Lawrence Berkeley National Laboratory

Recent Work

Title

PRODUCTION AND ISOLATION OF CARRIER-FREE RADIOISOTOPES

Permalink

https://escholarship.org/uc/item/2z9053tc

Authors

Garrison, Warren M. Hamilton, Joseph G.

Publication Date 1951-05-11

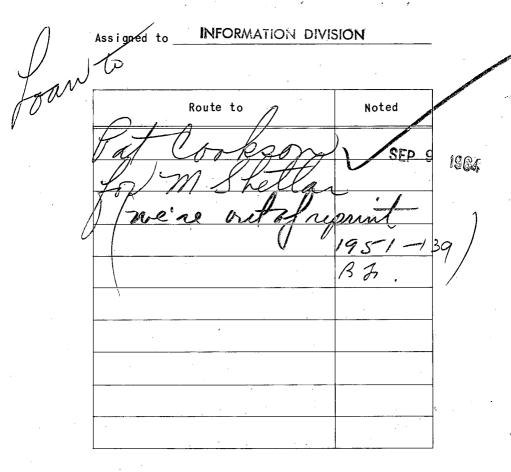
51-139 1067-Rev. Cy. 2 UCRL

UNIVERSITY OF CALIFORNIA

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA


DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

TECHNICAL INFORMATION DIVISION

Lawrence Radiation Laboratory

Berkeley

Please_return this document to the Information Division. Do not send it to the next person on the list.

Please do not remove this page.

opy

UCRL-1067-Rev. Unclassified - Chemistry Distribution

UNCLASSIFIED

UNIVERSITY OF CALIFORNIA

Radiation Laboratory

Contract No. W-7405-eng-48

PRODUCTION AND ISOLATION OF CARRIER-FREE RADIOISOTOPES

Warren M. Garrison and Joseph G. Hamilton

May 11, 1951

PRODUCTION AND ISOLATION OF CARRIER-FREE RADIOISOTOPES*

Warren M. Garrison and Joseph G. Hamilton

Crocker Laboratory, Radiation Laboratory, Divisions of Medical Physics, Experimental Medicine and Radiology; University of California Berkeley and San Francisco, California

Revised May 11, 1951

I. Introduction

In the separation and use of radioactive substances it is frequently necessary to isolate radioisotope preparations which do not contain detectable amounts of stable isotopic material. These preparations, usually designated by the term "carrier-free", are produced principally by nuclear transmutation reactions¹. Since transmutation products are generally obtained in amounts which are detectable only by their characteristic nuclear radiations, conventional inorganic separation procedures are usually not directly applicable and special methods must be employed. Many of these methods were originally developed in the investigation of the naturally radioactive elements. Even prior to the general acceptance of the theory of isotopy, a great deal of information had already been obtained on the chemical behavior of unweighable amounts of the short-lived radioelements including methods for their separation and isolation. Although few generalizations were then possible, the introduction of the radioelements in the periodic table rapidly resulted in a fairly comprehensive

*This document is based on work performed under Contract No. 7405-eng-48 for the Atomic Energy Commission.

¹ Non-transmutation nuclear reactions may also be used to produce carrier-free radioisotopes. A successful separation in cases where the target and product are isotopic depends on the removal of the radioactive atom by breaking its chemical bond in the target or parent compound as a result of isomeric transition (117,29) or recoil (126,87). These methods although of considerable theoretical interest are at present not generally practical for the production of carrier-free tracers. understanding of many of the unique chemical, physical and biological properties of unweighable amounts of the radioelements found in the natural decay series.

- 3-

Probably, however, the most extensive developments in the chemistry of the radioelements in extreme dilution have followed the discovery of artificial radioactivity. The development of the cyclotron and the chain-reacting pile resulted in a tremendous increase in the number and availability of radioisotopes that can be produced in the carrier-free state. And with this, there has been a corresponding increase in our understanding of the fundamental principles of the separation processes. Many new techniques, particularly adapted to carrierfree radioisotope separation, have been developed. These techniques and those previously employed in classical radiochemistry have been successfully used in the separation of carrier-free radioisotopes of most of the stable elements and in the discovery and preliminary chemical identification of several new elements.

The use of carrier-free techniques is essential in certain types of research and highly desirable in many others. It is, of course, fundamentally important to most investigations involving those radioelements, either artificially produced or naturally occurring, of which no stable isotopes have been found in nature. The fact that these substances are normally encountered only in invisable amounts necessarily delimits the type of chemical technique which can be employed in their manipulation. The isolation of carrier-free radioisotopes of the stable elements also is important in several widely differing fields of research. In chemistry they have been used to investigate, (a) the chemical properties of the elements at extreme dilution, (b) adsorption phenomena, and (c) the properties of radiocolloids, in addition to (d) their use as tracers in many chemical problems in which high dilution factors are important. Carrierfree radioisotope preparations are also desirable in certain types of physical measurement; for example, in the characterization of low-energy nuclear radiations, the use of a "mass-less" source is important to insure small self-absorption and in mass spectrographic determination of nuclear properties to obtain a maximum sensitivity.

The widest use of carrier-free activities and probably one of the most significant is their application to biological and medical research since these preparations may be added to biological systems without changing the mass or concentration of the stable element or compound already present. This situation is extremely desirable, for example, in metabolic studies, in the investigation of trace element functions and in the use of radioisotopes as <u>in vivo</u> radiation sources. An important medical problem involving the metabolism of carrier-free radioisotopes has resulted from the quantity production of plutonium. The need for investigating the radiotoxicological hazards of the fission products and of the transuranium elements, neptunium and plutonium, has necessitated the biological testing of each of the radioisotopes in the carrier-free form in which it would be encountered in the plutonium process. Because of the importance of evaluating the health hazards of these materials a great deal of information has been obtained on the metabolic properties of the radioisotopes produced in fission.

II. Sources of Carrier-Free Radioisotopes

The chain-reacting pile and the cyclotron are the only practical sources of carrier-free radioisotopes although a few useful radioisotopes are still obtained from the natural decay series. The important nuclear reactions for each of these modes of production are described briefly below.

<u>Pile Reactions</u>: Neutrons at pile energies produce radioisotopes in the carrierfree state by four main types of nuclear transmutation reactions.

(1) <u>Nuclear fission</u>: In the comprehensive investigation of the radioactive species formed in the fission of uranium more than 160 radioactive isotopes have been identified ranging in the case of U^{235} fission from Z = 30 (zinc) to Z = 63 (europium), and from A = 72 to A = 158. As a result of the fact that the neutron excess of U^{235} is considerably greater than that required for stability in the fission-product region, the primary fission-product nuclei achieve stability through

successive β^{-} decay giving rise to fission product chains. The radioisotopes in each chain, their relationships, their mass assignment and yields have been determined in most cases (106,116). Although these radioisotopes are by-products of normal pile operation, only a few have half-lives sufficiently long to warrant their routine separation. The major radioactive fission products of half-life greater than one week are described in Table I. Most of these are available in carrier-free form from the Isotopes Division, Atomic Energy Commission, Oak Ridge, Tennessee (66).

- 5-

(2) <u>Neutron capture (n,γ) followed by β emission</u>: With the exception of the (n,f) reactions, the (n, γ) reaction is the most important source of carrier-free radioisotopes in the pile. Although the (n,γ) reaction alone results in the production of radioisotopes which are isotopic with the target element and hence not separable in the carrier-free state, it may be used to produce carrier-free radioisotopes if the product isotope decays to give a radioactive descendant.

Table II describes the carrier-free radioisotopes which are routinely produced in the pile using this type of nuclear reaction. The activation cross section of the target isotope and the characteristics of the radioactive descendant are also listed.

(3) (4) Neutron capture with proton and alpha particle emission, $(n,p)(n,\alpha)$ reaction: A few important (n,p) and (n, α) transmutation reactions are possible with pile neutrons. These are confined to the production of radioisotopes of the lighter elements because only a negligible fraction of pile neutrons have energies sufficient to overcome the potential barrier to change particle emission above Z = 20. Resonances in certain nuclei also permit (n,p) and (n,α) reactions to proceed with neutrons of low energy. Table II lists the radioisotopes which are produced by (n,p) and (n,α) reaction in the pile. MAJOR RADIOACTIVE FISSION PRODUCTS OF HALF-LIFE GREATER THAN 1 WEEK (106,116,66)

		т. 	Energy	(Mev)	Relative
Radioisotope	Half-Lif	e	Beta	Gamma	Yield (Curies)*
38 ^{Sr⁸5}	55 d		1.48	none	1.0
	25 y	• •	0.65	none	0.035
J. Y.	57 a	· .	1.53	none	1.25
Zr	65 a	. *	0.394(98%)	0.73(93%)	1.35
, Nb	35 d		0.154	0.75	1.7
Tc ⁹⁹	~ 5x10 ⁵ y		0.32	none	0.7x10 ⁻⁶
Ru	42 a	•	0.2(95%)	0.56	0.9
B ¹¹ TOO	1.0 y		0.04	none	0.065
Te	90 đ		I.T.,e	0.086	0.0075
Te	32 a		e ⁻ و.I.T	0.102	0.03
52I	8 a		0.35;0.60	0.63;0.36;0.28	0.065
ssCs ¹²¹	33 y		0.55;0.84	0.66	0.032
-Ba	12.5 d	· .	1.05	0.529	0.35
Ce ¹⁴¹	28 a	•	0.66	0.2	1.0
_{EQ} Ce ⁺ '''\+'	275 d		0.35	none	0.85
59 Pr ¹⁴³	13.8 d		0.83	none	0.4
CaNd ¹⁴⁷	11 d	-	0.90	0.55	0.12
61 ^{Pm¹⁴⁷}	3.7 y		0.22	none	0.14
· · · · · · · · · · · · · · · · · · ·					· .

(*) Relative amounts of fission products co-existing one month from the end of a several-month exposure (106).

(+) Indicates that the radioisotope decays to a more energetic daughter (106,116).

-6-

TABLE II

× .						
Radioisotope	Half-Life	Target Isotope	Percent Abundance	Thermal Neutron Cross Section Isotope	Activation (Barns) Natural	Half-Life of (n, γ) Product
33 ^{A 8} 77	40 h	Ge ⁷⁶	6.5	0.085	0.0055	12 h
m ⁹⁵	35 d	Zr ⁹⁴	17.4	0.06	0.014	65 a
,_Tc ^{9/m}	93 a	96 Ru	5.68	2.2	0.15	2.80
,_Tc ⁹⁷	~ 5x10 ⁵ y	Mo ⁹⁸	24.1	0.415	0.10	67 n
h _n Rh ¹⁰	37 h	Ru ¹⁰⁴	18.27	.667	0.122	4.4h
h "Ag	7.5d	Pa ¹¹⁰	13.5	0.39	0.053	26 m
Sb ¹²⁵	2.7 y	sn ¹²⁴	6.8	0.574	0.039	9 m
T ¹⁾¹	8.0d	Te ¹³⁰	34.52	0.22	0.0735	25 m.
Cat	10.2ã	Ba ¹³⁰	0.101	an -	-	12.00
Pr	13.8a	ce ¹⁴²	11.7	0.95	0.11	33 h
Pm ⁻	3.7 y	Na ¹⁴⁶	17.1	1.4	0.24	11.0d
61 ^{Pm}	47 h	Na ¹⁴⁸	5.78	2.8	0.16	1.7h
Eu	2 y	Sm ¹⁵⁴	22.53	5.50	1.10	25 m
Au ¹⁹⁹	3.3d	Pt ¹⁹⁸	7.2	3.92	0.28	31 m
79 210 84 ^{Po}	140 a	B1 ²⁰⁹	100	0.015	0.015	5.0d

A- CARRIER-FREE RADIOISOTOPES PRODUCED IN THE PILE BY (n,γ) REACTION FOLLOWED BY DECAY (116,66,122)

B- CARRIER-FREE RADIOISOTOPES PRODUCED IN THE PILE BY $(n_{2}p)$ AND $(n_{2}\alpha)$ REACTION

Radioisotope	Half-Life	Produced by	Reference
, ∎ ³	12 y	Li ⁶ (n,a)	(99,100)
6 ^{c¹⁴}	5100 y	N ¹⁴ (n,p)	(112,97,137)
32 15 ^P	14.3d	s³²(n,p)	(16,121,32,31,48)
16 ⁸³⁵	87.1d	cl ³⁵ (n,p)	(134,70,121,113)
20 ^{Ca⁴⁵}	180 a	Sc ⁴⁵ (n,p)	(74,9)

-7-

Cyclotron Reactions

The cyclotron is the only practical source of a large number of useful carrierfree radioisotopes which are not available from pile sources (116,66). In addition, although a desired radioisotope may be produced in the pile, half-life and other technical limitations may make cyclotron irradiation the more desirable method of production.

