proposition 1. Θ : F → TA
F ,V F is a natural isomorphism.

Proof. It is sufficient to show that ΘE is a diffeomorphism for any vector
bundle E. Applying vector bundle trivializations, we can assume that E =

R
m×R

k is a trivial vector bundle over Rm. Since F and TA
F ,V F are product

preserving and E is a (multi) product of R
idR−→R and R→ pt, we can assume

that E is either R
idR−→R or R→ pt.

(I) E = (R
idR−→R). Consider GFR

ΘE−→TA
F ,V F (R

idR−→R)
x̃1

−→AF , where x̃1

is induced by x1 = idR : R → R (see Example 1). This composition is the
identity map GFR = AF . Hence ΘE is a diffeomorphism.

(II) E = (R → pt). Consider F (R → pt)
ΘE−→TA

F ,V F (R → pt)
ỹ1

−→V F ,
where ỹ1 is induced by y1 = idR : R → R. This composition is the identity
map F (R→ pt) = V F . Hence ΘE is a diffeomorphism.

4. Let (A, V ) be a pair, where A is a Weil algebra and V is an A-module
with dimR(V ) < ∞. Let T

A,V be the corresponding gauge bundle functor

on VB. Let (Ã, Ṽ ) be the pair corresponding to TA,V .

Proposition 2. (A, V ) ∼= (Ã, Ṽ ).

Proof. Clearly, Ã = TA,V (R
idR−→R) and Ṽ = TA,V (R → pt). Let O =

x̃1 : TA,V (R
idR−→R) → A and Π = ỹ1 : TA,V (R → pt) → V , where x̃1

is induced by x1 = idR and ỹ
1 is induced by y1 = idR (see Example 1).
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Then O : Ã → A is an algebra isomorphism and Π : Ṽ → V is a module
isomorphism over O.

5. Let (A1, V1) and (A2, V2) be pairs, where Ai is a Weil algebra and
Vi is an Ai-module with dimR(Vi) < ∞, i = 1, 2. Let (µ, ν) be a morphism
from (A1, V1) into (A2, V2), i.e. µ : A1 → A2 is an algebra homomorphism
and ν : V1 → V2 is a module homomorphism over µ.

Example 3. Let E→M be a vector bundle. We define τµ,νE : TA1,V1E→
TA2,V2E, τµ,νE (ϕ, ψ) = (µ ◦ ϕ, ν ◦ ψ), (ϕ, ψ) ∈ T

A1,V1
z E, z ∈ M . Then τµ,ν :

TA1,V1 → TA2,V2 is a natural transformation.

6. Let τ : F1 → F2 be a natural transformation between product pre-
serving gauge bundle functors on VB. Let (AF1 , V F1) and (AF2 , V F2) be the
pairs corresponding to F1 and F2.

Example 4. Let (µτ , ντ )=(τidR:R→R, τR→pt) : (A
F1 , V F1)→ (AF2 , V F2).

Then (µτ , ντ ) is a morphism of pairs.

7. We are now in a position to prove the following theorem.

Theorem 1. The correspondence F 7→ (AF , V F ) induces a bijective cor-
respondence between the equivalence classes of product preserving gauge bun-

dle functors F on VB and the equivalence classes of pairs (A, V ) consisting
of a Weil algebra A and an A-module V with dimR(V ) < ∞. The inverse
correspondence is induced by the correspondence (A, V ) 7→ TA,V .

Proof. The correspondence [F ] 7→ [(AF , V F )] is well defined. For, if τ :
F1 → F2 is an isomorphism, then so is (µ

τ , ντ ) : (AF1 , V F1)→ (AF2 , V F2).
The correspondence [(A, V )] 7→ [TA,V ] is well defined. For, if (µ, ν) :

(A1, V1)→ (A2, V2) is an isomorphism, then so is τ
µ,ν : TA1,V1 → TA2,V2 .

From Proposition 1 it follows that [F ] = [TA
F ,V F ]. From Proposition 2

it follows that [(A, V )] = [(AF , V F )] if F = TA,V .

8. Let F1 and F2 be two product preserving gauge bundle functors on
VB. Let (AF1 , V F1) and (AF2 , V F2) be the corresponding pairs.

Proposition 3. Let (µ, ν) : (AF1 , V F1) → (AF2 , V F2) be a morphism.
Let τ [µ,ν] : F1 → F2 be a natural transformation given by the composition

F1
Θ
→TA

F1 ,V F1 τ
µ,ν

−→ TA
F2 ,V F2 Θ

−1

−→ F2, where Θ is as in Proposition 1 and τ
µ,ν

is described in Example 3. Then τ = τ [µ,ν] is the unique natural transforma-
tion F1 → F2 such that (µ

τ , ντ ) = (µ, ν), where (µτ , ντ ) is as in Example 4.

