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ABSTRACT 

Different types of trehalose containing glycolipids are known to be produced by several 

microorganisms belonging to the mycolates group such as Mycobacterium, Rhodococcus, 

Arthrobacter, Nocardia, and Gordonia and different structures have been elucidated particularly in 

Rhodococcus genus. Trehalolipids have gained increased interest for their potential applications in a 

number of areas due to their ability to lower interfacial tension and increase pseudosolubility of 

hydrophobic compounds. The most widespread application is in bioremediation technologies as 

such compounds are known to enhance bioavailability of hydrocarbons. In comparison to other 

microbial glycolipids, trehalolipids have generally showed contrasting results and achievements 

with both cases of inhibition and enhancement of biodegradation rates. One of the important aspects 

regarding potential use of trehalose lipids in a variety of applications is the ability to optimize their 

production and downstream processing.  In fact, the purification of the target biological compounds 

by downstream processing can account for over half the production cost in many biotechnology 

applications. This is especially true in the case of the Rhodococcal glycolipids, which are often 

bound to cellular envelopes and are usually produced along with other surface active lipids. In this 

review we highlight the current knowledge of trehalolipids biosurfactant’s applications and the 

latest strategies employed to reduce the cost of their production. 
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1. INTRODUCTION 

1.1 Microbial surface active compounds 

Biological Surface Active Compounds (SACs) are synthesized by different prokaryotic and 

eukaryotic organisms and are characterized by the presence of both hydrophilic and hydrophobic 

moieties which enables them to adsorb and alter the conditions at interfaces. According to Neu [1], 

biological SACs are classified into three classes: (i) biosurfactants, (ii) amphiphilic polymers and 

(iii) polyphilic polymers. Biosurfactants are low molecular weight SACs (e.g. glycolipids, 

lipopeptides) able to reduce the surface tension of water to 25-30 mN/m. The surface tension 

reaches its minimum value at a concentration of biosurfactant called critical micelle concentration 

(CMC) above which the molecules are associated, forming supermolecular structures.  

Amphiphilic (e.g. lipopolysaccharides, lipoteicoic acids) and polyphilic (e.g. hydrophobic 

polysaccharides, emulsan) polymers are high molecular weight SACs characterized by the presence 

of hydrophobic groups at one end or distributed along the entire molecules, respectively. Due to 

their high molecular weight, often greater than 10 KDa, they are normally characterized by having 

CMCs higher than low molecular weight biosurfactants and they are unable to reduce the surface 

tension of water below 35-40 mN/m. The main property of high molecular weight SACs, is their 

ability to stabilize oil/water emulsions and are therefore called bioemulsifiers [2].  

Glycolipids and lipopeptides are the most common low molecular weight SACs. Glycolipids are 

commonly mono or disaccharides acylated with long chain fatty acids or hydroxyl fatty acids. 

Among them, rhamnolipids, sophorolipids and trehalolipids are the best-studied structural 

subclasses. Rhamnolipids are produced by different Pseudomonas species, sophorolipids are 

synthesized by different species of the yeast Candida (formerly Torulopsis) and trehalolipids are 

found in Rhodococcus and other actinomycetes [3]. Lipopeptides are low molecular weight SACs 

and the most extensively lipopeptides are produced by several Bacillus species; particularly Bacillus 

subtilis that produces surfactin, a cyclic lipopeptide considered the most active biosurfactant 

discovered so far [4]. 

Different Acinetobacter species produce well-known high molecular weight bioemulsifiers such as 

emulsan, an emulsifier produced by the Acinetobacter lwoffii strain RAG-1 (formerly Acinetobacter 

calcoaceticus). Emulsan is a complex mixture of an anionic heteropolysaccharide and proteins. It 

represents a polyphilic structure with fatty acids attached, over the entire molecule, to the 

polysaccharide backbone [5].  

Van Hamme et al. [6] recently reviewed the physiological roles of microbial SACs.  Motility 

(gliding, swarming, de-adhesion from surfaces), cell-cell interactions (biofilm formation, 
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maintenance and maturation, quorum sensing, amensalism, pathogenicity), cellular differentiation, 

substrate accession and resistance to toxic compounds are some of the main roles attributed to 

microbial SACs. However, the most widespread role of microbial SACs is believed to be the 

interaction between microbes and unsoluble substrates such as hydrocarbons.  

2. TREHALOSE LIPIDS 

2.1 Chemical structures and roles 

Trehalose is a non-reducing disaccharide in which the two glucose units are linked in an α,α-1,1-

glycosidic linkage. It is the basic component of the cell wall glycolipids in Mycobacteria and 

Corynebacteria. The most reported trehalose lipid is trehalose 6,6’-dimycolate, which is a α-

branched-chain mycolic acid esterified to the C6 position of each glucose.  Different trehalose 

containing glycolipids are known to be produced by several other microorganisms belonging to 

mycolates group such as Arthrobacter, Nocardia, Rhodococcus and Gordonia. Particularly in 

Rhodococcus genus, several types of trehalose lipids have been elucidated (Figure 1) [7]. These 

glycolipids vary in the number and overall chain length (C20–C90) of the esterified fatty acids. 

