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We develop a two stage model of a manufacturing supply chain. This two stage production transportation model features capacitated
production in two stages, and a fixed cost (or concave cost) for transporting the product between the stages. We prove several
properties of this model, which we call the Two Stage ProductionDistribution Problem (2SPDP)model. By placing “non-speculative”
assumptions on production and transportation, we show that our model reduces to a related model, with one capacitated production
stage with linear production cost, and transportation between two inventory locations with non-linear transportation cost. Finally,
we present polynomial algorithms for this model under several different transportation cost structures and capacity assumptions.

1. Introduction

In many manufacturing supply chains, products are man-
ufactured in a series of production facilities, each of which
adds additional value to the product. This is often the case
if a manufacturer uses an existing series of facilities toman-
ufacture a new product. Each of the existing facilities has
the capability to perform a subset of manufacturing steps
required by the new product.
For example, in the pharmaceutical industry, manufac-

turing facilities are expensive to build, and pharmaceuticals
have a limited profitable life span (since after patent pro-
tection expires, generic manufacturers canmanufacture the
same product). Thus, production must be ramped up and
down rapidly, and furthermore, modern pharmaceuticals
are extremely potent, so it often does not take an entire
year to manufacture a year’s worth of demand. For these
reasons, multi-purpose plants, which can perform several
different manufacturing steps for many different products,
are typically built. Once a network of these plants is con-
structed, new products are manufactured sequentially at
several different plants, depending on the particular pro-
cesses required for manufacture.
In manymulti-stage manufacturing supply chains, trans-

portation related costs are a significant portion of final
product costs. In particular, over the last 20 years, much
effort has been devoted to setup reduction, and thus setup
costs play a smaller and smaller role in manufacturing deci-
sion making. Most transportation, however, exhibits natu-
ral economies of scale; in many cases, an empty truck does

not costmuch less to operate than a full one. Thus, it is often
crucial for successful decision making approaches in multi-
stage manufacturing supply chains to explicitly account for
these non-linear transportation costs.
In this paper, we begin to explore this problem by con-

sidering a two stage production transportation problem.
We consider a two stage supply chain which faces a deter-
ministic stream of external demands for a single product.
We assume an infinite supply of raw materials, and capac-
itated production at both stages. Items are manufactured
at stage 1, and then held in inventory after stage 1. Items
are transported to stage 2, where they are again held in in-
ventory. Additional capacitated production is completed at
stage 2 (that is, value is added to each item, but no new
items are created), items are held in finished goods inven-
tory after this stage, and this inventory is used to meet fi-
nal demand. Each period, production levels in stage 1 and
stage 2, as well as transportation levels between stage 1 and
stage 2, must be determined. We consider so called “non-
speculative cost structures,” for both manufacturing and
transportation costs. These assumptions ensure that it is
never cheaper to manufacture or ship a given quantity by
itself earlier than it is needed, although it may be cheaper to
manufacture or ship that quantity with another quantity;
i.e., economies of scale do exist. We use the characteristics
of this model and these “non-speculative cost structures”
to develop a newmodel, which has only onemanufacturing
stage, and two inventory storagebufferswith transportation
between them. Alternatively, this new model can be viewed
as a two stage production model, with capacity constraint
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but linear costs at the first stage, and non-linear costs but no
capacity constraints at the second stage. We develop effec-
tive algorithms for this new model, and relate the solution
of this new model to solution of our original model.
There has been a long history of research into deter-

ministic single stage single item lot sizing models, start-
ing with the seminal works of Wagner and Whitin (1958)
for the uncapacitated model, and Florian and Klein (1971)
for the capacitated model. We discuss the relationship be-
tween this work and capacitated single stage models such
as Florian and Klein (1971) in more detail in Section 3.4.
Aggarwal and Park (1990), Federgruen and Tzur (1991),
and Wagelmans et al. (1992) developed faster exact al-
gorithms for the uncapacitated case, while Love (1973)
and Baker et al. (1978) developed more general algorithms
for the capacitated case. Various authors have considered
multi-stage production models under deterministic con-
stant demand. Muckstadt and Roundy (1993) survey and
summarize many of these results. The work presented in
this paper allows for time-varying multi-period demand.
A variety of research has been devoted to heuristic and
mathematical-programming-based methods for determin-
istic multilevel, multi-product lot sizing problems. Baker
(1993) summarizes various heuristic approaches which
appeared in the literature up to that point, and subse-
quently,HarrisonandLewis (1996),Katok et al. (1998), and
Armentano et al. (2001)haveproposedadditionalheuristics
for these complex problems. Although these papers do not
explicitly mention transportation costs, some of the formu-
lations are general enough to encompass our model. How-
ever, in contrast to the heuristics these authors develop, we
present optimal polynomial approaches.
Finally, Zangwill (1966), and Crowton and Wagner

(1973) develop optimal dynamic-programming-based algo-
rithms for uncapacitated multi-stage lot sizing problems
without considering transportation. Related approaches
are also described in Zipkin (2000).