Proof. First we prove the uniqueness part. Suppose τ : F1 → F2 is
another natural transformation such that (µτ , ντ ) = (µ, ν). Then τ coincides
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with τ on the vector bundles R
idR−→R and R→ pt because of the definition of

(µτ , ντ ). Hence τ = τ by the same argument as in the proof of Proposition 1.
The existence part follows from the easily verified equalities Θ−1

R→pt ◦

τµ,ν
R→pt ◦ΘR→pt = ν and Θ

−1
idR:R→R

◦ τµ,νidR:R→R
◦ΘidR:R→R = µ.

Now, the following theorem is clear.

Theorem 2. Let F1 and F2 be two product preserving gauge bundle
functors on VB. The correspondence τ 7→ (µτ , ντ ) is a bijection between
the natural transformations F1 → F2 and the morphisms (A

F1 , V F1) →
(AF2 , V F2) between corresponding pairs. The inverse correspondence is (µ, ν)
7→ τ [µ,ν].

9. As an application of Theorems 1 and 2 we describe all the so-called
excellent pairs, i.e. pairs (F, π) where F is a product preserving gauge bundle
functor on VB and π : F → idVB is a natural epimorphism (i.e. π is a natural
transformation such that πE : FE → E is a surjective submersion for any
vector bundle E).
Thanks to our previous considerations we have:
(a) Let (F, π) be an excellent pair. Then we have (AF , V F ) and a mor-

phism (µπ, νπ) : (AF , V F ) → (AidVB , V idVB) = (R,R). In other words,
we have a triple (AF,π, V F,π, ̺F,π), where AF,π = AF , V F,π = V F and
̺F,π = νπ : V F,π → R. Of course, AF,π is a Weil algebra, V F,π is an AF -
module with dimR(V

F ) <∞ and ̺F,π is a non-zero module homomorphism
over the algebra homomorphism AF,π → R.
(b) Conversely, let (A, V, ̺) be a triple, where A is a Weil algebra, V

is an A-module with dimR(V ) < ∞ and ̺ : V → R is a non-zero module
homomorphism over the unique algebra homomorphism κ : A → R. Then
τκ,̺ : TA,V → TR,R ∼= idVB is a natural epimorphism. In other words, we
have an excellent pair (TA,V,̺, πA,V,̺) := (TA,V , Θ−1 ◦ τκ,̺), where Θ :
idVB → TR,R.
(c) Let (F, π) be an excellent pair. Then Θ : F → TA

F ,V F is an isomor-

phism of the excellent pairs (F, π) and (TA
F,π,V F,π,̺F,π , πA

F,π,V F,π,̺F,π ), i.e.

we have πA
F,π,V F,π,̺F,π ◦Θ = π.

(d) Let (A, V, ̺) be a triple as above. Let (TA,V,̺, πA,V,̺) be the corre-

sponding excellent pair. Let (Ã, Ṽ , ˜̺) be the triple corresponding to (TA,V,̺,

πA,V,̺). Then (O, Π) : (Ã, Ṽ ) → (A, V ) is an isomorphism of the triples

(Ã, Ṽ , ˜̺) and (A, V, ̺), i.e. we have ̺ ◦Π = ˜̺.
(e) Let (µ, ν) : (A1, V1, ̺1)→ (A2, V2, ̺2) be a morphism between triples,

where Ai is a Weil algebra, Vi is a Vi-module with dimR(Vi) < ∞ and
̺i : Vi → R is a non-zero module homomorphism over the algebra homo-
morphism Ai → R, i = 1, 2. This means that (µ, ν) : (A1, V1) → (A2, V2)
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is a morphism between pairs such that ̺2 ◦ ν = ̺1. Then τ
µ,ν : TA1,V1 →

TA2,V2 is a morphism between the excellent pairs (TA1,V1,̺1 , πA1,V1,̺1) and
(TA2,V2,̺2 , πA2,V2,̺2), i.e. we have πA2,V2,̺2 ◦ τµ,ν = πA1,V1,̺1 .

(f) Let τ : (F1, π1) → (F2, π2) be a morphism between excellent pairs,
i.e. τ : F1 → F2 is a natural transformation such that π2 ◦ τ = π1. Then
(µτ , ντ ) : (AF1 , V F1) → (AF2 , V F2) is a morphism between the triples
(AF1,π1 , V F1,π1 , ̺F1,π1) and (AF2,π2 , V F2,π2 , ̺F2,π2), i.e. ̺F2,π2 ◦ ντ = ̺F1,π1 .

Thus we have the following theorem corresponding to Theorem 1.