Characterisation of the organic extract of Rhodococcus erythropolis DSM43215 by Kretschmer et 

al. [3] revealed the presence of trehalose-6-monocorynomycolates, trehalose-6,6’-diacylates (e.g. 3-

oxo-2-alkyl alkanoic acid) and trehalose-6-acylates (eg. 3-oxo-2-alkyl alkanoic acid). Trehalose 

lipids were subsequently isolated from Rhodococcus erythropolis by Ristau & Wagner [8]. The 

glycolipid synthesised by Rhodococcus strain H13-A is a nonionic trehalose lipid, consisting of one 

major and 10 minor components [9]. Kurane et al. [10] reported flocculating properties caused by 

glycolipids of R. erythropolis S-1; the carbohydrate is acylated with C10–C22 saturated and 

unsaturated fatty acids, C35–C40 mycolic acids, hexanedioic, dodecanedioic acids, 10-methyl 

hexadecanoic and 10-methyl octadecanoic acids. Several studies have resulted in the discovery of 

novel types of trehalolipids including: mono-, di- and tri-corynomycolates [11-13], mono-, di-, 

tetra-, hexa and octa-acylated derivatives of trehalose [9, 11], trehalose tetraesters [8, 14-17] and 

succinoyl trehalose lipids [18, 19]. 

Most of the trehalose lipids synthesized by Rhodococcus and related genera are bound to cell 

envelope and are produced mainly when the microorganisms are grown on hydrocarbons. These 

characteristics have significant negative consequences on the level of production and their recovery 

for industrial applications.  

In alkanotrophic mycolates trehalose lipids are thought to have a key role in accessing hydrocarbon 

substrates. Several strategies are used by bacteria to overcome the low solubility of hydrocarbons 

and enhance their transport [20, 21]. The ability of different microorganisms to access hydrocarbons 
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 5 

depends on their cell surface hydrophobicity. Cells with high hydrophobicity allow microorganisms 

to directly contact oil drops and solid hydrocarbons while low cell hydrophobicity permits the 

adhesion of microbial cells to the micelles or emulsified oils, formed due to the presence of 

extracellular biosurfactants or bioemulsifiers [22, 23]. In mycolates, the mycolic acid layer confers 

high hydrophobicity to the cell surface. For this reason, the major hydrocarbon accession mode is 

likely to be direct contact of hydrophobic cells with large oil drops [20]. Furthermore, 

microorganisms can increase or decrease their surface hydrophobicity by locating the hydrophobic 

moieties of cell-bound biosurfactants outwardly or inwardly, respectively [4]. Recently, Franzetti et 

al. [24] suggested that this regulation can lead to changes in the substrate access mode during the 

different growth stages on hydrocarbons. They observed that the cells of Gordonia sp. BS29 are 

hydrophobic during early exponential phase of growth on n-hexadecane and access to large oil 

drops is by direct contact. During the late exponential phase, changes occur so that the cell surface 

becomes hydrophilic. Cell bound glycolipids accumulate during growth reducing the surface 

hydrophobicity, exposing their hydrophilic moieties toward the water phase, thus masking the 

highly hydrophobic character of the mycolic acid layer. At the same time, Gordonia sp. BS29 

releases extracellular bioemulsifier allowing hydrophilic cells to attach to the hydrophilic outer 

layer of the emulsified oil droplets. 

 

2.2 Biosynthetic pathways 

While the formation of mycolic residues is believed to be a Claisen-condensation, the key reaction 

for synthesis of the final resulting sugar residue, trehalose-6-phosphate, is catalysed by a trehalose-

6-phosphate synthetase (TPS) which links two D-glycopyranosyl units at C1 and C1’. UDP-glucose 

and glucose-6-phosphate act as the immediate precursors [25]. In alkanotrophic rhodococci, TPS is 

induced by n-alkanes [7]. The further reactions involved in the synthesis of trehalose lipids have 

been clearly elucidated for trehalose dimycolates (TDM) in M. tubercolosis in which the production 

occurs in the final stages of the synthesis of the cell wall [26]. In this phase newly synthesized 

mycolic acids are transported and attached to the peptidoglycan-arabinogalactan complex of the cell 

wall, followed by the formation of TDM occurs by four different reactions (Fig.2). The synthesis 

proceeds through the transfer of the mycolyl group to D-mannopyranosyl-1-phosphoheptaprenol by 

a proposed cytoplasmic mycolyltransferase I to form 6-O-mycolyl-β-D-mannopyranosyl-1-

phosphoheptaprenol (Myc-PL) (Fig. 2, reaction 1). The mycolyl group is then transferred to 

trehalose 6-phosphate by a membrane-associated mycolyltransferase II (reaction 2) to form 

Trehalose Mono Mycolate (TMM)-phosphate and, after dephosphorilation, results in formation of 

TMM. TMM is transported outside the cell by a ABC transporter (reaction 3). A rapid and efficient 
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 6 

transfer of TMM from the inside to the outside of the cell is necessary for the synthesis of cell wall 

arabinogalactan-mycolate and TDM. By the action of the extracellular mycolyltransferase called 

Ag85/Fbp/PS1, the final products of the cell wall arabinogalactan-mycolate and TDM are formed 

from TMM (reactions 4). 