2. The model

Consider a two stage, n period model of a supply chain,
illustrated in Fig. 1. As described above, an infinite sup-
ply of raw material is available at stage 1. Each period,
x1t , t = 1, 2, . . . , n units are produced at stage 1, at a cost
of cti , where x

1
t ≤ C1

t , the maximum production capacity
at stage 1 in period t . Units can be held in inventory at
the stage 1 buffer, where a holding cost h1t , t = 1, 2, . . . , n
is charged per unit at time t . In addition, st units are also
shipped to a buffer located before stage 2 (with a shipping
lead time of l time units, so that the st units will arrive at

Fig. 1.Model 2SPDP.

time t + l). If a shipment occurs, a fixed cost of ft is charged
independent of the number of units shipped, and a variable
cost of vt per unit is charged. Units can be held in inventory
in the buffer before stage 2, where a holding cost of h2t is
charged per unit at time t . Alternatively, x2t ≤ C2

t units can
enter production, at a cost of c2t per unit, where C

2
t is the

maximum stage 2 production capacity in period t . After
production, items can be held in finished goods inventory
at the post stage 2 buffer where a holding cost hft is charged
per unit at time t or they can be shipped to meet demand
dt . We note that in this model, all demandmust bemet, and
that starting inventories are assumed to be zero, so that no
demand can be met before period l + 1. We call this the
Two Stage Production Distribution Problem (2SPDP). In
addition, we make several assumptions about the relative
value of the various costs, which we detail in subsequent
sections.
We summarize each period’s order of events below:

1. Stage 1 production x1t is determined, and production
cost ct1 is charged per unit manufactured.

2. The shipping quantity st is determined and units are
shipped. Fixed and variable shipping cost (ft + stvt if
st > 0) is charged.

3. Holding cost h1t is charged on the i1t units remaining in
the post stage 1 buffer.

4. Units arrive in the pre stage 2 buffer (l periods after they
are shipped).

5. Stage 2 production x2t is determined, and production
cost ct2 is charged per unit manufactured.

6. Holding cost h2t is charged on the i2t units remaining in
the pre stage 2 buffer.

7. x2t units are added to the finished goods buffer.
8. Demand is filled from the finished goods buffer.
9. Holding cost hft is charged on the units remaining in the

finished goods buffer.

The mathematical model for the general two stage pro-
duction transportation problem follows:

Parameters

dt = external demand at time t ;
dtn = cumulative demand from t to n;
h1t = holding cost per unit in the post stage 1 buffer at

time t ;
h2t = holding cost per unit in the pre stage 2 buffer at time

t ;
hft = holding cost per unit in the finished goods buffer at

time t ;
C1
t = production capacity at stage 1 at time t ;
C2
t = production capacity at stage 2 at time t ;
ft = fixed cost for shipping at time t ;
vt = variable cost for shipping at time t ;
c1t = per unit production cost at stage 1 at time t ;
c2t = per unit production cost at stage 2 at time t ;
l = number of periods delivery lead time.
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Decision variables

x1t = production quantity at stage 1 at time t (x10 ≡ 0);
x2t = production quantity at stage 2 at time t (x2u ≡ 0, u =

0, 1, 2, . . . l);
st = shipping quantity at time t ;
yt = shipment indicator variable at time t ;
i1t = inventory level at the stage 1 buffer at the end of

period t ;
i2t = inventory level at the pre stage 2 buffer at the end of

period t (i2u ≡ 0, u = 1, 2, . . . l);
ift = inventory level at the post stage 2 buffer at the end

of period t .

(P) min
n

∑

t=1

(

i1t h
1
t + i2t h

2
t + ifth

f
t + yt ft + stvt + c1t x

1
t + c2t x

2
t

)

,

subject to

x1t ≤ C1
t t = 1, 2, . . . , n, (1)

i1t = i1t−1 − st + x1t t = 1, 2, . . . , n, (2)

st ≤ ytd(t+l)n t = 1, 2, . . . , n, (3)

x2t ≤ C2
t t = 1, 2, . . . , n, (4)

i2t = i2t−1 − x2t + st−l t = l + 1, l + 2, . . . , n, (5)

ift = ift−1 + x2t − dt t = 1, 2, . . . , n, (6)

i
f
t , i

1
t , i

2
t , x

1
t , x

2
t , st ≥ 0 t = 1, 2, . . . , n, (7)

yt ∈ {0, 1} t = 1, 2, . . . , n, (8)

Constraints (1) and (4) are capacity constraints in the two
stages. Constraints (2), (5) and (6) are the inventory balance
equations for the three buffers. Constraint (3) ensures that
the fixed cost is paid each time product is shipped.
In Section 3, we detail some further restrictions on the

values of the parameters of this model, and then describe
effective algorithms for these restricted cases. In Section 4,
we present effective algorithms for the casewith amore gen-
eral transportation cost function. Finally, in Section 5, we
list several remaining open questions related to this model.

3. Analysis and algorithms

3.1. Lead times

Since in this model we assume that the starting inventory is
zero, and we require all demand to be met, we do not allow
demand in any period before period l + 1. Also, observe
that given an instance with positive lead time l, we can
create an equivalent model (that is, a model with the same
optimal solution) by creating a new demand vector d ′ such
that d ′

t ≡ dt+l, t = 1, 2, n− l, and setting the new lead time
l ′ = 0. Thus, without loss of generality, we assume zero lead
time for the rest of this paper.

3.2. Assumptions

For the remainder of the paper, we make the following two
assumptions. First, we assume that

h1t < h2t < hft ∀t ∈ 1 . . . n. (9)

This is justified, as value is added at each manufacturing
or transportation step. In addition, we make the follow-
ing set of assumptions, often known as the non-speculative
assumptions:

c1t + h1t > c1t+1 ∀t ∈ 1 . . . n− 1, (10)

c2t + h2t > c2t+1 ∀t ∈ 1 . . . n− 1. (11)

This assumption is true in the case of identical costs in
each period, orwhen the time-value ofmoney is considered.
We make a similar assumption for transportation costs:

x
(

vt + h2t − h1t
)

+ ft > xvt+1 + ft+1 ∀t ∈ 1 . . . n− 1, x> 0.