With the exception of the (n,f) reaction, charged particle bombardments differ from pile reactions in the greater probability of concurrent reactions. This is particularly true at the higher bombardment energies. With 20 Mev deuterons, for example, three and occasionally four radioactive elements may be produced concurrently from the target element (133). At energies considerably higher than this $(\sim 100 \text{ Mev})$ a whole spectrum of transmutation products are observed.

Reaction products covering a range from the region of the target nucleus down to nuclei about 20 mass units lighter are produced by bombardment with particles having energies in the hundred million volt range (25,47,88). To indicate these reactions in which excited nuclei are degraded by losing one or more nucleons, the term spallation has been suggested. The majority of the artificially produced tracers are produced by the relatively simple reactions involving the emission of not more than three or four nuclear particles. The intensity of the charged particles is low at these energies and the radiochemical procedures become formidable due to the large number of radioelements produced.

Because of the great variety of nuclear transmutation reactions (116,115) which can be brought about by deuteron, proton, and alpha particle bombardment, it is frequently possible to produce a desired radioisotope by several different types of nuclear reactions. In determining the particular reaction to be employed, several factors must be considered, including (1) the yield of the desired radioisotope, (2) the relative yields of the possible concurrent side reactions, (3) the problem of the ultimate chemical separations of the desired product, and (4) the chemical and physical limitations which must necessarily be imposed in the choice

-8-

of target material for charged particle bombardment. Considerations (1) and (2) are discussed below and (3) and (4) are covered in the section on separation procedures. Deuteron Reactions

For the production of many useful radioisotopes in the carrier-free state the reaction types $(d,\alpha)(d, 2p)(d,n)(d,2n)$ are the most important. The (d,α) and (d,2p) reactions are most useful in producing radioisotopes of lower atomic number because of the potential barrier to charged particle emission which increases with atomic number. Although the yield of these reactions increases with deuteron energy, at the higher energies the (d,n) and (d,2n) reactions become relatively more important for the elements of higher atomic number. The $(d,\alpha p)$ reaction is relatively unimportant in the production of practical amounts of radioisotopes although the possibility of this reaction must be considered as a source of radioactive contamination.

In practice, the above transmutation reactions and the non-transmutative (d,p) reaction all occur concurrently with reaction probabilities determined by the energy of the bombarding deuteron and by the atomic number of the target nucleus. The reaction probability (σ) of competing reaction types and their energy dependence (thin-target yields) have been determined for a number of target elements using the stacked-foil technique (13). Nuclear reactions for which excitation functions (σ -versus E) have been determined are listed with references in Table III. In radioisotope production by charged particle bombardment the target is generally thick enough to absorb the entire beam. Thick target yields may be obtained by graphical integration of the particular excitation function involved (13), although usually they are obtained directly from thick-target bombardments. Available thick-target yields for charged particle reactions are given in Table IV.

Alpha Particle (Helium ion) Reactions

Alpha-particle capture followed by neutron emission, $(\alpha, n)(\alpha, 2n)(\alpha, 3n)$ reaction, is useful in the production of certain radioisotopes, particularly of the heavier elements. The principal advantage of this type of reaction is the double increment in atomic number. The (α, xn) reaction is important, for example, in the preparation of radioisotopes of astatine (Z = 85) because the only target element available for this reaction is bismuth (Z = 83). The reactions of the type (α,p) and (α,pn) are more probable with elements having low atomic numbers because of the potential barrier to charged particle emission. Excitation functions for alpha-particle reactions are included in Table III. Thick target yields are given in Table IV.

-10-

Proton Reactions

All of the transmutation reactions induced by proton bombardment can be duplicated, as far as carrier-free radioisotope production is concerned, by deuteron bombardment. Deuterons are usually favored over protons because higher energies are more readily obtained. Yield data for a few proton reactions are given in Tables III-IV.

TABLE III

-11-

EXCITATION FUNCTIONS OF TRANSMUTATION REACTIONS

TABLE OF REFERENCES

.	Target (Natural Element)	Reference	Transmutation Reactions	Max. Energy (Mev)
ⁱ ¥	C	(96)	C(å,n)N ¹³	5
	N	(3)	N(n,p)C ^{l4} ;N(n,a)B ^{l1}	1.7
	0	(28)	0(p,n)F ¹⁸	4
	Mg	(61)	24 Mg(d, α)Na	3.5
		(79)	$Mg(d_a)$ Na ^{22,24}	14
	Al	(15)	$Al(d_{g}ap)Na^{24}$	14
	S	(75)	$s(n_p)p^{32}$	5.8
·	Cl	(110)	Cl(n,p)8 ³⁵	14
		(110)	Cl(d,a)8 ³⁵	14
	Fe	(20)	Fe(d,n)Co ⁵⁵	10
		(21)	$Fe(d,n)Co^{55}$; $Fe(d,\alpha)Mn^{52}$	10
	Ni	(125)	Ni(p,n)Cu ^{61,62,64}	6.3
		(26)	Ni(p ₂ n)Cu ⁶⁴	4
		(129)	Ni(d,n)Cu ⁶¹	5
	Cu	(125)	$Cu(p_n)Zn^{63}$	6.3
		(90)	Cu(d,2n)Zn ⁶³	16
r. K		(26)	$Cu(p_n)Zn^{63}$	4
		(14)	Cu(d,2n)Zn ^{63,65} ;Cu(d,a)Ni ⁶³	14
	Zn	(11)	$Zn(p,n)Ga^{64}, 68, 70$	6.3
•		(28)	$\operatorname{Zn}(\mathbf{p},\mathbf{n})\operatorname{Ga}^{68},70$	4
	Se	(11)	80,82 Se(p,n)Br	6.3
		(78)	Se(p,n)Br ^{80,82}	4.0
	Br	(13)	Br(d,2n)Kr ⁷⁹	13.5

TABLE III, CONT'D

Target	Reference	Transmutation Reactions	Max. Energy (Mev)
Rh	(8)	$Rh(\alpha_n)Ag^{106};Rh(\alpha_2n)Ag^{105}$	19
Pđ	(76)	$Pd(d_n)Ag^{106};Pd(d_2n)Ag^{106}$	6
Ag	(78)	Ag(d,2n)Cd ^{107,109}	9
in i Rei A I	(8)	$Ag(\alpha,n)In^{112};Ag(\alpha,2n)In^{111}$	19
	(38)	Ag(a,m)In ^{109,110,111}	37
In	(128)	In(a,n)Sb ¹¹⁸ ;In(a,2n)Sb ¹¹⁷ ;In(a,3n)Sb ¹¹⁶	38
Au	(79)	$Au(d,2n)Hg^{197}$	9
Tl	(77)	Tl(d,n)Pb ²⁰⁶	9
Pb	(33)	Pb(d,n)Bi ²⁰⁷	9
Bi	(63)	Bi(d,n)Po ²¹⁰	9
	(77)	Bi(d,n)Po ²¹⁰	9
•	(71)	Bi(d,n)Po ²¹⁰ ;Bi(d,3n)Po ²⁰⁸	19
	(19)	Bi(d,n)Po ²¹⁰	14.5
	(128)	Bi(a,2n)At ²¹¹ ;Bi(a,3n)At ²¹⁰	38

TABLE IV

-13-

A- THICK TARGET YIELDS OF SOME ARTIFICIAL RADIOELEMENTS - Ref. (53)

Yields are given in terms of microcuries per microampere hours. The term microcurie refers to the absolute number of disintegrations per second of the artificially prepared radioelement: 3.7 x 10⁴ disintegrations per second. This definitian, however, does not apply to those radicelements with the exception of Be whose yield values are enclosed in parenthesis since they are all substances decaying by orbital electron capture and the measured radiation contains varying proportions of x-rays, gamma rays, and internally converted electrons. In such instances, the value of the microcurie is a comparable one and simply indicates that the amount of ionization produced is equivalent with the measuring device employed to that from one microcurie of the radioactive standard. A Lauritsen electroscope with a thin-walled aluminum window was employed for these measurements. The total air equivalent of the window together with the distance of the sample from the instrument totalled 4 cm. The instrument was calibrated by means of UX standards which were covered with a sufficient thickness of aluminum foil to screen out most of the soft $UX_{1,2}$ betas and approximately 15 percent of the more energetic UX, beta particles. The values presented in the table include yields for deuterons at energies of 8, 14, and 19 Mev, and helium ions at 38 Mev. The last column gives the factor of the differences of isotopic abundances of the target materials. This correction was not applied to the yield data. In the case of C_{i}^{14} , the value given is a calculated one assuming a bombardment of 100 gallons of saturated solution of ammonium nitrate. The accuracy of the underlined yield values is believed to be accurate to plus or minus 25 percent. Those not underlined are subject to much greater error.

871 - ⁶

法法法法法 人

TABLE IV, CONT'D

			· .		Yield in µc per µa-hr.			
Isotope	Half-Life	Radiations	Reaction	8 Mev D	14 Mev D	19 Mev D	38 Mev Cl	Isotope Ratio
l ^{H³}	12.4 y	β-	$Be^9(d_st)$	-	0.1	•	-	1
h Be	52.9 a	κ _ο γ	Li ⁷ (d,2n)	-	-	2	-	1.1
6 ^{c¹¹ ····}	21 m	β ⁺	B ^{ll} (d,n)	500	-	-	-	5
~c ¹⁴ ~	5100 y	β	$N^{14}(n_pp)$	-	۰0005 *	-	-	1
M TO	10 m	β ⁺	c ¹² (d,n)	1000		-	-	1
7 ^{**} 18 9 [*] 22	112 m	β ⁺	0 ¹⁶ (a,pn)	_ /	-	• •	5000	l
, Na	2.6 y	^{β†} ,γ	$Mg^{24}(a,\alpha)$	_	1.0	-	-	9
Na	14.9 h	β¯,γ	Na ²³ (d,p)	-	-	1500	-	l
11 12 ^{Mg} 27	10.2 m	β¯,γ	Mg ²⁶ (d,p)	500	2800	-	-	9
Ma	10.2 m	β,γ	Al ²⁷ (d,2p)	, -	-	2500	· _	1
_P ²	14.1 d	β	P ³² (d,p)	30	120	-	· -	l
Q	87 a	β	c1 ³⁷ (d,a)	-	-	8.4	-	4
Cl	38 m	β៓͵γ	c1 ³⁷ (d,p)	1000		-	-	4
K	12.4 h	β_,γ	K ⁴¹ (d,p)	-	50	107	-	15
ĸ	12.4 h	β,γ	Ca ⁴⁴ (d,a)	-	-	3.3	-	50
K · ·	12.4 h	β,γ	4 ⁴⁰ (a,pn)	-	. -	-	2000	1
19 [°] 43 19 [°] 45	22.4 h	β [¯] ,γ	A ⁴⁰ (a,p)	-	-	-	1000	1
. C2	152 d	β	Ca ⁴⁴ (d,p)	-	0.01	0.05	- · ·	50
Sc ⁺⁰	85 a	β ⁻ ,γ	Ti ⁴⁸ (d,a)	-	-	0.01		1.3
Cr´¯	26 a	K,e,γ	v ⁵¹ (d,2n)	•	-	(0.2)		1
Mn	6.5 a	κ ,β ⁺ ,γ	cr ⁵² (d,2n)	- ',		(8)	-	1.2
-Mo	310 đ	K _s γ	Fe ⁵⁶ (d,a)	-	(0.10)	-	• · ·	1.1
25 59 26 ^{Fe}	46 a	β,γ	Fe ⁵⁸ (d,p)	-	0.03	•••	-	360

*Calculated from known neutron yields and \hat{a}_a for N in a saturated solution of NH₄NO of 100 gallons.