3. PRODUCTION AND ANALYSIS OF TREHALOSE LIPIDS 

3.1 Carbon substrates and production 

Key points for the microbial production of trehalose lipids are the substrate used for production and 

the ability to release the glycolipids. In 1998, Lang and Philp demonstrated that the alkanotrophic 

ability of the strains and the production of cell-bound biosurfactants are specific features of 

trehalose lipid production in Rhodococcus genus. Subsequently, several papers have been published 

confirming this behaviour [17] [27-29]. However, in recent years several studies reported 

production of biosurfactants both extracellularly and on soluble substrates. R. erythropolis ATCC 

4277 was able to produce extracellular glycolipids grown on a medium containing glycerol as sole 

carbon source and released all the trehalose lipid into the medium, while the production was 

partially cell-bound when cells were grown on n-hexadecane [30]. Trehalose and other lipids were 

detected among the surface active compounds produced by R. erythropolis EK-1 grown on various 

soluble and unsoluble carbon sources [12]. Rhodococcus sp. SD-74 produces extracellular succinoyl 

trehalose lipids when cultivated on n-hexadecane [19]. However, when n-hexadecane was supplied 

as the sole carbon source, two types of biosurfactants (free fatty acids and trehalose lipids) were 

detected in the supernatant of the bacterial culture [31]. 

Furthermore, some authors recently described production of both cell-bound biosurfactants and 

extracellular emulsifiers in Rhodococcus and related genera. The cell bound biosurfactants are able 

to reduce the surface tension and seem to be produced only on hydrocarbon substrates while the 

extracellular bioemulsifiers are produced also on soluble substrates [12, 24, 32, 33]. Table 1 

displays some examples of Rhodococcus isolates with the indications of the chemical structures 

produced, the carbon substrates used and the position of the products. 

 

3.2 Optimisation of production  

In a recent review [34] Mukherjee et al. stated that microbial surfactants commercialization has not 

been accomplished so far, despite their characteristics of lower toxicity, higher biodegradability, 

better foaming properties than synthetic counterparts and while also having stable activity at 

extreme pH, salinity and temperature. While these highly favourable properties have been known 

and discussed previously [35], their commercial exploitation on a large scale has yet to occur .  
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 7 

Commercial success and efficiency of the entire biotechnological process is a key point for 

microbial surfactants, as is for most biotechnological products. This is especially true for trehalose 

lipids which are often found bound to cell surface, thus increasing down-stream costs and reducing 

production yield. Different strategies have been adopted in order to make the process cost-

competitive including: (1) use of cheap and waste substrates (2) development of efficient 

bioprocesses, including optimization of fermentative condition and recovery process, (3) 

development of overproducing strains. However, biosurfactant research related to production 

enhancement and economics has been confined, mostly, to a few genera of microorganisms, such as 

Bacillus, Pseudomonas and Candida, while a large group of biosurfactant producers belonging to 

the genera Rhodococcus, Gordonia, and Acinetobacter have not yet been exploited [34].  

The ability to increase the production and the recovery of these glycolipids from the cell envelop is 

necessary before exploitation can occur [7, 35-37]. Several papers have studied the cultural factors 

affecting the production and the use of alternative low-cost substrates. One such study has shown 

that at high concentration of phosphate buffer and neutral pH conditions the production of succinoyl 

trehalose lipids in R. erythropolis SD-74 was optimised [18]. The nutritional requirements and 

growth characteristics of a biosurfactant-producing Rhodococcus bacterium isolated from Kuwaiti 

soil have been determined [38]. While, Espuny et al. [39] reported a growth-dependent production 

of biosurfactant by Rhodococcus sp. and determined n-tridecane to be the best carbon source for the 

trehalose lipid production for this strain, resulting in an increase from 0.5 g/L to 3 g/L of glycolipid.  

More recently, experimental design techniques have been applied for the optimisation of 

biosurfactant production, resulting in increased production yields. Using a step-wise approach, 

Franzetti et al. [40] increased the production of cell-bound glycolipids of Gordonia sp. BS29 by 5-

fold. The production of biosurfactant from Rhodococcus spp. MTCC 2574 on n-hexadecane was 

effectively enhanced by surface response methodology. The yield of biosurfactant increased from 

3.2 g/L to 10.9 g/L [28]. Another approach aimed at reducing the cost of production is the use of 

low-cost substrate. R. erythropolis 16 LM.USTHB converted residual sunflower frying oil, a cheap 

renewable substrate into extracellular glycolipids lowering the surface tension of the crude broth 

down to 31.9 mN/m [33]. During a screening study of biosurfactant producers on renewable low-

cost substrates, Ruggeri et al. [41] isolated Rhodococcus sp. BS32 able to produce extracellular 

biosurfactants growing on rapeseed oil. 