(12)

We note that this implies

vt+1 < vt +
(

h2t − h1t
)

∀t ∈ 1 . . . n− 1, (13)

and that identical transportation costs, for example, meet
this condition. In Section 4, we consider a more general
transportation cost function.

3.3. Determining x2
t

These assumptions lead to the following recursive formu-
lation for determining x2t , t = 1, 2, . . . , n:

x2t = min

{

C2
t , dt +

n
∑

i=t+1

(

di − x2i
)

}

, (14)

where
∑n

i=n+1(di − x2i ) ≡ 0. Equation (14) schedules pro-
duction in stage 2 as late as possible, subject to capacity
constraints.

Property 1. Equation (14) gives a set of optimal values for
x2t , t = 1, 2, . . . , n.

Proof. The proof follows in a straightforward way from
assumptions (9) and (10). �

3.4.Model 2SPDP′

Wenote that givenan instanceof themodeldescribedabove,
Property 1 allows us to develop an alternate model with the
same optimal production and shipping quantities. As in the
model described above, an infinite supply of raw material
is available at stage 1. Each period, x1t , t = 1, 2, . . . , n units
are produced at stage 1, where x1t ≤ C1

t , at a cost of c1t .
Units can be held in inventory at the stage 1 buffer, where
a holding cost h1t is charged per unit at time t . st units can
also be shipped to another buffer (we refer to this as buffer
2), and a fixed cost of ft is charged if st > 0. Units can be
held in inventory in buffer 2, where a holding cost of h2t is
charged per unit at time t or shipped to meet demand d ′

t =

x2t , t = 1, 2, . . . , n, where x2t is determined using Equation
(14). Thus, we have eliminated a stage from the original
model. We call this equivalent model 2SPDP′, and focus on
2SPDP′ for the rest of the paper. This model is illustrated
in Fig. 2.
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Fig. 2.Model 2SPDP′.

Intuitively, this model appears to have an interesting re-
lationship to the traditional single level, single product ca-
pacitated lot sizing model addressed by Florian and Klein
(1971), aswell as subsequent authors.Onone hand, it seems
to be in some sense easier to solve than that model, since
the fixed cost is decoupled from capacitated production de-
cisions. On the other hand, given the fact that production at
stage 1 is time varying, and the amount shipped is bounded
by the amount produced, this model appears to be related
to the single stage production model with time-varying ca-
pacity, which is known to beNP-hard, even inmany special
cases (Florian et al., 1980; Bitran and Yanesse, 1982). In-
deed, our methodology, particularly for the concave trans-
portation cost case discussed in Section 4, is related to the
approach employed by Florian and Klein. However, be-
cause the non-linear transportation costs are decoupled
from the manufacturing costs, we use different structural
properties of the optimal solution, and are in some cases
able to solve problemswith time-varying production capac-
ities in polynomial-time.
The following properties, analogous to the well-known

zero inventory ordering property for uncapacitated lot sizing,
hold for 2SPDP′ when conditions (1) and (2) hold:

Property 2. In any optimal solution to 2SPDP′, shipping
only occurs in periods t where the inventory in the stage 2
buffer, i2t−1 = 0, where i20 ≡ 0.

Proof. Assume an optimal solution in which in some pe-
riod j, j = 1, 2, . . . , n, sj > 0 and i2j−1 = γ > 0. Let k, 1 ≤

k < j be the period when the items in inventory at the
stage 2 buffer originally shipped. Now create a new so-
lution identical to the first, but with s ′k = sk − γ , and s ′j =

sj + γ . Assumption (13) implies that this is a less expensive
solution. �

The following property follows immediately from
Property 2.

Property 3. In any optimal solution to 2SPDP′, the shipping
quantity st at time t, t = 1, 2, . . . , n is equal to some partial
sum of future demands

∑a
i=t di, t ≤ a ≤ n.

3.5. Production schedule given

In this section, we address the problem of solving the trans-
portation part of the 2SPDP′ model given a production
schedule, i.e., if the variables x1t , t = 1, 2, . . . , n are already
determined. We call this the Shipping problem.
Based on the Properties 2 and 3, we observe that a prop-

erty analogous to Wagner and Whitin’s (1958) Inventory
Decomposition Property is true:

Property 4. For the Shipping problem, if i1t = 0 for some t, it
is optimal to consider periods 1 through t − 1 by themselves.

This suggests a dynamic programming approach for the
Shipping problem. Note that in this case we can ignore
manufacturing costs, and the holding costs in stage 1, since
they are sunk costs. To account for incremental holding
costs, we define ht = h2t − h1t , t = 1, 2, . . . , n. This dynamic
programming approach is similar to the standard Wagner
and Whitin (1958) lot sizing algorithm, except that infea-
sible solutions are ignored. Let v(t) be the minimum cost
to go starting in period t , given that it−1 = 0 and let vab
be the cost of shipping in period a to exactly meet the to-
tal demand in the interval from period a to period b − 1,
1 ≤ a < b ≤ n+ 1. Then,

v(t) =

{

min
t<i≤n+1

(vti + v(i)) :
t

∑

j=1

x1j ≥

i−1
∑

j=1

dj

}

,

where v(n+ 1) = 0. Note that we ensure feasibility by
checking that we have made enough to ship. Let Dq =
∑q

i=1 di, q = 1, 2, . . . , n, and observe that cost of shipping
in period a to exactly meet the total demand in the interval
from period a to period b − 1, 1 ≤ a < b ≤ n+ 1, is:

vab =

(

sa + (Db−1 −Da−1)vt +

b−2
∑

i=a

hi

(

b−1
∑

j=i+1

dj

))