Theorem 1′. The correspondence (F, π) 7→ (AF,π, V F,π, ̺F,π) induces
a bijection between the equivalence classes of excellent pairs (F, π) and the
equivalence classes of triples (A, V, ̺) consisting of a Weil algebra A, an
A-module V with dimR(V ) < ∞ and a non-zero module homomorphism
̺ : V → R over the algebra homomorphism A→ R. The inverse bijection is

induced by (A, V, ̺) 7→ (TA,V,̺, πA,V,̺).

Remark 1. Let A = R⊕ nA be a Weil algebra and V be an A-module.
If ̺ : V → R is a module homomorphism over the algebra homomorphism
A→ R, then ker(̺) ⊃ nA · V . Conversely, if ̺ : V → R is a functional such
that ker(̺) ⊃ nA · V , then it is a module homomorphism over A→ R.

(g) Let (F1, π1), (F2, π2) be excellent pairs. Let (µ, ν) : (A
F1,π1 , V F1,π1 ,

̺F1,π1)→ (AF2,π2 , V F2,π2 , ̺F2,π2) be a morphism between the corresponding
triples. Then τ [µ,ν] : F1 → F2 (see Proposition 3) is a morphism between
the excellent pairs (F1, π1) and (F2, π2), i.e. π2 ◦ τ

[µ,ν] = π1.

Thus we have the following theorem corresponding to Theorem 2.

Theorem 2′. Let (F1, π1) and (F2, π2) be excellent pairs. The corre-
spondence τ 7→ (µτ , ντ ) gives a bijection between the morphisms (F1, π1)→
(F2, π2) between excellent pairs and the morphisms (A

F1,π1, V F1,π1, ̺F1,π1)→
(AF2,π2 , V F2,π2 , ̺F2,π2) between the corresponding triples. The inverse bijec-
tion is (µ, ν) 7→ τ [µ,ν].

10. As another application of Theorem 2 we solve the problem of when
for a product preserving gauge bundle functor F there is an excellent
pair (F, π).

Corollary 1. Let F be a product preserving gauge bundle functor on
VB. Then there exists a natural epimorphism F → idVB if and only if
V F 6= {0}.

Proof. If π : F → idVB is a natural epimorphism, then so is (µ
π, νπ) :

(AF , V F )→ (R,R). Hence, V F 6= {0}.
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Assume V 6= {0}. Then nA · V 6= V . (For, if nA · V = V , then V =
nA · V = n2A · V = . . . = nlA · V = 0 for some l.) So there is a module
epimorphism ̺ : V → R over A→ R. Next, we can apply Theorem 2.

11. As an application of Theorem 1′ we present two non-equivalent ex-
cellent pairs (F, π1) and (F, π2) for some product preserving gauge bundle
functor F .

Example 5. Let A = C∞0 (R
2)/m3 be the Weil algebra where m is the

maximal ideal in C∞0 (R
2). Let ti = [germ0(x

i)] ∈ A for i = 1, 2, where x1, x2

are the usual coordinates on R
2. Then 1, t1, t2, (t1)2, (t2)2, t1t2 form a basis

(over R) of A and t1, t2, (t1)2, (t2)2, t1t2 form a basis (over R) of the maximal
nilpotent ideal nA ⊂ A. Define V ⊂ A to be the vector subspace generated
by t1, (t1)2, (t2)2, t1t2. Then V is an ideal in A, and hence V is a module
over A. Moreover, nA · V is spanned by t

1t2, (t1)2. Define two function-
als ̺1, ̺2 : V → R by ̺1(t

1) = ̺1((t
1)2) = ̺1(t

1t2) = 0, ̺1((t
2)2) = 1,

̺2((t
1)2) = ̺2(t

1t2) = ̺2((t
2)2) = 0 and ̺2(t

1) = 1. Then ̺1, ̺2 are
module homomorphisms over the algebra homomorphism A → R because
ker(̺i) ⊃ nA · V for i = 1, 2. The triples (A, V, ̺1) and (A, V, ̺2) are not
equivalent. (For, suppose that there exist an algebra isomorphism µ : A→ A
and a module isomorphism ν : V → V over µ such that ̺2 ◦ν = ̺1. We have
1 = ̺1((t

2)2) = ̺2(ν((t
2)2)). Then ν((t2)2) = t1 + α(t1)2 + βt1t2 + γ(t2)2

for some α, β, γ ∈ R. Since µ−1(t1) ∈ N , µ−1(t1) · (t2)2 = 0. Hence 0 =
ν(µ−1(t1) · (t2)2) = µ(µ−1(t1)) · ν((t2)2) = t1 · ν((t2)2) = (t1)2, a contra-
diction.) Then (by Theorem 1′) the corresponding pairs (TA,V,̺1 , πA,V,̺1) =
(TA,V , πA,V,̺1) and (TA,V,̺2 , πA,V,̺2) = (TA,V , πA,V,̺2) are not equivalent.