Only one study detailing the use of recombinant strains for trehalose lipids production has been 

reported. A recombinant Gordonia amarae was developed by insertion, stable maintenance and 

expression of the Vitreoscilla hemoglobin gene (vgb), resulting in enhanced production of the 

trehalose lipid biosurfactants in the engineered strain [42]. 
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3.3. Downstream processes 

The most commonly used solvent system for efficient extraction is chloroform:methanol (2:1) [43], 

while methyl tert butyl ether (MTBE) [29] and more recently a mixture of ethyl acetate:methanol 

(8:1) has been shown to be a suitable solvent for extraction [44].  An approximate determination of 

trehalose lipid content in a culture medium or an extract can be carried out in a similar manner to 

other glycolipids using the anthrone method [45]. This colorimetric assay works by reacting 

anthrone with the sugar part of the trehalose using assay to form a coloured complex, which can be 

quantified using a spectrophotometer. Phenol-sulfuric acid method has also been used for 

quantification [46]. 

Purification of trehalose lipids is generally carried out using either Thin Layer Chromatography 

(TLC) or column chromatorgraphy.  TLC has been extensively used to detect trehalose lipids in an 

extract while also providing information about the structural composition.   Several solvent systems 

have been reported but the most extensively used system is chloroform:methanol:water (65:15:2 or 

65:25:4), which allows for purification of milligram quantities [3].  Using p-anisaldehyde trehalose 

lipids will appear green, with trehalose monomycolates appearing near the point of origin with 

trehalose dimycolates slightly above.  Other spots are likely to be detected corresponding to other 

lipid components of the trehalose lipid extract.   

Large scale purification using column chromatography is a laborious undertaking as these 

molecules are generally produced at low concentrations and thus represent a minor component of 

the crude extract sample. The presence of different structural types of trehalolipids and a large 

number of other lipids type material along with excess n-alkane used as substrate in the production 

process complicates the purification process further. Consequently a preliminary column 

chromatography step has been suggested to remove hydrocarbon before a subsequent column 

chromatography for the purification of trehalose lipids is carried out using chloroform:methanol 

mixtures [3].  While others have carried out a one step column purification, with the difference in 

each method mainly due to different increments of chloroform:methanol mixtures [18, 47, 48]. 

 

3.4. Structural characterization 

Structural characterization of purified trehalose lipids can also be carried out using numerous 

techniques working either on the intact molecule or by breaking down the structure into 

carbohydrate and fatty acid components.  Mass spectrometry provides the best method for 

characterisation of trehalose lipids.  
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Gas Chromatograpy Mass spectrometry (GC-MS) is used extensively for the characterisation of the 

fatty acid components or the carbohydrate portion of trehalose lipids.  After alkaline hydrolysis of 

the glycolipid mixture, conversion of the lipid portion to fatty acid methyl esters enables the use of 

GC or GC-MS to determine the structure.  This technique is reported in the majority of paper 

concerned with trehalose lipids [3, 29, 49].  Characterisation of the fatty acid profile provides 

essential information needed to identify the structure. Analysis of the trehalose component using 

GC and GC-MS, after conversion to trimethylsiliyl derivatives, provides information on the ester 

linkages of the fatty acids to trehalose [43, 49]. 

Analysis of the intact trehalose lipid is extremely useful for determination of the molecular weight 

of the glycolipids present.  Since each type of trehalose lipid is present as a mixture due to different 

fatty acid compositions, intact mass spectrometry can be used to identify all individual structures.  

The molecular weight along with GC-MS analysis of the fatty acids present is generally enough for 

total characterization. Fast Atom Bombardment Mass Spectrometry (FAB-MS) [48, 50] and more 

recently Matrix Assisted Laser Desorption Ionisation (MALDI) [51] have been demonstrated for 

characterization of the trehalose lipid structures.  In recent times the use of ElectroSpray Ionisation 

Mass spectrometry (ESI-MS) has also been reported for analysis [47].  However, this study used 

positive ionisation mode which can become very complex due to the presence of both protonated 

ions along with sodium adducts.  Therefore, ESI-MS in negative ion mode would be a better 

alternative and this was demonstrated in a recent publication using HPLC-MS [44]. Nuclear 

Magnetic Resonance (NMR) can also be used for characterisation of trehalose lipids either intact or 

after hydrolysis.  NMR analysis of the intact is relatively difficult to interpret, therefore analysis of 

the trehalose portion is more preferred affording information that helps to characterise the position 

of where the fatty acids attach to the carbohydrate structure [18, 39, 47].  

 

4. POTENTIAL APPLICATION OF TREHALOSE LIPIDS 

The use of biosurfactants has been proposed for a number of different commercial applications. At 

present, the main applications are found in the hydrocarbon bioremediation and oil and petroleum 

industry, in particular for microbial enhanced oil recovery (MEOR) and oil storage tank cleaning. 