TABLE IV, CONT'D

•	· · · ·		м	2	(ield in µc	per µa-hi	C.	
Isotope	Half-Life	Radiations	Reaction	8 Mev D	14 Mev D	19 Mev D	38 Mev a	Isotope Ratio
26 ^{Fe⁵⁵}	4 y	K	Mn ⁵⁵ (d,2n)	-	*	(0.02)	-	17
со ⁵⁷	270 đ	Κ ,β ⁺ , Θ ,γ	Fe ⁵⁶ (d,n)	-	(1.0)	(5.0)	•	1.1
Cu	12.9 h	ϗ ͺϧ ^ϝ ͺϧ ⁺ ͺγ	Cu ⁶³ (d,p)		(3000)	-	-	1.5
Cu	12.9 h	ϗ ,β ⁻ ,β ⁺ ,γ	Zn ⁶⁴ (d,2p)		-	(300)	-	2.1
_Cu~'	60 h	β	Zn ⁶⁷ (d,2p)	.	· -	<u>10</u>	-	25
Zn	250 d	Κ ,β [†] ,e ⁻ ,γ	cu ⁶⁵ (d,2n)	-	(0.5)	-	-	3
Ga ()	78 h	Κ ,ē,γ	Zn ⁶⁶ (d,n)	-	-	(30)	-	3.8
32 ^{Ge / 1}	11.4 d	K,e,γ	Ga ⁷¹ (d,2n)	-	-	(8)	. -	2.5
As'	17.5 d	Β[†], β [¯] ,γ	Ge ⁷⁴ (d,n)	-	2	10	. - ·,	3
Se	127 d	Κ , Θ,γ	As ⁷⁵ (đ,2n)	-	-	(1)	-	1
Br	35 h	β¯,γ	82(d,2n)		-	-	500	10
Rb	19.5 d	β ¯ ,γ	sr ⁸⁸ (d,a)	-	1.0	-		1.2
_{zo} Sr ^o	65 a	K _o γ	Rb ⁸⁵ (d,2n)	-	(0.13)	(0.60)	-	1.2
Sr ⁰⁹	54 d	β	Sr ⁸⁸ (d,p)	-	10.4	-	-	1.2
Y	105 d	κ ͵β ⁺ ͵γ	sr ⁸⁸ (d,2n)	-	(0.10)	(1.0)		1.2
Zr	78 h	β	Y ⁸⁹ (a,2n)	-	7.0	75.0	-	1
L Zr ⁹⁾	65 d	β ఀ , లఀ, γ	Zr ⁹⁴ (d,p)	-	0.15	-	·	5.9
, ND SO	16 h	ϐʹ͵γ	$Mo^{92}(d_{\rho}\alpha)$	-	2.4	-	-	6.2
¹² ND 21	55 a	Κ,e [¯] ,γ	$2r^{90}(d_{g}n)$	•	(1.0)	-	- :	2
h ND	37 a	β ¯,e ¯,γ	$Mo^{97}(d,\alpha)$.	0.05	-		11
MO ⁹⁹	67 h	β,γ	Zr ⁹⁶ (a,n)	-	-	-	0.1	36
- 97	2.8 đ	Κ ջ ሮ γγ	$Mo(\alpha_s xn)$	-	-	. 🛏	(30)	₩
44 ¹⁰¹ 45 ^{Rh}	4.3 d	K ,e,γ	Ru ¹⁰⁰ (d,2n)		•	(10)		7.9

*Difficult to evaluate due to multiple reactions or more than one target isotope.

			Yield in µc per µa-hr.				
Isotope Half-Life	Radiations	Reaction	8 Mev D	14 Mev D	19 Mev D		Isotope Ratio
46 ^{Pa¹⁰³ 17 a}	ĸ	Rh ¹⁰³ (d,2n)	-	÷	(.05)	-	1. 1.
47 ^{Ag¹¹⁰ 40 d}	K,e,y	Pd ¹¹⁰ (d,2n)	-	. - . ·	<u>(0.10</u>)	-	7.4
48 ^{Cd¹⁰⁹ 470 d}	ĸ	Ag ¹⁰⁹ (d,2n)	· —	-	(2)	-	2.1
49 ^{In¹¹¹ 2.8 d 49^{In^{114m} 50 d}}	K,e',γ I.T.,e'}	Cd(a,pxn)	- -	-	· -	(0.10)	÷
50 ^{Sn¹¹³ 105 d}	K,e ⁻ ,γ	$Cd(\alpha,m)$			-	(0.50)	**
51 ^{Sb¹²² 2.8 d}	Κ͵ͼ [¯] ͵γ β [¯] ͵ͼ [¯] ͵γ	Sn(d, xn)	-	-	(2)	-	÷
52 ^{Te^{121m} 143 d}	e ¯,γ	sb ¹²¹ (d,2n)		(0.16)	-	- -	1.8
53 ¹³¹ 8.0 d	β [¯] ,៰ [¯] ,γ	Tə ¹³⁰ (d,p) Tə ¹³¹ (d,n)	1.0	<u>20.</u> 0	-	-	*
56 ^{Ba} ^{133m} 38.8 h	Ι.Τ.,ε,γ	Cs ¹³³ (d,2n)		(100)	_	-	*
W^{101} 140 d	Κ , ອ [¯] , γ	.Ta ¹⁸¹ (d,2n)		-	(.005)	-	#
75 Re ¹⁰³ 240 d 75 Re ¹⁸⁴ 52 d	Κ͵ͼ៓͵γ Κ͵ͼ៓͵γ	Ta(a, m)	·	-	-`.	(.05)	*
$77^{Ir^{190}}$ 10.7 d _ Ir^{192} 70 d	Κ,e ⁻ ,γ Κ,e ⁻ ,γ ∫	Os(d,m)	-	.	(2)	.	*
m(20) = n	Κ , ອ [¯] ,γ	Tl ²⁰³ (d,2n)	. –	-	<u>(1.5</u>)	-	3.4
Bi ²⁰⁰ 6.4 d	K,e ⁻ ,γ	Pb ²⁰⁶ (d,2n)	-	-	(10)	-	3.9
Po 138 d	α,γ	Bi ²⁰⁹ (d,n)	•	2.0	- ·	-	1
_{o1} Po ²¹⁰ 138 d	α,γ	Pb ²⁰⁸ (a,2n)	-	-	-	0.85	2
85 ^{At²¹¹ 7.5 h}	a,K	Bi ²⁰⁹ (a,2n)	-	- - -	-	<u>(100)</u> ‡	1

‡ Yield for 29 Mev helium ions.

*Difficult to evaluate due to multiple reactions or more than one target isotope.

III. <u>General Considerations in Carrier-Free Radioisotope Preparation</u>. Types of Separation Processes

-17-

Although the detailed methods which have been developed for isolating carrier-free radioelements are extremely varied and depend on the particular problem at hand, all are based on a relatively few general types of separation processes; (a) co-precipitation, (b) leaching, (c) radiocolloid formation, (d) electrodeposition, (e) ion-exchange, (f) solvent extraction, (g) distillation (volatilization). Each of these is discussed briefly below in terms of its applicability to the problem of isolating unweighable amounts of the probe carrier-free radioelement, or compound of the element, in aqueous solution at a p^{H} range of 3 to 8. This criterion has been adopted for two reasons. First, because the most extensive use of carrier-free radioisotope preparation is in biological and medical usage for which it is usually desirable to obtain radioactivities of extremely high chemical, radiochemical and isotopic purity in isotonic solution of sodium chloride, sodium sulfate or other non-toxic salts. Second, because these specifications are generally high enough to meet requirements of almost all other types of investigation requiring carrier-free radioisotopes.

(a) <u>Co-precipitation</u>: The separation of sub-microgram quantities of radioelements from solution by means of non-isotopic precipitates usually involves a subsequent separation of the radioelement from the carrier precipitate. It is desirable, therefore, to use as co-precipitating agents, substances which can be easily separated with a minimum amount of chemical and physical manipulation. True co-precipitation processes (52,62), (i.e., those cases in which the radioelement because of similar chemical properties is incorporated in the precipitate through isomorphism or mixed crystal formation) although to a large extent extremely reproducible and independent of precipitating conditions are not of great practical importance particularly in the isolation of radioisotopes for biological research. The inherent difficulties involved in the subsequent separation of the chemically similar radioelement and precipitant frequently more than offset the desirable features of co-precipitation processes. This factor has, however, become somewhat less limiting with the development of the ion-exchange technique (130).

More generally in the separation of carrier-free activities as "scavenging" type of precipitation reaction is employed. In these cases, the radioelement is carried down as a result of adsorption phenomena. Although precipitation reactions of this type are quite sensitive to changes in experimental conditions and are not as specific as the true co-precipitation reaction, they have the important advantage in that the scavenging precipitate can usually be chosen so that its subsequent separation from the carrier-free radioisotope involves a minimum amount of manipulation. Table V is a resume of some important co-precipitation - scavenging types of precipitation reactions. A serious disadvantage of co-precipitation processes in general is the fact that they involve the addition of macro amounts of carrier meterial which may contain impurities which are isotopic with the desired radioisotope. In addition, co-precipitation reactions, particularly those involving adsorption phenomena, are frequently specific only under rigidly controlled experimental conditions (62).

(b) <u>Leaching</u>: The extraction of carrier-free radioisotopes into aqueous solution from macro quantities of insoluble target or parent material has been used as a separation procedure in a few cases. These are described in Table V. Although quantitative separations are rarely obtained, the relative simplicity of the leaching technique makes it a useful practical procedure. Since the carrier-free radioelement must exist, under the particular experimental conditions, as a soluble compound and must not be preferentially adsorbed or incorporated in the insoluble material, the separation has had only a limited application.

(c) <u>Radiocolloid Formation</u>: Carrier-free radioelements under conditions which normally result in the formation of visible precipitates if a sufficient quantity of the material is present, may form radiocolloidal aggregates even though the solubility product conditions are not satisfied. Although the exact nature of

-18-

this phenomena is not entirely clear, it has been suggested (52,24) that the radioelement becomes adsorbed on colloidal impurities which are normally present in the solution. Adsorption may also occur on the walls of the containing vessel. This phoenomena has been satisfactorily employed in the isolation of carrier-free radioisotopes of several elements, particularly those forming sparingly soluble hydroxides; an alkaline "solution" of the carrier-free activity is passed through filter paper or sintered glass which removes the radiocolloidal material by preferential adsorption. The invisible quantity of adsorbed radioelement is washed with water and then removed with dilute acid. Radioisotopes which have been separated using this technique are shown in Table V. The procedure is particularly useful in the isolation of radioactive tracers for biological investigation since an isotonic saline solution may be obtained simply by neutralizing the hydrochloric acid wash.

(d) <u>Electrodeposition</u>: Radioelements which have been isolated in the carrierfree state by methods involving electrodeposition reactions include, (1) electronegative elements which are reduced to the metallic state by displacement with a more electropositive element or by an applied electromotive force, (2) elements which form insoluble oxides by anodic oxidation reactions, (3) elements which form insoluble compounds with the electrode material as a result of either cathodic or anodic reactions. Carrier-free radioisotopes which have been separated by electrodeposition reactions are given in Table V. Separation of the activity from the electrode material, particularly when platinum or other noble metals are used, is usually accomplished by preferential dissolution of the radioelement. With a mercury cathode, the separation is conveniently accomplished by volatilization. In certain cases, however, the deposited activity can be removed only by treatment with chemical reagents which react with the electrode material necessitating a subsequent separation to obtain a chemically pure solution of the activity suitable for use in biological systems.

-19-

(e) Ion exchange: The separation of trace amounts of radioelements by selective elution from ion exchange columns has become an increasingly important process in the preparation of carrier-free radioisotopes, particularly in the case of the cationic fission product elements. Although ion-exchange methods had been previously used, the separations obtained were not sufficiently good to warrant the use of exchange adsorption phenomena in radioisotope separations until the important effect of complexing agents on the adsorption-elution cycle was recognized. The necessity of isolating pure fission products for biological testing resulted in the development of this entirely new technique of ion-exchange separation which has had its most important application in the separation of carrier-free radioisotopes of the rare earth elements from fission product mixtures (130). In this work it was found that a mixture of carrier-free fission product activities adsorbed onto amberlite or dowex 50 ion-exchange resin could be selectively eluted with a dilute aqueous solution of organic complexing acids buffered to a controlled p^H with ammonium hydroxide. In a typical separation, a dilute hydrochloric acid solution of carrierfree fission products is passed through a column of Amberlite IR-1 or Dowex 50 ionexchange resin which adsorbs the activities in a narrow band at the top of the column. After washing thoroughly with water, the carrier-free radioisotopes are selectively eluted with 5% citric acid solution, at a pH of from 3 to 8, depending upon the type of resin, the rate of removal and the separation desired. Under optimum conditions, the method is sufficiently precise so that a quantitative separation of neighboring rare earth elements may be obtained. To obtain the carrier-free radioisotopes in hydrochloric acid solution, the citric acid effluent is acidified to reduce the complexing action of the citrate ion and passed through a second column which readsorbs the activity. After washing with dilute hydrochloric acid, the activity is stripped from the column with 6 normal hydrochloric acid.

The ion-exchange technique is the only practical method available for separating many of the fission produced radioisotopes in high purity and in a form which may be used in biological investigation with a minimum amount of chemical

- 20-

treatment and manipulation. The important ion-exchange separations are summarized in Table V.

(f) <u>Solvent Extraction</u>: The selective extraction of a radioactive tracer as a non-polar compound or complex from an aqueous solution by an immissible organic solvent is frequently the most satisfactory method of separating the activity from non-isotopic substances which may be present in either macro or micro concentrations. These processes can often be made highly selective. Solvent extraction is also used to remove macro quantities of non-isotopic substances from an aqueous solution of a desired carrier-free radioelement. This method of removing a macro constituent from solution is of great importance when separation by precipitation would result in a substantial loss of the carrier-free radioelement by co-precipitation.

