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PRODUCT SYSTEMS OVER RIGHT-ANGLED
ARTIN SEMIGROUPS

NEAL J. FOWLER AND AIDAN SIMS

Abstract. We build upon Mac Lane’s definition of a tensor category to intro-
duce the concept of a product system that takes values in a tensor groupoid G.
We show that the existing notions of product systems fit into our categorical
framework, as do the k-graphs of Kumjian and Pask. We then specialize to
product systems over right-angled Artin semigroups; these are semigroups that
interpolate between free semigroups and free abelian semigroups. For such a
semigroup we characterize all product systems which take values in a given
tensor groupoid G. In particular, we obtain necessary and sufficient conditions
under which a collection of k 1-graphs form the coordinate graphs of a k-graph.

Introduction

Product systems were introduced by Arveson in his study of one-parameter semi-
groups of endomorphisms ([1]). Very roughly, a product system is a family (Et)t>0

of complex Hilbert spaces that is endowed with an associative multiplication such
that, for every s, t > 0, there is a unitary isomorphism Es⊗Et → Es+t which maps
the elementary tensor x⊗y to the product xy. The first discrete analogues of these
were studied by Dinh in [3], where the parameter t was constrained to take values
in the positive cone of a countable dense subgroup of R. Product systems over
arbitrary semigroups were introduced by Fowler and Raeburn in [8], and the first
author has continued this line of investigation in [5] and [6]. Although the papers
cited above all focus on the C∗-algebras associated with product systems, here our
interest is purely in the algebraic structure of product systems.

This note was inspired by two recent developments. In [7], the notion of a
discrete product system was extended to allow for fibers that are right-Hilbert bi-
modules over a C∗-algebra, thus opening connections with Pimsner’s generalized
Cuntz algebras ([15]). Second, in [12] Kumjian and Pask developed the notion of
k-graphs , and these have much in common with product systems over the semi-
group Nk. Our first goal is thus to generalize the definition of a product system to
encompass these different algebraic structures. We do this in Section 1 by extend-
ing Mac Lane’s definition of a monoidal category [13, §VII.1] to that of a tensor
groupoid G, and by developing the notion of a product system that takes values in
G. In addition to recovering as product systems the algebraic structures mentioned
above, by considering an abelian group G as a tensor groupoid we also obtain as
a product system every 2-cocycle of the underlying semigroup S that takes values
in G. This suggests that, at least for some tensor groupoids, the set of all product
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1488 NEAL J. FOWLER AND AIDAN SIMS

systems over a semigroup S should possess a natural binary operation akin to the
multiplication of 2-cocycles in Z2(S;G). At the end of Section 1 we show that this
is indeed the case: if G is a tensor groupoid which is symmetric in the sense of [13,
§XI.1], then one can form the internal tensor product of two product systems over
S that take values in G. The internal tensor product is associative and well-defined
on isomorphism classes of product systems, so these isomorphism classes have the
natural structure of a semigroup; we denote this semigroup H2(S;G). Although
this notation suggests the existence of a cohomology theory, at this point we have
been unable to place product systems in such a framework.

Section 2 is devoted to constructing and classifying product systems over right-
angled Artin semigroups; these are semigroups which interpolate between free semi-
groups and free abelian semigroups. For a given right-angled Artin semigroup P
with generating set A, our main result, Theorem 2.1, gives conditions on an A-tuple
(Xa)a∈A of objects in G that allow one to construct a product system over P whose
fiber over a ∈ A is Xa. In Theorem 2.2 we show that our conditions are neces-
sary, and that every product system over P is obtained by our construction. In
particular our results allow us to construct and classify k-graphs in terms of the co-
ordinate 1-graphs which generate them; see Remark 2.3. In Proposition 2.8 we use
our parameterization to determine when two product systems over P are isomor-
phic, and in Corollary 2.10 we determine the automorphism group of any product
system over P . We close with a description of the semigroup H2(P ;G) when G is a
symmetric tensor groupoid (Proposition 2.11); when G is an abelian group G, this
gives a computation of the second cohomology group H2(P ;G) (Corollary 2.12).

The authors would like to thank the referee for pointing out the connection
between our work and Mac Lane’s. The first author would also like to thank Alex
Kumjian for several helpful discussions on k-graphs.

1. Tensor groupoids and product systems

Let G be a groupoid, regarded as a small category with inverses. We will write
X ∈ G to denote that X is an object in G, and S ∈ Hom(X1, X2) or S : X1 → X2

to denote that S is a morphism from X1 to X2.
We will assume that G is endowed with the structure of a (relaxed) monoidal

category, in the sense of [13, §VII.1]. Thus G is part of a sextuple 〈G,⊗, 1G ,B, λ, ρ〉
in which ⊗ is a bifunctor ⊗ : G × G → G, 1G is a distinguished object in G, and B,
λ and ρ are natural isomorphisms

B = BX1,X2,X3 : X1 ⊗ (X2 ⊗X3)→ (X1 ⊗X2)⊗X3,

λ = λX : 1G ⊗X → X, and ρ = ρX : X ⊗ 1G → X,

such that ρ1G = λ1G : 1G ⊗ 1G → 1G , and such that the following two diagrams
commute for every X1, X2, X3, X4 ∈ G:

X1 ⊗ (X2 ⊗ (X3 ⊗X4)) ((X1 ⊗X2)⊗X3)⊗X4

(X1 ⊗X2)⊗ (X3 ⊗X4)

X1 ⊗ ((X2 ⊗X3)⊗X4) (X1 ⊗ (X2 ⊗X3))⊗X4
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��
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BX1,X2,X3⊗X4 BX1⊗X2,X3,X4

1⊗BX2,X3,X4 BX1,X2,X3⊗1

BX1,X2⊗X3,X4
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PRODUCT SYSTEMS OVER RIGHT-ANGLED ARTIN SEMIGROUPS 1489

and

X1 ⊗ (1G ⊗X2)
BX1,1G ,X2−−−−−−−→ (X1 ⊗ 1G)⊗X2

1⊗λX2

y yρX1⊗1

X1 ⊗X2

idX1⊗X2−−−−−→ X1 ⊗X2.

By the corollaries in Sections VII.1 and VII.2 of [13], the canonical isomorphisms
supplied by these natural isomorphisms allow us to write expressions such as X1⊗
· · · ⊗Xk without bothering to delineate the order in which adjacent factors should
be tensored, and to cancel out any extra factors of 1G . We shall take advantage
of this notational simplification and make only occasional further references to the
natural isomorphisms B, λ and ρ.

We have used the symbol ⊗ for our bifunctor rather than Mac Lane’s more neu-
tral � since our primary motivating examples truly are tensor products (see Exam-
ples 1.5 (2) and (3)). Consequently, we have chosen to expand on Mac Lane’s alter-
native terminology “tensor category” [13, page 252] and refer to 〈G,⊗, 1G ,B, λ, ρ〉
(or just G) as a tensor groupoid .

Definition 1.1. Let S be a countable semigroup, and let G be a tensor groupoid.
A product system over S taking values in G is a pair (Y, α) in which Y is a collection
(Ys)s∈S of objects in G, and α is a collection (αs,t)s,t∈S of isomorphisms αs,t : Ys ⊗
Yt → Yst such that

αrs,t(αr,s ⊗ 1Yt)BYr,Ys,Yt = αr,st(1Yr ⊗ αs,t) for every r, s, t ∈ S.(1.1)

If S has an identity e, we require that Ye = 1G , and that, for each s ∈ S, αe,s and
αs,e are implemented by λYs and ρYs , respectively.

As alluded to above we will henceforth suppress the natural equivalence B. Equa-
tion (1.1) then becomes

αrs,t(αr,s ⊗ 1Yt) = αr,st(1Yr ⊗ αs,t) for every r, s, t ∈ S,(1.2)

where both sides are regarded as isomorphisms from Yr ⊗ Ys ⊗ Yt to Yrst; we will
write αr,s,t for this isomorphism. More generally:

Notation 1.2. If k ≥ 2 and s1, . . . , sk ∈ S, write αs1,...,sk for the isomorphism

Ys1 ⊗ · · · ⊗ Ysk → Ys1···sk

obtained by repeatedly applying appropriate isomorphisms αs,t on adjacent factors.
For s ∈ S we define αs := 1Ys .

A moment’s thought shows that this notation makes sense: for each way of
associating the factors in Ys1⊗· · ·⊗Ysk one can apply appropriate isomorphisms αs,t
to obtain a morphism with range Ys1···sk , and a straightforward inductive argument
using the naturality of B shows that the canonical isomorphisms supplied by B carry
these morphisms into one another.

Definition 1.3. Two product systems (Y, α) and (Z, β) are isomorphic if there is
a collection ψ = (ψs)s∈S of isomorphisms ψs : Ys → Zs such that, for every s, t ∈ S,
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1490 NEAL J. FOWLER AND AIDAN SIMS

the following diagram commutes:

Ys ⊗ Yt
αs,t−−−−→ Yst

ψs⊗ψt
y yψst

Zs ⊗ Zt
βs,t−−−−→ Zst.

Remark 1.4. It is often useful to not require that the objects of G form a set. Thus
we will sometimes consider structures 〈G,⊗, 1G ,B, λ, ρ〉 in which G is a category, all
of whose morphisms are invertible. This is merely a convenience; for if (Y, α) is a
product system that takes values in such a category G, then (Y, α) takes values in
the tensor groupoid G′ whose objects are all possible tensor products Ys1⊗· · ·⊗Ysn .