Another emerging field of application is the biomedical/healthcare industry, since some 

biosurfactants have already been demonstrated to be suitable alternatives to synthetic products as 

antimicrobial and therapeutic agents. Biosurfactants also have potential applications as additives for 

agricultural use, food industry, mining and manufacturing processes, pulp and paper industries, and 

as detergents or cosmetics [36]. The use of trehalose lipids has been reported in the environmental 

field, as additives which could potentially enhance solubility of hydrophobic compounds and 
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 10 

stimulate biodegradation of hydrocarbons in contaminated soils, while also showing promise for 

enhanced oil recovery.  Furthermore, their use has been proposed in therapeutic applications, due to 

their biological activity. 

 

4.1 Environmental applications 

In many cases, environmental contamination caused by industrial activities is due to hydrophobic 

organic compounds. Such compounds generally pose problems for remediation, as they get easily 

bound to soil particles which renders them less soluble and bioavailable to microorganisms that can 

potentially degrade them. The application of biosurfactants in the remediation field is therefore 

aimed at enhancing solubility of organic compounds, either for a soil washing treatment, or to 

stimulate in situ biodegradation. In particular, the application of trehalose lipids generally showed 

good results in solubilisation and biodegradation experiments with different hydrophobic organic 

compounds. Oberbremer et al. [52] added different glycolipids to a model system containing 10% 

soil and a hydrocarbon mixture; they observed decreased adaptation times of the inoculum and an 

increase in the extent of hydrocarbon degradation and final biomass concentration. In one study of 

field treatment, the addition of Rhodococcus ruber strain IEGM AC219 and surfactant complexes 

from various Rhodococcus strains to windrows of crude oil contaminated agricultural soil slightly 

enhanced hydrocarbon degradation over a three-month period. Degradation of hydrocarbons was 

further enhanced when biopile systems were set with increased ventilation, nutrient addition and 

bulking with straw [37, 53]. The same biosurfactant complexes were also used for in situ 

stimulation of autochthonous crude oil degrading bacteria in oil-contaminated soils. In this case, the 

introduction of the biosurfactant resulted in increased oil degradation and crude oil degrading 

bacteria population [37]. Mycobacterium flavescens strain EX-91 was used for the development of a 

commercial product, named Ekoil, which was tested in the decontamination of an oil-polluted water 

body, and also proved effective in the treatment of the engine oil-contaminated wastewater of a 

nuclear power station [54]. 

Van Dike et al. [55] reported that the biosurfactants produced by Rhodococcus erythropolis 

performed poorly in desorption tests of hydrophobic compounds from soil, but such results were 

attributed to the use of cell-free culture media, when it is known that the majority of Rhodococcal 

surfactants are cell-bound.  In comparison Park et al. [56] reported that the biosurfactant produced 

by Nocardia erythropolis had a partitioning capacity for p-xylene of an order magnitude greater 

than that of sodium dodecyl sulphate. The addition of trehalose lipids from R. erythropolis could 

increase the apparent solubility of phenanthrene up to more than 30-fold the reported aqueous 

solubility. Furthermore, the addition of the same trehalose lipids significantly enhanced the rate and 
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the extent of phenanthrene mineralisation by the phenanthrene degrading isolate P5-2 in liquid 

cultures and in spiked soil.  However, it only increased the rate but not the extent of mineralisation 

in slurry phase [57]. A biosurfactant produced by Rhodococcus strain H13-A was more effective 

than the synthetic surfactant Tween 80 in the enhancement of the aqueous concentrations of several 

Polycyclic Aromatic Hydrocarbons (PAHs) from crude oil. The enhanced PAH concentrations 

ranged from 2.2 times to more than 35 times for the biosurfactant treatment compared to the 

synthetic surfactant treatment [58]. In a recent study, Peng et al. [31] reported an increase of 4.4, 

1.3 and 23.3-fold, respectively, in apparent solubility of dibenzothiophene, naphthalene and 

phenanthrene in water, when an extract of biosurfactants from R. erythropolis strain 3C-9 was 

added. In such a case, the more hydrophobic the substrate, a more enhanced solubility was 

observed.  In contrast, Franzetti et al. (2009) [59] reported that biosurfactants produced by 

Gordonia sp. strain BS29, while effective in enhancing crude oil and PAH removal by soil washing, 

were generally not able to increase the rate or extent of their biodegradation.  

One key point in the application of biosurfactants to environmental remediation is their specificity, 

due to the fact that different microbial strains produce different molecules. In some studies, it was 

demonstrated that the correct biosurfactants and surfactant-producing strains should be used to 

obtain a better performance in the remediation treatments. For example, degradation of n-

hexadecane was stimulated by rhamnolipid in Pseudomonas aeruginosa, but not in Rhodococcus 

strains, and the same P. aeruginosa was stimulated only by its own rhamnolipid, thus demonstrating 

that the effects of biosurfactants may be specific [60]. Nevertheless in contrast to this study, 

biosurfactants from R. erythropolis strain 3C-9 significantly increased the degradation rate of n-

hexadecane by two phylogenetically distant strains, Alcanivorax dieselolei and Psychrobacter celer, 

in flask tests [31], demonstrating the conflicting results within this field.  Trehalose lipids have been 

generally used in bioremediation of contaminated soils; at present, there is only one proposed 

application for the treatment of wastewater. Trehalose corynomycolates produced by Rhodococcus 

erythropolis S-1 was demonstrated to be important in the flocculating activity of the strain [10]. The 

flocculant in the culture broth was hypothesised to form micelles composed of proteins and the 

trehalose lipids, suggesting that such activity could be useful in the removal of suspended solids 

from wastewater.  