. (15)

This dynamic program can be represented by the net-
work illustrated in Fig. 3. An arc between nodes i and j
represents a shipment at time i to serve demands in times
i, i + 1, i + 2, . . . , j − 1. This is a directed, acyclic network
with n+ 1 nodes andO(n2) arcs. The shortest path through
this network represents an optimal shipping plan, and can
be found in O(n2) time.

3.6. An effective algorithm for 2SPDP′

We now present an algorithm for 2SPDP′.
First, we define a block as follows:

Definition 1. A block [s, t ] is a set of one or more consecu-
tive periods from period s to period t , 1 ≤ s ≤ t ≤ n, such
that i1s−1 = 0, i1t = 0, and either s = t or i1a > 0, s ≤ a < t .

Recall that i10 ≡ 0.

Clearly, any feasible schedule can be divided into blocks,
and the first block starts (and possibly ends) at time 1.

Fig. 3. DP Network with the production quantities being given.
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Furthermore, in any optimal schedule, the following prop-
erties can be proved for each block.

Property 5. In any optimal schedule, for any block, produc-
tion will be at capacity in all periods except possibly for the
first period.

We note that this first period can be the only period in the
block, and that production can be zero in this period.

Proof. If the block is one period long, the property is triv-
ially true. Assume by contradiction that in an optimal so-
lution, in block [s, t ], production is less than capacity in
some period q, s < q ≤ t . Since this is a block, we know
that i1q−1 > 0. But this implies that min(i1q−1,C

1
q − x1q ) pro-

duction in the block from the periods s, s + 1, . . . , q − 1
could be moved to period q. By Assumption (10), this will
decrease costs. Thus, this block cannot be optimal. �

Property 6. In any block, the total production in that block
is equal to some partial sum of consecutive demands.

Proof. This follows from the definition of a block and
Property 3. �

This property, combined with the definition of a block,
implies that any block [s, t ] serves all demands in some
interval a, a + 1, . . . , b.
These properties, along with Property 2, suggest the fol-

lowing dynamic-programming-based approach to solving
this problem. Let v(t, a) be the minimum cost to go start-
ing in period t , given that i1t−1 = 0, i.e., a block ended in
period t − 1, and that this block covered demands through
period a − 1. Let vabst , s ≤ t ≤ n+ 1, a ≤ b ≤ n+ 1, be the
minimum possible cost of a block which lasts from period
s to period t − 1, and services demand from period a to
period b − 1. Note that if it is not possible for a block that
lasts from period s to period t − 1 to service demand from
period a to period b − 1 due to capacity constraints, we set
vabst = ∞. We observe that there will be O(n3) blocks with
non-infinite cost, since for each possible a, b, and t , there
is only one possible s (due to Property 5, which states that
production will be at capacity in all blocks except for the
first block in a period, and Property 6, which implies that
this production will exactly meet demand in this interval).
In this case:

v(t, a) = min
t≤s≤n+1,a≤b≤n+1

(

vabts , v(s, b)
)

.

where v(n+ 1, n+ 1) = 0.
This dynamic programcanbe represented by the network

illustrated in Fig. 4. Note that for simplicity, only the nodes
are illustrated. In addition, there is an arc between every
node (s, a) and (t, b) for which s < t , a < b, and vabst < ∞.
An arc between node (s, a) and node (t, b) represents a
block starting at time s and ending at time t − 1 which
covers demand from period a to period b − 1, and has cost
vabst . This is a directed, acyclic network with O(n2) nodes,
and O(n3) arcs.

Fig. 4. 2SPDP′ network. Arcs exist from node (s, a) to node (t, b)
if s < t , a < b, and vabst < ∞.

It remains to determine vabst , the cost on each arc in the
network described above. First, given a block [s, t − 1] that
serves demand from a to b − 1, production is known. In
particular, production is at capacity in all periods except
possibly for the first period (although this period may be
the only period in the block). The production in the first
period in the block must equal

b−1
∑

i=a

di −
t−1
∑

i=s+1

C1
i .

Since production is known for a particular block, we
can use the dynamic programming approach outlined in
Section 3.5 to find vabst in O(n

2) time. In particular, we can
find the shortest path on a graph analogous to the one pic-
tured in Fig. 3, with only demands from a to b − 1. We
know that an arc from t − 1 to b must be in the shortest
path, and we look for the shortest path between a, the pe-
riod in which the first shipment must occur, to t − 1. Thus,
the running time of this dynamic programming algorithm is
dominated by the time to calculate arc costs, which isO(n5).
This complexity can be somewhat reduced by the following
observation.
For a given t and b, 1 ≤ t ≤ b ≤ n, let a′ = min{a ≤ b |

(∃s ≤ a :
∑t−1

i=s Ci ≥
∑b−1

i=a di)}, and let s
′ be this s. In other

words, (a′, b − 1) is the longest sequence of demand ending
at period b − 1 which can be optimally covered by a single
block ending at time t − 1, and this block extends from
period s ′ to period t − 1. If we create a network as described
above to find va

′b
s ′t and solve it backwards, we end up with

the shortest path from b to all feasible nodes b′ < b.