Examples 1.5. (1) Let G be an abelian group, considered as the morphisms of
a groupoid G with one object. Since G is abelian, g ⊗ h := gh defines a functor
⊗ : G2 → G, and it is easy to see that this gives G the structure of a tensor groupoid;
the lone object in G is the identity object 1G , and λ and ρ are both the identity
morphism on 1G .

If (Y, α) is a product system over S that takes values in G, then α is a 2-cocycle
on S that takes values in G. Since G has but one object, the map (Y, α) 7→ α
is a bijection between such product systems and the group Z2(S;G). Moreover,
cocycles are cohomologous if and only if the corresponding product systems are
isomorphic, so there is a canonical bijection between the set of isomorphism classes
of product systems and the cohomology group H2(S;G).

(2) The product systems considered in [3], [4], [8], [5], and [6] can be placed in our
categorical framework. We will follow the convention of the latter three references
and consider product systems over a monoid S, and write e for the identity element
in S.

Let G be the category whose objects are nontrivial separable complex Hilbert
spaces, and whose morphisms are intertwining unitary isomorphisms. Let ⊗ be the
usual Hilbert space tensor product, let 1G = C, and let B, λ and ρ be the natural
equivalences determined by

BX1,X2,X3(x1 ⊗ (x2 ⊗ x3)) = (x1 ⊗ x2)⊗ x3 for xi ∈ Xi,(1.3)

λX(z ⊗ x) = zx and ρX(x⊗ z) = zx

for x ∈ X and z ∈ C.
Given a product system (Y, α) over S that takes values in G, define

E :=
⊔
s∈S
{s} × Ys,

define p : E → S by p(s, x) := s, and define multiplication in E by

(s, x)(t, y) := (st, αs,t(x, y)).

Then E is a product system over S in the sense of [8], and it is easy to see that
this defines a bijective correspondence between (isomorphism classes of) the two
different types of product systems.

We can replace G with a tensor groupoid by limiting the number of objects.
For n ≥ 1 let Hn be the Hilbert space Cn, and let H∞ := `2(N). Let G′ be
the tensor groupoid whose objects are all possible Hilbert space tensor products
Hn1⊗· · ·⊗Hnk , and whose morphisms are intertwining unitary operators. Exactly
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as above, every product system over S (in the sense of [8]) corresponds to a product
system over S taking values in G′.

(3) The product systems studied in [7] can also be placed in our categorical
framework. Let A be a C∗-algebra. A right Hilbert A-module is, roughly speaking,
a right A-module XA which is endowed with an A-valued inner product. If XA is
endowed with a left action of A by adjointable operators, we call X a right-Hilbert
A–A bimodule. (See [15] and [14] for details.)

Let G be the category in which the objects are right-Hilbert A–A bimodules, and,
for objects X,Y ∈ G, Hom(X,Y ) is the set of all bimodule isomorphisms X → Y
that preserve the inner product. As a tensoring functor we use the A-balanced
internal tensor product (see [14] for details), and then the bimodule AAA serves as
the identity object 1G . The natural equivalence B is again given by (1.3), and λ
and ρ are determined by λX(a ⊗A x) := a · x and ρX(x ⊗A a) = x · a for x ∈ X
and a ∈ A. As in the previous example, product systems that take values in this
category correspond to the product systems introduced in [7].

(4) Let V be a countable set. We construct a category G as follows. The objects
in G are triples X = (E, rE , sE) in which E is a countable set and rE and sE are
functions E → V ; we think of V and E as the vertices and edges of a directed graph,
with rE and sE the range and source maps. We will write r and s rather than rE
and sE when the domain is clear from context, and we somewhat imprecisely regard
E as an object in G. Elements of Hom(E,E′) are bijections ϕ : E → E′ such that
s = s ◦ ϕ and r = r ◦ ϕ.

Define

E1 ⊗ E2 := {(f1, f2) ∈ E1 × E2 : r(f1) = s(f2)},

with range and source maps

r(f1, f2) := r(f2) and s(f1, f2) := s(f1).

Write f1 ⊗ f2 for the edge (f1, f2) ∈ E1 ⊗ E2. For ϕ1 ∈ Hom(E1, E
′
1) and ϕ2 ∈

Hom(E2, E
′
2), define ϕ1 ⊗ ϕ2 ∈ Hom(E1 ⊗ E2, E

′
1 ⊗ E′2) by

ϕ1 ⊗ ϕ2(f1 ⊗ f2) := ϕ1(f1)⊗ ϕ2(f2).

Then ⊗ is a functor G2 → G. Equation (1.3) again defines a natural isomorphism B
between the functors ⊗◦ (idG ×⊗) and ⊗◦ (⊗× idG). We define the identity object
1G to be the triple (V, idV , idV ), and define the natural isomorphisms λ and ρ by
λE(sE(f)⊗ f) := f and ρE(f ⊗ rE(f)) := f for all f ∈ E.

When S is a monoid with no nontrivial idempotents, product systems over S
that take values in this category are related to the k-graphs of Kumjian-Pask [12].
To explain the connection, we first recall the definition of a k-graph. Let Λ be
(the morphisms of) a countable small category, and consider S as the morphisms
of a small category with one object. A functor d : Λ → S is said to have the
factorization property if for every λ ∈ Λ and t1, t2 ∈ S with d(λ) = t1t2, there are
unique elements λ1, λ2 ∈ Λ such that λ = λ1λ2 and d(λ1) = t1, d(λ2) = t2. When
S = Nk, such a pair (Λ, d) is called a k-graph.

Suppose Λ is the set of morphisms of a small category with object set V , and
suppose d : Λ→ S has the factorization property. We think of (Λ, d) as a generalized
k-graph. For each t ∈ S, define Yt := d−1(t). With range and source maps the
reverse of those inherited from Λ (that is, r = dom and s = cod), Yt becomes an
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object in G. For each t1, t2 ∈ S, define αt1,t2 : Yt1 ⊗ Yt2 → Yt1t2 by

αt1,t2(f1 ⊗ f2) := f1f2 for f1 ∈ Yt1 , f2 ∈ Yt2 .

We claim that (Y, α) is a product system over S taking values in G.
To begin with, note that αt1,t2 ∈ Hom(Yt1 ⊗ Yt2 , Yt1t2): each such map clearly

preserves the range and source maps, and the factorization property is precisely the
condition needed to ensure that αt1,t2 is bijective.

Next we will show that Ye = V , where each v ∈ V is identified with 1v ∈ Λ. Fix
v ∈ V . Since v is an idempotent so is d(v), and hence d(v) = e; that is, v ∈ Ye.
Now fix λ ∈ Ye. Since e2 = e, the factorization property assures us that there are
unique elements λ1, λ2 ∈ Ye such that λ = λ1λ2. Since s(λ)λ = λ = λr(λ), we
conclude that λ = s(λ) = r(λ) ∈ V . Thus Ye = V .

Finally, for each t ∈ S we have

αe,t(s(λ)⊗ λ) = s(λ)λ = λ = λYt(s(λ) ⊗ λ) for λ ∈ Yt,

and similarly αt,e is implemented by ρYt . Thus (Y, α) is a product system over S
taking values in G, as claimed.

Conversely, suppose one is given a product system (Y, α) over S taking values in
G. Let

Λ :=
⋃
t∈S
{t} × Yt,

and define dom, cod: Λ → V by dom(t, f) := r(f) and cod(t, f) := s(f). Then Λ
is the set of morphisms of a countable small category with object set V , in which
morphisms are composed according to

(t1, f1)(t2, f2) := (t1t2, αt1,t2(f1 ⊗ f2)).

Define d : Λ→ S by d(t, f) := t. Then d is a functor, and it satisfies the factorization
property because each αt1,t2 is a bijection.

The procedures outlined above are easily seen to be inverses of one another,
and hence product systems over S taking values in G are essentially the same as
generalized k-graphs.

It should be pointed out that this example can be regarded as a special case of
Example 1.5 (3), as follows. Suppose that (Y, α) is a product system over S taking
values in G. For each t ∈ S, let Xt be the Cuntz-Krieger bimodule associated with
the directed graph Yt, as in [9, Example 1.2]; Xt is the completion of Cc(Yt) with
respect to a certain norm defined using the range map for Yt. The embeddings
y ∈ Yt 7→ δy ∈ Xt induce isomorphisms βs,t : Xs ⊗Xt → Xst that make (X, β) into
a product system of right-Hilbert C0(V )–C0(V ) bimodules.

Symmetric tensor groupoids. We now discuss tensor groupoids which are sym-
metric in the sense of [13, §XI.1]. Let G be a tensor groupoid and let F : G2 → G2 be
the “flip” functor which interchanges the order of any pair of objects or morphisms
(e.g. F (X1, X2) = (X2, X1)). Suppose there is a natural equivalence F from ⊗ to
⊗ ◦ F ; that is, there is a collection of isomorphisms FX1,X2 : X1 ⊗X2 → X2 ⊗X1

such that

(S2 ⊗ S1) ◦ FX1,X2 = FY1,Y2 ◦ (S1 ⊗ S2)
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for all Xi, Yi ∈ G, and all Si ∈ Hom(Xi, Yi). Suppose, furthermore, that for every
X1, X2, X3 ∈ G, the diagram

X1 ⊗ 1G
FX1,1G−−−−→ 1G ⊗X1

ρX1

y yλX1

X1

idX1−−−−→ X1

(1.4)

commutes, and that the following two identities hold:

F−1
X1,X2

= FX2,X1(1.5)

and

FX1,X2⊗X3 = (1X2 ⊗FX1,X3)(FX1,X2 ⊗ 1X3).(1.6)

Taking inverses in (1.6) and using (1.5), one also has

FX1⊗X2,X3 = (FX1,X3 ⊗ 1X2)(1X1 ⊗FX2,X3).(1.7)

Following [13, §XI.1], we call a tensor groupoid G that admits a natural equivalence
F with these properties a symmetric tensor groupoid.