It is generally believed that biosurfactants are more environmentally friendly alternative to synthetic 

surfactants because of their lower toxicity and higher biodegradability. However, toxicity of 

microbial produced surfactants should always be assessed, especially when an in situ application is 

planned. Munstermann et al. [61] verified that trehalose tetraester from Rhodococcus erythropolis 

was less toxic to Vibrio fischeri (acute Microtox toxicity test) than trehalose dicorynomycolate 
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from the same strain and rhamnolipids from Pseudomonas aeruginosa, and that it was also much 

less toxic than a number of synthetic surfactants and bioremediation formulations. Ivshina et al. 

[53] found that a R. ruber glycolipid complex was even less toxic than all of the (bio)surfactants 

cited by Munstermann as having an IC50 more than 10 times higher than the CMC. They showed 

that their products has a toxicity 100-1000 times less than synthetic surfactants, 2-10 times less than 

trehalose lipids from R. erythropolis and 13 less toxic than rhamnolipids form Pseudomonas 

aeruginosa.  Furthermore, glycolipids produced by Rhodococcus sp. strain 413A exhibited 50% less 

toxicity than Tween 80 in naphthalene solubilisation tests [62].  Another study using trehalose lipids 

from R. erythropolis did not show any toxic effect on [
14

C] glucose mineralisation in liquid phase 

by a phenanthrene degrading strain P5-2 [57]. 

At present, the main obstacle to a full-scale application of biosurfactants in bioremediation 

technologies is the high cost for their production, compared with the amounts required even for a 

single treatment. A possible solution is the preferential performance of an in situ treatment, when 

applicable, which encourages the production of biosurfactants in situ rather than costly bioreactors 

processes. The best strategy in this case would be the identification and the selective stimulation of 

autochthonous biosurfactant-producing bacteria [63]. Using this methodology, particular attention 

should be paid to the in situ conditions. For example, the production of biosurfactants has often 

been associated with nitrogen limitations, so that over-fertilization, which is a common practice for 

in situ remediation, would have a negative effect. Rhodococci may be good candidates for an in situ 

stimulation, as they were often found to be the dominant component in microbial communities 

present at oil-polluted sites [37]. If biosurfactant producers are not present in the site to be 

remediated, they can be nevertheless introduced, assuming that the introduced microorganisms 

would survive over time. Christofi and Ivshina [37] studied the dynamics of rhodococcal population 

in soil after inoculation of R. erythropolis and R. ruber into an oil-contaminated soil. While R. 

erythropolis showed a sharp increase during the first month, the number of R. ruber remained 

almost constant. However, the simultaneous introduction of the two strains resulted in a 75.5% 

decrease in the oil content in three months. When the site conditions make it necessary to turn to a 

soil washing rather than an in situ treatment, the recycling of biosurfactants in the washing solution 

should be carried out, in order to minimise the costs of the whole operation. However, although a 

reasonable quantity of biosurfactant is required for a remediation treatment, there is no strict need of 

product purity, allowing cell-free culture broths to be directly employed without undergoing 

complex downstream processing or purifications [37].  In other cost cutting measures for such 

remediation’s it was synthetic mycolic acid surfactant that is synthesised by a simple and cost-
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effective pathway has been used as an additive for the enhancement of diesel oil biodegradation 

[64]. Such additive resulted in a greater efficiency in stimulating hydrocarbon degradation.  

 

4.2 Industrial applications 

Poor oil recovery from oil-wells may be due to either low permeability of the rocks forming the 

reservoir or alternatively the high viscosity of the crude oil, which inhibits its mobility. Microbial 

enhanced oil recovery exploits the ability of autochthonous or injected microorganisms to 

synthesise products which may improve oil recovery from the oil reservoirs [65]. One of the first 

documented applications for biosurfactants concerned the use in enhanced oil recovery, due to their 

ability to reduce the oil/water interfacial tension. Three different strategies can be employed in 

enhanced oil recovery; biosurfactant production in reactor cultures and subsequent addition to the 

oil reservoir; biosurfactant production by injected microorganisms; and finally injection of nutrients 

into the reservoir to stimulate in situ biosurfactant production by autochthonous bacteria [65]. At 

present, the first strategy appears to be the most studied, even if production costs are definitely 

higher than for the later two. Finnerty and Singer [66] demonstrated that the trehalose glycolipid 

produced by Rhodococcus strain H13-A improved the displacement of crude oil from rock cores by 

20%, while oil recovery increases of around 30%  from sandstones have been reported by using 

trehalose lipids produced by Nocardia rhodochrus [43]. Recently, biosurfactants produced by 