Property 7. Consider the shortest path representation des-
cribed above. If we use it to find the optimal shipping schedule
to determine the value va

′b
s ′t as described above, then for any

feasible value of a,1 ≤ a ≤ b, the optimal shipping schedule
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is the (backwards) shortest path from t − 1 to a on the same
graph.

We note that there must be a shipment at node t − 1
which covers demand through b, and there must be a ship-
ment at time a.

Proof. The proof proceeds by comparing the network for
the va

′b
s ′t problemdescribed above,with the network for some

vabst problem. Recall that (a
′, b − 1) is the longest sequence

of demand ending at period b − 1 which can be optimally
covered by a single block ending at time t − 1, and thus any
other sequence of demand must be shorter, and is there-
fore covered by a block starting at a time t , t ≥ s ′. In other
words, a ≥ a′, s ≥ s ′. Clearly, identical arcs in both net-
works will have identical costs. It remains to show that the
identical arcs will appear in both networks on the nodes
a, a + 1, . . . , t − 1. Since a ≥ a′ and s ≥ s ′, all of the arcs
in the vabst problem are feasible, and thus will appear, in the

va
′b
s ′t problem. Also, observe that since both blocks cover de-
mand ending at the same period with itemsmade in a block
ending in the same period, each unit of production can be
allocated to its demand such that the allocation is the same
in the va

′b
s ′t and vabst problems. This, combined with the fact

that a shipment at time a covers demand starting at time a,
implies that arcs representing shipments at time a will ap-
pear in both graphs. Thus, the (reverse) shortest path from
t − 1 to a is the same in both graphs, and clearly the arc
from t − 1 to b is present in both solutions. �

For example, consider va
′b
s ′t where s ′ = 4, t = 8, a′ =

5, b = 9. In this case, (5, 8) is the longest sequence of de-
mand ending at period 8 which can be optimally covered by
a block ending at time 7. Thus, we know that for this block,
production is at capacity in periods 5, 6, and 7, and possi-
bly fractional in period 4. Given this production schedule,
we can create a network of the type illustrated in Fig. 5,
where each arc represents a feasible shipping policy as we
discussed in Section 3.5. By finding the shortest path from

node 4 to node 9 in this graph, we determine v
(5)(9)

(4)(8) . At the

same time, we can find the shortest path from node 9 to
all other nodes in the graph which can be reached (back-
wards) from node 9. Now, suppose we are interested in the
cost of another block ending at time 7which covers demand
through time 8. This block must cover demand starting at a
time greater than five, since by definition of a′ and s ′, (5, 8)
is the longest sequence of demand which could be covered
by a block ending at time 7. Suppose the block from five to
seven can feasibly cover demand from six to eight. Clearly,

Fig. 5. DP example; reducing complexity.

this implies that a path from node 5 to node 9 must be

present in Fig. 5. Furthermore, the cost v
(6)(9)

(5)(8) is the cost

of the shortest path from node 5 to node 9, which we have
already found.
Thus, the shortest path problem only needs to be solved

for each value of t and b ≥ t , or O(n2) times. This means
that the time to calculate optimal shipping patterns for all
blocks is bounded byO(n4), and given an optimal shipping
pattern, the cost of that pattern can be calculated in O(n)
time. The overall running time of the dynamic program-
ming algorithm for 2SPDP′ is O(n4). Since 2SPDP can be
converted into an equivalent 2SPDP′ inO(n2) time, we can
solve the original problem in O(n4) time.

4. Concave transportation cost function

A more general concave cost function for transportation,
ft (st ), rather than fixed plus linear cost transportation cost
function employed in the previous section, more accu-
rately models real-world transportation costs which feature
economies of scale, or quantity discounts.Unfortunately, in
this case, Properties 2 and 3 do not hold, so the algorithms
described above will not work. Thus, we are motivated to
identify new properties, and develop additional, more com-
plex algorithms.
In this section, we allow the transportation cost func-

tions ft (), t = 1, 2, . . . , n, to be any set of concave func-
tions where transportation cost increases with the number
of units shipped, and where the following restriction holds
for any positive shipping quantity x:

fi(x) + (h2 − h1)x > fj(x) ∀ i, j : 1 ≤ i < j ≤ n, x > 0.

(16)

This restriction is clearly met if cost functions are identi-
cal, or if shipping costs reflect the time value of money.
In this case, the following properties, analogous to

Properties 2 and 3 hold.

Property 8. There exists an optimal solution to 2SPDP′ in
which shipping only occurs in periods t where the inventory in
the stage 2 buffer, i2t−1 < dt where i

2
0 ≡ 0.

Proof. Assume by contradiction that there exists a period t
in which st > 0 and i2t−1 > dt . Clearly, the quantity st could
be shipped in the next period, which by assumption (16)
would be less expensive. �

Property 9. There exists an optimal solution to 2SPDP′ in
which either the shipping quantity at time t, 1 ≤ t ≤ n, plus
all previous shipping quantities,

∑t
i=1 si, is equal to some

partial sum of demands
∑a

i=1 di, t ≤ a ≤ n, or the shipping
quantity is all available inventory, st = i1t−1 + x1t , or both.