One can check that this is consistent with Mac Lane’s definition of a symmetric
monoidal category: our (1.4) corresponds to [13, §XI.1 (6)], (1.5) corresponds to
[13, §XI.1 (8)], and (1.6) and (1.7) correspond to [13, §XI.1 (7)] with the instances
of B suppressed.

Examples 1.6. (1) Let G be the tensor groupoid associated with an abelian group
G, as in Examples 1.5(1). Then G is a symmetric tensor groupoid: G2 has but
one object, and assigning the identity element of G to this object gives the desired
natural equivalence F .

(2) Let G′ be the tensor groupoid introduced in Examples 1.5(2). ForX1, X2 ∈ G,
define FX1,X2 : X1 ⊗X2 → X2 ⊗X1 by

FX1,X2(x1 ⊗ x2) := x2 ⊗ x1 for xi ∈ Xi.

Then F is a natural equivalence from ⊗ to ⊗ ◦ F , so G′ is a symmetric tensor
groupoid.

In a symmetric tensor groupoid, one can take tensor products of product systems:

Proposition 1.7. Suppose (Y, α) and (Y ′, α′) are product systems over semigroups
S and S′, respectively, both taking values in a symmetric tensor groupoid G. For
every (s, s′) ∈ S × S′ define

Z(s,s′) := Ys ⊗ Y ′s′ ,

and for every (s, s′), (t, t′) ∈ S×S′ define β(s,s′),(t,t′) : Z(s,s′)⊗Z(t,t′) → Z(ss′,tt′) by

β(s,s′),(t,t′) := (αs,t ⊗ α′s′,t′)(1Ys ⊗FY ′s′ ,Yt ⊗ 1Y ′
t′

).

Then (Z, β) is a product system over S × S′ taking values in G.

Remark 1.8. We call (Z, β) the external tensor product of (Y, α) and (Y ′, α′).
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Proof. We must show that β satisfies the associativity condition (1.2). Suppose
(r, r′), (s, s′), (t, t′) ∈ S × S′. Then

β(r,r′),(st,s′t′)(1Z(r,r′) ⊗ β(s,s′),(t,t′))

= (αr,st ⊗ α′r′,s′t′)(1Yr ⊗FY ′r′ ,Yst ⊗ 1Y ′
s′t′

)

(1Yr⊗Y ′r′ ⊗ αs,t ⊗ αs′,t′)(1Yr⊗Y ′r′⊗Ys ⊗FY ′s′ ,Yt ⊗ 1Y ′
t′

)

= (αr,st ⊗ α′r′,s′t′)(1Yr ⊗ αs,t ⊗ 1Y ′
r′
⊗ α′s′,t′)(1.8)

(1Yr ⊗FY ′r′ ,Ys⊗Yt ⊗ 1Y ′
s′⊗Y

′
t′

)(1Yr⊗Y ′r′⊗Ys ⊗FY ′s′ ,Yt ⊗ 1Y ′
t′

),

whereas

β(rs,r′s′),(t,t′)(β(r,r′),(s,s′) ⊗ 1Z(t,t′))

= (αrs,t ⊗ α′r′s′,t′)(1Yrs ⊗FY ′r′s′ ,Yt ⊗ 1Y ′
t′

)

(αr,s ⊗ α′r′,s′ ⊗ 1Yt⊗Y ′t′ )(1Yr ⊗FY ′r′ ,Ys ⊗ 1Y ′
s′⊗Yt⊗Y

′
t′

)

= (αrs,t ⊗ α′r′s′,t′)(αr,s ⊗ 1Yt ⊗ α′r′,s′ ⊗ 1Y ′
t′

)(1.9)

(1Yr⊗Ys ⊗FY ′r′⊗Y ′s′ ,Yt ⊗ 1Y ′
t′

)(1Yr ⊗FY ′r′ ,Ys ⊗ 1Y ′
s′⊗Yt⊗Y

′
t′

).

Since α and α′ each satisfy (1.2), the product of the first two factors in (1.8) is
equal to the corresponding product in (1.9). Hence it suffices to show that

(FY ′
r′ ,Ys⊗Yt ⊗ 1Y ′

s′
)(1Y ′

r′⊗Ys ⊗FY ′s′ ,Yt) = (1Ys ⊗FY ′r′⊗Y ′s′ ,Yt)(FY ′r′ ,Ys ⊗ 1Y ′
s′⊗Yt).

By (1.6), the left-hand side of this equation is equal to

(1Ys ⊗FY ′r′ ,Yt ⊗ 1Y ′
s′

)(FY ′
r′ ,Ys

⊗ 1Yt⊗Y ′s′ )(1Y ′r′⊗Ys ⊗FY ′s′ ,Yt),

and by (1.7), the right-hand side is equal to

(1Ys ⊗FY ′r′ ,Yt ⊗ 1Y ′
s′

)(1Ys⊗Y ′r′ ⊗FY ′s′ ,Yt)(FY ′r′ ,Ys ⊗ 1Y ′
s′⊗Yt).

These last two expressions are obviously equal, and the proof is complete.

When S = S′, one can restrict the external tensor product to the diagonal to
obtain another product system over S:

Definition 1.9. Suppose (Y, α) and (Z, β) are product systems over S taking val-
ues in a symmetric tensor groupoid G. The internal tensor product (Y, α)⊗ (Z, β)
is the product system (Y ⊗ Z,α⊗ β) defined by

(Y ⊗ Z)s := Ys ⊗ Zs for s ∈ S

and

(α⊗ β)s,t := (αs,t ⊗ βs,t)(1Ys ⊗FZs,Yt ⊗ 1Zt) for s, t ∈ S.

Lemma 1.10. The internal tensor product is associative and well-defined on iso-
morphism classes.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



PRODUCT SYSTEMS OVER RIGHT-ANGLED ARTIN SEMIGROUPS 1495

Proof. Let (Y, α), (Z, β) and (W,γ) be product systems over S taking values in G,
and suppose s, t ∈ S. Making frequent use of (1.6) and (1.7), we calculate

((α ⊗ β)⊗ γ)s,t = ((α⊗ β)s,t ⊗ γs,t)(1Ys⊗Zs ⊗FWs,Yt⊗Zt ⊗ 1Wt)

= (αs,t ⊗ βs,t ⊗ γs,t)(1Ys ⊗FZs,Yt ⊗ 1Zt⊗Ws⊗Wt)

(1Ys⊗Zs⊗Yt ⊗FWs,Zt ⊗ 1Wt)(1Ys⊗Zs ⊗FWs,Yt ⊗ 1Zt⊗Wt)

= (αs,t ⊗ βs,t ⊗ γs,t)(1Ys⊗Yt⊗Zs ⊗FWs,Zt ⊗ 1Wt)

(1Ys ⊗FZs,Yt ⊗ 1Ws⊗Zt⊗Wt)(1Ys⊗Zs ⊗FWs,Yt ⊗ 1Zt⊗Wt)

= (αs,t ⊗ (β ⊗ γ)s,t)(1Ys ⊗FZs⊗Ws,Yt ⊗ 1Zt⊗Wt)

= (α⊗ (β ⊗ γ))s,t.

This gives associativity.
Now suppose that (ψs)s∈S is an isomorphism from (Y, α) to (Y ′, α′), and that

(ϕs)s∈S is an isomorphism from (Z, β) to (Z ′, β′). For any s, t ∈ S we have

(ψst ⊗ ϕst)(α⊗ β)s,t
= (ψst ⊗ ϕst)(αs,t ⊗ βs,t)(1Ys ⊗FZs,Yt ⊗ 1Zt)

= (α′s,t ⊗ β′s,t)(ψs ⊗ ψt ⊗ ϕs ⊗ ϕt)(1Ys ⊗FZs,Yt ⊗ 1Zt)

= (α′s,t ⊗ β′s,t)(1Y ′s ⊗FZ′s,Y ′t ⊗ 1Z′t)(ψs ⊗ ϕs ⊗ ψt ⊗ ϕt)
= (α′ ⊗ β′)s,t(ψs ⊗ ϕs ⊗ ψt ⊗ ϕt),

so (ψs ⊗ ϕs)s∈S is an isomorphism from (Y ⊗ Z,α⊗ β) to (Y ′ ⊗ Z ′, α′ ⊗ β′).

Remark 1.11. Essentially the same proofs show that the external tensor product is
also associative and well-defined on isomorphism classes of product systems.

Motivated by Examples 1.5(1), we write Z2(S;G) for the set of product systems
over S taking values in G, and H2(S;G) for the set of isomorphism classes of such
product systems. It follows from the previous lemma that when G is symmetric,
the internal tensor product makes both Z2(S;G) and H2(S;G) into semigroups.