Rhodococcus erythropolis and R. ruber were used to extract hydrocarbons from oil shale; the 

maximum recovery was obtained with biosurfactant concentrations of 8 g/L and 4 g/L for the two 

strains, respectively [67]. However, oil recovery proved less effective when a high percentage of 

asphaltenes and resin compounds were present. This result confirmed previous studies by Ivshina et 

al. [53], who demonstrated that crude biosurfactant complexes produced by Rhodococcus strains 

were effective in enhancing oil removal from sands and oil shale cuttings, even if at variable extent, 

but the process was less successful for oils containing increased asphaltene content. The 

composition of crude oil recovered from a contaminated soil matrix by a R. ruber biosurfactant was 

altered, resulting in a 3.6-fold increase in the fraction of aromatic compounds and a 5-fold decrease 

in the asphaltene fraction when compared to the initial oil composition [68]. On this basis, the 

authors suggested that R. ruber biosurfactant is able to remove a hydrocarbon mixture with a 

composition that would be more easily biodegradable by microorganisms than the original crude 

oil, thus proposing possible applications for in situ remediation treatments. An alternative to reduce 

the intervention costs of microbial enhanced oil recovery would be an in situ stimulation of the 

autochthonous microflora. Culture broths of a R. ruber strain isolated from an oil field in China 

proved effective for the release of oil from white sand, while several other strains originating from 
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the same site showed reduced surface tension in the cultivation media and production of 

biosurfactants [32]. 

The dual hydrophobic/hydrophilic nature of biosurfactants can also help microorganisms to displace 

other emulsifier compounds from oil/water interfaces. Such de-emulsifying property may be used to 

break emulsions which form at various steps of oil extraction and processing, thus allowing a better 

recovery of the product. Several microorganisms are known to display de-emulsifying properties; 

among them, various strains of Nocardia and Rhodococcus, whose properties remained unaltered 

even after autoclaving [69]. 

 

4.3 Biomedical applications 

The use of biosurfactants in medical applications has been proposed, due to several biological 

properties such as antimicrobial, antiviral, anti-adhesive, anticancer or immunomodulating 

properties. Furthermore, biosurfactants are generally considered safer than synthetic 

pharmaceuticals, due to their biological origin [70]. To date there have been very few studies 

carried out to confirm their lack of toxicity. For example, Marquès et al. [44] assayed potential skin 

irritation of trehalose lipids produced by Rhodococcus erythropolis 51T7 with mouse fibroblast and 

human keratinocyte lines. Their results indicated that the biosurfactant is less irritating than sodium 

dodecyl sulphate, and could be therefore used in cosmetic preparations. Isoda et al. [71] 

investigated the biological activities of several glycolipids, including the two succinoyl trehalose 

lipids STL-1 and STL-3, and found that they induced cell differentiation into monocytes instead of 

cell proliferation in the human promyelocytic leukaemia cell line HL60. To elucidate biological 

interactions at the basis of such activity, four analogs of STL-3 were also evaluated for their ability 

to inhibit growth and to induce differentiation in the same cell line [72]. It was found that the 

biological effects of STL-3 and its analogs were dependent on the structure of the hydrophobic 

moiety of STL-3. 

Trehalose-6,6’-dimycolate (TDM), or cord factor, has been extensively studied from a medical 

point of view due to the fact that it plays a central role in pathogenesis during infection. TDM also 

showed a number of different biological activities, such as antitumor activity [73, 74]; augmentation 

effect of nonspecific immunity to microbial infection [75]; immunomodulating functions, i.e. 

granuloma-forming activity [76, 77]; priming of murine macrophages to produce nitric oxide [78, 

79]; induction of the production of cytokines and enhancement of angiogenic activity in mice [80]. 

Despite the promising pharmaceutical applications, the use of Mycobacterial TDM is limited by the 

relatively high toxicity of the molecule and the potential pathogenicity of producer strains. TDM 

produced by Rhodococcus sp. 4306 was demonstrated to exhibit lower toxicity, both in vivo and in 
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vitro, than Mycobacteria TDM.  This is thought to be due to the presence of shorter mycolic acids 

on the Rhodococcus derived TDM (C34 to C38) compared to C74 to C86 for the Mycobacterial TDM 

[50, 80].  While the complex synthesised by R. ruber showed no toxicity or effect on proliferative 

activity of peripheral blood leukocytes [81]. These results clearly indicate that Rhodococcal TDM 

may have some pharmacological potential uses.  