Proof. Assume by contradiction that in an optimal solu-
tion, at time t , 1 ≤ t < n , st is a quantity sufficient to meet
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all demandup to period u, u ≥ t and somequantityαwhich
is equal to a fraction of the demand in period v, the first
period with non-zero demand after period u . Furthermore,
assume that i1t > 0. This implies that the rest of the demand
at time v is shipped at some time w, t < w ≤ v, and that at
least some of those units could have been shipped at time t .
However, since the shipping function is concave, we know
that either it is cheaper to ship the available units at time t
and hold them at stage 2, or to ship the α units at time w

(or we are indifferent between the current solution and one
of these two solutions). Thus, either this is not an optimal
solution, or an equivalent optimal solution can be found
for which this property holds. �

4.1. The Shipping problem

Note that for this problem, the Shipping problem, or the
problem of determining shipping quantities once the pro-
duction schedule is set, is not trivial, since the Inventory
Decomposition Property does not hold. However, we can
use an approach analogous to the approach described in
Section 3.5 with additional consideration of possible start-
ing inventory levels.
Observe that from Property 9, we know that in each pe-

riod in which shipping occurs, either a quantity so that the
total shipped amount is equal to a partial sum of demands,
or a quantity sufficient to make the inventory at the stage 1
buffer zero, is shipped.
Consider a shipment made in period j, 1 ≤ j ≤ n which

covers demand through period k ≥ j, and possibly some
subsequent demand. If this shipment exactly covers de-
mand, there may be many possible values of k for which
this is feasible. If, however, the shipment does not exactly
cover demand, by Properties 8 and 9, all of the inventory
manufactured up to that time must ship, which implies that

k = min

{

i > j

∣

∣

∣

∣

∣

Di −

(

j
∑

l=1

x1l

)

> 0

}

− 1.

Also, recall that in some optimal solution to 2SPDP′, if
αt = i2t−1 > 0, a shipment is made in period t if and only
if αt < dt . Furthermore, this is only possible if αt = 0, or
if the previous shipment quantity equaled the total quan-
tity produced up to that shipment. Thus, if we define the
function

gt (i) =

i
∑

j=1

x1j −Dt−1,

then the set of possible αt values in each period t, 1 ≤ t ≤ n
in which shipments are made is limited to the positive values
of gt (i), i = 1, 2, . . . , t − 1 (plus zero).
This suggests that we can use a shortest path approach

similar to the one outlined in Section 3.5.
As before, we represent this problem by a directed net-

work, although this one is more complicated than the net-
work used previously. For each time period t ,1 ≤ t ≤ n,

there is a node for each possible value of αt if a shipment

is made, which we call α
j
t , where the index j represents the

particular feasible value of αt , and α0
t = 0. An arc between

nodes (α
j
a) and (αkb ),1 ≤ a < b ≤ n+ 1, represents a ship-

ment at time a to serve demands through time b − 1, plus
the additional quantity αkb (which is possibly zero). Note
that once a shipment is made to serve demands through
time b − 1, plus the additional quantity αkb , no additional

shipment is made until time b, and the quantities i1b−1 and

i2b−1 are fully determined. Thus, the cost on each arc is sim-
ple to calculate. This is a directed, acyclic network, with at
most O(n2) nodes and at most O(n) arcs per node (repre-
senting feasible shipping plans). The shortest path through
this network represents an optimal shipping plan, and can
be found in O(n3) time.

4.2. Properties of the optimal solution

Next, we present several properties of an optimal solution
to 2SPDP′. In the next section, we use these properties to
develop an algorithm for the constant capacity version of
this problem.
First, recall that we defined a block as follows:

Definition 1. A block [s, t ] is a set of one or more consecu-
tive periods from period s to period t , 1 ≤ s ≤ t ≤ n, such
that i1s−1 = 0, i1t = 0, and either s = t or i1a > 0, s ≤ a < t .

Recall that i10 ≡ 0.

In addition, we define an interval as follows:

Definition 2. An interval [q, r ] is a set of consecutive periods
from q to r , 1 ≤ q ≤ r ≤ n, such that the following set of
conditions holds:

� i1q−1 = 0;
� i1r = 0;
� if q �= 1, there exists a time l, q − 1 ≤ l ≤ n such that

∑q−1
i=1 si = Dl ;

� there exists a time m, r ≤ m ≤ n such that
∑r

i=1 si = Dm;
� if q �= r , there does not exist a period p in the interval
q, q + 1, . . . , r − 1 and a timew such that both

∑p
i=1 si =

Dw, and i
1
p = 0.

In other words, blocks define periods in which starting
and ending inventory is zero, and no intermediate invento-
ries are zero. Intervals add the additional restriction that
the final shipment is such that the total amount shipped up
to that time including the shipment in the final period of the
interval, is a partial sum of demands. Clearly, any feasible
schedule can be divided into one or more intervals, each of
which can be subdivided into one or more blocks.
The definition of an interval implies that:

Property 10. In any interval, the total production in an in-
terval is equal to some partial sum of demands.
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This property implies that any interval [q, r ] serves all
demands in some intervala, a + 1, . . . , b, andnoadditional
demands.
In addition, the following properties can be demon-

strated:

Property 11. There is at least one optimal solution in which
production is at capacity in all periods of a block except per-
haps for the first period.