When G is the symmetric tensor groupoid associated with an abelian group G (as
in Examples 1.5(1) and 1.6(1)), the map (Y, α) ∈ Z2(S;G) 7→ α ∈ Z2(S;G) is an
isomorphism of groups, and descends to an isomorphism fromH2(S;G) to H2(S;G).
In the next section we give an explicit description of H2(S;G) for arbitrary G in
the special case when S is a right-angled Artin semigroup.

2. Right-angled Artin semigroups

Let Γ be a (non-directed) graph with countable vertex set A. We will assume
that Γ is simple; that is, that Γ has no loops (edges from a vertex to itself) or
multiple edges. We write a↔ b when a, b ∈ A are joined by an edge in Γ.

Let FA be the free group on A, and let ∗ΓZ be the graph product of |A| copies of
Z; that is, ∗ΓZ is the quotient of FA by the smallest normal subgroup that contains
the commutators [a, b] for which a ↔ b. (See [10] and [11] for details.) Since each
of the factors in the graph product is Z, ∗ΓZ is a right-angled Artin group. Let
π : FA → ∗ΓZ be the canonical quotient map.

Consider the homomorphism ` : FA → Z determined by `(a) = 1 for a ∈ A. Since
every commutator [a, b] belongs to the kernel of `, we have kerπ ⊆ ker `. Thus `
descends to a homomorphism ∗ΓZ→ Z, also denoted `, which satisfies `(π(a)) = 1
for each a ∈ A. We call ` the length function.
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Let F+
A be the subsemigroup of FA generated by A. Each element µ ∈ F+

A can
be uniquely written as a word in the alphabet A; we denote by µi the ith element
of this word, so that µ = µ1 · · ·µ`(µ) with µ1, . . . , µ`(µ) ∈ A.

Let P be the subsemigroup of ∗ΓZ which is the image of F+
A under the quotient

map π. We call P a right-angled Artin semigroup. It is worth bearing in mind
the following extreme cases: if Γ has no edges, then P is the free semigroup F+

A,
whereas if Γ is the complete graph on A, then P is free abelian.

The remainder of this note is devoted to constructing and classifying product
systems over P . Our analysis makes use of a specific section δ : P → F+

A of the
quotient map π, called the preferred section. To define it, we fix once and for all a
well-ordering of the vertex set A. (Since A is countable, this does not require the
Axiom of Choice: one can simply enumerate the elements of A.) The section δ is
defined recursively, starting with δ(π(a)) := a for each a ∈ A. Suppose δ has been
defined on all words of length at most k for some k ≥ 1. Fix t ∈ P of length k + 1,
and use the well-ordering of A to define

a := min{µ1 : µ ∈ F+
A, π(µ) = t}.

Choose any µ ∈ F+
A such that π(µ) = t and µ1 = a, and express µ = µ1µ

′. Then
t′ := π(µ′) is independent of the choice of µ and has length k, and we define
δ(t) := aδ(t′).

Now suppose G is a tensor groupoid. For our first theorem, fix a collection
(Xa)a∈A of objects in G, and define

Xµ := Xµ1 ⊗ · · · ⊗Xµ`(µ) for µ ∈ F+
A.

Write 1µ for the identity morphism on Xµ.
Suppose T = (Ta,b)a↔b is a collection of isomorphisms

Ta,b : Xa ⊗Xb → Xb ⊗Xa

such that

T−1
a,b = Tb,a whenever a↔ b,(2.1)

and, whenever a, b and c form the vertices of a triangle in Γ (i.e., whenever a↔ b,
b↔ c and c↔ a), the following hexagonal equation is satisfied:

(Tb,c ⊗ 1a)(1b ⊗ Ta,c)(Ta,b ⊗ 1c) = (1c ⊗ Ta,b)(Ta,c ⊗ 1b)(1a ⊗ Tb,c).(2.2)

(Both sides of this equation are isomorphisms Xa ⊗Xb ⊗Xc → Xc ⊗Xb ⊗Xa.)
Our first theorem asserts that such a collection T is all that is necessary to

construct a product system over P .

Theorem 2.1. Fix a well-ordering of A, and let δ : P → F+
A be the corresponding

preferred section of the quotient map π : F+
A → P . Then there is a unique product

system (Y, α) = (Y T , αT ) over P taking values in the tensor groupoid G such that

Yt = Xδ(t) for every t ∈ P ,(2.3)

αs,t = 1δ(st) if δ(st) = δ(s)δ(t), and(2.4)

απ(a),π(b) = Ta,b if a↔ b and a > b.(2.5)

Our second theorem asserts that, up to isomorphism, this construction gives all
possible product systems over P . It also implies that the well-ordering used in
Theorem 2.1 does not affect the isomorphism class of the resulting product system.
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Theorem 2.2. Suppose (Z, β) is a product system over P which takes values in
the tensor groupoid G. Define

Xa := Zπ(a) for a ∈ A(2.6)

and

Ta,b := β−1
π(b),π(a)βπ(a),π(b) for every a, b ∈ A such that a↔ b.(2.7)

Then the collection (Ta,b)a↔b satisfies (2.1) and (2.2). Moreover, the correspond-
ing product system (Y T , αT ) given by Theorem 2.1 is isomorphic to (Z, β) via an
isomorphism (ψs)s∈P such that, for each a ∈ A, ψπ(a) is the identity morphism on
Zπ(a).

Notice that if a↔ b, then π(a)π(b) = π(b)π(a), and the isomorphisms βπ(a),π(b)

and βπ(b),π(a) each have range Zπ(a)π(b). Thus the equation (2.7) used to define Ta,b
makes sense.

Remark 2.3. Before proving these theorems, we give an application to the k-graphs
of Kumjian and Pask. Resume the notation of Examples 1.5(4). Let d : Λ → Nk
be a k-graph, and let V := d−1(0) be the set of objects in Λ. For each t ∈ Nk,
Yt := d−1(t) is the edge set of a directed graph with vertex set V ; the range and
source maps are the reverse of those inherited from Λ. Moreover, since d satisfies
the factorization property, for every t1, t2 ∈ Nk the map αt1,t2 : Yt1 ⊗ Yt2 → Yt1+t2

defined by αt1,t2(f1 ⊗ f2) = f1f2 is an isomorphism; composing with α−1
t2,t1 we see

that Yt1 ⊗ Yt2 and Yt2 ⊗ Yt1 are isomorphic.
Given a collection E1, . . . , Ek of countable directed graphs, each with vertex

set V , which satisfy

Ei ⊗ Ej ∼= Ej ⊗ Ei for 1 ≤ i, j ≤ k,

one might thus ask if there is a k-graph d : Λ→ Nk such that d−1(ei) is isomorphic
to Ei for each i. (Here {ei : 1 ≤ i ≤ k} is the canonical basis for Nk.) In
[12, Section 6], Kumjian and Pask observed that, when k = 2, any isomorphism
θ : E2 ⊗E1 → E1 ⊗E2 can be used to construct such a 2-graph. Roughly, the idea
is this. For each t ∈ N2 let

Et := E⊗t11 ⊗ E⊗t22

with the usual range and source maps, and define Λ :=
⊔
t∈Nk Et. One can use θ

in the obvious way to construct isomorphisms Es ⊗ Et → Es+t for every s, t ∈ N2,
and the resulting binary operation on Λ makes it a small category with object set
V . With d : Λ→ Nk defined by d(f) := t for f ∈ Et, (Λ, d) is a k-graph.

When k ≥ 3, things are more complicated. For each pair (i, j) with 1 ≤ i <
j ≤ k, fix an isomorphism Ej ⊗ Ei → Ei ⊗ Ej . Somewhat imprecisely, we write
f ⊗ g 7→ g′ ⊗ f ′ for each of these isomorphisms, and we also write g ⊗ f 7→ f ′ ⊗ g′
for the inverse maps Ei ⊗ Ej → Ej ⊗ Ei. Taking A = {1, . . . , k} with its usual
ordering, Theorems 2.1 and 2.2 say that the analogue of the construction of 2-
graphs outlined above yields a k-graph if and only if the following condition holds:
whenever 1 ≤ i < j < l ≤ k, the composite map

f ⊗ g ⊗ h 7→ f ⊗ h′ ⊗ g′ 7→ h′′ ⊗ f ′ ⊗ g′ 7→ h′′ ⊗ g′′ ⊗ f ′′

7→ g′′′ ⊗ h′′′ ⊗ f ′′ 7→ g′′′ ⊗ f ′′′ ⊗ h′′′′ 7→ f ′′′′ ⊗ g′′′′ ⊗ h′′′′
(2.8)

is the identity on El⊗Ej ⊗Ei. Moreover, up to isomorphism, every k-graph arises
in this manner.
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Condition (2.8) holds vacuously when k = 2, thus reproducing the result of
Kumjian and Pask. It also holds when the vertex matrices Mi of the directed
graphs Ei satisfy Robertson and Steger’s conditions (H0), (H1a), (H1b) and (H1c)
from [16]; that is, if the Mi’s are pairwise commuting {0, 1}-matrices such MiMj

is a {0, 1}-matrix whenever i < j, and MiMjMl is a {0, 1}-matrix whenever i <
j < l. This is easy to see: under these conditions there are unique isomorphisms
Ej⊗Ei → Ei⊗Ej, and (2.8) holds since the identity map is the only automorphism
ofEl⊗Ej⊗Ei. See [12, Examples 1.7] for a more direct translation of the Robertson-
Steger conditions into k-graphs.