As a rule, the distribution ratio of an extractable substance is more or less independent of the initial concentration, but the fact that a favorable distribution ratio is obtained at macro or even micro concentration levels does not necessarily mean that sub-micro amounts of the substance will be extractable. For example, carrier-free radio-iron cannot be extracted into ethyl ether from $6\underline{N}$ hydrochloric although, as is well known, the distribution ratio of ferric chloride at higher concentrations is sufficiently large to permit the use of ether extraction as a quantitative separation process. This concentration effect has been observed in other cases also and is generally assumed to indicate that the molecular weight of partitioning substance is greater in the organic solvent as a result of polymerization. Usually, however, carrier-free radioelements at concentrations as low as 10^{-15} M show extraction coefficients which are of the same order of magnitude as those obtained at the macro level.

A number of organic substances have been used to form extractable nonpolar complexes or chelates with carrier-free radioelements. Compounds which form soluble non-polar complexes whose dissociation constants or pH dependent are particularly useful in separating a carrier-free radioelement from a mixture. Extraction separations are summarized in Table V.

- 21-

(g) <u>Distillation (volatilization)</u>: Carrier-free radioelements which have been separated from solution, melts and solids by volatilization or distillation processes are shown in Table V. It has been found that the experimental conditions for the volatilization of a carrier-free radioelement from solutions and melts, i.e., from a homogeneous liquid phase, are roughly equivalent to those found to be optimum for macro quantities of that element, although an inert carriergas is generally required. In volatilization separation from solids, the relative behavior of sub-macrogram amounts of a radioelement is to a great extent dependent on the nature of the solid and its physical state. In some cases, carrier-free radioisotopes of the inert gases produced by transmutation reactions in solids can be volatilized only after the solid target or parent material has been fused or dissolved in aqueous solution (53).

- 22-

Under proper experimental conditions, very sharp separations can often be obtained by volatilization methods. These procedures are more generally applicable, however, to the separation of carrier-free activities from solutions and melts than from solids. An important advantage, particularly in the isolation of radioisotopes for biological research, is that the activity can usually be condensed in a small volume of water or aqueous solution which can be used with a minimum amount of additional chemical treatment.

美国代达 化电子 网

1. 6.1

 $= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^{-1} \left(\frac{1}{2} - \frac{1}{2} \right)^2 \left(\frac{1}{2} -$

1 nangari

CLASSIFICATION OF SEPARATION PROCESSES USED IN THE ISOLATION OF CARRIER-FREE RADIOISOTOPES REFERENCES TO THE DETAILED METHODS OUTLINED IN TABLE VI ARE GIVEN IN PARENTHESES

Separation Processes which have been employed

. .

Radioisotope	Produced by	Co-precipi- tation	Solvent Extraction	Ion Exchange	Gas Evolution Vaporization Distillation	Radiocolloid		Electro- deposition
H ³	Be(d,2a) Li(n,a)				(99,67,100)			
Be ⁷	Li(d,n)	(24,68)	(24,68,2)			(55)		A.
cll	B(d,n)				(111,12)			
14	N(n,p)				(112,97,137)			
13 N	C(d,n)				(108,98)		. ·	
18 F	0(a ,pn)						(53)	
22,24 Na	Mg(d, a)			(4)			(118,27,49,	65)
27 Mg	Al(d,2p)					(57)		
32	S(n _o p)	(16,121)	(32,31)	(16)				(48)
s ³⁵	Cl(d, c) Cl(n,p)			(113)			(134,70,121)
A ³⁷	Cl(d,2n)	:			(53)		·	
K42,43	$A(\boldsymbol{\alpha}, pn)$						(102)	
Ca ⁴⁵	Sc(n,p) Sc(d,2p)	(74)	(9)				(74)	
46 Sc	Ti(d, a)				·	(39)	•	
v ⁴⁸	Ti(d,2n)						(54)	
Cr ⁵¹	$V(d_{g}2n)$	(44)						

TABLE V

-23-

- 24-			· ·					
Radioisotope	Produced by	Co-precipi tation	- Solvent extraction	Ion Exchange	Gas Evolution Vaporization Distillation	Radiocolloid	Leaching	Electro- depositi o
52,54 Mn	Fe(d,a)	(94)	(94)				·	
Mn ^{52,54}	Cr(d,n)	(60)	(60)					
Fe ⁵⁹	Co(d,2p) Co(n,p)	ς.	(72)					
	Fe(d,xn)						(94)	
_{Cu} 64,67	Zn(d,2p) Zn(n,p)	(5)	(58,120)					(30)
65 	Cu(d,2n)	1	(123)		•		(123)	
Ga ⁶⁷	Zn(d, xn)		(50)					
Ge ⁷¹	Ga(d,2n)				(83)			
74 As	Ge(d,2n)				(84,85)			
75 Se	As(d,2n)	(37)			(37)			
80,82 Br	Se (d,2n)				(36)			
Kr ⁷⁹	Br(d, 2n)				(53,10)			
85 Sr	Rb(d,2n)	(101)	(101)					
89,90 Sr	U(n,f)			(130,6)				
88 Y	Sr(d, 2n)			· · ·		(80)		
<u>v</u> 91	U(n,f)			(130,73)				
89 Zr	$Y(d_02n)$	(101)		· · · · ·				
Zr ⁹⁵	U(n,f)	(18,101)	(18)	(130)				
95 Cb	U(n,f)	(18,101)	(18)	· · · ·				
9° Mo	$Zr(\mathbf{s},n)$.		(124)					

5

Radioisotope	Produced by	Co-precipi- tation	Solvent Extraction	Ion Exchange	Gas Evolution Vaporization Distillation	Radiocolloid	Leaching	Electro depositi
Tc ⁹⁵	Mo(d,n)				(93,7)			
79 ⁹⁹	U(n,f)	(104).			(104)			
103 Ru	U(n₀f)	(101)			(101)			
.Pd ¹⁰³	$\mathbf{Rh}(d,2n)$	(45)		-	(45)			
Ag ^{105,106} , 111	Pd(d,2n)	(59)			-			
Ag	Pd ^{lll} β decay							(51)
109 Cd	Ag(d,2n)	(92)				· . *		
In ^{111,114}	Cd(a , pn)	(91)		-				
sn ¹¹³	Cd(a ,xn)		•		(124)			
120,122 Sb	Sn(d,xn)	(91)			(91)			
127,129	U(n _g f)	(101)			(101)			
131 I	Te(d,xn)	(101)			(105,101)			
131 I	U(n,f)				(1,113)			
1 ¹³¹	131 Te ß decay				(1,86,113)			
127 Xe	I(d,2n)				(101,53)			
Cs ¹³¹	Ba ¹³¹ β decay						(103)	
cs ¹³⁷	U(nof)	(46,101)		(103)				
133 Ba	$Ca(d_{o}2n)$			•	×		(81,101)	
140 Ba	U(n,f)			(130,119)				

•

Radioisotope	Produced by	C o- precipi- tation	Solvent Extraction	Ion	Gas Evolution Vaporization Distillation	Radiocolloid	Leaching	Electro- depositic
La ¹⁴⁰	140 Ba β decay	(101)	(101)	(130,119)				
Rare Earths Z=58-Z=63	U(n₀f)			(130,103,11)	3)).			
Rare Earths Z=64-Z=71	Z(p ₉ xn) (d ₉ xn) (a 9xn)	(135)		(135)			×.	
Ta ¹⁷⁷ ,178, 180	Hf(d,xn)	(56)		(56)				
Re ^{183,184}	$Ta(a_{9}xn)$	(41,43)		· · · · · · · · · · · · · · · · · · ·	(41,43)			
185 Os	W(a,xn)		(42)					
204,206 Bi	Pb(d,2n)					(40)		
210 Po	Pb(a ,xn)	. (95)	(95)					
210 Po	Bi(d,n)	(95)	(95)					
210,211 At	Bi(a, xn)			<u></u>	(69,35)			CONTRACTOR OF CONTRACTOR OF CONTRACTOR

•

Purity Considerations

Target Materials and Reagents: In preparing carrier-free radioisotopes of the stable elements, care must be taken to insure that minimum amounts of isotopic impurity are present in the original target material and in the reagents used in the chemical separations. The precautions and techniques which are used in conventional trace analysis (114) to prevent chemical contamination are directly applicable to the problem of preventing stable isotopic contamination in the preparation of carrier-free activities. A useful method of estimating the amount of isotopic impurity contributed by the target material, reagents and vessels, is to run a "blank" on the entire separation process. Spectrographic analysis of the final product will indicate the extent of the isotopic contamination. The availability and sources of elements and compounds in high purity forms has been discussed elsewhere (23).

Although stable isotopes as well as radioactive isotopes of the desired element may be produced in the transmutation reaction, the amount of element. so produced is generally small in comparison with the amount of stable isotopic material which may be added unknowingly in the separation process. This may be the case even though the isotopic impurity cannot be detected using the most sensitive analytical procedures. The only radioisotope preparations which can be obtained absolutely free from admixture with stable isotopic material are of course those of elements which do not occur naturally in weighable amounts. Although there is a certain ambiguity in the term "carrier-free" in describing radioisotope preparations of the stable elements, it is generally used, as it is in the present paper, to indicate that stable isotopic carrier materials were not added to facilitate the separation and that "reasonable" precautions were taken to insure that chemical of maximum purity were used. Radiochemical Contamination: Although many of the possible sources of radiochemical contamination in radioisotope preparations can be eliminated by a proper choice of target materials, bombardment energies, separation process, etc.,

-27-

radiochemical analysis of the final preparation is usually required. In determining radiochemical purity, the safest procedure is to employ both physical and chemical methods, the former based on consideration of half-life and radiation characteristics and the latter involving conventional analytical separations using added stable isotopic carriers for each of radioelements known to be produced or suspected of being produced under the particular bombardment conditions employed. Detailed procedures for the detection and identification of radioactive contaminants have been discussed in considerable detail elsewhere (17).

Target Preparations: From the standpoint of yield of radioactive product per gram of bombarded material, the most desirable target substance for both cyclotron and pile bombardment is a single isotope in the elemental form. This situation is infrequently realized, of course, because most elements are polyisotopic and the use of separated isotopes is usually not warranted in the practical production of carrier-free tracers. In addition, factors other than those based on yield . considerations may be of paramount importance in determining the physical and chemical composition of target materials.

Probably the most important factor limiting the choice of cyclotron target material is the problem of dissipating the large heat input from the bombarding beam of particles. With an "internal" or "probe" target assembly, which is supported inside the vacuum chamber of the cyclotron, beam currents as high as one milliampere may be obtained over an area of approximately 0.5 cm² requiring a power dissipation of ~ 40 kw/cm² for a 20 Mev deuteron beam. Temperature gradients in the order of 2000° C/mm may be produced under these conditions. Target materials for probe bombardments are limited to pure metals or metallic alloys having a high melting point and a high heat conductivity. Even for these substances the power dissipation cannot usually be greater than approximately 10-20 kw/cm². The metals are generally soldered or plated to a water-cooled support which may be made to rotate or vibrate, thus spreading the incident beam over a larger area (89).

- 28-

With the "bell-jar" target assembly, a fraction of the internal beam is brought out of the cyclotron vacuum through a thin metal "window" into an external exclosure which can be evacuated or filled with any desired gas. The intensity of the emergent beam is usually about one-tenth of the internal current. Maximum available external beam intensities are rarely used except in the bombardment of very refractory materials or in the bombardment of metals and metallic alloys which have a high thermal conductivity and can be bonded to a water-cooled target plate. Additional cooling can be obtained by passing an inert gas through the target chamber. Target materials which volatilize or decompose to give a gaseous product must be irradiated with the external beam. Metal powders, oxides and other substances which are not readily bonded to the target plate are supported with very thin metal foils, usually of platinum or tantalum. Many different target designs have been developed for special uses (82, 136, 107, 132).

小的技法

1 500 2

de rectific

12 12 12

- 29-

TABLE VI

- 30-

OUTLINE OF METHODS FOR THE PRODUCTION AND ISOLATION OF CARRIER-FREE RADIOISOTOPES

Radioisotope	Produced by	Description of Separation Processes
l ^{H³}	Be(d,t)	The H^3 is released by heating the Be in a stream of oxygen or
a	Li(n,a)	LiF in an evacuated quartz tube. The H ³ is condensed as H_2^{30}
		after passing over hot CuO (99,67,100).
7 يBe	Li(d,n)	7 Be is separated from Li by co-precipitation on Fe(OH) ₃ from
	e san tan je	dilute NH ₁₀ OH solution. The Fe(OH) ₃ containing the Be ⁷ is
		dissolved in 6N HCl and Fe is extracted with ether (24,68).
• •		The Li is dissolved in H ₂ 0. The alkaline "solution" is
		drawn through a sintered-glass filter which removes the
· · · · ·	8 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -	7 Be as adsorbed radiocolloid. The activity is removed
		from the glass surface with dilute acid (55).
		Be ⁷ is extracted from aqueous solution at pH 5-6 by thenoyl
		trifluoracetone in benzene. The activity is back extracted
		with concentrated HCl (2).
6 ^{c¹¹}	B(d,n)	C^{11} C^{10} and C^{10} is expelled from a B_2^{0} target during bombardment.
۹	· · ·	The $C^{11}O$ and $C^{11}O_2$ is passed over hot CuO and the $C^{11}O_2$
•	. ·	condensed in a liquid-air trap (111,12).
6 ¹⁴	N(n,p)	The C ¹⁴ and C ¹⁴ formed during bombardment of NH ₄ NO ₅ target
		solution are removed by aspiration with CO -free air. The
		gas is then passed over hot CuO and the C^{140}_{2} is collected in
· · ·		$Ba(OH)_2$ solution (112,97,137).