Proof. Assume by contradiction that in a block, partial
production occurs in some period a later than the first pe-
riod of the block. Clearly, production of min(Ca − xa, i

1
a−1)

can be shifted from period a − 1 to period a without in-
creasing cost, by assumption (11). This will either decrease
costs, create a new block structure, or eliminate partial pro-
duction in period a. If the later occurs, and a − 1 is not
the first period of the block, continue to apply this same
approach to shifting production. �

We note that zero production blocks one period long can
exist.However, Property 11 implies that therewill beno zero
productionperiodswithin ablockwithpositive production,
since such zero production blocks would have to be in the
first period, and this would imply that inventory was zero
at the end of this period, so that a new block would start in
the next period. Thus, we conclude that:

Property 12. There is at least one optimal solution for which
all periods of zero production are in their own single period
blocks. In other words, xi = 0 if and only if i1i−1 = i1i = 0.

Finally, we characterize production in an interval by
demonstrating that:

Property 13. There is at least one optimal solution in which
production is at capacity or at zero except possibly for one
period during the interval.

Proof. Assume that we are given an optimal solution for
which Properties 11 and 12 apply, but for which Property 13
does not apply.Without loss of generality, assume that there
is a single interval G for which Property 13 does not apply,
let a represent the second latest period in the interval for
which production is below capacity but above zero, and let b
represent the latest such period. By Property 11, both a and
b must be the first period in their respective blocks. We will
show by construction that we can either create an equiva-
lent solution in which the two below capacity production
periods are reduced to a single below capacity production
period within the interval, or one of the following occurs:
the interval is divided into two new, shorter intervals, or a
block in the interval is divided into two new, shorter blocks.
Since we can repeatedly apply this construction approach,
and intervals and blocks can be no shorter than one period,
this is sufficient to prove the result.

Let i be the minimum of

� the minimum stage 1 inventory at the end of each time
period in the interval [a, b] excluding those periods which
are the final period in their respective blocks;

� the fractional inventory at stage 2 (that is, the inventory
which meets some but not all of the demand in a future
period) at the end of those periods which are the final
period in their respective blocks.

If i ≤ Cb − xb, then it is clearly feasible to shift produc-
tion of i units to period b without altering the shipping
schedule. Since we already have an optimal solution, this
shift cannot result in lower cost. If this shift results in the
same total cost, make the shift. This either results in more,
shorter blocks within the interval, or more, shorter inter-
vals. Furthermore, if all blocks in the interval are of length
one, this must result in more, shorter intervals. We observe
that it is not possible for this shift to result in higher costs,
since this would imply that it must be cheaper to manufac-
ture some of the units currently produced in period b in
period a, and since production is less than capacity at a,
this is feasible.
If i > Cb − xb, then it is clearly feasible to shift produc-

tion of Cb − xb units to period b. By the same reason-
ing as above, we see that this must result in a schedule
of equal cost, while increasing production to capacity in
period b. �

4.3. An effective algorithm for the constant capacity case

Unfortunately, the presence of zero production blocks with
the intervals makes it difficult to develop an effective al-
gorithm for the general case. However, the definition of an
interval, along with these properties, suggests the follow-
ing dynamic-programming-based approach to solving this
problem for the constant capacity case. For simplicity, we
use the same notation as in Section 3.6, although here we
are referring to an interval rather than a block.
Let v(t, a) be the minimum cost to go starting in period

t , given that an interval ended in period t − 1, and that this
interval covered demands through period a − 1. Let vabst be
the minimum possible cost of an interval which lasts from
period s to period t − 1, and services demand fromperiod a
to period b − 1. Note that if it is not possible for an interval
that lasts from period s to period t − 1 to service demand
from period a to period b − 1 due to capacity constraints,
we set vabst = ∞. In this case:

v(t, a) = min
t≤s≤n+1,a≤b≤n+1

(

vabts , v(s, b)
)

,

where v(n+ 1, n+ 1) = 0.
This dynamic program can be represented by the same

network as in Section 3.6 (illustrated in Fig. 4). Recall
that although only the nodes are illustrated, there is an
arc between every node (s, a) and (t, b) if s < t and a < b.
An arc between node (s, a) and node (t, b) represents an
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interval starting at time s and ending at time t − 1 which
covers demand from period a to period b − 1, and has
cost vabst . This is a directed, acyclic network G1 with O(n

2)
nodes, and O(n2) arcs per node, for a total of O(n4) arcs,
since in this case, for a given a, b and t , there are a va-
riety of possible s values due to the possibility of zero
production.
Unfortunately, determining vabst , the cost on each arc in

the network described above, is more complicated for this
concave cost case than for the fixed plus linear cost case
described previously. We need an efficient method of both
determining themanufacturing schedulewithin an interval,
and for determining the shipping schedule for all the items
manufactured during the interval.
Recall that an interval is made up of one or more

blocks. From Property 10, the total production quantity
in an interval is known. Furthermore, by Property 13, the
production schedule within an interval consists of some
single period zero production blocks, and for the remain-
ing blocks, production is at capacity in all periods ex-
cept perhaps one period during one of the blocks. As in
Florian and Klein (1971), we set ǫ equal to the partial pro-
duction (if D is the total demand served by the interval,
ǫ = (D mod C)). Thus, we know the cumulative amount
produced between the start of the interval, period s, and
any period in the block, can take on at most the values
{0, ǫ,C,C + ǫ, . . . , (⌊D/C⌋), (⌊D/C⌋) + ǫ}. Let the cumu-
lative production in the interval at period j − 1 be Xj.
This suggests the following procedure to determine the