Note that our result holds for both finite and infinite k, and that one can replace
Nk with an arbitrary right-angled Artin semigroup to obtain a more general result.

To prove Theorems 2.1 and 2.2, we need a few preliminary results. First some
notation and terminology. Define an action of the symmetric group Sk on the words
of length k in F+

A by

σµ := µσ−1(1) . . . µσ−1(k) for σ ∈ Sk, µ ∈ F+
A, `(µ) = k.

For 1 ≤ i ≤ k − 1, let τi ∈ Sk be the transposition (i, i + 1); we shall omit the
dependence on k, but this should not cause any confusion.

We call τi an allowable transposition for µ if µi ↔ µi+1. Note that since Γ has
no loops, τi is not an allowable transposition for µ when µi = µi+1. We call σ ∈ Sk
an allowable permutation for µ if it can be written as a product τim · · · τi1 in which
τij is an allowable transposition for τij−1 · · · τi1µ for each j.

Lemma 2.4. Let σ and ρ be allowable permutations for µ. Then:
(1) π(σµ) = π(µ).
(2) If i < j and µi 6↔ µj, then σ(i) < σ(j).
(3) If σµ = ρµ, then σ = ρ.

Proof. The first assertion follows immediately from the graph product relations
upon writing σ as a product of allowable transpositions. For (2), suppose i < j
and µi 6↔ µj . Since the result is obvious for the identity permutation, we may
inductively assume that σ = τlκ, where κ is an allowable permutation for µ such
that κ(i) < κ(j) and τl is an allowable transposition for κµ. Since τl is allowable,
we have (κµ)l ↔ (κµ)l+1; that is, µκ−1(l) ↔ µκ−1(l+1). Since µi 6↔ µj , this implies
that either κ(i) 6= l or κ(j) 6= l + 1. From the assumption that κ(i) < κ(j) we can
thus deduce that τlκ(i) < τlκ(j), and hence σ(i) < σ(j).

(3) First suppose σµ = µ. We claim that σ is the identity permutation. If not,
then there exists i such that i < σ(i). From σµ = µ we deduce that µσm(i) =
µσm+1(i), and hence µσm(i) 6↔ µσm+1(i), for every m. Repeated applications of (2)
yield the contradiction

i < σ(i) < σ2(i) < σ3(i) < · · · .
Now suppose σµ = ρµ. Then ρ−1σ is an allowable permutation for µ such that

ρ−1σµ = µ, and hence σ = ρ.

We now make use of a result from [10], which, when formulated in the language
we have developed, states that if two elements of F+

A have the same image under the
quotient map π, then they are connected by a sequence of allowable transpositions;
i.e., one is obtainable from the other by an allowable permutation. (See also [11].)
Hence for each µ ∈ F+

A there is an allowable permutation σ for µ such that σµ =
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δ(π(µ)). By part (3) of the previous lemma, the permutation σ is unique. Thus we
define:

Definition 2.5. For each µ ∈ F+
A, let σµ be the unique allowable permutation for

µ such that σµµ = δ(π(µ)).

For each permutation σ let

ι(σ) := |{(i, j) : i < j and σ(i) > σ(j)}|,
the number of inversions in σ.

Lemma 2.6. Let µ ∈ F+
A.

(1) If ρ is an allowable permutation for µ, then σρµ = σµρ
−1.

(2) If σµ(i) > σµ(i+ 1), then ι(στiµ) = ι(σµ)− 1 and µi ↔ µi+1.

Proof. (1) By Lemma 2.4(1) we have

σµµ = δ(π(µ)) = δ(π(ρµ)) = σρµ(ρµ).

Since σρµρ is an allowable permutation for µ, (1) now follows from part (3) of
Lemma 2.4.

The assumption σµ(i) > σµ(i + 1) implies that ι(σµτi) = ι(σµ) − 1. The first
conclusion of (2) now follows from (1), and the second is an immediate consequence
of Lemma 2.4(2).

The following proposition is our main technical result.

Proposition 2.7. Let T = (Ta,b)a↔b be a family of isomorphisms

Ta,b : Xa ⊗Xb → Xb ⊗Xa

which satisfies (2.1) and (2.2). Fix a well-ordering of the vertex set A and let
δ : P → F+

A be the corresponding preferred section. Then there is a unique family
(Uµ)µ∈F+

A
of isomorphisms Uµ : Xµ → Xδ(π(µ)) which satisfies

Uµ = 1µ if δ(π(µ)) = µ(2.9)

and

Uµ = UτiµT
µ
i whenever µi ↔ µi+1,(2.10)

where T µi is the isomorphism

1µ1 ⊗ · · · ⊗ 1µi−1 ⊗ Tµi,µi+1 ⊗ 1µi+2 ⊗ · · · ⊗ 1µ`(µ) : Xµ → Xτiµ.

For this family, we have

Uδ(π(µ))ν(Uµ ⊗ 1ν) = Uµν = Uµδ(π(ν))(1µ ⊗ Uν) for all µ, ν ∈ F+
A.(2.11)

Proof. We begin by recursively defining the family (Uµ)µ∈F+
A

. If ι(µ) = 0, define
Uµ := 1µ. Now let k ≥ 0, and suppose that we have defined Uµ for every µ ∈ F+

A

such that ι(σµ) ≤ k. Fix µ ∈ F+
A such that ι(σµ) = k + 1, and let

j := min{l : σµ(l) > σµ(l + 1)}.
By Lemma 2.6(2) we have ι(στjµ) = ι(σµ) − 1 = k (so that Uτjµ is defined) and
µj ↔ µj+1 (so that T µj is defined), so we can define Uµ recursively by

Uµ := UτjµT
µ
j .
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If δ(π(µ)) = µ, then ι(σµ) = 0, so (2.9) holds by definition of Uµ. We claim that

Uµ = UτiµT
µ
i whenever σµ(i) > σµ(i+ 1);(2.12)

again we remark that, by Lemma 2.6(2), the condition σµ(i) > σµ(i + 1) ensures
that T µi is defined. Before verifying (2.12), let us show how it implies (2.10). For
this, it suffices to show that (2.10) holds whenever µi ↔ µi+1 and σµ(i) < σµ(i+1).
Using Lemma 2.6(1), we compute that

στiµ(i) = σµτi(i) = σµ(i + 1) > σµ(i) = σµτi(i+ 1) = στiµ(i+ 1).

Hence we may apply (2.12) to τiµ to deduce that

Uτiµ = UµT
τiµ
i .

Composing both sides on the right with (T τiµi )−1 = T µi gives (2.10).
We will verify (2.12) by induction on ι(σµ). If ι(σµ) = 0, then σµ = id, and (2.12)

holds vacuously. Let k ≥ 1, and suppose inductively that (2.12) holds whenever
ι(σµ) ≤ k−1. Fix µ ∈ F+

A with ι(σµ) = k, and suppose i ∈ {1, . . . , `(µ)−1} is such
that σµ(i) > σµ(i + 1). Let

j := min{l : σµ(l) > σµ(l + 1)},
so that by definition Uµ = UτjµT

µ
j . Then j ≤ i, and we consider three cases.

Case 1: i = j. Then Uµ = UτiµT
µ
i holds by definition of Uµ.

Case 2: i ≥ j + 2.
By Lemma 2.6(2) we have ι(στiµ) = k − 1, and using Lemma 2.6(1) we check

that

στiµ(j) = σµτi(j) = σµ(j) > σµ(j + 1) = σµτi(j + 1) = στiµ(j + 1).

Hence we may apply (2.12) to τiµ to obtain

Uτiµ = UτjτiµT
τiµ
j .

Similarly,

Uτjµ = UτiτjµT
τjµ
i .

Since i ≥ j + 2 we have τjτi = τiτj . Moreover, with ν := µ1 · · ·µj−1, λ :=
µj+2 · · ·µi−1 and θ := µi+2 · · ·µ`(µ), we have

T τiµj T µi = (1ν ⊗ 1µi+1µi ⊗ 1λ ⊗ Tµj ,µj+1 ⊗ 1θ)(1ν ⊗ Tµi,µi+1 ⊗ 1λ ⊗ 1µjµj+1 ⊗ 1θ)

= (1ν ⊗ Tµi,µi+1 ⊗ 1λ ⊗ 1µj+1µj ⊗ 1θ)(1ν ⊗ 1µiµi+1 ⊗ 1λ ⊗ Tµj ,µj+1 ⊗ 1θ)

= T
τjµ
i T µj .

Thus

Uµ = UτjµT
µ
j = UτiτjµT

τjµ
i T µj = UτjτiµT

τiµ
j T µi = UτiµT

µ
i ,

as required.
Case 3: i = j + 1.

Lemma 2.6(2) gives ι(στjµ) = k − 1, and, since σµ(j) > σµ(j + 1) > σµ(j + 2),
we can use Lemma 2.6(1) to check that

στjµ(j + 1) = σµτj(j + 1) = σµ(j)

> σµ(j + 2) = σµτj(j + 2) = στjµ(j + 2).
(2.13)

Hence we may apply (2.12) to τjµ to obtain

Uτjµ = Uτj+1τjµT
τjµ
j+1.
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By Lemma 2.6(2), (2.13) also implies that ι(στj+1τj ) = ι(στjµ) − 1 = k − 2, and
using Lemma 2.6(1) we check that

στj+1τjµ(j) = σµτjτj+1(j) = σµ(j + 1)

> σµ(j + 2) = σµτjτj+1(j + 1) = στj+1τjµ(j + 1).