۰. ۲	Radicisotope	Produced by	Description of Separation Processes
9	6 ^{c¹⁴}	N(n _ø p)	$Ca(NO_3)_2$ target material is dissolved in a vessel filled with CO_2 -free air. H_2O_2 is added to oxidize nitrogen oxides to nitrates. HNO_3 is added and the $C^{14}O_2$ is trapped in $Ba(OH)_2$ solution (113).
	7 ^{N¹³}	C(d,n)	The C is bombarded in a gas-tight chamber. The N ¹³ released during bombardment is pumped off. The major part of the N ¹³ remains in the C target material. This fraction is obtained by burning the C target in a combustion tube (108,98).
	9 ^{F¹⁸}	0(d ,2n)	Liquid H ₂ 0 may be bombarded in an adequately cooled thin-window target to produce an aqueous solution of F^{1O} directly (131,104).
	22,24 11 ^{Na}	Mg(d,a)	The Na ^{22,24} is dissolved out of MgO, Mg(OH) ₂ or MgCO ₃ almost quantitatively with water (118, 27, 49). Na ^{22,24} does not co-precipitate with Mg(NH ₄) ₂ (CO ₃) ₂ °4H ₂ O (65).
\$			A separation of Na ²² from weighable amounts of Mg may be obtained using ion-exchange techniques (4).
	12 ^{Mg²⁷}	Al(d,2p)	The Al target is dissolved in excess HaOH. The resultant "solution" is drawn through filter paper which separates the Mg ²⁷ as adsorbed radiocolloid. The activity is removed with dilute HCl (57).
	15 ^{p32}	S(n,p)	Pile bombarded S (elemental) is melted, and at a temperature of 120-130 $^{\circ}$ C., is poured into boiling concentrated HNO with stirring. On cooling the HNO containing the P ³² is separated 3

- 32-

dioisotope

1	Produced	by	•
	•		

Description of Separation Processes

. Anno 1997	4	
32 15 ^P Cont'd	S(n,p) Cont'd	from the S, and filtered. Fe ⁺⁺⁺ is added and the solution is made alkaline with NH _b OH. The Fe(OH) ₃ containing the P ³² is
		dissolved in ECl and Fe is extracted into other. The P ³² solution is then passed through a cation-exchange column (16,121).
		CS_2 may be used as target material with other neutron sources (i.e., radium-beryllium or cyclotron). The P^{32} is extracted from CS_2 by shaking with dilute HNO_3 (31,32). P^{32} is removed from irradiated CS_2 by the use of electrodes immersed in the liquid (48).
16 ^{8³⁵}	Cl(d,a) Cl(n,p)	KCl, NaCl and FeCl are used as target materials. Separation of S ³⁵ from irradiated KCl or NaCl is effected by taking
		advantage of the insolubility of these salts in concentrated HCl. S^{35} is quantitatively retained in the HCl solution. Separation from FeCl ₃ is effected by solvent extraction of FeCl ₃ from HCl solutions (134,70,121).
,		KCl is dissolved in H ₂ 0 and a few drops of H ₂ 0 ₂ are added to oxidize S^{35} to $S0_{\mu}^{=}$. K ⁺ is removed on ion-exchange column(113).
. 18 ^{4³⁷}	C1(d,2n)	The A ³⁷ is retained in the KCl target material during bombard- ment. Separation is made by fusing the KCl or by boiling a solution of the KCl in vacuo (53).
42,43 19 ^K	A(a,p) A(a.pn)	A stream of A is bombarded in a bell-jar target. The major portion of $K^{42,43}$ settles out on the walls of the bell-jar
	1 S., SA	and the remainder is caught in a glass-wool plug in the gas outlet. After bombardment, the walls and the plug are washed in warm H_2^0 (102).

Radioisotope	Produced by	Description of Separation Processes
20 ^{Ca⁴⁵}	Sc(n,p)	The Sc 0 target is dissolved in HCl, and reprecipitated as 23
	Sc(d,2p)	$Sc(OH)_3$ with the addition of NH_4OH . The Ca ⁴⁵ in the super-
•		natant is co-precipitated on BaCO3. Separation from the Ba
•		is effected by taking advantage of the insolubility of BaCl
•		in concentrated HCl-ether solution (74).
		The Sc_2^0 is dissolved in 12N HCl and the solution is evapor-
		ated to incipient dryness. H_2^0 is added and the pH is adjusted
•		to 4.0 with NaOH. This solution is extracted with 200 ml of
· · · · ·		0.5 M thenoyl trifluoroacetone in benzene which removes most
		of the Sc. The aqueous phase containing the Ca ⁴⁵ is adjusted
		to pH 8 with NaOH and re-extracted with 0.5 M TTA. The Ca^{45}
	·····	in the benzene fraction is back extracted with H ₂ 0 or dilute
		HCl (9).
21 ^{Sc⁴⁴,46,47,48}	(a, Ti(d)	The Ti metal target is dissolved in a minimum volume of
	Ti(d,a) Ti(d,2p)	H_2SO_4 . The solution is slowly added to excess $8N$ NH ₄ OH
	s i de la companya de	containing 30% H_2^{0} to give a clear "solution" of the soluble
		pertitanate containing the Sc activity as radiocolloidal
		aggregates. This solution is then drawn through filter paper
•		which retains over 95% of the Sc activity as adsorbed radio-
		colloid, which is removed by treatment with dilute HCl (39).
v ⁴⁸	Ti(d,2n)	The Tio is fused with a mixture of Na CO and NaNO. The
<i>2</i>)		V^{48} is leached from the fused mass with water. The alkaline
		48 solution of V is acidified with HCl and reduced in volume
		to precipitate the large excess of NaCl. V^{48} is retained in
		the supernatant (54).
	a	

 $V_{1} = \frac{1}{2} \left[- \frac{1}{2} M^{2} \right] + \frac{1}{2} \left[\frac{1}{2} M^{2}$

- 33-

Radioi	lsotope	Produced b	y Description of Separation Processes
	Cr ⁵¹	V(d,2n)	The V target is dissolved in HNO. The solution is diluted
	-	V(p,n)	to $6N$ and saturated with SO_2 to insure the reduction of Cr^{+3} .
٣			Fett or Latis added and the solution is made alkaline with
S			Na CO . V is oxidized to soluble vanadate by air in alkaline
•	- And - and		solution and Cr^{51} is carried qualitatively on the La(OH) ₃ .
ê.			Cr^{51} is separated from the La(OH) by a second precipitation
			in the presence of Br which oxidizes the Cr^{51} to chromate (44).
25	Mn 52,54	Fe(d,a)	The Fe target is dissolved in HCl. All but a few mg of Fe is
- - /			extracted with ether. The $Mn^{52,54}$ in the tetrapositive state,
			is quantitatively co-precipitated on $Fe(OH)_3$ with the addition
			of NH ₄ OH-Br ₂ mixture. Several reprecipitations are required
,	· · ·		to obtain the Mn 52,54 free from the concurrently produced Co
			activities (94).
		Cr(d,n)	The Cr target is dissolved in HCl and evaporated to incipient
		Cr(d,2n)	dryness. FeCl_ carrier is added and the solution is added with
	· ·		stirring to NaCH solution saturated with Br_2 . The $Mn^{52,54}$ is
			quantitatively co-precipitated on the $Fe(OH)_{\pi}$ which is dissolved
	•		in $6N$ HCl and extracted with ether to remove Fe carrier (60).
26	re ⁵⁹	Co(d,2p)	The Co is dissolved in $3N$ HNO and the pH of the solution is
		Co(n,p)	adjusted to 4.0-7.0 by the addition of NH OH-NH Ac. 1 ml of
. 4 ⁻			a saturated aqueous solution of acetyl acetone is added and
i.	· · · · ·		the solution is extracted with xylene. The organic phase
#	• • • • •		containing the Fe ⁵⁹ is evaporated to dryness. Organic residue
•			is destroyed by fuming $HClO_{4}$ (72).
1			

- 34-

UCRL-1067-Rev.

یر به ایسانی ۱۹۰۸ - ایسانی Radioisotope

26 ^{Fe⁵⁹}	Co(d,2p)	The Co target is dissolved in HCl. Excess NH4 OH is added and
		the resultant clear "solution" is passed through two consecutive
		Whatman No. 50 filter papers which quantitatively removed the
\$		Fe ⁵⁹ as adsorbed radiocolloid. The activity is removed from the
		filter paper with dilute HCl (44).
27 ^{Co⁵⁵,56,57,58}	Fe(d,m)	The Fe target is dissolved in HCl. $Fe(OH)_3$ is precipitated
-]		vith the addition of excess NE _L OH-NH _L Cl solution containing
		Br_2 . The Co ⁵⁶ is retained in the supermatant. NH_4 salts
		2 are destroyed with HNO ₃ (94).
	·	3
29 ^{Cu64,67}	Zn(d,2p)	The Zn target is dissolved in HCl, diluted to 5.5N and Ga
		activities are extracted with ether to reduce radiation hazard
		in subsequent manipulations. The pH of the aqueous phase is
		adjusted to 1.0-1.2 with NaOH and the Cu ⁶⁴ is extracted with
,		CCl_{j_1} solution containing .001% dithizone. The CCl_{j_1} phase is
		evaporated to dryness and organic material is removed by
		heating to 500° C (58,120).
		$2nSO_{4}$ target is dissolved in water. The Cu ⁶⁴ is separated
· · ·	Zn(n,p)	
٩		from the acidified solution by shaking the solution with a
*		few milligrams of freshly precipitated Bi2S3, dissolving the
je.		Bi ₂ S ₃ with HNO ₃ , evaporating the solution to dryness, taking
£		up in dilute HCl and reprecipitating the Bi as Bi(OH) with
		excess $\operatorname{NH}_{\mathcal{U}}$ OF. The Cu ⁶⁴ is retained in the supernatant (5).
•	$\ \widehat{f}(\cdot,\widehat{\theta}_{n})\ _{1}^{2} = \ \cdot\ $	$2nCl_2$ target is dissolved in water. Cu^{64} is concentrated by
· · · · ·		addition of small amount of Zn which is then dissolved in
		acid and Cu^{64} is deposited on polished Pt foil from 0.05N
	•	H_2SO_4 saturated with H_2 (30).

- 35-

		-36- UCRL-1067-Rev.
Radioisotope	Produced 1	Description of Separation Processes
30 ^{Zn} ⁶⁵	Cu(d,2n)	Cu target is dissolved in HNO ₃ . Excess HCl is added to destroy 3
		HNO and the solution is neutralized to $0.25N$ HCl with NH OH.
A		CuS is precipitated with H_2S . Zn^{65} is not corecipitated.
		The supernatant is adjusted to pH 5-5.5 with NaAc and sufficient
· · ·		$Na_2S_2O_3$ is added to complex traces of Cu remaining in solution.
•	et i	The Zn ⁶⁵ is extracted into CCl_{μ} solution containing dithizone
14 ho Minterior Statement and Malloc - 12 and 19 days and 19 days		and back extracted with .02N HCl (123).
31 Ga ⁶⁷	Zn(d,n)	Zn target is dissolved in HCl and adjusted to $6N$. Ga 67 is
	Zn(d,2n)	extracted with di-ethyl ether (50).
32 ^{Ge⁷¹}	Ga(d,2n)	The Ga target is dissolved in 48% HBr and the solution is dis-
		tilled. The Ge 71 is obtained in the first few ml. of the HBr
		distillate. HNO, is added to destroy HBr and the solution is
· .		evaporated to incipient dryness. H_2O is added and the evapora-
		tion is repeated to remove traces of HNO_{3} (83).
33 ^{As} ⁷⁴	Ge(d,2n)	The Ge metal is dissolved by refluxing with aqua regia. Excess
<i>))</i>		HCl is added to destroy HNO_{3} and GeCl_{h} is distilled from the
		solution. The As ⁷⁴ is retained in the residue as the non-
		volatile pentachloride. After GeCl, is completely removed,
•		HBr is added to the HCl residue and As , as the volatile
	•	trichloride, is distilled into HNO_3 . The HNO_3 solution of As ⁷⁴
ب		is evaporated to dryness (84,85).
34 ^{Se⁷⁵}	As(d,2n)	The As is dissolved in aqua regia. HCl is added to destroy
÷.		excess HNO. The solution is adjusted to $3N$. Tellurous
	-	acid carrier is added and precipitated as Te by passing SO
		through the solution. Se is carried quantitatively. The
		Te precipitate is dissolved in HNO . HBr is added and the
		Te is distilled. Se ⁷⁵ is retained in the HNO3 residue (37).