Trehalose lipids were also reported to have antiviral and antimicrobial properties. TDM conferred to 

mice higher resistance to intranasal infection by influenza virus [82]. It was demonstrated that the 

biosurfactant induced proliferation of T-lymphocytes bearing gamma/delta T-cell receptors (γδ T-

cells), associated with the maintenance of acquired resistance to the infection [83]. Furthermore, the 

trehalose lipids produced by Tsukamurella sp. strain DSM 44370 together with trisaccharide and 

tetrasaccharide lipids showed some activity against gram-positive bacteria, although the pathogenic 

strain Staphylococcus aureus was not affected by them. Gram-negative bacteria were either slightly 

or not inhibited at all [84]. Recently, the effect of trehalose lipids from Rhodococcus sp. strain 51T7 

on the most important membrane phospholipids was investigated.  This study was carried out in 

order to better elucidate the molecular interactions between the biosurfactant and the lipidic 

component of the membrane [27, 85]. It was observed that trehalose lipid increased the fluidity of 

both phosphatidylethanolamine and phosphatidylserine membranes and formed domains in the fluid 

state, but it did not modify the macroscopic bilayer organization.  

As for other applications, the most important factor limiting the use of biosurfactants as an 

alternative to synthetic compounds is the high cost of production and downstream processing. 

However, in pharmaceutical and biomedical sectors, it could be compensated for by the small 

amounts of product required. In fact, it has been elucidated that biosurfactants used as 

pharmaceutical agents are needed only in very low concentrations [86]. 

 

5. CONCLUSIONS AND PERSPECTIVES 

In the past thirty years several different structural trehalolipids have been discovered and numerous 

producing strains have been isolated and characterised. Microbial trehalose lipids showed many 

interesting potential applications in different fields. In the future, our increasing ability to analyze 

the microbial diversity in natural environments is expected to expand our knowledge on microbial 

trehalolipids leading to the discovery of new chemical structures and producing strains. However, 

the commercial success of microbial trehalolipids is currently scarce mainly due to the high cost of 

production, mainly due to the presence of the molecules bound to the cellular envelop. In 

bioremediation, trehalolipids share with other biosurfactants, a lack of knowledge about the 

mechanisms of interactions among hydrocarbons, surfactants and cells which limits their extensive 
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application. In pharmaceutical field, in which low amount of high value product is required, the 

research seems to be at its infancy even if it is expected to provide a new venture for industrial 

investments [34].  

If the research on microbial trehalolipids is to succeed in overcoming these drawbacks it will meet 

the expected market demands of efficient, affordable and environmental friendly surfactants. 
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7. TABLES 

Strain Product Substrates  Notes Ref. 

Rhodococcus 

erythropolis 
trehalose dicorynomycolates n-alkanes cell-bound 3 

Rhodococcus 

erythropolis DSM 

43215 

trehalose-dicorynomycolates 

 

trehalose-

monocorynomycolates 

C14- C15 n-alkanes or 

kerosene 

extracellular 

(70%) 
8 

Rhodococcus H13-A glycolipids n-alkanes and fatty alcohol 
cell-bound and 

extracellular 
9 

Rhodococcus 

erythropolis  S1 

glucose monomycolate, 

trehalose monomycolate and 

trehalose dimycolates 

trehalose monomycolate, 

glucose monomycolate, and 

trehalose dimycolate 

cell-bound 10 

Rhodococcus ruber trehalose dicorynomycolates hydrocarbons cell-bound 11 

Rhodococcus 

erythropolis EK-1 

trehalose monocorynomycolate 

trehalose dicorynomycolate 
ethanol extracellular 12 

Rhodococcus 

erythropolis 
trehalose-2,2',3,4-tetraester n-alkanes cell-bound 14 

Rhodococcus
 

erythropolis MS11 

trehalose tetraester  esterified
 

with succinic acids and 

decanoic
 
acid 

n-hexadecane extracellular 16 

Rhodococcus 

wratislaviensis BN38 
trehalose tetraester n-hexadecane. cell-bound 17 

Rhodococcus 

erythropolis 
succinoyl trehalose lipids n-hexadecane extracellular 18 

Rhodococcus SD-74 succinoyl trehalose lipids n-hexadecane extracellular 19 

R. erythropolis ATCC 

4277 
biosurfactant glycerol cell-bound 30 

Rhodococcus 

erythropolis 3C-9 
trehalose lipids n-hexadecane cell-bound 31 

Table 1. The main glycolipid producing Rhodococcus species, their main trehalose lipid 

produced along with the carbon substrate used and their cellular deposition.  
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Fig. 1.   The chemical structure of the main trehalose lipids along with the most commonly 

reported side chains.  
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 Reaction Site of action 

1 Mycolyl-S-Pks13 + Man – P-heptaprenol → Myc-PL  

2 Myc-PL + Treh 6-P → TMM 
Inside the cell 

   

3 TMM Inside + ATP → TMM Outside + ADP+ Pi Transfer outside the cell 

   

4 TMM + TMM → TDM + Treh Outside the cell 

Pks13: polyketide synthase 13 

Man – P-heptaprenol : D-mannopyranosyl-1-phosphoheptaprenol 

Myc-PL: 6-O-mycolyl-β-D-mannopyranosyl-1-phosphoheptaprenol 

Treh 6-P: trehalose 6-phosphate 

TMM: trehalose mono mycolate 

TDM: trehalose dimycolate 

Fig. 2. Biosynthetic pathway of trehalose dimycolates modified from Takayama et al. [26]. 
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