Hence we may apply (2.12) to τj+1τjµ to obtain

Uτj+1τjµ = Uτjτj+1τjµT
τj+1τjµ
j .

Thus
Uµ = UτjµT

µ
j

= Uτj+1τjµT
τjµ
j+1T

µ
j

= Uτjτj+1τjµT
τj+1τjµ
j T

τjµ
j+1T

µ
j .

(2.14)

Since σµ(j) > σµ(j + 1) > σµ(j + 2), Lemma 2.6(2) implies that µj , µj+1 and
µj+2 form the vertices of a triangle in Γ. Using expansions such as

T µj = 1ν ⊗ (Tµj ,µj+1 ⊗ 1µj+2)⊗ 1θ,

(where ν := µ1 · · ·µj−1 and θ := µj+3 · · ·µ`(µ)), the hexagonal equation (2.2) gives

T
τj+1τjµ
j T

τjµ
j+1T

µ
j = T

τjτj+1µ
j+1 T

τj+1µ
j T µj+1.

Using this and τjτj+1τj = τj+1τjτj+1 in (2.14) gives

Uµ = Uτj+1τjτj+1µT
τjτj+1µ
j+1 T

τj+1µ
j T µj+1.(2.15)

As above, one now verifies that ι(στj+1µ) = k− 1 and στj+1µ(j) > στj+1µ(j + 1),
from which (2.12) gives

Uτj+1µ = Uτjτj+1µT
τj+1µ
j .

One then verifies that ι(στjτj+1µ) = k−2, and that στjτj+1µ(j+1) > στjτj+1µ(j+2),
from which (2.12) gives

Uτjτj+1µ = Uτj+1τjτj+1µT
τjτj+1µ
j+1 .

Combining these last two equations with (2.15) gives

Uµ = Uτj+1τjτj+1µT
τjτj+1µ
j+1 T

τj+1µ
j T µj+1

= Uτjτj+1µT
τj+1µ
j T µj+1

= Uτj+1µT
µ
j+1.

This concludes Case 3, and the proof of (2.12) is complete.
For uniqueness, suppose (Vµ)µ∈F+

A
is a different family of isomorphisms Vµ : Xµ →

Xδ(π(µ)) which satisfies (2.9) and (2.10). Choose µ with ι(σµ) minimal such that
Uµ 6= Vµ. Since both collections satisfy (2.9) we have ι(σµ) ≥ 1, and hence there
exists i with σµ(i) > σµ(i + 1). By Lemma 2.6(2) we have ι(στiµ) < ι(σµ), so by
minimality Uτiµ = Vτiµ. Using (2.10) we obtain the contradiction

Uµ = UτiµT
µ
i = VτiµT

µ
i = Vµ.

Thus the collection is unique.
We now verify (2.11). We will prove that

Uδ(π(µ))ν(Uµ ⊗ 1ν) = Uµν for all µ, ν ∈ F+
A;(2.16)
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the proof of the other half of (2.11) proceeds in a similar fashion. We verify (2.16)
by induction on ι(σµ). If ι(σµ) = 0, then δ(π(µ)) = µ, and

Uδ(π(µ))ν(Uµ ⊗ 1ν) = Uµν(1µ ⊗ 1ν) = Uµν .

Suppose inductively that (2.16) holds whenever ι(σµ) ≤ k − 1. Let ν ∈ F+
A be

arbitrary, and fix µ ∈ F+
A satisfying ι(σµ) = k. Since k ≥ 1, there exists i such that

σµ(i) > σµ(i + 1), and Lemma 2.6(2) gives ι(στiµ) = k − 1 and µi ↔ µi+1. The
inductive hypothesis gives that

Uδ(π(τiµ))ν(Uτiµ ⊗ 1ν) = U(τiµ)ν .(2.17)

Since π(τiµ) = π(µ),

Uδ(π(µ))ν(Uµ ⊗ 1ν) = Uδ(π(τiµ))ν(UτiµT
µ
i ⊗ 1ν) (by 2.10)

= Uδ(π(τiµ))ν(Uτiµ ⊗ 1ν)(T µi ⊗ 1ν)

= U(τiµ)ν(T µi ⊗ 1ν) (by 2.17)

= Uτi(µν)T
µν
i

= Uµν (by 2.10),

and the proof is complete by induction.

Proof of Theorem 2.1. We begin by proving the existence of a product system (Y, α)
which satisfies the conditions of the theorem. The collection Y is determined by
(2.3). Let (Uµ)µ∈F+

A
be the family of isomorphisms Uµ : Xµ → Xδ(π(µ)) given by

Proposition 2.7. If s, t ∈ P , then Ys ⊗ Yt = Xδ(s) ⊗ Xδ(t) = Xδ(s)δ(t) and Yst =
Xδ(st) = Xδ(π(δ(s)δ(t))), so we can define αs,t : Ys ⊗ Yt → Yst by

αs,t := Uδ(s)δ(t).

To see that (Y, α) satisfies the associativity condition (1.2), suppose r, s, t ∈ P .
Setting µ = δ(r)δ(s) and ν = δ(t) in the first part of (2.11) gives

αrs,t(αr,s ⊗ 1Yt) = Uδ(rs)δ(t)(Uδ(r)δ(s) ⊗ 1δ(t)) = Uδ(r)δ(s)δ(t),

and setting µ = δ(r) and ν = δ(s)δ(t) in the second part of (2.11) gives

αr,st(1Yr ⊗ αs,t) = Uδ(r)δ(st)(1δ(r) ⊗ Uδ(s)δ(t)) = Uδ(r)δ(s)δ(t).

Thus (1.2) holds, and (Y, α) is a product system.
To check (2.4), suppose δ(st) = δ(s)δ(t). By (2.9) we have Uδ(st) = 1δ(st), and

hence

αs,t = Uδ(s)δ(t) = Uδ(st) = 1δ(st),

giving (2.4). For (2.5), suppose a, b ∈ A satisfy a↔ b and a > b. Then απ(a),π(b) =
Uδ(π(a))δ(π(b)) = Uab = UbaTa,b, where the last equality is by (2.10). But δ(π(ba)) =
ba, so by (2.9) we have Uba = 1ba, and hence απ(a),π(b) = Ta,b, as required.

For uniqueness, we first establish that

αs1,...,sk = Uδ(s1)···δ(sk) for all k ≥ 1 and s1, . . . , sk ∈ P .(2.18)
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(See Notation 1.2.) This equation holds by definition when k ≤ 2, so suppose
inductively that it holds for some k ≥ 2. Let s1, . . . , sk+1 ∈ P . Then

αs1,...,sk+1 = αs1···sk,sk+1(αs1,...,sk ⊗ 1Ysk+1
) (associativity of α)

= Uδ(s1···sk)δ(sk+1)(Uδ(s1)···δ(sk) ⊗ 1δ(sk+1)) (induction)
= Uδ(s1)···δ(sk+1),

with the last equality following from (2.11) by setting µ = δ(s1) · · · δ(sk) and ν =
δ(sk+1). Hence (2.18) holds for k + 1, and inductively for all k.

Now suppose (Y, β) is another product system over P which satisfies (2.3), (2.4)
and (2.5). Define

Vµ := βπ(µ1),...,π(µ`(µ)) for µ ∈ F+
A.

Then Vµ is an isomorphism from Yπ(µ1) ⊗ · · · ⊗ Yπ(µk) to Yπ(µ), or, equivalently,
from Xµ to Xδ(π(µ)). We claim that (Vµ)µ∈F+

A
is the unique family of isomorphisms

given by Proposition 2.7.
We begin by verifying (2.9). Suppose δ(π(µ)) = µ. If `(µ) = 1, then Vµ =

1µ by definition. Suppose inductively that Vµ = 1µ whenever δ(π(µ)) = µ and
`(µ) ≤ k for some k ≥ 1. Fix µ ∈ F+

A such that δ(π(µ)) = µ and `(µ) = k + 1.
Express µ = µ1ν. By definition of δ(π(µ)) we have δ(π(µ)) = µ1δ(π(ν)), and since
δ(π(µ)) = µ = µ1ν, we deduce that δ(π(ν)) = ν. Since

δ(π(µ1))δ(π(ν)) = µ1ν = µ = δ(π(µ)) = δ(π(µ1)π(ν)),

(2.4) gives that βπ(µ1),π(ν) = 1µ. By induction we also have Vν = 1ν , so

Vµ = βπ(µ1),π(ν)(1π(µ1) ⊗ Vν) = 1µ,

as required.
We now verify (2.10). First suppose that a, b ∈ A satisfy a↔ b. Then

Vab = βπ(a),π(b) =

{
Ta,b if a > b

1ab if a < b,
so

VabTb,a =

{
1ba if a > b

Tb,a if a < b

= Vba.