Radioisotope	Produced h	Description of Separation Processes
35 ^{Br80,82}	Se(d,2n)	The Br ^{80,82} is volatilized while the Se target is dissolved in
		H_2SO_4 . An inert gas is used to sweep the Br ^{80,82} into a trap
*		filled with CCl_{μ} . A major fraction of the activity is extractable
•		with Na SO ₃ solution. Some of the Br 80,82 reacts with and does
		not extract the CCl_4 (36).
36 ^{Kr⁷⁹}	Br(đ,2n)	79 The Kr is retained in the KBr target material during bombardment.
		Separation is made by fusing the KBr or by boiling a solution of the
		KBr in vacuo (53,10).
38 ⁸ 2	Rb(d,2n)	The RbCl is dissolved in 0.1N HCl, FeCl ₃ carrier is added and
		precipitated with the addition of $(NH_1)_2CO_3$ -NH ₄ OH solution. The
		Fe(OH) _z containing the Sr ⁸⁵ activity is dissolved in $6N$ HCl and
		> - Fe is extracted with ether (101).
	U(n,f)	Sr ^{89,90} is separated from fission-product mixture by complex
		elution from organic zeolites. Sr ^{89,90} and Ba ¹⁴⁰ are removed
	ta ta ka sa	successively by 5% citrate at pH 5 (6,130). (A more detailed
		description of fission-product separation by ion-exchange methods
		is given in the section on rare-earths.)
88 39 ^Y	Sr(d,2n)	The Sr metal is dissolved in dilute HCL. The solution is
		diluted to ~ 0.5 M Sr ⁺⁺ and NH OH is added to pH 9. This
		4 "solution" is then drawn through filter paper which removes
		the Y as adsorbed radiocolloid. The activity is removed
-		with dilute HCl (80).
	NG ADVICTOR ON BROWNING MET CHORE TO ME CHORE	
39 ^{Y91}	U(n,f)	Y ⁹¹ is separated from rare-earth fission products by complex
	t i serie de la composition de	elution from amberlite IR-1 resin with 5% citrate at pH 2.7
		(130,73). (A more detailed description of fission-product
		separations is given in the section on rare earths.)

-37-

•		-38- UCRL-1067-Rev.
Radioisotop	Produced b	Description of Separation Processes
40 ^{Zr⁸⁹}	¥(d,2n)	The Y_{23} target is dissolved in HCl. The resultant solution
	1	is evaporated almost to drynass and then diluted with H ₂ 0.
#		Y is precipitated as the fluoride with HF. A few ml. of
		H_2SO_4 are added and HF is removed by evaporation. The solution
	,	is diluted with water, FeCl carrier is added and precipitated
1 6	a ser a single a ser	with $NH_{4}OH$. The Zr ⁸⁹ is carried quantitatively. The precipi-
		tate is dissolved in 6N HCl and Fe is extracted with ether (101).
40 ^{Zr} 95	U(n,f)	Oxalic acid is used as a specific complexing agent to remove
		$2r^{95}$ and Cb^{95} from mixed fission products on amberlite IR-1
		columns - 0.5% exalic strips $2r^{95}$ -Cb ⁹⁵ quantitatively; none
		of the trivalent or divalent elements is removed by this
-		procedure (130).
		Zr^{95} is separated from Cb ⁹⁵ daughter by, (a) co-precipitation
	1 (14) <u>20</u> 1	of Cb^{95} on MnO ₂ from 10N HNO ₃ , and (b) extraction of Zr^{95} from
		HNO_3 or $HClO_4$ using thenoyl trifluoroacetone (18).
		The bulk of the uranyl nitrate target material is removed by
		ether extraction. To the concentrated solution of fission
		products are added a few mg. of FeCl ₃ , hydroxylamine and excess
•		$NH_{4}OH$. Zr ⁹⁵ and other insoluble fission products, in the presence
		of NH_4OH , are co-precipitated on the Fe(OH) ₃ . The U remains in
		the supernatant. The $Fe(OH)$ is dissolved in HCl and Fe is
		extracted with ether. The $2r^{95}$, Cb^{95} and $Ce^{141,144}$ are separated
		as iodates using thorium carrier. Zr95-Cb95 are separated from
		Ce and Th by means of HF precipitation. Cb^{95} is separated from
		the $2r^{95}$ by K_2C_3 fusion (101).

	· .	-39- UCRL-1067-Rev.
Radioisotope	Produced	by Description of Separation Processes
41 ^{Cb⁹⁵}	$U(n_{g}f)$	See Zr ⁹⁵ prodedures.
42 ^{Mo99}	$Zr(\alpha_{g}n)$	The ZrO target is dissolved in the presence of Cb "hold-back"
•	÷.	carrier by boiling in $12N H_2SO_4$ down to fuming. NaCl and HCl
• a '		are added, following cooling and dilution with water, to bring
• •		the (H^+) and (Cl^-) to $6N$. The Mo is extracted with ether
•	the second s	saturated with HCl (124).
43 ^{Tc} 95	Mo(d₃n)	The Mo target is dissolved in aqua regia and evaporated to incipient
		dryness. The oxide is dissolved in $HClO_4-H_3PO_4$ and Tc^{95} is dis-
		tilled with the addition of HBr using a CO_2 carrier gas (7,93).
43 ^{Te} 99	$\mathbf{U}(\mathbf{n}_{g}\mathbf{f})$	The U metal is dissolved in 37% HCl and the UCl is oxidized to
		$U0_2C1_2$ with H_20_2 and Br_2 at $60^{\circ}C$. PtC1 ₄ is added and the
		solution is saturated with the H ₂ S at 90°C. The Tc ⁹⁹ is co-
		precipitated with the PtS2 along with other acid insoluble
		sulfides of the fission products. The PtS ₂ is dissolved in
		$H_2O_2-NH_4OH$ solution, Br ₂ is added and the solution is evaporated
		to incipient dryness. $18 \text{M} \text{H}_2 \text{SO}_4$ is added and the Tc ⁹⁹ is dis-
		tilled (104).
44 ^{Ru} 97,103	Mo(a, m)	The Mo target is fused with KOH and KNO ₂ . The resultant melt
4		ر is extracted with water. The basic solution is transferred to a
		distilling flask and the carrier-free $Ru^{97,103}$ is volatilized
€. *		by passing Cl ₂ through the solution with heating. The Ru activity
е. С		is collected in a trap filled with 12N HCl. The distillate is
-		evaporated to a small volume, treated with excess KOH and the $97,103$ Ru ^{97,103} is redistilled as above (44).

122 25

Charles Mart

· · · · ·

UCRL-	106	7-R	ev	9

	н. -	
·· · · · ·	•	-40- UCRL-1067-Rev.
Redioisotope	Produced by	Description of Separation Processes
44 ^{Ru¹⁰³}	U(n,f)	The U metal is dissolved in HNO and adjusted to $3N$. Nal
		is added and the solution is boiled until all of the iodine is
		expelled. HClO ₄ is added and Ru ¹⁰³ is distilled into 3 <u>N</u> HCl.
3		The distillate is made strongly alkaline and Ru ¹⁰³ is distilled
a tana ang sang sang sang sang sang sang sa		from alkaline solution after oxidation with Cl_{2} (101).
Rh ^{101,102} 45	Ru(d _o xn)	The Ru target is fused with Na ₂ 0 ₂ and the melt is digested
		with HCl. After centrifugation, the acid solution is made basic
		with KOH and the Ru is volatilized by passing Cl through the solu-
•		tion with heating. The residue is acidified, 5 mg of Fe ⁺⁺⁺ is
		added and the $Rh^{101,102}$ is co-precipitated on Fe(OH) with the
	y	addition of KOH. The $Fe(OH)_3$ is dissolved in $6N$ HCl and Fe is
	1. 1823 - 1925 - 1925 -	separated by ether extraction (44).
Pd ¹⁰³ 46	Rh(d,2n)	The Rh is fused with KHSO and the fused mass is dissolved in water.
		HCl is added together with mg amounts of H_2SeO_4 and the solution is
		saturated with SO_2 . The Pd ¹⁰³ is carried quantitatively on the Se
		metal. Se is removed by distillation with $HClO_4$ (45).
47 ^{Ag} 105,106	,111 Pd(d.n)	Ag^{105} is separated by co-precipitation on Hg_2Cl_2 which is memoved
4 {		by volatilization (59).
47 ^{Ag¹¹¹}	Pd ¹¹¹	Ag is separated from Pd by electrolysis from 1 M NaOH-
		0.1 M NaCN solution using Pt electrodes and a cathode potential of
		-1.210 V (51).
48 ^{Ca¹⁰⁹}	Ag(đ,2n)	The Ag is dissolved in HNO ₃ and the solution is evaporated to
		dryness. The AgNO ₃ and the solution is evaporated to dryness.
		The AgNO ₂ containing the activity is dissolved in H_0 and the Ag
	1	is complexed with NH _h CNS. The solution is adjusted to pH 5 with
		sodium acetate and the Cd ¹⁰⁹ is extracted with chloroform con-
	4	taining 5% pyridine (92).

Radioisotope	Produced by	y Description of Separation Processes
49 ^{In} 111,114	Cđ(a,p) Cđ(a,pn)	After separation of Sn ¹¹³ by distillation (see below), the H ₂ SO ₄ residue containing In ¹¹⁴ is neutralized with NH ₄ OH. The Fe(OH) ₃ precipitate carries in the In ¹¹⁴ quantitatively in the presence of the NH ₄ OH. Fe is separated by ether extraction (91).
Sn ¹¹³ 50	Cd (a, n) Cd (a, 2n)	The Cd is dissolved in HNO ₃ and the solution is evaporated to incipient dryness, diluted with H ₂ O and made alkaline with NH ₄ OH after the addition of FeCl ₃ . The Sn ¹¹³ and In ¹¹⁴ are carried on the Fe(OH) ₃ precipitate. The Fe(OH) ₃ is dissolved in a minimum volume of 36N H ₃ SO ₄ and transferred to an all-glass distilling apparatus. HBr is added dropwise and Sn ¹¹³ is volatilized at 220° C. The distillate is collected in HCl (91).
51 ^{80,122}	Sn(d,2n)	The Sn target is dissolved in aqua regia. HCl is added to destroy excess HNO ₃ and the solution is adjusted to 0.1 <u>N</u> HCl. Milligram amounts of Cd ⁺⁺ are added and precipitated with H ₂ S after the addition of oxalic acid to prevent the precipitation of SnS ₂ . The CdS is dissolved in HCl and transferred to a distilling flask. Traces of Sn are removed by distillation with HClO ₄ at 200°C. Sb ^{120,122} is then distilled with the gradual addition of HBr (91).
127,129 52 ^{Te}	U(n,f)	The Te ^{127,129} is precipitated out of an HCl fission mixture on CuS. The CuS is dissolved in HNO ₃ and the solution is made $5N$ in HF. The Te ^{127,129} is then co-precipitated on RuS ₂ . The RuS ₂ is decomposed with HNO ₃ and the residue is boiled with HClO ₄ to expel the Ru (101).

-41-

Radioisotope	Produced by	Description of Separation Processes
53 ¹³¹	$Te(d_{g}n)$	The Te is dissolved in $Cr_{3}^{0}-H_{2}S_{4}^{0}$ solution. Oxalic acid is added
	Te(d,2n)	and the I* is distilled into NaOH (105).
		*I is evolved during the dissolution of Te target in HNO3. The
		activity is collected in a trap filled with CCl ₄ and extracted
		with Na ₂ S0 ₃ (101).
	U(n,f)	I ¹³¹ vaporizes during the solution of U in HNO. The vapor is
		passed through a condenser and NaOH scrubber. I ¹³¹ is redis-
	n an	tilled into dilute NaOH from HNO3-H202. The NaOH solution of
		I^{131} is made 20% in H ₂ SO ₄ and treated with KMnO ₄ . Oxides of
		nitrogen are removed by distillation. The residue is treated
		with H ₃ PO ₃ and the I ¹³¹ is distilled into dilute NaOH-Na ₂ SO ₃
	2. P	solution (1,113).
	Te ¹³¹	The Te metal is fused with NaOH. The fused mass is extracted with
	β [°] decay	water and the washings are transferred to an all-glass distilling
		flask. $KMn0_{4}$ is added to the alkaline solution to oxidize I
		to IO_3^- . H_2SO_4 is then added followed by solid oxalic acid and the
х. 		1 ¹³¹ is distilled into dilute Na ₂ SO ₃ -Na ₂ CO ₃ solution (86).
	<u> </u>	Te target is dissolved in $18N H_2SO_4-50\%$ CrO ₃ solution. The solution
, t er, ₁ ,		is cooled to 50° C and solid oxalic acid is slowly added. The I ¹³¹
	n - p. 1 p s - p.	is then distilled into dilute Na ₂ SO ₃ -NaOH solution (1,113).
xe ¹²⁷ 54	I(d,2n)	The Xe ¹²⁷ is retained in the KI target material during bombardment.
	· .	Separation is made by fusing the KI or boiling a solution of the
- -		KI in vacuo (101, 53).