optimal policy for an interval from s to t − 1, 1 ≤ s ≤

t ≤ n+ 1. Construct a network G2 with a single start-
ing node for time s, and nodes for each possible value of
Xj, j = s + 1, s + 2, . . . , t in the graph. An arc between two
nodes in the graphXi andXj, i < j, represents a blockwhich
starts at the time of the first node, i, and ends at the period
immediately preceding the time of the second node, period
j − 1. At time j − 1, Xj units have been produced. Thus, an
arc uniquely defines a production schedule within a block,
and indicates when the final shipment in the block occurs.
If a particular block is not feasible, either because a par-
tial production period has appeared in an earlier block, or
because production is not sufficient to meet demand up to
that point, the arc does not appear in the network. The cost
on each arc includes the production cost for all the ma-
terial made during that block, as well as the holding and
shipping costs associated with that material. Thus, a path
through the network represents a feasible production plan
for the interval. This network will have O(n2) nodes, and
O(n3) arcs since zero production only occurs in single pe-
riod, zero production blocks, so the shortest path can thus
be found in O(n3) time.
Note that although Florian and Klein (1971) employ a

similar approach to determine production levels in a ca-
pacitated single stage production system, their model only
requires production decisions, whereas ours requires pro-
duction and shipping decisions. Thus, in the graph they use

to make production decisions, arcs exist for each time pe-
riod. We need to introduce the concept of shipping blocks,
and use arcs which represent production in a block, rather
than a single time period.
The production costs associated with each arc are easy

to determine. Shipping and holding costs require the deter-
mination of a shipping schedule. However, by Property 9
and the definition of a block, all of the shipments within a
block (excluding the final shipment) occur such that the to-
tal amount shipped at each period is equal to a partial sum
of demands. Thus, except for the first shipment during a
block, shipping only occurs when stage 2 inventory is zero,
and the first shipment occurs in the first period t for which
i2t−1 < dt , so the shipping schedule for a block can easily
be found by using a dynamic programming approach ex-
actly analogous to the one used in Section 3.5. The optimal
cost of a particular interval can therefore be found inO(n5)
time using G2, and since G1 has O(n4) arcs representing
intervals, the optimal solution to the initial problem can be
found in O(n9) time.
The complexity of this algorithm can be reduced bymak-

ing the following observation. Consider each of the arcs ter-
minating at a particular node Xj in the network described
above. These arcs represent a variety of blocks which have
two things in common: (i) they terminate with a final ship-
ment at time j − 1; and (ii) thefinal shipment covers demand
starting at time j − 1, and completing when the quantity
represented by Xj is used to meet demand. Thus, we can
use the approach described at the end of Section 3.6, and
the reasoning behind Property 7, to solve the shortest path
in reverse, and find at the same time the shipping sched-
ules for all of the blocks described by arcs terminating at
Xj. This implies that the costs on all the arcs in G2 can be
found in O(n4) time, so the optimal solution to the initial
problem can be found in O(n8) time.

5. Conclusions and future research

Wehave introduced a two stagemodel which combines pro-
duction lot sizing and shipping decisions, and described
effective algorithms for the fixed charge case, and the
concave shipping cost case with constant manufacturing
capacities.
This initial exploration of 2SPDP leaves many remaining

questions. For example:

� Is there a more efficient algorithm for this problem?
� Can the concave cost problem be solved under more gen-
eral capacity assumptions?

� Can an efficient algorithm be found for more general
transportation cost structures than those analyzed in this
paper, such as those which do not meet restriction (16)?

� Our algorithms require a fixed lead time. Can effective al-
gorithms be developed for time-varying lead times. In this
case, themodelwithpositive lead times is not immediately
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equivalent to a model with zero lead time, so a different
approach will have to be used.

In addition, many supply chains have additional stages.
Our approach was in many ways dependent on the fact that
we could reduce the 2SPDP model to the 2SPDP′ model,
which has only a single production stage. Although this
approach can be generalized to multi-stage models as long
as there is only a single transportation stage (that is, a single
stage with economies of scale), it cannot be generalized in
an obvious way to the case with transportation between
more than two of the stages. We would like to find efficient
algorithms for this n stage nSPDP problem, although this
is likely to require a different solution approach. Also, we
are currently investigating a variety of stochastic versions
of this model.
Finally, this paper would be incomplete without some re-

marks concerning the weaknesses of our model and analy-
sis. Asmentioned above, our results are quite specific to our
cost structures. In particular, we require a two stage supply
chain inwhich economies of scale are present in transporta-
tion but not in manufacturing, and in which transportation
to the final customer is not a consideration. We argued in
the Introduction that in many cases manufacturing setup
costs have become negligible; in some cases, however, man-
ufacturing setup costs are still significant. In addition, our
model is a deterministic model, although in most situa-
tions, demand is stochastic, and managers need to react
to changing demand. Nevertheless, our model and solu-
tion algorithm can serve as a useful tool in situations for
which our assumptions are practical. Also, in this paper, we
demonstrate that polynomial-time optimal algorithms can
be found for amulti-stage problem, in contrast tomost pre-
vious multi-stage research, which has focused on heuristics.
We hope to build on this knowledge in future research, as
we attempt to find efficient algorithms for more complex
multi-stage models.
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kneedy@engr.pitt.edu

Review of applications will begin September 15 with an
expected decision by October 20. The search for the new
editor will stay open until the position is filled.

Industrial Engineers. The book also received the Outstanding First Edi-

tion of the Year award given in 2000 by McGraw-Hill. The book was

selected by Business 2.0, December 2001 issue, as the best source for

slashing time and cost and increasing productivity in the supply chain.

The book has been translated into Chinese, Japanese and Korean.
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