Now suppose µ ∈ F+
A and µi ↔ µi+1. Express µ = νµiµi+1θ with ν, θ ∈ F+

A. Then

VτiµT
µ
i = Vτiµ(1ν ⊗ Tµi,µi+1 ⊗ 1θ)

= βπ(ν),π(µi+1µi),π(θ)(Vν ⊗ Vµi+1µi ⊗ Vθ)(1ν ⊗ Tµi,µi+1 ⊗ 1θ)

= βπ(ν),π(µiµi+1),π(θ)(Vν ⊗ Vµiµi+1 ⊗ Vθ)
= Vµ,

giving (2.10).
By the uniqueness assertion of Proposition 2.7, we have Vµ = Uµ for every

µ ∈ F+
A, which, together with (2.18), gives

απ(µ1),...,π(µk) = βπ(µ1),...,π(µk) for every µ ∈ F+
A.

Now suppose s, t ∈ P . Let k := `(s), l := `(t), µ := δ(s), and ν := δ(t). Then

αs,t(απ(µ1),...,π(µk) ⊗ απ(ν1),...,π(νl)) = απ(µ1),...,π(µk),π(ν1),...,π(νl)
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and

βs,t(βπ(µ1),...,π(µk) ⊗ βπ(ν1),...,π(νl)) = βπ(µ1),...,π(µk),π(ν1),...,π(νl),

from which we deduce that αs,t = βs,t. Thus (Y, α) is the unique product system
over P which satisfies (2.3), (2.4) and (2.5).

Proof of Theorem 2.2. It is obvious that (2.1) holds for the family (Ta,b)a↔b defined
by (2.7). To verify the hexagonal equation (2.2), suppose a, b and c are the vertices
of a triangle in Γ. We will show that the following equivalent version of (2.2) is
satisfied:

(Tb,a ⊗ 1c)(1b ⊗ Tc,a)(Tc,b ⊗ 1a)(1c ⊗ Ta,b)(Ta,c ⊗ 1b)(1a ⊗ Tb,c) = 1abc.

The left-hand side of this equation is

(β−1
π(a),π(b) ⊗ 1c)(βπ(b),π(a) ⊗ 1c)(1b ⊗ β−1

π(a),π(c))(1b ⊗ βπ(c),π(a))

(β−1
π(b),π(c) ⊗ 1a)(βπ(c),π(b) ⊗ 1a)(1c ⊗ β−1

π(b),π(a))(1c ⊗ βπ(a),π(b))

(β−1
π(c),π(a) ⊗ 1b)(βπ(a),π(c) ⊗ 1b)(1a ⊗ β−1

π(c),π(b))(1a ⊗ βπ(b),π(c)),

which by five applications of (1.2) simplifies to

(β−1
π(a),π(b) ⊗ 1c)β−1

π(ba),π(c)βπ(b),π(ac)β
−1
π(b),π(ca)βπ(bc),π(a)β

−1
π(cb),π(a)βπ(c),π(ba)

β−1
π(c),π(ab)βπ(ca),π(b)β

−1
π(ac),π(b)βπ(a),π(cb)(1a ⊗ βπ(b),π(c)).

Since π(ab) = π(ba), π(bc) = π(cb) and π(ca) = π(ac), this in turn collapses to

(β−1
π(a),π(b) ⊗ 1c)β−1

π(ab),π(c)βπ(a),π(bc)(1a ⊗ βπ(b),π(c)),

which by one last application of (1.2) is the identity morphism on Xabc, as required.
Let (Y, α) be the product system (Y T , αT ) associated with this collection T ; that

is, Ys := Xδ(s) and αs,t := Uδ(s)δ(t), where (Uµ)µ∈F+
A

is the family of isomorphisms
Uµ : Xµ → Xδ(π(µ)) given by Proposition 2.7. We will define an isomorphism ψ
from (Y, α) to (Z, β). Fix s ∈ P , let µ := δ(s), and let k := `(µ). Then

Ys = Xδ(s) = Xµ1 ⊗ · · · ⊗Xµk = Zπ(µ1) ⊗ · · · ⊗ Zπ(µk),

so

ψs := βπ(µ1),...,π(µk)

is an isomorphism from Ys to Zπ(µ) = Zs. It remains only to show that

Ys ⊗ Yt
αs,t−−−−→ Yst

ψs⊗ψt
y yψst

Zs ⊗ Zt
βs,t−−−−→ Zst

commutes for every s, t ∈ P . Let µ = δ(s) as above, let ν = δ(t), and let l := `(ν).
Since αs,t = Uµν and βs,t(ψs ⊗ ψt) = βπ(µ1),...,π(µk),π(ν1),...,π(νl), it suffices to show
that

βπ(θ1),...,π(θm) = ψπ(θ)Uθ for every θ = θ1 · · · θm ∈ F+
A.(2.19)

We will establish this equation by induction on ι(σθ). If ι(σθ) = 0, then δ(π(θ)) =
θ, and (2.9) gives Uθ = 1θ. Since δ(π(θ)) = θ, (2.19) is then immediate from the
definition of ψπ(θ). Suppose inductively that (2.19) holds whenever ι(σθ) ≤ k

for some k ≥ 0, and fix θ ∈ F+
A with ι(σθ) = k + 1. There exists i such that
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σθ(i) > σθ(i+1), and Lemma 2.6(2) gives that θi ↔ θi+1 and ι(στiθ) = ι(σθ)−1 = k.
By (2.10) and induction we thus have

ψπ(θ)Uθ = ψπ(τiθ)UτiθT
θ
i = βπ(θ1),...,π(θi+1),π(θi),...,π(θm)T

θ
i .(2.20)

To further simplify the right-hand side of this equation, let µ := θ1 · · · θi−1, let
ν := θi+2 · · · θm, and observe that

βπ(θ1),...,π(θi+1),π(θi),...,π(θm)

= βπ(µ),π(θi+1θi),π(ν)(βπ(θ1),...,π(θi−1) ⊗ βπ(θi+1),π(θi) ⊗ βπ(θi+2),...,π(θm))

and

T θi = 1µ ⊗ Tθi,θi+1 ⊗ 1ν .

By the definition of Tθi,θi+1 we have

βπ(θi+1),π(θi)Tθi,θi+1 = βπ(θi),π(θi+1),

so equation (2.20) simplies to

ψπ(θ)Uθ = βπ(µ),π(θiθi+1),π(ν)(βπ(θ1),...,π(θi−1) ⊗ βπ(θi),π(θi+1) ⊗ βπ(θi+2),...,π(θm))
= βπ(θ1),...,π(θm).

This completes the induction, and hence the proof of the theorem.

Proposition 2.8. Suppose (Y, α) and (Z, β) are product systems over the right-
angled Artin semigroup P which take values in the tensor groupoid G. If ψ =
(ψs)s∈P is an isomorphism from (Y, α) to (Z, β), then defining

ϑa := ψπ(a) for a ∈ A(2.21)

gives a collection ϑ := (ϑa)a∈A of isomorphisms ϑa : Yπ(a) → Zπ(a) which satisfies

(ϑb ⊗ ϑa)α−1
π(b),π(a)απ(a),π(b) = β−1

π(b),π(a)βπ(a),π(b)(ϑa ⊗ ϑb)(2.22)

for every a, b ∈ A such that a↔ b. Moreover, given any such collection ϑ, there is
a unique isomorphism ψ : (Y, α)→ (Z, β) such that ψπ(a) = ϑa for every a ∈ A.

Remark 2.9. If Γ has no edges, then P is the free semigroup F+
A, and Theorem 2.1

associates a product system to each collection (Xa)a∈A of objects in G. Since condi-
tion (2.22) is then vacuous, Proposition 2.8 implies that the A-tuple of isomorphism
classes of the Xa’s is a complete isomorphism invariant for product systems over
F+
A.

Proof of Proposition 2.8. Suppose ψ = (ψs)s∈P is an isomorphism from (Y, α) to
(Z, β); that is, ψs is an isomorphism Ys → Zs, and

ψstαs,t = βs,t(ψs ⊗ ψt) for all s, t ∈ P .

Applying this equation with s = π(a) and t = π(b) gives

β−1
π(b),π(a)βπ(a),π(b)(ψπ(a) ⊗ ψπ(b)) = β−1

π(b),π(a)ψπ(a)π(b)απ(a),π(b),

and applying it with s = π(b) and t = π(a) gives

(ψπ(b) ⊗ ψπ(a))α
−1
π(b),π(a)απ(a),π(b) = β−1

π(b),π(a)ψπ(b)π(a)απ(a),π(b).

Since π(a)π(b) = π(b)π(a), this shows that (2.22) holds for the collection ϑ defined
by (2.21).
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Conversely, suppose we have a collection ϑ = (ϑa)a∈A of isomorphisms ϑa : Yπ(a)

→ Zπ(a) which satisfies (2.22). Define

Wa := Yπ(a) and Xa := Zπ(a) for a ∈ A
and, for every a, b ∈ A such that a↔ b, define

Sa,b := α−1
π(b),π(a)απ(a),π(b) : Wa ⊗Wb →Wb ⊗Wa

and

Ta,b := β−1
π(b),π(a)βπ(a),π(b) : Xa ⊗Xb → Xb ⊗Xa.

By Theorem 2.2, the collections S = (Sa,b)a↔b and T = (Ta,b)a↔b satisfy equa-
tions (2.1) and (2.2), and the product systems (Y, α) and (Z, β) are isomorphic to
(Y S , αS) and (Y T , αT ), respectively, via isomorphisms which are the identity on
the fibers over π(a) for a ∈ A. Hence it suffices to construct an isomorphism ψ
from (Y S , αS) to (Y T , αT ) such that ψπ(a) = ϑa for every a ∈ A.