 $[1,1] = \{0,1\}$

- 42-

UCRL-1067

are t

• • ,

. |

Ra isc	otope	Produced by	Description of Separation Processes
55 ^{Ce}	131	Ba ¹³¹ β [°] decay	BaCl ₂ is precipitated from 12N HCl saturated with Cl ₂ at 0°C. Cs ¹³¹ remains in the supernatant. Further purification is obtained by La(OH) ₃ scavenging (34).
, 55 ^{C e}	137	U(n,f)	Cs^{137} is separated from the divalent or trivalent fission product ions by preferential elution from amberlite IR-] using $0.25N$ HCl (103). Cs^{137} is separated from fission mixture by co-precipitation on NH_4ClO_4 from HClO ₄ solutions using absolute alcohol (46).
			Cs^{137} is separated from a fission product mixture by co-precipi- tation on sodium cobaltinitrite and ammonium cobaltinitrite. The Co is removed as CoS from NH ₄ OH solution (101).
56 ^{Ba}	133	Cø(d,2n)	The CsCl target material is dissolved in HCl to pH 2 and the solution is adjusted to pH 10 with NH_4OH after the addition of FeCl ₃ carrier. The precipitate of Fe(OH) ₃ is washed, dissolved in HCl and reprecipitated with NH_4OH at pH 5.4. The Ba ¹³³ is retained in the supernatant (81,101).
.56 ^{Ba}	140	U(n _p f)	After the elution of the rare-earths from Amberlite IR-1 using 5% citrate at pH 2.7, the $Sr^{89,90}$ and Ba^{140} are successively removed by 5% citrate at pH 5 (130,119).
57 ^{I.a}	140	Ba ¹⁴⁰ β Decay	La ¹⁴⁰ is separated from Ba ¹⁴⁰ -La ¹⁴⁰ mixtures by elution from Amberlite IR-1 using 5% citrate at pH 2.7 (130,119).

3177733

- 43-

Radioisotope	Produced	by Description of Separation Processes
, v		
57 ^{Ia} 140	Ba ¹⁴⁰	BaCl is added to an HCL-Ba solution and precipitated by
2	β ⁻ Decay	passing HCl gas through the solution at 0°C. The BaCl, containing
ى ئ ەر		the Ba ¹⁴⁰ is dissolved in H_2^0 . FeCl_carrier is added and
		precipitated with the addition of NH_4OH . The Fe(OH) precipitate
		is discarded. After allowing the purified BaCl, to stand for
		several days a second Fe(OH), precipitation is made which carries
		the La ¹⁴⁰ . Fe is removed by ether extraction from $6N$ HCl (101).
57-63 La ¹⁴⁰	U(n,f)	A solution of all fission-produced species in 0.01 to $0.1\underline{N}$ HCl
Pr ¹⁴³		is passed through an Amberlite IR-1 resin column. All cations
na ¹⁴⁷		are adsorbed while the fission produced anionic elements (Ru, Te,
Pm^{147}		Tc) and any I present pass through acid are recovered in the
Sm ¹⁵¹		effluent. Most of the Cs ¹³⁷ may be eluted at this point by the
Eu ¹⁵⁵		addition of 0.25 <u>N</u> HCl. The column is washed, and Cb^{95} -Zr ⁹⁵ is
		preferentially removed by 0.5% oxalic_acid. By using differential
		pH - controlled ammonium citrate elution, the trivalent elements
n na Si sa		are removed in the order: Y, Eu, Sm, Pm, Nd, Pr, Ce, La. With
		Amberlite IR-1, the eluting agent in general use is 4.75-5.0%
¢		citric acid at a pH of from 2.7-2.95. In practice a group of
ان در ان		several elements may be eluted then readsorbed and fractionated
4		under more rigidly controlled conditions (130,103,113).
64-71	Z(p,xn)	After bombardment, the rare earth oxide is dissolved in HNOz and
Gđ	Z(d,xn)	2 insoluble matter is removed by centrifugation. Carriers for
ТЪ	Z(a, xn)	contaminating activities are added and the rare earth fluoride
Dy	- Loo g and /	is precipitated from hot 2N HNO, by addition of HF. The fluoride
Ho Er		
Tm		is dissolved in HNO ₃ -H ₃ BO ₃ and precipitated as the hydroxide. The
Yd Lu		rare-earth hydroxide is dissolved in HCl and the solution is

- 44-

and a grand and a	•	
Radioisotope	Produced by	Description of Separation Processes
64-71 Gd,Tb,Dy, Ho, Er, Tm, Yb, Lu	(us an)	is adjusted to a pH between 0.5 and 1.5. The rare earth activities are then adsorbed onto Dowex-50 and eluted with 0.25 M citric acid adjusted to pH 3.05 with NH ₄ OH (95,135).
73 ^{Ta} 177,178,17		The HfO ₂ is dissolved in HNO_3 -HF solution. HF is removed by evaporation with the addition of $16N HNO_3$ -KMnO ₄ is added and the MnO ₂ precipitate carries the Ta quantitatively. The MnO ₂ containing the Ta activity is dissolved in oxalic acid and Mn ⁺⁺ is removed by adsorption on Amberlite IR-1 or Dowex-50 (56).
Re ^{183,184}	Ta(α, xn)	The Ta metal target is dissolved in a minimum volume of $16\underline{N}$ HNO ₃ containing 10% HF. The HF is removed by volatilization and the bulk of the tantalic acid is separated by centrifugation. The $Re^{183,184}$ is quantitatively retained in the supernatant. The HNO ₃ solution is evaporated almost to dryness and transferred to an all-glass distilling flask with $36\underline{N} + \underline{SO}_4$. The $Re^{183,184}$ is dis- tilled at 240° C with the addition of $9\underline{N}$ HBr and co-precipitated on CuS after the removal of HBr and HNO ₃ . Separation from the Cu is effected by precipitating CuO from alkaline solution (41,43).
* * *	W(d,xn)	The W target is fused with KOH-KNO and the fused mass is extracted with water. The solution is acidified with $16N \text{ HNO}$ precipitating tungstic acid which is removed by centrifugation. The carrier-free $\text{Re}^{183,184}$ is isolated from the HNO supernatant using the distilla- tion procedure described above (42).

3 6 J

-45-

Rar iso	tope	Produced by	Description of Separation Processes
	•		
76 ⁰⁵	185	W(a,m)	The W metal is fused with KOH-KNO and the fused mass is extracted $\frac{3}{3}$
	,		with water. The solution is acidified with HNO precipitating
f ⁶	:		most of the WO which is removed by centrifugation. The Os^{185}
•			is distilled from $5N$ HNO and collected in trap filled with 3
		1	$5\underline{N}$ HNO ₃ . Extraction of the HNO ₃ distillate with ether removes
بورون میں			the Os^{185} which is back extracted with NaCH (42).
Ir	190,192	Qs(d,xn)	The Os Bowder is dissolved in aqua regia and volatilized with
			the addition of excess HNO. The residue is fumed with H_SO, to
			remove Re activity and then heated to dryness. The carrier-free
			Ir ^{190,192} is redissolved in 12N HCl and the resultant solution is
	· · · ·		evaporated to dryness on NaCl (56).
82 ^{P1}	,203	Tl(d,2n)	The Tl_{20_3} target material is dissolved in dilute ENO ₃ Tl^{+++} is
02			reduced to TI ⁺ with SO ₂ . Five milligrams of Fe ⁺⁺⁺ is added and
•			the solution is made basic with NH _L OH. The Pb ²⁰³ is co-precipi-
			tated with the $Fe(OH)_3$ and the Fe removed by ether extraction (56).
83 ^{B1}	204,206	Pb(d,2n)	The Pb is dissolved in a minimum volume of HNO and the resultant
¢	•		solution is evaporated to dryness. The $Pb(NO_3)_2$ containing the
. .			Bi is dissolved in excess 10% NaOH. This "solution" is
%a.,			drawn through filter paper which retains over 98% of the Bi
· •			activity as adsorbed radiocolloid. Dilute HCl removes the
			Bi ²⁰⁴ , 206 quantitatively (40).

Z

Ň

- 46-

Radioisotope	Produced by	Description of Separation Processes
210 84 ^{Po}	Pb(a,xn)	The Pb target is dissolved in HNO_3 . $Pb(NO_3)_2$ is centrifuged off and the solution is extracted with amyl acetate to remove Tl,
		Hg and Au. Bi and Tl hold back carriers are added the the solution is fumed with HCl. The solution is diluted to $3N$ and Te carrier is precipitated with SO ₂ removing At and Po. The Te is reprecipi- tated from $6N$ HCl. Under these conditions At is co-precipitated and Po remains in the supernatant. Po in the HCl solution is extracted with an equal volume of 20% tributyl phosphate in diethyl ether. The activity is back extracted with HNO ₂ (95).
85 ^{At²¹⁰,211}	Bi (a, 3n) Bi (a, 2n)	A layer of Bi metal alloyed to a 10 mil thick water-cooled Al target plate is bombarded in a bell-jar target filled with He for additional cooling and to prevent oxidation of the Bi. The bombarded Bi is cut from the target foil and At is isolated by heating the Bi to 425° C. in a stream of N ₂ carrier-gas. The At is collected on a cold-finger cooled with liquid air (69,35).

yja skoles

Ĩ

-47-

Acknowledgment

o paga - gar

We wish to thank Professor G. T. Seaborg, Professor R. Overstreet, and Professor L. Jacobson for valuable advice, criticism and suggestions, Mr. J. R. Mason and Mr. A. F. Rupp of the Oak Ridge National Laboratory for making available to us a series of declassified reports on separation methods for several of the fission-produced radioisotopes, Mr. Herman R. Haymond and Miss Jeanne D. Gile for many helpful discussions and assistance in the literature survey, and the staff of the 60-inch cyclotron at Crocker Laboratory for much of the information on target design, preparation, and bombardments. We are also grateful to Mrs. Betty Stallings for her painstaking work in the preparation of the manuscript and Mrs. Alberta Mozley, Mrs. Helen Haydon and Miss Margaret Gee for technical assistance.