12. As an application of Proposition 1 we have:

Corollary 2. Let F be a product preserving gauge bundle functor
on VB. For every vector bundle p : E → M we have a canonical vector
bundle stucture (and a canonical AF -module bundle structure) on Fp :
FE → FM , where M is the vector bundle idM :M →M and p : E →M is
the vector bundle map covering idM . For every vector bundle map f : E → G
over f : M → N the map Ff : FE → FG is a vector bundle map (and an

AF -module bundle map) over Ff : FM → FN .

Proof. Using the isomorphism Θ from Proposition 1 we can assume that
F = TA,V , where A is a Weil algebra and V is an A-module with dimR(V )
<∞. Now, the statements follow from Example 1.

13. Using Corollary 2 one can define the composition F2 ◦F1 of product
preserving gauge bundle functors F1 and F2 on VB.
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Example 6. Let p : E → M be a vector bundle. Then F1p : F1E →
F1M is also a vector bundle (Corollary 2). Applying F2, we define a fibered

manifold F2 ◦ F1(E) := F2(F1E
F1p
−→F1M) over M , where the projection

F2 ◦F1(E)→M is the composition F2 ◦F1(E)→ F1M →M of projections
for F2 and F1. Let f : E → G be a vector bundle homomorphism covering
f : M → N . Then F1f : F1E → F2E is a vector bundle homomorphism
over F1f (Corollary 2). We put F2 ◦ F1(f) := F2(F1f) : F2 ◦ F1(E) →
F2 ◦ F1(G) and get a fibered map covering f. It follows that F2 ◦ F1 is a
product preserving gauge bundle functor on VB.

14. We now compute the pair (AF2◦F1 , V F2◦F1) corresponding to the
composition F2 ◦F1 of product preserving gauge bundle functors F1 and F2
on VB.
By tensoring AF1 and AF2 we obtain the Weil algebra AF1 ⊗R A

F2 . By
tensoring V F1 and V F2 we obtain the module V F1 ⊗R V

F2 over AF1 ⊗RA
F2 .

Proposition 4. (AF2◦F1 , V F2◦F1) ∼= (AF1 ⊗R A
F2 , V F1 ⊗R V

F2).

Proof. We have to construct an algebra isomorphism µ̃ : AF1 ⊗R A
F2 →

AF2◦F1 and a module isomorphism ν̃ : V F1 ⊗R V
F2 → V F2◦F1 over µ̃.

For any point a ∈ AF1 the map ia : R → AF1 , ia(t) = ta, t ∈ R, is
a homomorphism between vector bundles idR : R → R and idAF1 : A

F1 →
AF1 . Applying F2, we obtain F2(ia) : A

F2 → AF2◦F1 . Define µ̃ : AF1×AF2 →
AF2◦F1 , µ̃(a, b) = F2(ia)(b), a ∈ A

F1 , b ∈ AF2 . Using the definitions of the
algebra operations, one can show that µ̃ is R-bilinear. Then (by the universal
factorization property) we have a linear map µ̃ : AF1 ⊗R A

F2 → AF2◦F1 ,
µ̃(a ⊗ b) = F2(ia)(b), a ∈ A

F1 , b ∈ AF2 . Considering bases (over R) of AF1

and AF2 and using the product property for F2, one can prove that µ̃ is an
isomorphism. Using again the definitions of the algebra operations, one can
show that µ̃ is an algebra isomorphism.
For any point u ∈ V F1 the map iu : R → V F1 , iu(t) = tu, t ∈ R,

is a homomorphism between the vector bundles R → pt and V F1 → pt.
Applying F2, we obtain F2(iu) : V

F2 → V F2◦F1 . Define ν̃ : V F1 × V F2 →
V F2◦F1 , ν̃(u,w) = F2(iu)(w), u ∈ V

F1 , w ∈ V F2 . Similarly to µ̃, ν̃ is also R-
bilinear. Then we have a linear map ν̃ : V F1 ⊗R V

F2 → V F2◦F1 , ν̃(u⊗w) =
F2(iu)(w), u ∈ V F1 , w ∈ V F2 . Similarly to µ̃, ν̃ is a linear isomorphism.
Using the definitions of the module operations, one can show that ν̃ is a
module isomorphism over µ̃.

Corollary 3. F2 ◦ F1 ∼= F1 ◦ F2.

Proof. The exchange isomorphism (AF1 ⊗R AF2 , V F1 ⊗R V F2) ∼=
(AF2 ⊗R AF1 , V F2 ⊗R V F1) induces the natural isomorphism F2 ◦ F1 ∼=
F1 ◦ F2.
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