We begin by observing that, for each a ∈ A, ϑa is an isomorphism Wa → Xa,
and that the hypothesis (2.22) can be rewritten as

(ϑb ⊗ ϑa)Sa,b = Ta,b(ϑa ⊗ ϑb) whenever a↔ b.(2.23)

Define

ϑµ := ϑµ1 ⊗ · · · ⊗ ϑµ`(µ) : Wµ → Xµ for µ ∈ F+
A

and

ψs := ϑδ(s) for s ∈ P .

Then ψ := (ψs)s∈P is a collection of isomorphisms ψs : Y Ss → Y Ts . We claim that

ψstα
S
s,t = αTs,t(ψs ⊗ ψt) for s, t ∈ P(2.24)

is satisfied, so that ψ is an isomorphism of product systems.
Let (Uµ)µ∈F+

A
and (Vµ)µ∈F+

A
be the families of isomorphisms

Uµ : Xµ → Xδ(π(µ)) and Vµ : Wµ →Wδ(π(µ))

given by Proposition 2.7, so that

αSs,t = Vδ(s)δ(t) and αTs,t = Uδ(s)δ(t) for s, t ∈ P .

The equation (2.24) which we aim to verify can then be rewritten as

ϑδ(st)Vδ(s)δ(t) = Uδ(s)δ(t)ϑδ(s)δ(t) for all s, t ∈ P ,

so it suffices to show that

ϑδ(π(µ))Vµ = Uµϑµ for all µ ∈ F+
A.(2.25)

We establish this by induction on ι(σµ). If ι(σµ) = 0, then δ(π(µ)) = µ, and the
equation holds by (2.9). Suppose (2.25) is satisfied whenever ι(σµ) ≤ k − 1 for
some k ≥ 1. Fix µ ∈ F+

A with ι(σµ) = k. Since k ≥ 1, there exists i such that
σµ(i) > σµ(i + 1), and by Lemma 2.6(2) we have ι(στiµ) = ι(σµ) − 1 = k − 1 and
µi ↔ µi+1. By (2.10) and induction,

ϑδ(π(µ))Vµ = ϑδ(π(τiµ))VτiµS
µ
i = UτiµϑτiµS

µ
i .(2.26)

Express µ = νµiµi+1θ with ν, θ ∈ F+
A. Using expansions such as

ϑτiµ = ϑν ⊗ (ϑµi+1 ⊗ ϑµi)⊗ ϑθ
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and

Sµi = 1ν ⊗ Sµi,µi+1 ⊗ 1θ,

it is easy to see that equation (2.23) gives ϑτiµS
µ
i = T µi ϑµ. Using this in (2.26) and

applying (2.10) gives

ϑδ(π(µ))Vµ = UτiµϑτiµS
µ
i = UτiµT

µ
i ϑµ = Uµϑµ,

thus establishing (2.25).

Using Proposition 2.8 it is easy to characterize the automorphism group of a
product system over P .

Corollary 2.10. Suppose (Y, α) is a product system over the right-angled Artin
semigroup P which takes values in the tensor groupoid G. Then the automorphism
group of (Y, α) is isomorphic to the subgroup of

∏
a∈A AutYπ(a) consisting of those

A-tuples (ϑa)a∈A which satisfy

απ(a),π(b)(ϑa ⊗ ϑb)α−1
π(a),π(b) = απ(b),π(a)(ϑb ⊗ ϑa)α−1

π(b),π(a)

whenever a↔ b.

The semigroup H2(P ;G). Let G be a symmetric tensor groupoid. We now de-
scribe the structure of the semigroup H2(P ;G) in terms of the collections T =
(Ta,b)a↔b used in Theorem 2.1 to construct product systems (Y T , αT ). Consider
the composite map

T 7→ (Y T , αT ) ∈ Z2(P ;G) 7→ [(Y T , αT )] ∈ H2(P ;G).

By Theorem 2.2, this map is surjective and does not depend on the choice of well-
ordering of the vertex set A. The following proposition describes the equivalence
relation required on the domain to make the map bijective, and then describes the
binary operation on the domain which corresponds to multiplication in H2(P ;G).

Proposition 2.11. Let (Wa)a∈A and (Xa)a∈A be collections of objects in G, and
let S = (Sa,b)a↔b and T = (Ta,b)a↔b be collections of isomorphisms

Sa,b : Wa ⊗Wb →Wb ⊗Wa and Ta,b : Xa ⊗Xb → Xb ⊗Xa

which satisfy conditions (2.1) and (2.2). Then [(Y S , αS)] = [(Y T , αT )] as ele-
ments of H2(P ;G) if and only if there exists a collection (ϑa)a∈A of isomorphisms
ϑa : Wa → Xa which satisfies

(ϑb ⊗ ϑa)Sa,b = Ta,b(ϑa ⊗ ϑb) whenever a↔ b.(2.27)

Moreover, multiplication in H2(P ;G) is given by

[(Y S , αS)][(Y T , αT )] = [(Y S⊗T , αS⊗T )],

where ((S ⊗ T )a,b)a↔b is the collection of isomorphisms

(S ⊗ T )a,b : (Wa ⊗Xa)⊗ (Wb ⊗Xb)→ (Wb ⊗Xb)⊗ (Wa ⊗Xa)

defined by

(S ⊗ T )a,b := (1Wb
⊗FWa,Xb ⊗ 1Xa)(Sa,b ⊗ Ta,b)(1Wa ⊗FXa,Wb

⊗ 1Xb).
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Proof. Since (αTπ(b),π(a))
−1αTπ(a),π(b) = Ta,b whenever a ↔ b, the first assertion

follows immediately from Proposition 2.8. For the second, first recall that multi-
plication in H2(P ;G) is given by the internal tensor product (Definition 1.9), so
that

[(Y S , αS)][(Y T , αT )] = [(Y S ⊗ Y T , αS ⊗ αT )].

We claim that

(S ⊗ T )a,b = (αS ⊗ αT )−1
π(b),π(a)(α

S ⊗ αT )π(a),π(b)(2.28)

whenever a ↔ b. This will complete the proof, since it then follows from The-
orem 2.2 that the collection ((S ⊗ T )a,b)a↔b satisfies (2.1) and (2.2), and that
(Y S⊗T , αS⊗T ) is isomorphic to (Y S ⊗ Y T , αS ⊗ αT ).

To establish (2.28), first observe that if a↔ b, then

(αSπ(b),π(a) ⊗ αTπ(b),π(a))
−1(αSπ(a),π(b) ⊗ αTπ(a),π(b))

= ((αSπ(b),π(a))
−1αSπ(a),π(b) ⊗ (αTπ(b),π(a))

−1αTπ(a),π(b))

= Sa,b ⊗ Ta,b.
Using this and Definition 1.9 we thus have

(αS ⊗ αT )−1
π(b),π(a)(α

S ⊗ αT )π(a),π(b)

= (1Wb
⊗FXb,Wa ⊗ 1Xa)−1(αSπ(b),π(a) ⊗ αTπ(b),π(a))

−1

(αSπ(a),π(b) ⊗ αTπ(a),π(b))(1Wa ⊗FXa,Wb
⊗ 1Xb)

= (1Wb
⊗FWa,Xb ⊗ 1Xa)(Sa,b ⊗ Ta,b)(1Wa ⊗FXa,Wb

⊗ 1Xb)

= (S ⊗ T )a,b,

giving (2.28).

As a corollary we calculate H2(P ;G) for an arbitrary abelian group G. For this,
let E be the set of edges in Γ, and, when a ↔ b, write ea,b for the edge between a
and b. Note that ea,b = eb,a.

Corollary 2.12. Fix a well-ordering of A, and let δ : P → F+
A be the corresponding

preferred section. Then for each function f : E → G, there is a unique 2-cocycle
αf ∈ Z2(P ;G) which satisfies

αfs,t = 1G if δ(st) = δ(s)δ(t)(2.29)

and

αfπ(a),π(b) = f(ea,b) if a↔ b and a > b.(2.30)

The resulting map f 7→ [αf ] is an isomorphism from
∏
e∈E G to H2(P ;G).

Proof. Let G be the tensor groupoid with one object, morphisms G, and tensoring
functor g ⊗ h := gh for g, h ∈ G. Given a function f : E → G, define a collection
(Ta,b)a↔b of morphisms by

Ta,b :=

{
f(ea,b) if a < b,

f(ea,b)−1 if a > b.
(2.31)

Equation (2.1) is obviously satisfied, and the hexagonal equation (2.2) holds since G
is abelian. Let (Y T , αT ) ∈ Z2(P ;G) be the product system given by Theorem 2.1.
Then αf := αT is the unique element of Z2(P ;G) which satisfies (2.29) and (2.30),
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and using this uniqueness property it is easy to see that f 7→ [αf ] is a group
homomorphism from

∏
e∈E G to H2(P ;G). Moreover, condition (2.27) in Proposi-

tion 2.11 implies that this homomorphism is injective. Since every collection (Ta,b)
arises from a function f : E → G according to (2.31), and since T 7→ [(Y T , αT )] is
surjective, so is f 7→ [αf ].

Remark 2.13. When Γ has no edges, Corollary 2.12 says that the free semigroup
F+
A has trivial second cohomology. When Γ is the complete graph on A, it says that
H2(Nk;G) is isomorphic to the direct product of

(
k
2

)
copies of G.
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