25 231

地址 法法庭主

-48-

References

- (1) D. S. Ballantine and W. E. Cohn, MDDC-1600 (June 1947)
- (2) R. A. Balomey and L. Wish AECD-2665 (August 1949)
- (3) H. H. Barschall and M. E. Battat, Phys. Rev. <u>70</u> 245 (1946)
- (4) R. Bouchez and G. Kayas, Compt. Rend. 228 1222 (1949)
- (5) H. J. Born and U. Drehman, Naturwissenschaften, 32 159 (1945)
- (6) G. E. Boyd, J. Schubert and A. W. Adamson, NDDC-708 (1947)
- (7) G. E. Boyd, O. V. Larson, and M. E. Molta, AECD-2151 (June 1948)
- (8) H. L. Bradt and D. J. Tendam, Phys. Rev. <u>72</u> 1117 (1947)
- (9) A. Broido, AECD-2616 (June 1949)
- (10) S. C. Brown, J. W. Irvine, and M. S. Livingston, J. Chem. Phys. <u>12</u> 132 (1944)
- (11) J. H. Buck, Phys. Rev. <u>54</u> 1025 (1938)
- (12) Caillat and P. Sue, Bull, Soc. Chim. 687 (1949)
- (13) E. T. Clarke and J. W. Irvine, Jr., Phys. Rev. 66 231 (1944)
- (14) E. T. Clarke and J. W. Irvine, Jr., Phys. Rev. 69 680 (1946)
- (15) E. T. Clarke, Phys. Rev. 71 187 (1947)
- (16) W. E. Cohn, Isotope Branch Circular, No. C-1, U. S. Atomic Energy Commission (1947)
- (17) W. E. Cohn, Anal. Chem. 20 498 (1948)
- (18) R. E. Connick, W. H. McVey, J. Am. Chem. Soc., 71 3182 (1949)
- (19) J. M. Cork, Phys. Rev. 70 563 (1946)
- (20) J. M. Cork and R. B. Curtis, Phys. Rev. <u>55</u> 1264 (1939)
- (21) J. M. Cork and J. Halpern, Phys. Rev. 57 667 (1940)
- (22) J. M. Cork, J. Halpern and H. Tatel, Phys. Rev. 57 371 (1940)
- (23) E. H. Covey, UCRL-266 (March 1949)
- (24) J. Crowley, J. G. Hamilton, and K. Scott, J. Biol. Chem. 177 975 (1949)
- (25) B. B. Cunningham, H. H. Hopkins, M. Linder, D. R. Miller, P. R. O'Conror, I. Perlman, G. T. Seaborg and R. C. Thompson, Phys. Rev. <u>72</u> 739 (1947)
- (26) L. A. Delsasso, L. N. Ridenour, R. Sherr and M. G. White, Phys. Rev. 55 113 (1939)

(27) V. Drehmann, Naturwissenschafter 33 24 (1946)

- (28) L. A. Du Bridge, S. W. Barnes, J. H. Buck and C. V. Strain, Phys. Rev. 53 447 (1938)
- (29) R. R. Edwards and T. H. Davies, Nucleonics 2 44 (1948)
- (30) O. Erbacher, W. Herr and V. Egidi, Z. anorg. Chem. 256 41 (1948)
- (31) O. Erbacher, Zeit. Phys. Chem., B.42 173 (1939)
- (32) O. Erbacher and K. Philipp, Ber., <u>69</u> 893 (1936)
- (33) K. Gajans and A. F. Voigt, Phys. Rev. <u>60</u> 619 (1941)
- (34) B. Finkle and W. E. Cohn, AECD-2556-F (March 1949)
- (35) W. M. Garrison, J. D. Gile, R. D. Maxwell and J. G. Hamilton, UCRL-741 (May 1950)
- (36) W. M. Garrison and J. G. Hamilton, unpublished data
- (37) W. M. Garrison, R. D. Maxwell, J. G. Hamilton, J. Chem. Phys. <u>18</u> 155 (1950)
- (38) S. N. Ghoshal, Phys. Rev. 73 417 (1948)
- (39) J. D. Gile, W. M. Garrison and J. G. Hamilton, UCRL-921 (September 1950)
- (40) J. D. Gile, W. M. Garrison and J. G. Hamilton, UCRL-1017 (December 1950)
- (41) J. D. Gile, W. M. Garrison and J. G. Hamilton, J. Chem. Phys. 18 995 (1950)
- (42) J. D. Gile, W. M. Garrison and J. G. Hamilton, J. Chem. Phys., 18 1419 (1950)
- (43) J. D. Gile, W. M. Gerrison and J. G. Hamilton, J. Chem. Phys., 18 1419 (1950)
- (44) J. D. Gile, W. M. Garrison and J. G. Hamilton (to be published)
- (45) J. D. Gile, H. R. Haymond, W. M. Garrison and J. G. Hamilton (to be published)
- (46) L. E. Glendenin and C. M. Nelson, AECD-2556-E (March 1949)
- (47) R. H. Goeckermann and I. Perlman, Phys. Rev. 73 1127 (1948)
- (48) J. Govaerts, J. Chem. Phys., 36 130 (1939)
- (49) J. Govaerts, Bull. Soc. Roy. Sci. Liege 9 38 (1940)
- (50) D. C. Grahame and G. T. Seaborg, Phys. Rev., 54 240 (1938)
- (51) J. C. Griess, Jr. and L. B. Rogers, AECD-2299 (September 1948)
- (52) O. Hahn, Applied Radiochemistry, Cornell University Press (1936)
- (53) J. G. Hamilton, unpublished data (1950)
 J. G. Hamilton, unpublished data (1942)
 J. G. Hamilton, unpublished data (1942)

- (54) H. R. Haymond, R. D. Maxwell, W. M. Garrison, and J. G. Hamilton, J. Chem. Phys. <u>18</u> 756 (1950)
 - (55) H. R. Haymond, W. M. Garrison and J. G. Hamilton, UCRL-920 (September 1950)
 - (56) H. R. Haymond, W. M. Garrison and J. G. Hamilton (to be published)
 - (57) H. R. Haymond, J. Z. Bowers, W. M. Garrison and J. G. Hamilton, J. Chem. Phys., <u>18</u> 1119 (1950)
 - (58) H. R. Haymond, R. D. Maxwell, W. M. Garrison and J. G. Hamilton, J. Chem. Phys., <u>18</u> 901 (1950)
 - (59) H. R. Haymond, K. H. Larson, R. D. Maxwell, W. M. Garrison and J. G. Hamilton, J. Chem. Phys., <u>18</u> 391 (1950)
 - (60) H. R. Haymond, W. M. Carrison and J. G. Hamilton, UCRL-1033 (December 1950)
 - (61) M. C. Henderson, Phys. Rev. 48 855 (1935)
 - (62) G. Hevesy and F. H. Raneth, Radioactivity, Oxford University Press (1938)
 - (63) D. G. Hurst, R. Latham and W. B. Lewis, Proc. Roy. Soc. <u>A 174</u>, 126 (1940)
 - (64) J. W. Irvine and E. T. Clarke, J. Chem. Phys. 16 686 (1948)
 - (65) J. W. Irvine, Jr. and E. T. Clarke, J. Chem. Phys. 16 686 (1948)
 - (66) Isotopes Division, Atomic Energy Commission, Oak Ridge, Tenn., Catalogue No.3 (July 1949)
 - (67) L. Jacobson, R. Overstreet and J. G. Hamilton, unpublished data (1943)
 - (68) L. Jacobson and R. Overstreet, unpublished data (1943)
 - (69) G. L. Johnson, R. F. Leininger and E. Segré, J. Chem. Phys., <u>17</u> 1 (1949)
 - (70) M. D. Kamen, Phys. Rev., 60 537 (1941)
 - (71) E. L. Kelly and E. Segré, Phys. Rev. 75 999 (1949)
 - (72) A. W. Kenny, W. R. E. Maton, and W. T. Spragg, Nature, <u>165</u> 483 (1950)
 - (73) B. H. Kettle and G. E. Boyd, J. Am. Chem. Soc. <u>69</u> 2800 (1947)
- (74) J. X. Khym, P. C. Tompkins, W. E. Cohn, MDDC-1214 (August 1947)
- (75) E. D. Klema and A. O. Hanson, Phys. Rev. 73 106 (1948)
- (76) J. D. Kraus and J. M. Cork, Phys. Rev. <u>52</u> 763 (1937)
- (77) R. S. Krishnau and E. A. Nahun, Proc. Roy. Soc. A 180 333 (1942)
- (78) R. S. Krishnau, Proc. Camb. Phil. Soc. <u>36</u> 500 (1940)
- (79) R. S. Krishnau, Proc. Camb. Phil. Soc. <u>37</u> 186 (1941)

(80) J. D. Kurbatov and M. H. Kurbatov. J. Phys. Chem., 46 441 (1942)
(81) M. H. Kurbatov, Fu-chun Yu and J. D. Kurbatov, J. Chem. Phys., 16 87 (1948)
(82) F. N. D. Kurie, Rev. Sci. Instruments 10 199 (1939)
(83) H. Lanz, K. G. Scott and J. G. Hamilton, unpublished data (1948)
(84) H. Lanz, Jr., P. C. Wallace, J. G. Hamilton, University of California Publications in Pharmacology, 2 263 (1950)
(85) H. Lanz, Jr. and J. G. Hamilton, MDDC-1596 (January 1948)
(86) M. Levy, A. S. Keston, and S. Udenfried, J. Am. Chem. Soc., 70 2289 (1948)
(87) W. F. Libby, J. Am. Chem. Soc. <u>69</u> 2523 (1947)
(88) M. Lindner and I. Perlman, Phys. Rev. 78 499 (1950)
(89) M. S. Livingston, J. App. Phys. <u>15</u> 128 (1944)
(90) R. S. Livingston and B. T. Wright, Phys. Rev. <u>58</u> 656 (1940)
(91) R. D. Maxwell, H. R. Haymond, W. M. Garrison and J. G. Hamilton, J. Chem. Phys., <u>17</u> 1005 (1949)
(92) R. D. Maxwell, H. R. Haymond, W. M. Garrison and J. G. Hamilton, J. Chem. Phys., 17 1006 (1949)
(93) R. D. Maxwell and H. R. Haymond, unpublished data (1948)
(94) R. D. Maxwell, J. D. Gile, W. M. Garrison and J. G. Hamilton, J. Chem. Phys., <u>17</u> 1340 (1949)
(95) W. N. Meinke, AECD-2738 (October 1949)
(96) N. H. Newson, Phys. Rev. <u>51</u> 620 (1937)
(97) L. D. Norris and A. H. Snell, Science 105 265 (1947)
(98) T. H. Norris, S. Ruben and M. D. Kamen, J. Chem. Phys., 2 726 (1941)
(99) R. D. O'Neal and M. Goldhaber, Phys. Rev. 57 1086 (1940)
(100) R. D. O'Neal and M. Goldhaber, Phys. Rev. <u>57</u> 1086 (1940)
(101) R. Overstreet, L. Jacobson and J. G. Hamilton, MDDC-1275 (1946)
(102) R. Overstreet, L. Jacobson and P. R. Stout, Phys. Rev., 75 321 (1949)
(103) G. W. Parker and P. M. Lantz, AECD-2160 (July 1948)
(104) G. W. Parker, J. Reed, and J. W. Ruch, AECD-2043 (June 1948)
(105) I. Perlman, M. E. Morton and I. L. Chaikoff, Endocrinology, 30 487 (1942)

ţ.

- (106) Plutonium Project, J. Am. Chem. Soc., <u>68</u> 2411 (1946)
- (107) A. F. Reid, Rov. Sci. Instruments 18 501 (1947)
- (108) S. Ruben, W. Z. Hassid, and M. D. Kamen, Science <u>91</u> 578 (1940)
- (109) S. Ruben and M. D, Kamen, Phys. Rev. <u>59</u> 349 (1941)
- (110) S. Ruben and M. D. Kamen, Phys. Rev. <u>60</u> 537 (1941)
- (111) S. Ruben, M. D. Kamen, and W. Z. Hassid, J. Am. Chem. Soc., <u>62</u> 3443 (1940)
- (112) S. Ruben and M. D. Kamen, J. App. Phys. 12 31 (1941)
- (113) A. F. Rupp, private communcation (April 1950)
- (114) E. B. Sandell, <u>Determination of Traces of Metals</u>, Interscience Publishers, Inc. (1944)
- (115) G. T. Seaborg, Chem. Rev. 27 199 (1940)
- (116) G. T. Seaborg and I. Perlman, Rev. Mod. Phys. 20 585 (1948)
- (117) E. Segré, R. S. Halford and G. T. Seaborg, Phys. Rev. <u>55</u> 321 (1939)
- (118) E. Segré, K. R. MacKenzie and D. R. Corson, Phys. Rev., 57 1087 (1940)
- (119) J. Schubert and J. W. Richter, AECD-1986 (May 1948)
- (120) M. O. Schultze and S. J. Simmons, J. Biol. Chem., 142 97 (1942)
- (121) Science 103 703 (1946)
- (122) L. Seren, H. N. Friedlander and S. H. Turkel, Phys. Rev. 72 888
- (123) P. R. Stout, private communication
- (124) P. R. Stout, W. R. Meagher, Science, 108, 471 (1948)
- (125) C. V. Strain, Phys. Rev. 54 1021 (1938)
- (126) L. Szilard and T. L. Chalmers, Nature, 134 462 (1934)
- (127) H. E. Tatel and J. M. Cork, Phys. Rev. 71 159 (1947)
- (128) G. M. Temmer, Phys. Rev. 76 424 (1949)
- (129) R. L. Thornton, Phys. Rev. 51 893 (1937)
- (130) E. R. Tompkins, J. X. Khym and W. E. Cohn, J. Am. Chem. Soc. 69 2769 (1947)
- (131) J. E. Volker, J. C. Hodge, H. J. Wilson, and S. N. Van Voorhis, J. Biol. Chem., 134 535 (1940)

- 54-

- (132) A. S. Weil, A. F. Reid, J. R. Dunning, Rev. Sci. Instruments 18 556 (1947)
- (133) V. F. Weisskopf and D. H. Ewing, Phys. Rev. <u>57</u> 472 (1940)
- (134) M. B. Wilk, Can. J. Research, 27 475 (1949)
- (135) G. W. Wilkinson and H. Hicks, Phys. Rev., 75 1370 (1949)
- (136) R. R. Wilson and M. D. Kamen, Phys. Rev. <u>54</u> 1031 (1938)
- (137) R. E. Yankwich, G. K. Rollefson and T. H. Norris, J. Chem. Phys., 14 131 (1940)